
An End-to-End Multiple Hyper-parameters
Prediction Method for Distributed Constraint

Optimization Problem

Chun Chen1(B), Yong Zhang2, Li Ning3, and Shengzhong Feng4

1 Shenzhen Institute of Information Technology, Shenzhen, China
chun.chen@siat.ac.cn

2 Shenzhen Institute of Advanced Technology, Shenzhen, China
3 University of Electronic Science and Technology of China, Chengdu, China

4 National Supercomputing Center in Shenzhen, Shenzhen, China

Abstract. Distributed Constraint Optimization Problem (DCOP) is an important
model for multi-agents, has been widely used in various fields. When a large scale
of DCOP implement on the supercomputer, various parameters need to choose,
and the complement time vary widely for different combinations of parameters.
Automatically provided accurate operating parameters for DCOP can improve the
operation speed and enables the rational use of computational resources. However,
the number of hyper-parameters of DCOP is huge, and correlation exists between
hyper-parameters, thus make the prediction of multiply hyper-parameters diffi-
cult. In this paper we propose a new framework combine graph neural network
and recurrent neural network. The performance shows that our framework can
outperform the SODA method.

Keywords: multiply hyper-parameter · DCOP · Graph neural network ·
recurrent neural network

1 Introduction

The rapid development of artificial intelligence has attracted researchers’ attention on
multi-agent systems. The Distributed Constraint Optimization Problem (DCOP), as an
important research direction on multi-agent, has been widely used in various fields
in recent years. With the exponential growth of scale for DCOP, supercomputers have
become the primary choice to copewith large-scaleDCOPdue to the storage and comput-
ing capacity of traditional computers. Nowadays, the common way to solve DCOP is to
calculate the operating parameters by users whomasters the domain knowledge and pro-
vide them to the supercomputing platform, which time-consuming and labor-intensive.
So automatically provided accurate operating parameters for DCOPs can improve the
operation speed and enables the rational use of computational resources.

The prediction of DCOP hyper-parameters is difficulty. First, DCOP involves many
hyper-parameters, such as the DCOP algorithm and the corresponding parameters, the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. S. Park et al. (Eds.): PDCAT 2023, LNEE 1112, pp. 202–214, 2024.
https://doi.org/10.1007/978-981-99-8211-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8211-0_19&domain=pdf
https://doi.org/10.1007/978-981-99-8211-0_19

An End-to-End Multiple Hyper-parameters Prediction Method 203

graph partitioning algorithm. Second, correlation exists between hyper-parameters of
DCOP. The performance under a single optimal parameter do not guarantee the overall
optimal.

The multiply hyper-parameter prediction of DCOP can be simply considered as a
multi-label recognition problem [3, 10]. However, the data of both image [4–9] and text
problem are [11–14] regular, while the graph representation of DCOP is irregular data,
so it is not possible to directly apply the present multi-label classification methods to the
prediction for the hyper-parameter set of DCOP.

This paper addresses the difficulties of DCOP multiply hyper-parameter prediction
and proposes a multiply hyper-parameter prediction framework combining graph neural
network and recurrent neural network, whose contributions include the following:

(1) As there is no research on multi-parameter prediction for DCOPs, this paper
gives the basic definition of the optimal parameter set and turns the DCOP multiply
hyper-parameter prediction problem into a multi-label classification problem.

(2) For the multiply hyper-parameter prediction problem, this paper proposes a
GRNN (Graph Recurrent Neural Networks) frameworks combining graph neural net-
works and recurrent neural networks, which considering the correlation of each param-
eter. The framework learned the features of the DCOP constraint graph by graph neu-
ral networks and handled the higher order parameter correlations by recurrent neural
network.

(3)The extraction accuracy of graph feature vectors can affect the prediction accuracy
of multiply hyper-parameter. This paper explores the influence on the number of layers
of the graph neural network.

