
SSR-MGTI: Self-attention Sequential
Recommendation Algorithm Based on Movie

Genre Time Interval

Wen Yang1,2(B), Ruibo Yue2, Yawen Chen3, and Jun Zhao4

1 Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering,
China Three Gorges University, Yichang 443002, China

yangwen0720@163.com
2 College of Computer and Information Technology, China Three Gorges University,

Yichang 443002, China
3 University of Otago, Dunedin 9016, New Zealand

yawen@cs.otago.ac.nz
4 Hubei Three Gorges Polytechnic, Yichang 443000, China

Abstract. As an important part of the recommendation system, movie recom-
mendation system can recommend movies to users accurately according to their
preferences. Traditional movie recommendation systems simply treat user-movie
interactions as a time-ordered sequence, without considering the time intervals
between movies of the same genre. The genre time interval can reflect the user’s
preference for a particular genre and determine whether the algorithm can fully
capture the user’s interests and the time characteristics of the movie, which plays
an important role in the accuracy of the movie recommendation. Therefore, in
this paper, we propose a Self-Attention Sequential Recommendation algorithm
based onMovieGenre Time Interval (SSR-MGTI). Specifically, amulti-head self-
attention mechanism is used to model the same genre time interval information.
Then, an absolute position is added to the multi-head self-attention mechanism
model to solve the problem that multi-head self-attention mechanism does not
consider the sequence. In addition, the convolutional neural network is used to
convert the model from linear to non-linear and extract local information of user-
movie interaction sequences. It is interesting to show that the proposed SSR-MGTI
can accurately predict the movie that the user will watch next time. Experimental
results on MovieLens and Amazon datasets demonstrate the superiority of our
SSR-MGTI over state-of-the-art movie recommendation methods.

Keywords: Movie recommendation system · Genre time interval · Multi-head
self-attention mechanism · Convolutional neural network
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1 Introduction

Personalized recommendation is one of the most popular recommendation methods
at present, which can tailor the recommended content to the users according to their
unique preferences. Personalized recommendation algorithm mainly includes collabo-
rative filtering-based recommendation algorithm, content-based recommendation algo-
rithm, and sequential recommendation algorithm. The collaborative filtering-based rec-
ommendation algorithm [16] can recommend items according to a certain similarity (sim-
ilarity between users or similarity between items) through the behavior of groups. The
content-based recommendation algorithm [7] only utilizes the basic information (e.g.,
gender, age) of the user and the user-item interactions to forecast the user’s preferences
without taking into account the information of other users. The sequential recommen-
dation algorithm [2, 19] attempts to predict the user’s next new item by exploiting their
historical behavior sequences. The sequential recommendation algorithm is particularly
important in movie recommendation, since it can model the relationship between his-
torically watched movies as a dynamic sequence to find the hidden information between
movies.

Most of current sequential recommendation algorithms rank movies by interaction
timestamps. However, these sequential recommendation algorithms only model the time
series, ignoring the temporal information hidden in the timestamp itself. For example,
Markov chain [9, 21, 22] assumes that the next movie is related to the previous movies,
which only considers the time sequence, without considering time itself. Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN) [21] model time series
through hidden states. However, both CNN and RNN only compress temporal informa-
tion intofixedhiddenvectors, thus ignoring the temporal relationship between the various
movies. The recently emerged “self-attention” mechanism (Self-Attention) can allocate
different weights to the information according to their importance [1], but Self-Attention
does not take the sequence of the series.

In this paper, we propose a Self-Attention Sequential Recommendation Algorithm
basedonMovieGenreTime Interval (SSR-MGTI). Specifically,we add absolute position
to the multi-head self-attention mechanism to provide the sequential position of the
movie. Then, we use the time interval between movies to represent the time information,
and model the same genre of time interval of the user-movie interaction sequence to
predict the next movie. In order to improve the model’s fitting ability and highlight the
importance of local preferences, we add CNN to improve the model’s prediction ability.
Finally, our contributions are summarized as follows:

• We model the same genre of time interval information in the user-movie interaction
sequence.

• We use the multi-head self-attention mechanism to train the same genre of time
interval by adding the absolute position information of the movie.

