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Abstract This research paper benevolence is a technique for short-term 
hydrothermal generation scheduling (STHTGS) power plant using a non-dominant 
sorting teaching learning-based optimization (NSTLBO) algorithm. It involves the 
deployment of thermal power plants in optimum operating conditions to reduce fuel 
costs and optimize the cost of hydroelectric power plants. The electrical energy 
considered in this study is assumed to be efficient. The NSTLBO algorithm has been 
found suitable for this problem as it reaches the minimum cost in the shortest time 
compared with the previous methods. 

Keywords Hydro · Thermal · Economic dispatch · Valve point loading effect ·
NSTLBO algorithm 

1 Introduction 

Hydrothermal scheduling will optimize the timing of hydroelectric and thermal 
power plants toward diminishing the fuel costs of thermal power plants [1]. It is an 
important part of the energy industry and economy that provides electrical and heat
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energy within this system [2, 3]. The increasing cost of thermal power plants and the 
intersection of renewable energy further emphasize the importance of hydrothermal 
propulsion [4]. 

In the short-term transmission problem, some limitations such as the capacity 
of the hydraulic unit, the demand of the load, the hydraulic input, the flow restric-
tion of the reservoir and the reservoir capacity should be known [5]. The stability 
of a hydroelectric power plant depends on the balance between thermal and hydro-
electric power generation and load demand. However, generators are difficult to 
operate and deliver in industry due to hydraulic constraints and the need to meet load 
requirements [6]. Many techniques, such as Lagrangian multipliers, gradient search 
methods, evolutionary programming, rapid evolutionary programming, mixed evolu-
tionary programming, simulated annealing, genetic algorithms and particle swarm 
optimization have been used to solve short-term problems [7–14]. 

However, the aforementioned algorithms all have their own limitations. For 
example, the Lagrange multiplier method will face the problem that the binary solu-
tion is not possible, the simulated annealing convergence speed is slow, and the 
problem is not easy, and the evolutionary algorithm will face the problem of slow 
convergence speed in multimodal optimization. Additionally, genetic algorithms may 
have poor search results [15], while optimization of the particle swarm may suffer 
from premature intersections [10, 16–19]. To solve these problems in short-term 
hydrothermal scheduling, this article proposes to use the non-dominant sequence-
based learning-based optimization (NSTLBO) algorithm [20–22]. This optimization 
process was inspired by the teaching-to-learn behavior and outperforms the advanced 
know-how, especially in the execution period. 

This method differs from other algorithms in that it does not rely on standard 
optimization parameters. The algorithm reduces the costs associated with thermal 
power plants by dividing energy consumption by hydrothermal generation. To eval-
uate the effectiveness of the NSTLBO method, we apply it to extensive experiments 
and compare the simulation results with those obtained by further approaches. 

2 Problematic Construction 

2.1 The Cost Minimization 

F1 = 
T∑

t=1

{
js∑

i=1 

fs(Ps)

}
(1) 

In the formulary, F1 is the total operating cost of the thermal power unit. 
The number of electric generators is js, respectively. 
T is the timer for the generator. The productivity power of the thermal unit is Ps, 

respectively.
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After delightful into account the valve point load effect, the fuel cost of the thermal 
unit at time T is shown as follows: 

fi t  (Psit ) = min 
T∑

t=1 

js∑

i=1

{
ai + bi Psi + ci P2 

si  +
||di sin

[
ei

(
Pmin 
si  − Psi

)]||} (2) 

where ai, bi, ci, di and ei are the cost coefficients of the thermal unit and Pmin 
si is the 

slightest power generation limit of the thermal unit. 

2.2 Constraints 

The STHTGS problem would gratify the subsequent equality and inequality. 

Equal to the Energy Limit 

js∑

i=1 

Psi + 
rh∑

g=1 

Phg + 
lw∑

k=1 

Pwk + 
n pvm∑

m=1 

Ppv − PL = PD (3) 

Power generation of hydro entities can be expressed as 

Phg = C1g
(
Vhg

)2 + C2g
(
Qhg

)2 + C3gVhg Qhg + C4gVhg 

+ C5g Qhg + C6g g ∈ Nh, t ∈ T (4) 

Water Balance Constraint 

V t h j  = V t−1 
h j  + I t h j  − Qt 

h j  − St h j  + 
Ruj∑

l=1

(
Q 

t−dl j  
hl + S t−dl j  

hl

)
j ∈ Nh, t ∈ T (5) 