This paper is organized as follows: Sect. 2 introduces the basic theory of DCOPmul-
tiply hyper-parameter prediction and transforms the DCOP multiply hyper-parameter
prediction problem into a multi-label classification problem, Sect. 3 introduces the mul-
tiply hyper-parameter prediction framework--- GRNN in detail, Sect. 4 analyzes the
experimental results and discusses the experimental results and summarizes in Sect. 5.

2 Background

The performance of DCOP on supercomputing platforms are often associated with
multiply hyper-parameter, such as graph partitioning algorithm [15], the DCOP algo-
rithm, and the parameters corresponding to that algorithm. Before to predict the optimal
hyper-parameter set, the definition of the optimal set of parameters OPTpara is given.

2.1 Definition of Optimal Set of Parameters

Given an DCOP instant and the overall sets of parameters for the instance Ppara =
{Para1,Para2, . . . ,ParaN }. For each set of parameters Parai, which includes the exe-
cution method Em, the algorithm A and the parameters corresponding to that algorithm
PA = {PA1 ,PA2 , . . . ,PAf }, the graph partitioning algorithmGp and the number of cores

k, where Parai = [Em,
{
PA1 ,PA2 , . . . ,PAf

}
,Gp, k]. The goal for this paper is to search

the optimal set of parameters Paraopt with the minimization completion time.

204 C. Chen et al.

Firstly, we give a definition for the completion time of any instance under the set of
parameters Parai. If the Parai is selected, the instance implement the graph partitioning
algorithm Gp to divide the DCOP’s constrained graph into k parts and call the DCOP
algorithm A and the parameters under the algorithm A to run the instance (synchronously
or asynchronously) on k processes for a total of n rounds. Define the effective running
time of the i_th round under the parameter Parai to be tpij , which is the time for the
cost function of DCOP to reach 0. This paper assumes that each instance of DCOP is
solvable, i.e., there exists an effective time for the cost function to reach 0.

As the law of large numbers (LLN) in probability theory, where the average obtained
frommultiple experiments should be close to the expectation when performing the same
experiment with multiple times, and the average will be closer to the expectation as the
number of experiments increases. So, in this chapter, the completion time of any instance
under the set of parameters is defined as the average completion time.

tpi =
∑n

j=1 tpij
n

(1)

where tpi is the completion time of the j_th round of DCOP under the parameter set
Parai and n is the total number of rounds run.

when the completion time of any instance under the set of parameters is defined then
this paper defines the optimal set of parameters as follows:

Paraopt = argmin(tp1, tp2, . . . , tpN) (2)

where N is the total capacity of the parameters Ppara.

2.2 Comparison with Different Sets of Parameters

This paper introduces a small example, graph coloring problem, to compute Paraopt ,
and gives a representation of the completion time under different parameters sets. The
example divides the constrained graph of DCOP into 1–4 subgraphs by the Giran-
Newman algorithm or the METIS algorithm for graph partitioning. Each subgraph is
then placed on the corresponding core to implement using the DCOP algorithm (DSA)
either synchronously or asynchronously.

The result under some sets of parameters is showed in Fig. 1, which the example
contains a total of 6 cases, and 10 rounds are executed for each set of parameters. The
completion time is calculated by Eq. (2) and the optimal parameter for this example is
obtained from Eq. (2) which is Ppara = {sy,Giran − Newman,DSA, p = 0.7, 3}.

As shown in Fig. 1, the results under different sets of parameters are different and
irregular, thus it hard to find the optimal parameters according to the traditional statistical
methods. With the rapid development of neural networks, the multi-label classification
solution problem has matured. In this paper, we will transform the multiply hyper-
parameter prediction problem into a multi-label classification problem which using the
optimal parameters as labels.

This paper gives the definition of multiply hyper-parameter prediction. For Each
DCOP instance Gi ∈ Rm, which owns L subsets y in the parameter label space Y . The
multi-parameter prediction task is to learn a function $h: h : Rm → 2YD = {(xi, yi)|1 ≤

An End-to-End Multiple Hyper-parameters Prediction Method 205

Fig. 1. The completion time under sets of parameters for graph coloring problem

i ≤ N}, where N is the total amount of training data, xi is the vector in the input feature
Rm of the i_th instance and yi ⊂ Y is a subset of the label space Y . Unlike the multi-
classification problem where each instance is assigned only one label, the generalization
of the multilabel problem provides multiple label assignments for each instance at the
same time.