• We add the CNN to improve the stability and generalization ability of the model
structure and capture the local information of user-movie interaction sequences.

• We carry out extensive experiments on MovieLens and Amazon datasets, which
shows that our algorithm outperforms the state-of-the-art algorithms.
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2 Related Work

During the past decades, extensive algorithms based on sequential recommendation
have been proposed in the recommendation systems area. In general, existing methods
can be categorized into three groups: general sequential recommendation method, deep
learning-based sequential recommendation method, and self-attention-based sequential
recommendation method.

General sequential recommendation algorithms include sequential pattern mining
andMarkov chain models. Yap et al. [23] proposed a recommendation framework based
on personalized sequential pattern mining, which effectively learned important knowl-
edge of user sequences. The FPMC model [15] proposed by Rendle et al. combines
Matrix Factorization with the Markov Chain model, which incorporates both the com-
mon Markov chain and the normal matrix factorization model. It introduces modifica-
tions to the Bayesian personalized ranking framework recommended for the sequential
basket. However, the Markov chain model can only capture the local information of the
sequence, ignoring the global information related to the sequence.

In deep learning-based sequential recommendationmethod, RNN andCNN aremost
commonly used algorithms. RNN is inherently capable of processing sequence data. In
order to solve the long-term dependency problem in RNN, two variants of RNN are
generated, namely Long Short-Term Memory Neural Network (LSTM) [12, 17] and
Gated Recurrent Unit (GRU) [5]. Duan et al. [6] proposed a new architecture based
on LSTM for RNN ignoring collective dependencies due to the monotonous temporal
relationship between items. The model adds the “Q-K-V” triplet to the recurrent unit
to enhance the memory ability of LSTM, and proposes a “recovery gate” to solve the
memory loss problem caused by the “forget gate”. However, RNN is only suitable for
long-term sequences. CNN can treat sequence as one-dimensional space and extract
features from local sequence convolution. Tang et al. [18] proposed a convolutional
sequence embedding model (Caser) to embeds recent sequence items into the “image”
of time and latent space,which can use a convolutionfilter to turn the sequence into a local
feature of the image. However, CNN is only good at capturing short-term sequences,
which is not suitable for long-term sequences.

In recent years, self-attention mechanism has attracted great attention in the fields of
natural language processing and computer vision. Chiang et al. [4] proposed a stacked
attention network model, which stacks contextual item attention modules with multi-
head attention modules and improves recommendation performance by using additional
time information to model contextual items. Kang et al. [13] proposed a sequence model
based on self-attention (SAS-Rec), which can be used to balance its sparse and dense data
sets. Li et al. [14] proposed time interval-aware self-attention sequential recommendation
(TiSAS-Rec), which models time intervals in user interaction sequences and uses the
time interval information to predict the next item.

Although all the abovemethods can use timestamps tomodel time series, they seldom
use the time information of timestamp itself, and do not take into account the time interval
characteristics of the same genre. However, the genres of movies watched by users are
different, and the time interval between them can better reflect the interests of users.
In this paper, we will model the same genre time interval information of movies as the
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relationship between movies, and add absolute position information to the multi-head
self-attention mechanism.

3 Problem Description of Movie Genre Time Interval

Since our recommendation algorithm is based on the movie genre time interval, we give
the definition of movie genre time interval firstly in this section, followed by the problem
description.

Movie Genre Time Interval (MGTI) refers to the time length between movies with
the same category in the user-movie interaction sequence. The time interval between the
same type of movies in the user-movie interaction sequence can reflect the user’s recent
preference for this type of movie. The smaller the time interval between two movies of
the same type indicates that the user likes this type of movies more recently.

