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Abstract. Concept drift is a common phenomenon appearing in evolving data
streams of a wide range of applications including credit card fraud protection,
weather forecast, network monitoring, etc. For online data streams it is difficult to
determine a proper size of the slidingwindow for detection of concept drift,making
the existing dataset-distance based algorithms not effective in application. In this
paper, we propose a novel framework of Density-based Concept Drift Detection
(DCDD) for detecting concept drifts in data streams using density-based cluster-
ing on a variable-size sliding window through dynamically adjusting the size of
the sliding window. Our DCDD uses XGBoost (eXtreme Gradient Boosting) to
predict the amount of data in the same concept and adjusts the size of the sliding
window dynamically based on the collected information about concept drifting. To
detect concept drift between two datasets, DCDD calculates the distance between
the datasets using a new detection formula that considers the attribute of time as
the weight for old data and calculates the distance between the data in the cur-
rent sliding window and all data in the current concept rather than between two
adjacent windows as used in the exiting work DCDA [2]. This yields an observ-
able improvement on the detection accuracy and a significant improvement on the
detection efficiency. Experimental results have shown that our framework detects
the concept drift more accurately and efficiently than the existing work.

Keywords: Data Mining · Machine Learning · Data-Stream Clustering ·
Concept-Drift Detection

1 Introduction

Data stream clustering has been successfully applied for detection of concept drift [11]
which is an important problem arising in a wide range of applications including credit
card fraud protection, theweather forecast, network intrusion detection, etc.. The concept
of interest may depend on some hidden context, not given explicitly in the form of
predictive features [3]. In other words, the concepts drift with time fromwhat we analyze
from current data. For example, the buying preferences of customers may change with
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time, depending on the day of the week, availability of alternatives, discount rate, etc.
[3]. If we do not detect the concept drift in time, we may end up with taking the wrong
concept, which not only decreases the quality of clusters but also can lead to unexpected
clustering results. Hence, dealing with concept drift is crucial in many applications.

Typically, concept drift detection is done by calculating the distance of two datasets
between adjacent sliding windows of fixed size using the rough-set theory. The detection
effectiveness depends heavily on the size of slidingwindows.Both too small and too large
windows are undesirable, because the former may be unable to capture a single concept
and the latter may contain multiple concepts. However, because of the fast evolution
property of online data streams, it is difficult to determine a proper size of the sliding
window for effective detection of concept drift. Thismakes the existing algorithms based
on this approach difficult to be used in real application.

In this paper, we present a new framework for concept drift detection, named density-
based concept drift detection (DCDD). It is based on density-based clustering [15] with
a variable-size sliding window which is formed by dynamically adjusting the size of the
sliding window based on the prediction model trained by XGBoost(eXtreme Gradient
Boosting) [4] to adapt to the changes of the data stream. We extend the formula used in
the existing drift detection algorithm DCDA [2] by incorporating the time attribute in
calculating the distance of two datasets to find the concept drift.

2 Related Work

Concept drift, which was first introduced by Schlimmer andGranger in [11], refers to the
phenomenon that data points are subject to different distribution models in different time
periods. There is a rich literature on concept drift detection in which many algorithms
are based on classification relying on error rate of classification prediction, such as [17].
While the classification-based algorithms are simple and efficient, they need data with
class labels as training data set which is difficult to obtain for time-evolving data streams.

To address this issue, concept drift detection based on clustering was proposed.
Stream-detect [10], detects concept drift through analyzing the clustering results to
identify changes in data streams by measuring deviation of clustering result online.
Chen et al. [3] proposed a framework to perform clustering on the categorical time-
evolving data by comparing the distribution of the clusters and the outliers from the last
and the current slidingwindows. Because thewindow size is fixed, it does not adapt to the
change of data streams. [2], proposed a concept drift detection algorithm (DCDA) based
on the rough-set theory [13] and sliding window technique to improve the efficiency,
which calculates the distance between the last and the current windows to detect concept
drift before starting the clustering process.

To find arbitrarily shaped clusters and handle noises efficiently, numerous density-
based clustering algorithms have been developed, such as D-Stream I [5], DD-Stream
[12], D-Stream II [18], GDC-Stream [7] and PKS-Stream [14], and Relative Density-
Based [9], These algorithms process the raw data only once and do not need to set the
number of clusters. Recently, concept drift detection has been applied to high-speed
streams [16] and also finds application for multi-label classification of IoT data steams
[19]. They suffer from the difficulty of effectively adapting to dynamic changes of online
data streams.
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3 Preliminaries

3.1 Density-Based Clustering

From the Fig. 1(a), we can see the framework of density-based clustering. It uses a two-
phase scheme [1], which consists of an online component and an offline component.
In the online component, density-based clustering maps each input data record into a
corresponding grid and updates the density of grid which is the sum of all data points in
the gird. In the offline component, it uses an incomplete partitioning strategy to cluster the
density grids. We take advantage of this process and design our framework for concept
drift detection that is shown in Fig. 1(b).