3 Multiply Hyper-parameter Prediction Model

In this section, a neural network framework---GRNN is proposed to predict the multiply
hyper-parameters set, as shown in Fig. 2. The framework consists of three modules,
the preprocessing module, the graph representations feature extraction module, and the
multilabel predictionmodule. The preprocessingmodule converts theDCOP into a graph
representation and extract the fixed-length feature vectors by the graph representations

Fig. 2. Multiply hyper-parameter Prediction Framework Diagram

206 C. Chen et al.

feature extraction module. Then, according to these feature vectors, the higher-order
correlations between parameters are modeled in the multi-parameter prediction module.

3.1 Preprocessing Module

The DCOP cannot be solved directly in a graph neural network, [1, 2, 17] it needs to con-
vert the DCOP into a graph representation. Since this paper may involve multiple graph
representations, where different algorithms correspond to different graph representa-
tions. To ensure consistency, this paper uniformly converts the DCOP into a constraint
graph.

3.2 Graph Feature Extraction Module

For the feature vector extraction of the DCOP, the GraphSNN is chosen in this paper.
This network maps the local structure into the aggregation, considering not only the
features of the neighbors but also the overlapping subgraphs. The feature extraction of
DCOP includes node feature extraction as well as graph feature extraction.

3.2.1 Node Feature Extraction

Regarding node feature extraction, to better describe the neighborhood relation-
ship between vertex v and its neighbors u, GraphSNN defines structural coefficients
ω(Sv, Suv) for each vertex v, ω : S × S∗ → R.

ω(Sv, Suv) = |Evu|
(|Vvu||Vvu − 1|)|Vvu|λ

(3)

where ω(Sv, Suv) is the structure coefficient of vertex v and its neighbors. Sv is the
neighborhood subgraph of vertex v and Suv is the set of overlapping subgraphs of vertex
v with λ > 0. ω(Sv, Suv) satisfies the properties of local compactness, local denseness,
and isomorphism invariance. Let its adjacency matrix be A = (Auv)uv∈V , where Auv =
ω(Sv, Suv).

GraphSNN also defines a weighted adjacency matrix A = −
(Auv)uv∈V , where Auv

is the normalized value of Auv, Auv = Auv∑
u∈N (v)Auv

. So, the node eigenvectors of v are

updated as

mt
a = AggregateN ({Avu, h

t
u)|u ∈ N (v)

mt
v = AggregateI (Avu|u ∈ N (v))htv (4)

hvt+1 = Combine(mt
v,m

t
a)

AggregateN (∗) and AggregateI (∗) are two different parameterized cumulative func-
tions. Where mt

a is the information aggregated from the neighbors v and their structural
coefficients, mt

v after performing the multiplication between the cumulative function

An End-to-End Multiple Hyper-parameters Prediction Method 207

AggregateI (∗) and the multiplication between the eigenvectors, the “adjusted” message
from v to account for the structural effects of its neighbors.

Specifically, the update function of GraphSNN for each vertex v ∈ V , whose node
feature vector at t + 1 layer is

ht+1
v = MLPθ γ

t(
∑

v∈N (u)
Auv + 1)htv

∑
u∈N (v)

Auv + 1)htu) (6)

where γ t is a scalar parameter that can be learned. N (v) refers to the one-hop neighbors
v, and multiple layers can be stacked to handle more than one-hop neighbors. Note that
to ensure the Monolicity of feature aggregation in the presence of structural coefficients,
add 1 to the first and second terms of Eq. (6).

3.2.2 Graph Feature Extraction

For the graph classification problem, all node features in the graph need to be transformed
into graph features, and the whole graph is represented as hG .

hG = Readout(hk |v ∈ G) (7)

where hG is the graphGdenotes the vector andReadout denotes the substitution invariant
function, which can also be a graph-level pooling function.