The MGTI can be modeled as following: Let U = {ui|1 ≤ i ≤ N }, V ={
vj|1 ≤ j ≤ M

}
and G = {gk |1 ≤ k ≤ H } represent the user set, the movie set and

the genre set, respectively. Each movie in the movie set has a corresponding times-
tamp, which can be represented by T = {

tq|1 ≤ q ≤ M
}
. For a user ui, the user-

movie interactive sequence can be denoted by Si =
(
sg1i1 , sg2i2 , . . . , sgkij , . . . , sgHiM

)
,

i ∈ [1,N ], j ∈ [1,M ], k ∈ [1,H ].MGTI canbe denoted by ruicd = sgaid −sgbic ,wherega and
gb represent type set and ga ∩ gb �= ∅. The absolute position sequence refers to the posi-
tion of the movie in the user-movie interaction sequence, defined as P = (1, 2, . . . ,M ).
At the time t, the model predicts the next movie based on the previous t − 1 movies
and ruicd . The input of our model is a user-movie interaction sequence (Si), an absolute
position of the movie in the user-movie interaction sequence (P) and a genre time inter-
val matrix of user-movie interaction sequence (Ri). The genre time interval matrix of
user-movie interaction sequence can be denoted as below.

Ri =

⎡

⎢⎢⎢⎢⎢
⎣

ri11 r
i
12 . . . ri1n−1 r

i
1n

ri21 r
i
22 . . . ri2n−1 r

i
2n

ri31 r
i
32 . . . ri3n−1 r

i
3n

. . . . . . . . . . . . . . .

rin1 r
i
n2 . . . rinn−1 r

i
nn

⎤

⎥⎥⎥⎥⎥
⎦

(1)

4 Multi-head Self-attention Mechanism Based on Movie Genre
Time Interval

The overall framework of themodel is shown in Fig. 1. Thismodel includes three parts: 1)
Embedding Layer: This layer vectorizes the sequence (Si) and genre time interval matrix
(Ri), and the absolute position of the movie in the user-movie interaction sequence (P),
and embeds them in a low-dimensional space. 2) Multi-Head Self-AttentionMechanism
Layer: This layer focuses onmore relevantmovies (i.e., genre time interval is shorter) and
gives more weight to these movies. By assigning different weights to the movies, the
recommendation results can be more personalized. 3) Convolutional Neural Network
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Layer: This layer can convert the model from linear to non-linear and capture local
information of user-movie interaction sequences. So it can improve the fitting ability of
the model and the stability and generalization ability of the model structure.

Fig. 1. Overall framework ofMulti-Head Self-AttentionMechanism based onMovie Genre Time
Interval.

4.1 Embedding Layer

We use the embedding layer to map the user-movie interaction sequence (Si) to a lower
dimensional space. The embedding layer uses the user interaction movie ID (the serial
number of the movie in the dataset) as a numerical index to create an embedding matrix
ES ∈ Rc×d, where c is the dictionary size and d is the potential dimension. It maps user
interaction movie ID to fixed-size vectors by embedding matrix (ES), where S represents
user-movie interaction sequence. So we will get the mapped low-dimensional matrix
OS ∈ Rn×d, where n is the maximum length of the sequence.

Similar to the user-movie interaction sequence, we use an embedding layer to map
absolute position (P) to a lower dimensional space. The difference is that we will use
two different embedding matrices to generate the keys and values in the multi-head
self-attention mechanism without requiring additional linear transformations. Because
the absolute position is a number, we use it as the numerical index to create embedding
matrix EK

P ∈ Rc×d and EV
P ∈ Rc×d and map absolute position to fixed-size vectors

by embedding matrix
(
EK
P ,EV

P

)
, where P, K and V represent absolute position, keys

and values of multi-head self-attention mechanism. Therefore, we can get the mapped
low-dimensional matrices OK

P ∈ Rn×d and OV
P ∈ Rn×d.

Likewise, we use genre time interval matrix (Ri) as numerical indexes to create
embedding matrix EK

R ∈ Rc×d and EV
R ∈ Rc×d and map genre time interval matrix

to fixed-size vectors by embedding matrix
(
EK
R ,EV

R

)
, where R represents genre time

interval matrix. Therefore, we can get the mapped low-dimensional matrices OK
R ∈

Rn×d and OV
R ∈ Rn×d.
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4.2 Multi-head Self-attention Mechanism Layer

The multi-head self-attention mechanism can give different weights to the movies
according to the importance information in the time sequence, whichworks as following.
Firstly, we calculate the attention weight αij by the following softmax function:

αij = ev
ij

∑n
k=1 e

vik
, (2)

where vij is calculated using low-dimensional matrices
(
OS ,OK

R and OK
P

)
.

vij = OSWQ
(
OSWK + OK

R + OK
P

)

√
d

, (3)

where WQ ∈ Rd×d and WK ∈ Rd×d are calculated by a fully connected layer, andWQ

and WK are the coefficients of query and key. d is the dimension of the hidden layer.√
d is used to avoid large values of softmax.
Secondly, according to the attention weight αij, we calculate the final result of the

multi-head self-attention mechanism model, that is, the weighted sum of value:

Zi =
n∑

j=1

αij

(
OSW

V + OV
R + OV

P

)
, (4)

where WV ∈ Rd×d is calculated by a fully connected layer and WV is the value of
coefficient.