Limited Storage Capacity and Initial and Final Discharge Rate of the Reservoir 

V min 
h j  ≤ V t h j  ≤ V max 

h j j ∈ Nh,, t ∈ T (6) 

Qmin 
h j  ≤ Qt 

h j  ≤ Qmax 
h j j ∈ Nh, t ∈ T (7) 

Power Generation Limits 

Pmin 
h j  ≤ Pt 

h j  ≤ Pmax 
h j j ∈ Nh, t ∈ T (8) 

Pmin 
si  ≤ Pt 

si  ≤ Pmax 
si i ∈ Ns, t ∈ T (9)
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3 Elucidation Procedure 

3.1 Non-dominated Sorting TLBO Algorithm 

The NSTLBO procedure is an improvement of the TLBO procedure, which provides 
a unique way to generate Pareto optimal results for multi-objective optimization 
difficulties. Similar to the TLBO algorithm, it uses a grading algorithm combined with 
the teacher–student level to manage multiple objectives. The NSTLBO algorithm 
uses a non-critical permutation technique and mass distance measurement to more 
efficiently search for space and continuously select the optimal solution along the 
Pareto front. With its bottleneck-free working time, it enables teachers to be selected 
from a wide search area and prevents premature convergence to the best locale. 

The NSTLBO algorithm combines the teacher’s instruction and the learning level 
of the TLBO algorithm, so the student can use it quickly. Finding good solutions to 
individual optimization problems is easy, but it becomes more difficult when there 
are multiple conflicting goals. In this case, finding the best solution in the problem 
solving process is not an easy task. The algorithm solves this problem by comparing 
the solution sequences based on the congestion distance values and the non-dominant 
strategies to novelty the optimum solution. The process starts with startup. 

The algorithm starts with an initialization step that creates an N × D matrix  
containing the values generated in the search space, where N represents the total size 
(often called ‘room size’) and D represents the size of the problem being solved given 
all parameters. The algorithm remains designed toward work aimed at ‘g’ iterations. 
At the beginning of each iteration, the value of the jth parameter of the ith vector is 
calculated using the following equation: 

x1 (i, j) = xmin 
j + rand(i, j) ×

(
xmax 
j − xmin 

j

)
(10) 

where rand(i,j) signifies a consistently disseminated arbitrary variable within the limit 
(0,1). The workings of the ith vector for the generation ‘g’ is shown by 

X g i =
|
xg (i,1), x

g 
(i,2), . . . ,  x

g 
(i, j), . . . ,  x

g 
(i,D)

|
(11) 

In this two-objective problem, the line vector represents the main target for a 
generation. Line vectors correspond to two objective functions in thought. The two-
objective problem defined as (a and b) can be framed as follows.

[
Yag i 
Ybg i

]
= 

⎡ 

⎣ 
f a

(
X g (i)

)

f b
(
X g (i)

)

⎤ 

⎦ (12) 

where i = 1, 2,…,N; j = 1, 2,…,D and g = 1, 2,…,G.
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Teacher Phase 

The mean trajectory is computed by taking the average of the learners’ values for 
each subject in the class. So the mean vector µ is shown as 

Mg = 

⎡ 

⎢⎣ 
mean([xg (1,1), . . . ,  xg (i,1), . . . ,  xg (N ,1) 

mean([xg (1, j), . . . ,  xg (i, j), . . . ,  xg (N , j) 

mean([xg (1,D), . . . ,  x
g 
(i,D), . . . ,  x

g 
(N ,D) 

⎤ 

⎥⎦ 

T 

(13) 

Then 

Mg = mg 
1, m

g 
2, . . . ,  m

g 
j , . . . ,  m

g 
D (14) 

The vector with the lowest objective value is determined as the best vector and 
is chosen by way of the teacher for this recapitulation. The algorithm makes devel-
opment by replacing the student’s average by that of the teacher. This is done by 
combining the current mean vector with the potential mean vector in the student 
population, resulting in improved student level. 

Xnewg 
(i ) = X g (i) + randg × (

X g Teacher − TF M
g
)

(15) 

Henceforth TF is the teaching inspiration in the course of recapitulation which 
may be either  1 or 2.  

The supplementary expert students in the matrix Xnew relocate the inferior learners 
in matrix S by the non-dominated sorting algorithm. 