The Readout function of the GraphSNN framework is single-shot. To consider all
the structural information, the GraphSNN framework utilizes the information from all
iterations of themodel and uses an architecture similar to JumpingKnowledgeNetworks.
The graphs represent connections in all iterations/layers and the Readout function sums
all node features from the same iteration.

hG = Concat(
∑

u∈N (v)
hkv |k = 0, 1, . . . ,K) (8)

3.3 Hyper-parameter Prediction Module

After graphSNN obtains the representation graph vector of DCOP, the parameter pre-
diction module uses the output graph vector of graphSNN as the initial state input for
label prediction. Because there is some correlation before the parameters, for this reason
LSTM is chosen in this paper to predict multiple parameters.

Despite the existenceof severalLSTMvariants, this paper selects the standardLSTM,
and applies an additional word embedding layer for the labels. The LSTM consists of
three gates: an input gate i, an output gate o, and a forgetting gate f . The three gates work
in concert to control what is read on the input, what is output, and what is forgotten,
allowing some complex long-term relationships to be modeled.

i = σ(W (i)xt + U (i)ht−1 + b(i))

o = σ(W (o)xt + U (o)ht−1 + b(o))

f = σ(W (f)xt + U (f)ht−1 + b(f))

u = tanh(W (u)xt + U (u)ht−1 + b(u))

ct = i � u + f � ct−1

ht = o � tanh(ct)

(9)

208 C. Chen et al.

where σ(∗) denotes element-by-element multiplication, which is a sigmoid function.
xt ∈ Rd is the input of the lower layer at time step t. If the lower layer is a word
embedding of parameters, then d can be the dimension of the labeled word vector or
can be the hidden state dimension of the lower layer, if the lower layer is an LSTM.
If there are q LSTM units, then for all types (i, o, f , u), ht ∈ Rq,W (∗) ∈ Rq × d and
b(∗) ∈ Rq.The memory cell ct is the key in the LSTM, which maintains long-term
dependencies while getting rid of the gradient disappearance/explosion problem. The
forget gate f is used to erase some parts of the memory cell, while the input gate i and
the output gate o control what is read from and written to the memory cell.

LSTM by linear transformation as Eq. (9) in each type (i, o, f , u) with additional
termsW (T)T , where T is the output constraint graph feature from GNN with fixed
dimensiont,W (T) ∈ Rq × t, q is the hidden dimension of LSTM, e.g. input The formula
for the gate reads.

i = σ(W (i)xt + U (i)ht−1 + W (T)T) (10)

The label sequence prediction always starts with the tag < START >. At each time
step, there is a SoftMax layer on top of the LSTM top layer. The probability of each
label is calculated by first applying a linear transformation to the hidden state of the top
LSTM layer.

Then, the tag with the highest probability is predicted. The prediction of the tag ends
with the< END> tag. Therefore, for each input DCOP, a sequence of labels of different
lengths is predicted. Ideally, the label sequence for each input DCOP matches exactly
with the subset of labels belonging to that input DCOP.

4 Experimental Results and Analysis

4.1 Experimental Data

In the paper, we choose the graph coloring problem, a typicalmodel ofDCOP, to generate
the corresponding dataset of this experiment. The datasets consist of two main parts, one
part is the description of the DCOP and the corresponding constraint graph, and the other
part is the label set which correspond to the multiply hyper-parameter. In this chapter,
these two parts are introduced separately.

4.1.1 DCOP Problem Description

The graph coloring problem is a typical DCOP that has been widely used in coordination
algorithms for sensor networks as well as benchmark, and many DCOP algorithms have
also used it for performance comparisons.

In the distributed graph coloring problem, variables are located at the nodes of the
constraint graph and choose a color (i.e., xi ∈ (1, ..., c) to avoid conflicts (i.e., choosing
the same color) with other variables(nodes) connected to themselves through edges.
Thus, the cost of each variable is expressed as

Um(xm) = γm(xm) −
∑

i∈N (m)
m

xi ⊗ xj (11)

An End-to-End Multiple Hyper-parameters Prediction Method 209

where, xi⊗xj =
{
10 if xi == xj
0 otherwise

, γm(xm) 	 1, reflecting the preference of the variable

for any color in the absence of conflict. Consistent with the DCOP definition, the goal
is to find the state of each variable that minimizes the conflict. In this experiment, this
paper sets γm(xm) = 0 and sets the edge conflict cost, i.e., two nodes with edges in the
constraint graph choose the same color, xi ⊗ xj = 10.