4.3 Convolutional Neural Network Layer

In order to improve the model’s fitting ability and highlight the importance of local
preferences, we add CNN to improve the model’s prediction ability.

Firstly, we use a layer of 1D convolutional neural network for feature extraction:

F1
i = W 1Zi + b1 (5)

Secondly, The ReLU activation function is used after the first layer of convolutional
neural network as follows:

F2
i = ReLU

(
F1
i

)
(6)

Finally, we use a layer of 1D convolutional neural network:

F3
i = F2

i W
2 + b2 (7)

whereW1 ∈Rd×d andW2 ∈Rd×d are the parameter matrices of the first and the second
convolutional neural network layers, respectively. b1 ∈ Rd and b2 ∈ Rd are the bias
terms. F 1, F 2 and F 3 are the output of each layer.
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5 Model Prediction

5.1 Prediction Layer

In the multi-head self-attention mechanism layer and the convolutional neural network
layer, the increase in the number of model layers will lead to problems of overfitting,
gradient disappearing and long training time. Sowe use layer normalization andDropout
regularization techniques to solve these problems:

g(x) = x + Dropout(g(LayerNorm(x))) (8)

where g(x) is multi-head self-attention mechanism layer or the convolutional neural
network layer, and x is the input. We use the layer normalization technique on the input
(x). Then we use the Dropout technique on the output of the multi-head self-attention
mechanism layer or the convolutional neural network layer (g(x)). At last, we incorporate
the input (x) into this result.

5.2 Loss Function

The binary cross-entropy loss function is commonly used in recommendation systems,
which measures the predictive accuracy of the model by calculating the difference
between the real label and the predicted label. It allows the model to converge fast
and can be updated in real time without retraining the entire model. Therefore, we adopt
the binary cross-entropy loss function as following:

−
∑

Su∈S

∑

t∈[1,2,...,n]

[
log

(
σ
(
rot ,t t

)) + log
(
1 − σ

(
ro′

t ,t

))]
+ λ‖Θ‖2F (9)

where rot represents positive output, ro′
t

represents negative sampling, Θ =
{
OS ,OK

P ,OV
P ,OK

R ,OV
R

}
is a low-dimensional matrix set of mapping, ‖·‖F represents

Frobenius norm, and λ represents regularization coefficient.

6 Experimental Evaluation

In this section,we evaluate SSR-MGTI through extensive simulations. Firstly,we present
the experimental setup, datasets and evaluation metrics in Sect. 6.1. Then, the results of
SSR-MGTI and 7 recommendation baselines (GRU4Rec+ [11], NCF [10], Caser [18],
SASRec [13], TiSASRec [14], LSPM [3], SSE-PT [20]) on Movielens and Amazon
datasets are presented in Sect. 6.2. Finally, we also show the results of comparison under
3 different hyperparameters settings of SASRec, TiSASRec, and SSE-PT.

6.1 Experimental Configuration

Experimental Setup. All the following experiments were performed on NVIDIA
RTX3090Ti GPU, and the code was implemented based on the Pytorch. The dropout
rate of the Movielens dataset is 0.2 and the dropout rate of the Amazon dataset is 0.8.
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Datasets. Weevaluate ourmethod on two datasets from two platforms.Dataset statistics
of two datasets after preprocessing are shown in Table 1. MovieLens is the dense dataset
which has more average actions with fewer users and movies. Amazon is the sparse
dataset which has the fewer actions per user and movie.

• MovieLens: This dataset is often used in the recommendation systemcompetition.We
will use a version with 1,000,209 anonymous ratings of approximately 3,900 movies
made by 6,040 MovieLens users who joined MovieLens in 2000. (MovieLens-1M).

