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Abstract. Inrecent years, 2D human pose estimation (HPE) has become increas-
ingly important in complex computer vision tasks, including understanding human
behavior and interaction. Despite challenges like occlusion, unfavorable lighting,
and motion blur, deep learning techniques have revolutionized 2D HPE by allow-
ing automatic feature learning from data and improving generalization. We pro-
posed a new model called Spatially-aware Attention-based Hierarchical Features
Enabled Lightweight PoseResNet (SAHF-LightPoseResNet) for 2D HPE. This
model extends the simple baseline network by using Spatially-aware Attention-
based Hierarchical Features to enhance accuracy while minimizing parameters.
The proposed model efficiently captures finer details by incorporating ResNet18,
Global Context Blocks, and a novel SAHF module. Our SAHF-LightPoseResNet
approach demonstrates superior performance compared to existing state-of-the-art
methods, achieving PCKh@0.5 a of 90.8 and a Mean@0.1 metric of 41.1, high-
lighting its enhanced accuracy and efficiency. This model has important practical
applications in robotics, gaming, and human-computer interaction, where accurate
and efficient 2D HPE is essential.

Keywords: 2D human pose estimation - SAHF-LightPoseResNet - Global
Context Blocks

1 Introduction

The utilization and advancement of Computer Vision (CV) technology in diverse real-
world environments, including but not limited to smartphones, digital cameras, and
Closed-Circuit Television (CCTV), have led to a persistent flow of extensive data in
the form of images and videos. Information regarding human activities found within
these data is incredibly significant. Human Pose Estimation (HPE) involves identifying
and categorizing the various joints in the human body. Essentially, HPE captures each
joint’s coordinates, including arms, head, and torso, which are commonly referred to
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as key points that define a person’s posture. Over the past few decades, the automatic
understanding of HPE has been a major focus of research in CV. 2D HPE offers a
fundamental base for several complex CV assignments, including predicting 3D HPE,
identifying human actions and motion prediction, parsing human body components, and
retargeting human movements. 2D HPE offers extensive support for a wide range of
applications, human behaviour understanding, identification of crowd disturbances and
riots, detection of violent incidents, recognition of unusual behavior, enhancement of
human-computer interaction, and enabling autonomous car driving [4].

The 2D HPE is considered challenging because it is impacted by several significant
factors, such as the occlusion of keypoints, unfavorable lighting and background condi-
tions, motion blur, and the complexity of implementing the model in real-world scenarios
due to its extensive parameters [20]. Researchers employed conventional techniques like
probabilistic graphical models in the early stages to tackle these challenges. However,
these methods heavily relied on manually crafted features, restricting the model’s gener-
alization ability and limited performance. The progress of 2D HPE has been significantly
boosted by introducing deep learning methods, which overcome the generalization limi-
tation of hand-crafted features by enabling automatic feature learning from the data. The
remarkable performance of Convolutional Neural Networks (CNNs) in 2D HPE paved
the way for developing many deep learning techniques that rely on their success [3].

The main objective of this paper is to achieve high prediction accuracy while mini-
mizing the number of parameters utilized rather than solely focusing on improving the
prediction accuracy of existing approaches. The simple baseline network [17] accom-
plished the best outcomes compared to other top-down approaches. Its effectiveness and
simplicity make it an appropriate starting point for creating more sophisticated methods
for 2D HPE. In order to accomplish this, we have proposed a unique approach named
SAHF-LightPoseResNet, which builds upon the basic framework network by incorpo-
rating Spatially-aware Attention-based Hierarchical Features. To reduce the complexity
of the model, we have opted to use ResNetl8 instead of the more intricate models
like ResNet50, 101, or 152, which contain a more significant number of parameters.
In our implementation of ResNetl8, we have discarded the average pooling segment
and the last fully connected segment and exclusively incorporated convolutional layers.
Additionally, we have added two deconvolution layers to improve the model’s visual pro-
cessing capabilities and overcome quantization distortion resulting from a large output
stride size. We have incorporated Global Context Blocks (GCBs) [2] into the proposed
model to equip down-sampler and up-sampler modules with powerful global context fea-
tures. Our newly developed module, SAHF, merges the feature representations extracted
from multiple down-sampler layers, and then enhances these representations by utiliz-
ing spatial attention. Finally, SAHF allocates the enriched feature representations to
their respective layers in the up-sampler, avoiding conventional skip connections [12,
13]. This approach produced hierarchical representations with spatial awareness and can
more effectively capture finer details.