Fig. 1. Density-based Clustering and Concept Drift Detection

3.2 Definitions

In this section,we introduce the relevant concepts used in our framework.We assume that
the input data stream has d dimensions and define the data space S = S1×S2×· · ·×Sd ,
where Si is the definition space for the ith dimension.

Definition 3.2.1 (Grid Cell). For data space S = S1×S2×· · ·×Sd , each Si(1 ≤ i ≤ d)

is divided into pi parts evenly, we define the intersection of Si(1 ≤ i ≤ d) as the grid
cell g. That is, gj1j2...jd = S1,j1 ∩ S2,j2 ∩ . . .

⋂
Sd ,jd , 1 ≤ jt ≤ pt, 1 ≤ t ≤ d .

When a data record X = (x1, x2,…, xd) arrives, it can be mapped to a density grid
g(x) as follows: g(x) = ( j1, j2, ···, jd), where xi ∈ Siji , 1 ≤ i ≤ d, 1 ≤ jt ≤ pt, 1 ≤ t ≤ d ;

The grid density of a grid cell is the sum of all the data points in the grid cell. That
is, the density of grid cell g at t is:

D(g, t) =
∑

x∈g
D(x, t)

At time t, the average density of the non-empty grid cells is Denavg =
K∑

i=1
D(g,t)

K ,
where the D(g, t) is the grid density of the non-empty grid cell g and K is the number of
non-empty grid cells.
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Definition 3.2.2 (Dense Grid and Sparse Grid). Grid cell g is a dense grid if D(g, t)
≥ αDenavg, and a sparse grid if D(g, t) < αDenavg, where α is a parameter controlling
the threshold.

In paper [5], the boundary between dense grid and sparse grid is defined as a fixed
value that is not flexible and hard to set. In comparison, our above definition on the
boundary can effectively adapt to the unknown data stream.

Definition 3.2.3 (Grid Characteristic Vector). The characteristic vector of grid cell
g is defined as (D, label, status, t), where D is the last updated density of g, label is
the class of g, t is the time that the last data came in, and status (either SPORADIC or
DENSE) is used to mark the status of g.

In our framework, in order to get the distance between two data sets, we use two
density grids: temporary density grids and old density girds. The temporary density grids
store the grid characteristic vectors of the data in the current sliding window. The old
density girds store the grid characteristic vectors of all data in the same concept.

In order to predict the next concept and the amount of data stream in the next concept,
we need to collect and store the feature vector of the concept that we call concept-feature
when the concept drift is detected. We use the XGBoost (eXtreme Gradient Boosting)
[4] to train the concept-features and the trained model to predict. How to extract the
attributes of the concept-feature will be explained in Sect. 4.4.

3.3 Concept Drifting Detection

Concept drift detection algorithm for data streams (DCDA) was proposed in [2] that
works by calculating the distance between the current sliding window and the last sliding
window based on the rough membership function and the sliding-window technique [1,
6, 8, 10].

The distance between two datasets is measured as follows:
For the current subset STi and the last subset STj , the distance between STi and STj

is defined as

dA
(
STi , STj

)
= 1

|A|
∑

a∈A
d{a}

(
STi , STj

)
=

∑
a∈A

∑
x∈S[Ti ,TJ ]

∣
∣
∣μ

{a}
STi

(x) − μ
{a}
STj

(x)
∣
∣
∣

∣
∣
∣S[Ti,Tj]

∣
∣
∣|A|

,

where A is a non-empty set of attributes, and μ
{a}
STi

(x) is a rough membership function.
If the distance between two datasets is larger than the threshold, the data in the

current sliding window will perform re-clustering to capture the emerging new concept.
In contrast, if the concept is steady, each object of the current window will be allocated
into the corresponding cluster according to distance comparison [2].
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4 The Proposed Algorithm