4.1.2 Random Graph Generation Based on Graph Coloring DCOP

In this experiment, three kinds of undirected, unweighted and connected random graphs
are generated by network further four datasets are selected which cover the basic random
graphs, etc.

1) dataset contains 438 random graph instances of 11 colors generated by the Erdős -
Rényi model, which 316 instances are generated by the gnm function with 200 nodes
and 200–400 edges, and 122 instances are generated by the gnp function with an link
probability from 0.1–0.2.

2) The second dataset has 29 instances of 11-color random graph coloring, which
consists of instances generated by the Small wolrd model.

3) The third dataset has 100 instances of 11-color random graph coloring. The instances
are generated by the Barabasi Albert model. The random graph degree generated by
this model has a power-law distribution.

4) The fourth dataset are assembled the above three datasets.

4.1.3 Hyper-parameter Set Generation and Validity

Since the goal of this paper is to find the set of optimal hyper-parameters, and the frame-
work is a supervised learning framework, this section starts by labeling each random
graph with the original label. To ensure the accuracy of the prediction, this chapter
needs to ensure the validity of the labels and that the initial assignment is robust. To
verify the validity of the framework, this paper selected DCOP algorithms such as DSA,
MGM, etc., and the Giran- Newman algorithm as well as the METIS graph partitioning
algorithm.

To ensure the validity of the labels, this paper conducts 10 trials for each set of hyper-
parameters and hopes that the results of each set of hyper-parameters on experiments
are stable, i.e., the variance is not large. In this paper, we analyze the results of each set
of hyper-parameters as shown in Fig. 3.

From Fig. 3, we finds that the variance of the fitted curve coefficients is low, about
0.26 times the mean. The expected time can be considered as the label of the constrained
graph.

210 C. Chen et al.

Fig. 3. The relationship between expected running time and variance

For the label distribution, we run multiple DCOP problems in this paper and find a
more uniform parameter distribution, as shown in Fig. 4. The figure shows the optimal
parameter distribution of the dataset DCOPBA after multiple rounds of experiments.

Fig. 4. The distribution for BA parameter

4.1.4 Dataset Description

For this purpose, the structural information of the four datasets trained and the labeling
information are described in this paper as follows, as shown in the Table 1, Where
DCOPER is dataset 1, a random graph generated for the Erdős - Rényi model, DCOPBA
is dataset 2, a random graph generated by the Barabasi Albert model, DCOPSW is dataset
3, a random graph instance generated for the SW model, DCOPALL is data set 4, which
is the merge of the above four data sets.

An End-to-End Multiple Hyper-parameters Prediction Method 211

Table 1. Dataset description

data number Degree of nodes Number of edges Number of
hyper-parameters

DCOPER 438 3.6/1.94/1/15 359.88/81.96/200/546 3

DCOPBA 100 1.99/2.81/1/51 199/0/199/199/199 4

DCOPSW 29 5.56/1.44/4/12 556.28/1.44/4/12 3

DCOPALL 567 3.42/2.24/1/51 341.55/110.07/199/737 4

4.2 Experimental Results and Analysis

4.2.1 Evaluation Index

To fairly compare the results of other methods, the average precision (CP) is reported in
this section for performance evaluation.

CP = 1

c

∑
i

N c
i

Np
i

(12)

4.2.2 Parameter Setting and Running Platform

All experiments were performed on a server with an Intel Xeon CPU 4110 equippedwith
20 2.20 GHz cores. The system was Linux 3.10.0 and all DCOPs were implemented in
the PyDCOP library. All multiclassification graph neural networks were implemented
in pytorch.