The threefold contribution of the SAHF-LightPoseResNet model can be summarized
as follows:
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Fig. 1. The proposed SAHF-LightPoseResNet framework.

e We developed a novel model called SAHF-LightPoseResNet, where ResNet18 was
used instead of more complex models to reduce the model’s complexity. Two decon-
volution layers are utilized to improve the model’s visual processing capabilities and
overcome quantization distortion resulting from a large output stride size. GCBs are
incorporated into the model’s down-sampler and up-sampler modules to augment it
with potent global context features.

e Our proposed SAHF module combines features extracted from different down-
sampler layers, which are then enhanced using a spatial attention mechanism and
distributed to the corresponding up-sampler layers. As a result, hierarchical repre-
sentations with spatial awareness are generated, which can capture finer details more
effectively.

e Experiments were carried out on the MPII dataset to verify the efficiency of the
proposed approach. Evaluation of the quantitative and qualitative outcomes indicated
that our model achieved better accuracy and lower computational cost than existing
2D human pose estimation techniques.

This article follows a structured approach with several sections. Section 2 presents
an overview of prior research conducted in the same field. Section 3 elaborates on the
comprehensive methodology of our Proposed SAHF-LightPoseNet. Section 4 covers
pertinent information regarding the experimental setup and implementation details. An
analysis of both qualitative and quantitative results is exhibited in Sect. 5. The final
section, Sect. 6, draws the conclusion and lays out plans for future exploration.
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2 Related Works

Deep learning approaches are utilized in designing network architectures for 2D HPE to
extract robust features that span from low to high levels. These approaches are typically
categorized into two frameworks: the top-down and bottom-up frameworks. The method
of the top-down paradigm involves a sequential process where the initial step is to identify
the human bounding boxes in an image, followed by executing the single HPE for every
identified box. This type of approach is not a suitable method for managing large crowds
as the computational time for the second step increases in association with the number
of individuals present [1, 6]. A. Toshev et al. [15] has made a pioneering contribution to
the field of HPE by introducing CNN for the first time.

They leveraged the CNN’s robust fitting capability to regress the coordinates of
human joints and implemented a cascading structure to refine the outcomes continu-
ously. Though, the model tends to overfit because the weights of the fully connected layer
depend on the distribution of the training dataset. Convolutional Pose Machine (CPM)
[16] and stacked hourglass networks [12] solved this issue by predicting heatmaps of 2D
joint locations. Two main object detection techniques exist in 2D HPE: the RCNN [7]
series and the SSD series [10]. The RCNN series employs a complicated network struc-
ture that achieves high accuracy. Introduced the Mask-RCNN approach, which builds
upon the faster-RCNN architecture [7] by incorporating keypoint prediction. As a result,
this method achieves excellent results in HPE, demonstrating strong competitiveness in
this domain. Conversely, the SSD series offers an average compromise between precision
and Y. Chen et al. [5] presents the concept of a cascaded pyramid network (CPN) that
uses Global-Net to identify simple keypoints and Refine-Net to handle more challeng-
ing keypoints. To be more precise, Refine-Net includes multiple standard convolutional
layers that merge feature representations from all levels of GlobalNet.

The process of bottom-up methods start with detecting keypoints for every human
instance present in an image. Subsequently, the keypoints of the same individual are
joined to form skeletons of multiple instances. This grouping optimization problem is
crucial in determining the outcome of the bottom-up approach. Some representative
methods utilize this approach, and they are [3, 14]. Open-Pose, as described in [3], uti-
lized two branches - one of which employed a CNN to predict all keypoints based on
heatmaps, and the other used a CNN to acquire part affinity fields. The part affinity fields
represent 2D direction vectors, and they serve as a confidence metric to determine if the
keypoints are associated with the same person. Ultimately, both branches are merged
to generate the concluding prediction. The approach known as associative embedding
[11], derived from Hourglass [12], is end-to-end trainable. The source detected and accu-
mulated keypoints in one step without requiring two separate processes. Implementing
bottom-up approaches can be challenging due to the difficulty of combining informa-
tion from multiple scales and grouping features together. Even with the introduction of
effective grouping procedures, these methods still struggle to contest top-down strate-
gies for pose estimation. In recent times, the majority of cutting-edge outcomes have
been achieved through top-down methodologies. Our research traced the top-down app-
roach and developed a successful 2D HPE model. This addresses the issue of top-down
approaches by modifying a baseline network with Spatially-aware Attention-based Hier-
archical Features. We utilized a simpler ResNet18 model and removed specific layers
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to reduce complexity. We then added deconvolution layers and Global Context Blocks
to improve visual processing and global context features. The proposed SAHF mod-
ule combines and enhances feature representations from various layers, enabling better
capture of finer details through hierarchical representations with spatial awareness.