4.1 Overall Framework

Our density-based concept drift detection (DCDD) framework follows the density-based
clustering framework [15] composedof anonline component and anoffline component as
illustrated in Fig. 1(b). In the online component, we use a variable slidingwindow to read
new data records. When the variable sliding window is full, the data stream is mapped
into the temporary density grids and the characteristic vector of the corresponding grid
cells is updated. Then we calculate the distance between the old density grids and the
temporary density grids to detected concept drift (initially the old density grids was
empty). If the distance is smaller than a certain threshold, no concept drift is detected,
and the temporary density grids are merged into the old density grids and cleared. Then
the variable sliding window is adjusted by our strategy described in Sect. 4.3. Otherwise,
if the distance is greater than the threshold, concept drift is detected, the old density grids
are copied and clustered in the offline component and cleared. The temporary density
grids are copied to the old density grids and cleared. In the offline component, our DCDD
forms clusters based on the copy of the old density grids. Besides, it extracts the concept-
feature of this concept and adds it into the concept-list. In addition, when the size of
concept-list is enough large, it uses the XGBoost (eXtreme Gradient Boosting) [4] to
train the dataset of concept-list and then uses the trained model to predict the message
of the next concept to adjust the variable sliding window.

4.2 Time-Weighted Concept Drift Detection

For the online component, to detect concept drift in a data stream, we apply an extended
concept drift detection model of DCDA [2] to calculate the distance between the old
density grid and the temporary density grid as follows, observing the deficiencies of
DCDA:

We assign all grids in the old density grids a weight 1
δtnow−t−1 , where tnow is present

time, t is in the Grid Characteristic Vector and δ ∈ (0, 1) is a constant called the weight
factor.

For dense grids in the temporary density grids T and dense grids in the old density
grids O, the distance between T and O with respect to S is defined as

dA(T ,O) = 1

|S|
∑

s∈S
d{s}(T ,O) =

∑
s∈S

∑
g∈T∪O

∣
∣
∣μ

{s}
T (g) − 1

δtnow−t−1μ
{s}
O (g)

∣
∣
∣

|T ∪ O||S| , (1)

where δ ∈ (0, 1) is a constant, tnow is the present time, t is in the Grid Characteristic
Vector of g, 1

δtnow−t−1 is the weight for grid in the old density grids, S is the dimension

of the defined data space, μ{s}
G (g) is a rough membership function.

4.3 Sliding Window Size Calculation

To improve efficiency, our detection scheme uses a variable-size sliding window whose
size is dynamically adjusted according to the framework in Fig. 2. Firstly, we initialize
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a sliding window size N = Ninit and set a maximum size NMAX based on the memory
capacity. We detect the concept drift between the temporary density grids and the old
density grids based on the detection formula of Eq. (1). If the old and temporary density
grids present the same concept, we determine whether the temporary density grids have
new dense grids that are not in the old density grids, and calculate the density of all these
dense grids M. We then adjust the sliding window size to N = N + M (N = NMAX if
N + M exceeds NMAX ); If the old and temporary density grids present concept drift,
we revert the size of sliding window to the initial value in the next step (N = Ninit). If
our prediction model that is described in Sect. 4.4 has created, we set N based on the
predicted value. Using the above strategy, our algorithm is described in algorithm 1.

Fig. 2. Dynamic Adjustment of Sliding Window Size

4.4 Prediction on Concept-Feature Classification

Whenwe collect certain amount of concept-feature,we useXGBoost [4] to train concept-
feature to obtain a prediction model. Before running XGBoost, three parameters are
set for xGboost: general parameters, booster parameters and task parameters. General
parameters control the booster which are either tree model (tree) or linear model (linear)
commonly.

We set 5 types of attributes for concept-feature, our prediction model with 5 trees is
defined below:

model : ŷi =
5∑

k=1

fk(xi), fk ∈ F

The objective is defined as:

Obj =
n∑

i=1

l
(
yi, ŷi

) +
5∑

k=1

�(fk),

where
∑n

i=1 l
(
yi, ŷi

)
is the training loss.
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This prediction model is based on concept-feature of the current concept drift to
predict the amount of data stream in the next concept. When the current concept is over,
we get the concept-feature and add concept-feature into concept-list. When the size of
concept-list reaches β, the concept-list is trained by XGBoost. Using the model, we
obtain the predicted value PN. So at the fastest detection speed, PN is divided into two
parts, which effectively sets the size of variable sliding window to PN

2 .

4.5 Algorithm Description

Thewhole algorithmof our density-based concept drift detection (DCDD) is presented in
Algorithm3.The algorithm for computinggrid density distance is presented inAlgorithm
2. Our DCDD algorithm can be simply summarized below: we use the detection formula
of Eq. (1) to detect concept drift. If concept drift occurs, we use the prediction model
to adjust the size of the sliding window. Otherwise, we use the strategy in Sect. 4.3 to
adjust the size of the sliding window.