This paper uses the Adam optimizer [16] with λ = 1. For all datasets of DCOP, the
model was trained for 500 periods with a learning rate of 0.01, a loss rate of 0.5, a hidden
layer of 256, and γ = 0.1. This chapter select the random division method, i.e., the graph
is randomly divided into 60\%, 20\% and 20\% for training, validation, and testing.

4.2.3 Analysis of Experimental Results

Since this paper is required to calculate the optimal parameters, in order to verify the
effectiveness of the algorithm, two commonmethods are compared: 1) ordinary dichoto-
mous GNN, i.e., GNN is used to generate the graph features of the DCOP constraint
graph, for each label, which is treated as a one-by-one dichotomous classification in this
chapter. (2) Since this paper does not involve many parameters, the multi-classification
method graphSNN is chosen as a comparison experiment. Since the parameters involved
in this chapter are less, the method converts the multi-parameter prediction into a multi-
classification method and puts it into the graphSNN network. The results are shown in
Table 2.

Table 2 lists the accuracy results ofmultiply hyper-parameters prediction for different
datasets. The results show that the accuracy of both the multiclassification algorithm-
--GraphSNN and the GRNN algorithm on all the datasets is higher than that of the
ordinary binary classification algorithm GNN. For the GraphSNN algorithm and GRNN

212 C. Chen et al.

Table 2. The accuracy for the prediction

dataset Algorithm Accuracy

DCOPER GNN 76.53 ± 3.12

GraphSNN 93.84 ± 2.28

GRNN 84.74 ± 4.34

DCOPBA GNN 42.31 ± 4.58

GraphSNN 46.0 ± 11.13

GRNN 58.67 ± 2.66

DCOPSW GNN 70.75 ± 2.94

GraphSNN 91.16 ± 5.49

GRNN 86.4 ± 10.88

DCOPALL GNN 73.17 ± 1.38

GraphSNN 81.13 ± 2.44

GRNN 93.52 ± 2.47

algorithm, the accuracy of the recurrent neural network does not play a larger role when
there are few labels, and its accuracy is not as good as that of the GraphSNN, and its
ER dataset and WS dataset both perform less well than the GraphSNN when there are
only three labels. In the ER dataset, the accuracy of GraphSNN is 10.7% higher than
that of GRNN method, and in the SW dataset, the accuracy is 5.8% higher. However,
the accuracy of GRNN improves as the number of labels increases, and it improves by
27.54% in the BA dataset and 14% in the total dataset compared to the GraphSNN.

4.2.4 The Effect of Graph Neural Network Depth on Performance

The exaction of graph features is one of the most important factors affecting multi-
parameter prediction, and different graph neural network embedding operations have
an impact on the performance of experimental results. Specifically, different layers of
graph neural networks have different obtained graph features. For this reason, this section
explores the effect of different neural network layers on the prediction results, as shown
in the Table 3.

Table 3. The accuracy on different neural network layers

Dataset 2 layers 3 layers 4 layers

DCOPER 84.74 ± 4.34 82.36 ± 3.74 81.47 ± 7.41

DCOPBA 58.67 ± 2.66 57.49 ± 4.51 55.16 ± 2.73

DCOPSW 86.4 ± 10.88 83.14 ± 7.29 82.46 ± 5.29

DCOPALL 93.52 ± 2.47 91.45 ± 4.28 89.54 ± 6.85

An End-to-End Multiple Hyper-parameters Prediction Method 213

It finds that the accuracy of the prediction results to decrease to some extent when
increasing the number of layers of the convolutional layers. The possible reasons for
this are mainly due to the following two points. One is that the number of parameters
will also become dramatically larger due to the increase in the number of layers of the
convolution of the graph which will cause the overfitting phenomenon to some extent.
Second, although themethod in this paper greatly alleviates the over-smoothing problem,
but it does not avoid the over-smoothing problem, and the deepening of the convolutional
layer will add the over-smoothing problem leads to performance degradation.