3 Our Proposed SAHF-LightPoseNet

To formally define the task of estimating human pose, we can state it as follows: when
given an RGB image or video frame I as input, the goal is to estimate pose P of human(s)
present in the data. The pose P can be represented as a set of K’s keypoint positions,
where a two-dimensional coordinate represents each keypoint (xx, yx), and K can vary
depending on the dataset. Therefore, we aim to estimate the pose P = {P;}}_, for all
n individuals in the input data. Our research builds upon the simple baseline network
for 2D HPE that was previously developed. Our proposed SAHF-LightPoseResNet is
shown in Fig. 2. Further information and comprehensive explanations regarding the
components of SAHF-LightPoseResNet are introduced in the following subsections.
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Fig. 2. Proposed SAHF Module.

3.1 Enhancing Backbone Model with Modified ResNet and Deconvolution
Module

The structure of the autoencoder network is commonly utilized for dense labeling tasks.
To achieve this, we employed an autoencoder network structure that slowly decreases
the resolution of embeddings to capture extended-range details, which subsequently
increases feature maps while recovering spatial resolution. Hourglass and simple baseline
networks create smaller output feature maps than their input feature maps, which are
then resized using a simple transformation technique that can cause quantization errors.
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When data processing is biased, prediction errors can occur due to horizontal flipping
and how the model processes the output resolution [9].

We incorporated two deconvolution modules into our approach to tackling the above-
mentioned challenges. These modules were designed to generate a complete output fea-
ture map and were integrated within the architecture of the simple baseline network. We
opted to use ResNet 18 and 34, which have fewer parameters compared to more complex
ResNet models like 50, 101, or 152. We modified ResNet [8] by removing the average
pooling segment and fully connected part and replacing them with four ResNet blocks
after a convolutional and pooling layer. The first set of layers in the network, which
includes a convolutional layer and a pooling layer, reduces the size of the feature maps
by half. As the input passes through each block of the network, additional convolutional
layers are used to decrease the feature maps by two strides while simultaneously increas-
ing the number of filters by a factor of two. We added five deconvolutional modules with
batch normalization and Hardswish activation, each doubling the feature resolution map
until the output matches the input. The proposed architecture is illustrated in Fig. 1. The
4th and 5th deconvolutional layers have channel sizes of 128 and 64, respectively.

3.2 Amplifying Model Performance with Global Context Blocks

In computer vision, a global context block is a module designed to capture the overall
spatial information of an input feature map, aiming to improve object recognition in an
image. In convolutional layers, the association among pixels is only considered within a
local neighborhood, and baseline network. We opted to use ResNet 18 and 34, which have
fewer parameters compared to more complex ResNet capturing long-range dependencies
requires multiple convolution layers. To address this limitation, researchers proposed a
non-local operation [ 18], which employed a self-attention mechanism from [19] to model
long-range dependencies. Using a global network creates an attention map tailored to
each query position, enabling the collection of contextual features that can then be
integrated into the features of the corresponding position. GCNet is presented as a highly
well-organized and operative method for global context modeling [2]. This method
employs a query-agnostic attention map to generate a contextual representation that can
be globally shared and then incorporates it into the features of each query location in
the network.

Our proposed method uses global context blocks [2] to enhance the spatial infor-
mation of input feature maps. Specifically, as illustrated by blue blocks in Fig. 1 global
context blocks are incorporated into each ResNet block as well as the first three blocks
of the deconvolution modules. We generate a spatially-aware attention heatmap using
a 1 x 1 convolution and SoftMax to produce attention weights, which are then used
in attention pooling to extract a global context feature. Channel-wise dependencies are
obtained using the bottleneck transform technique. Afterward, the resulting global con-
text features are combined with the features of each position in the network, as shown
in the following equation.

h w
fe= Zzwijﬁj M

i=1 j=1
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where in Eq. 1, f; represent the global context feature, i and w are the height and width
of the input feature map, w;; is the attention weights at position (i, j) and f (i, j) is the
feature vector at the position (i, j).

3.3 SAHF Module

The Spatially-aware Attention-based Hierarchical Features (SAHF) module overcomes
the limitations of earlier frameworks, such as the simple baseline framework, which
did not integrate skip connections [12, 13]. These connections have proven effective
in U-Net and hourglass networks for retaining spatial information at each feature map,
allowing for an efficient transfer of spatial information across the network, leading to
improved localization.