Learner Phase 

This stage is enthusiastic to interface between learners. The repetition of interface 
leads to the improvement of learner’s expertise. Each learner works randomly with 

other learners, speeding up knowledge sharing. A precise student
(
X g (i )

)
and the 

other learner
(
X g (r )

)
has remained arbitrarily chosen (i /= r). Lastly the ith vector of 

the matrix Xnew in the learner phase seems 

Xnewg 
(i) = 

⎧ 
⎨ 

⎩ 
X g (i ) + randg (i) ×

(
X g (i) − X g (r )

)
if
(
Y g i < Y g r

)

X g (i ) + randg (i) ×
(
X g (r) − X g (i )

)
otherwise 

⎫ 
⎬ 

⎭ (16) 

There is an opportunity of manifold Xnew conditions in the learner phase. Conse-
quently cutting-edge circumstance of a bi-objective problem of the presentation of 
learner phase might have preparation as 

Xnewg 
(i ) = 

⎧ 
⎨ 

⎩ 
X g (i ) + randg (i) ×

(
X g (i) − X g (r )

)
if
(
Yag 

i < Yag 
r
)

X g (i ) + randg (i) ×
(
X g (r) − X g (i )

)
otherwise 

⎫ 
⎬ 

⎭ (17)
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Xnewg 
(i) = 

⎧ 
⎨ 

⎩ 
X g (i ) + randg (i) ×

(
X g (i ) − X g (r)

)
if
(
Ybg i < Ybg r

)

X g (i) + randg (i ) ×
(
X g (r ) − X g (i)

)
otherwise 

⎫ 
⎬ 

⎭ (18) 

Lastly, the X matrix and the Xnew matrices are treated in organized manner in 
the NSTLBO, which devise the ‘N’ best learners for the confirming iteration. The 
algorithm will be finished afterward ‘G’ number of iteration is over. 

Fuzzy Membership Function 

The main goal of the systems cause is to resolve the conflict by fulfilling the 
constraints. In many cases, the results, limitations and benefits of the proposed 
methods cannot be accurately predicted. Most bugs are unreachable. This may 
be because of confusion, inaccurate or unclear information. When we look at the 
decision-making process, we see that they can replace all their business goals with 
vague or negative ones. Fuzzy crowds are determined by equations called member-
ship. These properties are allocated standards between 0 and 1. Through setting least 
and extreme performance targets and cost of ownership, the decision-maker has to 
make a decision. The membership function µ( ji ) in a constructive manner. 

It remains measured that µ
(
jg

)
occurred to be a linear declining and unremitting 

purpose and is expressed as 

µ
(
jg

) = 

⎧ 
⎪⎨ 

⎪⎩ 

1 jg ≤ jmin 
g 

jmax 
g − jg 

jmax 
g − jmin 

g 
jmin 
g ≤ jg ≤ jmax 

g 

0 jg ≤ jmax 
g 

(g = 1, 2, . . . ,  Nob) (19) 

where jmin 
g and jmax 

g remain the least and extreme standards of impartial role 
anywhere in the solution to be property-owning. 

Nob denotes the number of impartial purpose in the problem. 
Regularized association values µk for each non-dominated resolution is intended 

by the subsequent equation. 

µk =
∑Nobj  

i=1 µ
k 
i∑Mnds 

k=1

∑Nobj  
i=1 µ

k 
i 

(20) 

where Mnds remains the amount of non-dominated solutions. Indicate the best contain 
explanation that is consuming the utmost value of µk . 

4 Implementation 

Figure 1 shows the flowchart for STHTGS problem and implementation of NSTLBO 
algorithm.
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Fig. 1 Implementation of NSTLBO for STHTGS problem
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5 Results and Discussion 

Apply the NSTLBO algorithm to the test procedure, confirm the viability and efficacy 
of the NSTLBO algorithm and elucidate the STHTGS problem. The test system 
consists of four hydro generators and three thermal generators to achieve the best 
solution of the STHTGS problem, with and without the valve loading effect. The main 
objective of the process is the operating cost of the electric generator, captivating 
into explanation the effect of the valve loading point. Also, the hydraulic network of 
these machines is shown in Fig. 2. Total scheduling time is 24 h. The test procedure 
is explained in detail and the results are described below. 

Test System 

In this system, the best solution of the STHTGS problem is obtained by using the 
NSTLBO algorithm, taking into account the valve point load effect of the thermal 
power plant. All the input information of the hydrothermal system is taken in [21] 
and the NSTLBO algorithm effectively solves the STHTGS problem by finding the 
minimum fuel cost of the thermal unit with effectiveness, the slightest value that 
the NSTLBO algorithm can find. Table 1 demonstrates the hydraulic discharge for a 
period of 24 h in an optimal manner and also it is shown in Fig. 3.