5 Summary

Multiply hyper-parameter prediction of DCOP is an important subject, and its high
accuracy can be an effective guarantee of DCOP. This paper first demonstrates experi-
mentally that DCOP has large differences in its operation results under multiple sets of
parameters and that traditional methods cannot effectively predict multiple parameters
accurately. Then transforms the multiply hyper-parameter prediction problem of DCOP
into a multi-label prediction problem and proposes a novel neural network-based multi-
label classification method. Experiments demonstrate the effectiveness of the methods
from both qualitative and quantitative perspectives, respectively.

However, the GRNN is a supervised prediction models, which require multiple runs
of DCOP to generate the corresponding training data, and the data acquisition cost is
relatively expensive. In the future, we will learn new techniques such as semi-supervised
graphical neural networks to solve the problem.

References

1. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search (2019).
arXiv:1806.09055

2. Schweidtmann, A.M., Rittig, J.G., König, A., et al.: Graph neural networks for prediction of
fuel ignition quality. Energy Fuels 34, 11395–11407 (2020)

3. Zhang, J.,Wu,Q., Shen,C., et al.:Multilabel image classificationwith regional latent semantic
dependencies. IEEE Trans. Multimed. 20, 2801–2813 (2018)

4. Chen, Z.M., Wei, X.S., Wang, P., et al.: Multi-label image recognition with graph convolu-
tional networks. IEEE/CVFConf. Comput. Vision Pattern Recogn. (CVPR) 2019, 5172–5181
(2019)

5. Wang, Y., Xie, Y., Liu, Y., et al.: Fast graph convolution network based multi-label image
recognitionvia cross-modal fusion. In: Proceedings of the 29thACMInternationalConference
on Information & Knowledge Management (2020)

6. Chen, T., Xu, M., Hui, X., et al.: Learning semantic-specific graph representation for multi-
label image recognition. In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 522–531 (2019)

7. You, R., Guo, Z., Cui, L., et al.: Cross-modality attention with semantic graph embedding for
multi-label classification. arXiv:abs/1912.07872 (2020)

8. Zhang, M., Shao, H.C., Song, G., et al.: Top-1 solution of multi-moments in time challenge.
arXiv:2003.05837 (2019)

9. Zhao, J., Yan, K., Zhao, Y., et al.: Transformer-based dual relation graph for multi-label image
recognition. IEEE/CVF Int. Conf. Comput. Vision (ICCV) 2021, 163–172 (2021)

214 C. Chen et al.

10. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP (2014)
11. Lai, S., Xu, L., Liu, K., et al.: Recurrent convolutional neural networks for text classification.

In: AAAI (2015)
12. Chen, G., Ye, D., Xing, Z., et al.: Ensemble application of convolutional and recurrent neural

networks for multi-label text categorization. Int. J. Conf. Neural Netw. (IJCNN) 2017, 2377–
2383 (2017)

13. Yang, Z., Yang, D., Dyer, C., et al.: Hierarchical attention networks for document classifica-
tion. In: NAACL (2016)

14. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification? In:
Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) Chinese Computational Linguistics: 18th
China National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings,
pp. 194–206. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-
3-030-32381-3_16

15. Pizzuti, C.: Evolutionary computation for community detection in networks: A review. IEEE
Trans. Evol. Comput. 22(3), 464–483 (2018). https://doi.org/10.1109/TEVC.2017.2737600

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980
(2015)

17. Pei, H., Wei, B., Chang, K.C.C., et al.: Geom-GCN: geometric graph convolutional networks.
arXiv:2002.05287 (2020)

https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1109/TEVC.2017.2737600

	An End-to-End Multiple Hyper-parameters Prediction Method for Distributed Constraint Optimization Problem
	1 Introduction
	2 Background
	2.1 Definition of Optimal Set of Parameters
	2.2 Comparison with Different Sets of Parameters

	3 Multiply Hyper-parameter Prediction Model
	3.1 Preprocessing Module
	3.2 Graph Feature Extraction Module
	3.3 Hyper-parameter Prediction Module

	4 Experimental Results and Analysis
	4.1 Experimental Data
	4.2 Experimental Results and Analysis

	5 Summary
	References