Our proposed SAHF module, depicted in Fig. 2, is an alternative to traditional skip
connections used in previous works [12, 13]. The SAHF module combines hierarchical
features from different layers, using spatial attention to enhance features. It receives
feature maps from the first three Global Context Blocks, ResNet blocks, and Spatially-
aware attention feature maps. These feature maps are multiplied elementwise to generate
enhanced features, which are then allocated to the deconvolution modules, excluding the
last one. The Spatially-aware attention technique focuses on locations related to pose
estimation and helps generate helpful detail while suppressing background information.
The enhanced features from the SAHF module improve the capabilities of related decon-
volution models, leading to an overall improvement in network performance as shown
in table 1 and visualize the performance of SAHF in Fig. 3 (a) and (b).

3.4 Heatmap Joint Prediction

Our model predicts joint positions at the pixel level by converting them into heatmaps
within a bounding box, using a 2D Gaussian function to generate ground truth. The
resulting heatmap represents the probability of a joint being located at each pixel.
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In Eq. 2 Hy, represent heatmap for kth joint where k € {1, 2, ..., K}, and (x, y) show
the position of the specified pixel in the heatmap. The k™ joints coordinated are denoted
by (xx, yx). The value for spatial variance o is set to 12 in this experiment.

4 Experimental Setup

4.1 Dataset

Our experimentation to evaluate the effectiveness of our proposed model was carried out
using the extensively recognized MPII (Max Planck Institute for Informatics) Dataset
[21]. This comprehensive dataset comprises more than 25,000 annotated images, captur-
ing over 40,000 individuals, each mapped with 16 distinct key-points. This substantial
data set has been strategically split into two subsets, one for training and the other for
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testing. A total of 28,000 images were employed to build and refine our model in the
training phase. Subsequently, a separate set of 11,000 images was exclusively leveraged
to test the model’s performance, providing an objective measure of model’s robustness
and accuracy.

4.2 Implementation Details

We utilized data augmentation techniques to improve the model’s ability to handle scale
variance and spatial rotation, including random horizontal flip, rotation within -40 to +
40 degrees, and scaling between 0.7 to 1.3 in our approach. Our designed model was
implemented using PyTorch. The training process included a learning rate of 1e-05, a
batch size of 16, a number of workers set to 6, and 150 epochs.
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Fig. 3. (a) [lustration of PCKh@0.5 Results: Proposed Model and Simple Baseline Models (b)
Graphical Analysis of Mean and Mean@0.1: Proposed Models and Simple Baseline

In our research, we implemented three key components to ensure precise model
training and enhanced model performance: MSE loss function, AdamW optimizer, and
Hard Swish activation function.

The Mean Square Error (MSE) loss function, which has been effectively utilized in
previous works such as [6, 17], was chosen to evaluate the model’s error. The formula
for MSE is presented below.

Sk IlH — Hy
K

L= 3)

InEq. 3, H « represent estimated heatmap for the k™ joint, where as H is the heatmap
for the k™ joint k € {1,2, ..., K}.
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The model optimization process was further enhanced using a variant of the Adam
optimizer, AdamW. Distinct from the original Adam optimizer, AdamW separates weight
decay from the learning rate, enabling independent optimization and significant reduction
in overfitting.

Finally, our research employed the Hard Swish activation function. This superior
function offers significant advantages over the commonly used ReL U function, includ-
ing superior accuracy, efficiency, smoother gradient, and the ability to address the ‘dying
neurons’ issue often seen with ReLU. Utilizing Hard Swish, we witnessed an overall per-
formance improvement in our neural network model and achieved superior experimental
results, suggesting its potential benefits across various deep-learning applications.

4.3 Evaluation Metrics

We used PCK (Percentage of Correct Keypoints) and Mean @0.1, widely used evaluation
metrics in HPE tasks. PCKh, a variation of PCK, compares the predicted and actual
keypoints using the head bone link length as a reference. The prediction is considered
correct if the distance between the predicted and actual keypoints is less than 50% of
the head bone link length (PCKh@0.5). Mean@0.1, on the other hand, measures the
average distance between predicted and actual keypoints, normalized by the head bone
link length, and is scale-invariant.