• Amazon: This dataset records users’ comments on Amazon website. It is the classic
dataset of the recommendation system and Amazon has been updating this dataset.
Wewill use theVideo_Games dataset from the 2014 release. (AmazonVideo_Games)

Table 1. Dataset statistics (after preprocessing)

Dataset #Users #movies avg.actions/user avg.actions/movie

Movielens 6040 3416 163.50 289.09

Amazon 31013 23715 7.26 9.50

Evaluation Metrics. We use two common Top-N metrics to evaluate the performance
of our method: Hit Rate@10 and NDCG@10 [8, 10]. Hit Rate@10 is mainly concerned
about whether the movie that users like is recommended, which emphasizes the “accura-
cy” of prediction. NDCG@10 is more concerned about the “order”, which emphasizes
whether the recommended movie appears in a higher position in the recommended
sequence.

6.2 Results and Analysis

Results on Different Recommendation Methods. We study the performance of our
proposedmodel SSR-MGTI with all baselines on two real-world datasets. Table 2 shows
the experimental results of all the methods. It can be observed that:

(1) SSR-MGTI can always achieve the best performance regardless of datasets and eval-
uation metrics, which can gain 20.13% Hit Rate and 41.06% NDCG improvements
on average compared with other methods.

(2) SSR-MGTI has a significant improvement in the NDCG metric on both sparse and
dense datasets, which can achieve performance up to 25.65% on dense dataset and
up to 56.46% on sparse dataset.

Ablation Study. We conduct experiments by removing position, CNN, dropout and
layernorm separately to demonstrate the role of each component of our model. Table 3
shows the performance of the two datasets with the best set of hyperparameters.

For the Movielens dataset, removing the added components clearly shows that the
recommendation performance has declined, especially for the dropout component. The
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Table 2. Performance of different recommendationmethods. The best performance in each row is
boldfaced (higher is better), and the second best method in each row is underlined. Improvements
are shown in the last column.

Dataset Metric GRU4Rec
+

NCF Caser SASRec TiSASRec LSPM SSE-PT SSR-MGTI Improvement

Movielens Hit
Rate@10
NDCG@10

0.6522
0.4334

0.6954
0.5193

0.7517
0.5011

0.8174
0.5786

0.8311
0.6108

0.8303
0.6240

0.8371
0.6160

0.8760
0.6970

13.24%
25.65%

Amazon Hit
Rate@10
NDCG@10

0.3971
0.2321

0.6642
0.4632

0.4474
0.2661

0.7551
0.5425

0.7327
0.5256

0.6157
0.4210

0.7466
0.5448

0.7909
0.6695

27.01%
56.46%

Table 3. Ablation analysis (NDCG@10) on two datasets. Performance better than the default
version is boldfaced. ‘↓’ indicates performance drop.

Dataset Default Remove Position Remove CNN Remove
Dropout

Remove
Layernorm

Movielens 0.6970 0.6846 ↓ 0.6865 ↓ 0.6521 ↓ 0.6890 ↓
Amazon 0.6695 0.6795 0.6714 0.5530 ↓

(overfitting)
0.6410 ↓

position, CNN and layernorm components canmodify themodel to some extent. Adding
the absolute position of the user-movie interaction sequence can be combined with the
relative position of the type time interval to better capture the connection betweenmovies.
Adding the CNN component can not only convert the linear model into a non-linear
model, but also extract short-term preferences. Removing the layernorm component will
reduce the generalization ability of themodel andmay also cause gradient disappearance
and gradient explosion problems, so it is lower than the default model metric. Removing
the dropout component will cause the recommendation metric of the model to drop
sharply, which shows that the dropout component greatly affects the recommendation
performance of themodel. It can also be seen from the output results of themodel that the
evaluation metric fluctuates around 0.6500, which indicates that the model overfitting
problem is not obvious on the dense dataset.

For the Amazon dataset, removing the dropout and layernorm components will
cause a severe performance drop, especially removing dropout will cause overfitting
problems (evaluation metric gradually decrease). Removing the layernorm component
will seriously hurts model performance for sparse datasets. Removing the position and
CNN components is more suitable for sparse datasets. Since the sparse data interaction
sequence is less, the absolute position plays a little role and there is little difference
between the short-term feature and the long-term feature. Adding position and CNN
may easily increase the noise of the data, so the recommendation performance of the
model will be improved.