Optimum power generation of hydro, thermal and total load demand are given in 
Table 2. The optimum power generation of water, steam and power demand is shown 
in Fig. 4 with an optimal manner.

Fig. 2 Hydraulic network 



NSTLBO-Based Approach for Optimal Scheduling of Hydrothermal … 23

Table 1 Optimal generation of water discharge for four hydro units 

Hours Water discharge Hours Water discharge 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1 12.781 14.880 17.828 11.041 13 8.5450 6.8000 24.331 18.210 

2 6.1990 6.8820 22.875 17.815 14 13.379 13.734 11.177 24.123 

3 14.702 14.392 12.188 23.912 15 6.1500 11.524 11.342 23.784 

4 15.452 14.352 28.339 24.836 16 14.999 14.999 15.127 24.872 

5 6.7224 14.981 26.521 16.567 17 14.489 12.011 17.359 24.999 

6 14.999 14.553 10.780 24.748 18 14.999 15.790 10.703 21.025 

7 14.961 14.363 23.672 24.989 19 12.688 10.284 28.725 24.983 

8 14.574 8.8940 29.754 24.582 20 14.671 7.5870 12.842 24.791 

9 14.951 12.924 11.446 14.913 21 6.9730 14.969 29.999 24.984 

10 12.968 14.793 23.551 17.260 22 14.999 14.759 13.385 18.617 

11 11.849 13.681 29.978 23.335 23 9.8850 10.594 10.815 23.297 

12 13.859 14.548 13.527 24.069 24 11.775 14.999 17.560 24.925 

Fig. 3 Optimal generation of water discharge of four hydro units
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Table 2 Optimal generation of four units of hydro, three units of thermal power and total load 
demand 

Hour Hydro Thermal Total load 
demandPh1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 

1 93.270 83.227 29.869 178.58 102.274 123.614 139.166 750 

2 56.383 47.315 5.1850 216.99 101.77 123.887 228.47 780 

3 96.363 77.525 39.374 208.17 20.910 206.958 50.700 700 

4 92.260 75.829 0.0000 199.13 102.97 40.001 139.81 650 

5 56.870 71.903 0.0000 259.45 102.767 40.000 139.01 670 

6 86.053 70.088 37.770 325.32 99.590 40.809 140.37 800 

7 87.337 71.486 0.0000 327.82 21.047 124.83 317.48 950 

8 87.047 49.339 0.0000 326.61 20.904 208.53 317.57 1010 

9 86.628 66.798 39.204 262.91 102.67 125.69 406.10 1090 

10 84.497 72.197 0.0000 283.37 103.52 39.626 496.79 1080 

11 82.018 68.992 0.0000 320.47 101.55 209.60 317.37 1100 

12 86.179 71.816 44.005 323.40 102.70 292.70 229.20 1150 

13 67.785 37.885 0.0000 290.68 103.17 293.19 317.29 1110 

14 87.053 69.127 39.061 323.61 153.81 40.369 316.97 1030 

15 52.563 61.833 39.154 321.88 101.56 292.53 140.48 1010 

16 89.021 72.499 36.803 311.89 20.007 209.81 319.97 1060 

17 86.612 63.69 31.388 327.84 102.63 209.64 228.20 1050 

18 86.622 73.286 38.752 309.06 172.35 210.72 229.21 1120 

19 83.831 56.459 0.0000 327.80 165.23 210.16 226.52 1070 

20 86.640 42.486 43.407 327.24 100.67 39.827 409.73 1050 

21 56.218 72.457 0.0000 327.80 21.105 292.67 139.75 910 

22 87.023 71.517 38.953 293.64 101.66 39.807 227.40 860 

23 73.535 57.885 38.799 320.31 102.55 206.6 50.321 850 

24 96.651 80.948 55.537 302.37 173.89 39.81 50.794 800
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Fig. 4 Optimal generation of four hydro, three thermal units 

6 Conclusion 

This study presents a short-term hydrothermal power generation distribution by 
means of the NSTLBO algorithm. Toward verifying the efficacy of the future method, 
this experiment includes several consecutive hydroelectric chains and different 
thermal power plants to analyze and solve the STHTGS problem. The simulation 
outcomes of the NSTLBO technique demonstrate the validity then pre-eminence of 
the technique. In the future, different efficient and state-of-the-art multi-objective 
optimization algorithms will be considered for uncertain short-term hydrothermal 
production scheduling decisions. 
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