The time complexity of our detection algorithm is O(|T ∪ O| |S|), where T is the
number of dense grids in the temporary density grids, O is the number of dense grids in
the old density grids and S is the dimensions of the defined data space. Compared with
DCDA [2], the time complexity of our detection is greatly reduced. It is easy to see that
the time complexity of our detection algorithm is linear with respect to the number of
dense girds.
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5 Experimental Results

We evaluate the precision, recall and efficiency of our DCDD and compare it with
DCDA [2]. We use the synthetic data that contains 15% noisy data and a real data
set KDD CUP-99 that is network intrusion detection data set and has been cited by
many articles of data stream clustering. It collected 9 weeks of TCPdump (*) network
connection and system audit data by the MIT Lincoln laboratory which contains the
simulation of various types of users, a variety of network traffic and attack means, and
it like a real network environment and the network intrusion detection data stream. It
contains a total of 41 dimensional properties, of which 34 are continuous attributes. Each
data stream of network connection is marked as normal or abnormal, and the abnormal
type is subdivided into 4 main categories that are DOS, R2L, U2R and PROBING. We
test the DCDD on KDD CUP-99 data set one hundred times persistently and test the
accuracy of clustering results.

5.1 Performance Evaluation

In order to compare our proposed DCDD with the existing DCDA, we use the popular
evaluation metrics of precision and recall. If a is the number of drifting concepts in
the data set, b is the number of drifting concepts that we detect and c is the number of
drifting concepts that are correctly detected. The precision and recall of the detection
are defined as Precision = c

b and Recall = c
a , respectively.

Firstly, we test DCDD under our detection formula Eq. (1) and DCDAwith different
initial sizes of the sliding window on the same synthetic dataset, and we set parameters
θ = 0.3, α = 0.5 and set δ = 0.5. From the result of the 3, although the recall of DCDD
is slightly worse than the recall of DCDA, DCDD gives a much better precision than the
DCDA (Fig. 3).
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Then we test our DCDD using the real data set KDD CUP-99, we set the parameters
of XGBoost: booster is gbtree and others are default and set β = 10000, δ = 0.5. In
our experiment, we use the strategy in Sect. 4.3 to adjust the size of the variable sliding
window in the first ten thousand concept drifts that are used to train and we use the
prediction model to adjust it afterwards. From the result in Fig. 4(a), it is obvious that
the number of detected drifting concepts by our DCDD decreases with the increase of
α. The precision and recall of DCDD are presented in Fig. 4(b). In these experiment, the
threshold value θ is set to 0.1 and the size of the sliding window is initialized to 100.
The parameter α is set from 0.2 to 1 with a step length of 0.2.

With the increase in the number of detected concept drifts, the precision and recall
of DCDD with model 1 are shown in Fig. 4(c), where the threshold value θ is set to 0.1.

5.2 Result Comparison

We compare the experimental results of our DCDD with DCDA on F1-measure, where
F1 = 2×Precision×Recall

Precision+Recall , and time consumptionwrt the number of concept drifts. Firstly,
the threshold value θ is set to 0.1 and α is set to 0.5. The results are shown in Fig. 5. We
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Fig. 3. Precision and recall of our DCDD and DCDA on synthetic dataset.

Fig. 4. Number of drifting concepts, precision and recall wrt to α and drift direction

can see from Fig. 5(a) that F1-measure of DCDD is slightly better than DCDA at the first
ten thousand concept drift, and then it grows to a more significant level as the number
of concept drifts increases. For comparison of time consumption shown in Fig. 5(b), it
is clear that our DCDD has a much lower time cost than DCDA and runs about 8 times
faster than DCDA.

Fig. 5. Comparison between DCDD with DCDA on KDD-CUP dataset.

The accuracy of clustering results of our DCDD on KDD-CUP dataset is shown in
Fig. 6 (a) and the F1-measure of clustering results in Fig. 6 (b). From the clustering results
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Fig. 6. Performance of DCDD on KDD-CUP dataset

at different times, DCDD achieves not only good accuracy but also good F1-measure at
different times that are better than the results of DCDA [2].

6 Conclusion

In this paper, we proposed DCDD, a new framework for concept drift detection based on
density-based clustering [15]. It improves the DCDA algorithm [2] both in terms of the
F1-measure and computational cost (quite significantly). Our algorithm depends only
on the number of grids rather than the number of data points in the grids, which makes it
much more efficient. In addition, we proposed a strategy and prediction model to adjust
the variable-size sliding window to adapt to the changes of data streams and to further
improve the efficiency. In the future we will address the periodicity of concepts in data
streams to gain improvement in detection accuracy.
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