Comparison of 3 Different Hyperparameters Settings. We compared 3 hyperparam-
eters (i.e., maximum genre time interval, maximum sequence length n and number of
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heads of attention) based on the SASRec, TiSASRec, SSE-PT and SSR-MGTI models,
and the maximum movie genre time interval was only compared with TiSASRec.

(1) Influence of themaximum genre time interval. Themaximum genre time interval
refers to the maximum value of the set genre time interval. Since maximum genre time
interval may replace the computed movie genre time interval for training, it has a great
impact on the recommendation performance. Figure 2 shows the effect of maximum
time interval between TiSASRec and SSR-MGTI on the two datasets. From Fig. 2, we
can see that SSR-MGTI can always achieve better performance than TiSASRec under
different datasets, which can gain 7.41% Hit Rate and 22.16% NDCG improvements
on average. This is because our method adds movie genre features to the time interval,
which enables the model to accurately capture temporal information between movie
genres in user-movie interaction sequences.

(a) (b) (c) (d)

Fig. 2. Effect of maximum genre time interval on ranking performance

(2) Influence of maximum sequence length n. Themaximum sequence length n refers
to the length of the user-movie interaction sequence, which determines the number of
data that can be added to the model for training. From the results, we can see that
SSR-MGTI gains 7% Hit Rate and 18.99% NDCG improvements on average in the
Movielens dataset. As shown in Fig. 3 (a) and (b), the recommendation performance of
the TiSASRec, SSE-PT and SSR-MGTI models increases with the increase of n. But the
SASRec rises firstly and then declines. It may because SASRec uses fewer features. So
a large number of 0 are filled with n increases, resulting in a decline in recommendation
performance. For the Amazon dataset, SSR-MGTI gains 8.95% Hit Rate and 28.04%
NDCG improvements on average. As shown in Fig. 3 (c) and (d), the recommendation
performance of the four models decreases slightly with the increase of n.

(a) (b) (c) (d)

Fig. 3. Effect of maximum sequence length n on ranking performance
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(3) Influence of the number of heads of multi-head self-attention. Since number of
heads of multi-head self-attention can enable the network to capture the user’s interests
from multiple aspects, it has a great impact on the recommendation performance. As
shown in Fig. 4 (a) and (b), the recommendation performance of the SASRec andSSE-PT
model increases significantly. But the recommendation performance of the TiSASRec
andSSR-MGTImodels firstly increases then decreases. This is becausewhen the number
of heads is too large, a large number of parameters will be generated to cause overfitting
problems. For the Movielens dataset, SSR-MGTI gains 8.21% Hit Rate and 21.74%
NDCG improvements on average. For the Amazon dataset (Fig. 4 (c) and (d)), SSR-
MGTI gains 7.37% Hit Rate and 25.12% NDCG improvements on average.

It can be seen that the performance of SSE-PT is slightly improved. But the per-
formance of SSR-MGTI, TiSASRec and SASRec decreases as the number of heads
increases. This is because the dataset is relatively sparse, the hidden information of the
data is relatively fewer.

(a) (b) (c) (d)

Fig. 4. Effect of the number of heads of multi-head self-attention on ranking performance

7 Conclusion

In this paper, we proposed a Self-Attention Sequential Recommendation Algorithm
based on Movie Genre Time Interval (SSR-MGTI). Firstly, we give the definition of
Movie Genre Time Interval (MGTI), based on which a multi-head self-attention mech-
anism is modeled. Then, we add the absolute position of the movie in the user-movie
interaction sequence to make up for the deficiency of the multi-head self-attentionmech-
anism. In addition, we use a convolutional neural network to convert the model to non-
linear and extract local information of user-movie interaction sequences. The experi-
ment results show that our proposed recommendation scheme can achieve 20.13% and
41.06% improvement inHR@10 andNDCG@10 respectively over other state-of-the-art
schemes in terms of dense (MovieLens) and sparse (Amazon) datasets.
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