5 Experimental Results and Discussion

Our model was trained on different input sizes, namely 256 x 256, 288 x 384, and 384
x 384. The only exception was the simple baseline model, which did not use the 288 x
384 input size. In Fig. 4, you can observe the inference results of the LightPoseResNet-
18 model on the MPII dataset. To compare the performance of our proposed SAHF-
LightPoseResNet model with that of the basic baseline model, we present their out-
comes in Table 1. We also provide a visualization of each joint with PCKh@0.5 for
our proposed models and the simple baseline models that used the 256 x 256 input
size, as shown in Fig. 3(a). Finally, Fig. 3(b) displays both models’ overall Mean and
Mean@0.1 predictions using the 256 x 256 input size. Initially, we conducted train-
ing on SAHF-LightPoseResNet-18 using input sizes of 256 x 256. As a result, we are
able to obtain PCKh@0.5 values of 89.425 and 90.297, along with mean@0.5 values
of 34.483 and 39.670. These values were found to be higher than the PCKh@0.5 and
Mean@0.1 values of all the basic baseline models. We conducted an experiment on
the LightPoseResNet-18 model using input sizes 288x384 and 384 x 384. Our results
showed that the LightPoseResNet-18 model outperformed the simple baseline. Notably,
despite achieving better results, the LightPoseResNet-18 model used only 21 million
parameters during the training process, which is fewer than all the simple baseline
models.

Some experiments were conducted on LightPoseResNet-34 using the input sizes
mentioned earlier. The outcomes revealed that the model yielded better results in terms
of PCKh@0.5 and Mean@0.1, despite having fewer parameters than the simple baseline
model. These findings are presented in Table 1 and visualized in Fig. 3(a) and Fig. 3(b).
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Fig. 4. Qualitative Results on MPII pose estimation result, containing viewpoint change, and
occlusion and self-occlusion.

Therefore, our study demonstrates the effectiveness of the LightPoseResNet-18 and 34
models in terms of both computation and performance.

Table 1. Performance comparisons of our SAHF-LightPoseResNet with simple baseline results
on MPII dataset

Model No.par | input Head | Shoulder | Elbow | Wrist | Hip Knee | Ankle | Mean | Mean@0.1
Pose_Resnet_50 34.0M | 256x256 | 96.351 | 95.329 88.989 | 83.176 | 88.420 | 83.960 | 79.594 | 88.532 | 33.911
384x384 | 96.658 | 95.754 89.790 | 84.614 | 88.523 | 84.666 | 79.287 | 89.066 | 38.046
Pose_Resnet_101 53.0M | 256x256 | 96.862 | 95.873 89.518 | 84.376 | 88.437 | 84.486 | 80.703 | 89.131 | 34.020
384x384 | 96.965 | 95.907 90.268 | 85.780 | 89.597 | 85.935 | 82.098 | 90.003 | 38.860
Pose_Resnet_152 68.6M | 256x256 | 97.033 | 95.941 90.046 | 84.976 | 89.164 | 85.311 | 81.271 | 89.620 | 35.025

384x384 | 96.794 | 95.618 90.080 | 86.225 | 89.700 | 86.862 | 82.853 | 90.200 | 39.433
SAHF-LightPoseResNet | 21.0M | 256x256 | 96.965 | 95.688 89.398 | 84.051 | 90.254 | 85.029 | 80.728 | 89.425 | 34.483
-18 288x384 | 97.169 | 95.788 90.131 | 84.462 | 90.341 | 85.331 | 81.696 | 89.766 | 36.435
384x384 | 97.203 | 96.264 90.472 | 85.489 | 90.981 | 86.379 | 81.890 | 90.297 | 39.670

SAHF-LightPoseResNet | 30.0M | 256x256 | 97.237 | 95.805 90.012 | 84.891 | 90.064 | 85.976 | 81.507 | 89.846 | 36.417
34 288x384 | 97.271 | 96.247 90.608 | 85.642 | 91.016 | 86.984 | 82.712 | 90.536 | 38.158
384x384 | 96.930 | 96.298 91.188 | 86.072 | 91.535 | 87.668 | 83.137 | 90.877 | 41.137

6 Conclusion and Future Work

In this research work, we proposed SAHF-LightPoseResNet for 2D HPE. The SAHF-
LightPoseResNet model is a novel approach utilizing ResNet18 to reduce complexity
while achieving effective visual processing capabilities. The model’s down-sampler and
upsampler modules are enhanced with GCBs to provide potent global context features.
The SAHF module combines and distributes features with spatial attention to produce
hierarchical representations with spatial awareness that capture finer details effectively.
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SAHF-LightPoseResNet performs better than basic baseline models on the MPII dataset
due to improved features, better activation function, and advanced model optimizer,
as simulation results indicate. In the future, our model can be utilized for 3D human
pose estimation with object recognition and hand pose estimation due to its general
applicability.
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