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Abstract. Distant supervision (DS) is widely used in relation extraction
to reduce the cost of annotation but suffers from noisy instances. Cur-
rent approaches typically involve selecting reliable instances from the
DS-built dataset for model training. However, these approaches often
lead to the inclusion of numerous noisy instances or the disregard of
a substantial number of valuable instances. In this paper, we propose
NDGR, a novel training framework for sentence-level distantly super-
vised relation extraction. Initially, NDGR partitions the noisy data from
the DS-built dataset by employing a Gaussian Mixture Model (GMM)
to model the loss distribution. Afterwards, we utilize a guided label gen-
eration strategy to generate high-quality pseudo-labels for noisy data.
By iteratively executing the processes of noise division and guided label
generation, NDGR helps refine the noisy DS-built dataset and enhance
the overall performance. Our method has been extensively evaluated on
commonly used benchmarks, and the results demonstrate its substantial
improvements in both sentence-level evaluation and noise reduction.
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1 Introduction

Relation extraction (RE) is a fundamental task in the field of Information Extrac-
tion (IE), which aims at extracting structured relations between named entity
pairs from unstructured text. Most existing methods approach this task by
employing supervised training of neural networks, requiring a significant amount
of manually labeled data. It is widely acknowledged that data annotation is a
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laborious and time-consuming task. In order to address this challenge, Mintz
et al. [19] introduced Distant Supervision (DS), an approach that automati-
cally annotates textual data by aligning relation facts extracted from knowl-
edge graphs with the unlabeled corpus. Regrettably, this annotation paradigm
inevitably leads to a problem of noise. Hence, there is a need to explore de-noise
DSRE methods to minimize the impact of noisy instances.

Currently, there exist two primary approaches for reducing noise in DSRE:
the bag-level method and the sentence-level method. The bag-level methods
[12,16,25,28,29] are based on Multi-Instance Learning (MIL), both the training
and testing processes are performed at the bag-level. While bag-level approaches
are effective in mitigating the influence of noisy data, they do not assign specific
labels to each sentence within the bag. Additionally, these approaches over-
look cases where all sentences in the bag are false positive samples [23]. These
limitations hinder the application of RE in downstream tasks that necessitate
sentence-level relation types. Therefore, over the past few years, there has been
a growing interest in sentence-level DSRE methods. Most existing sentence-level
DSRE methods [4,8,11,22,31] employ adversarial learning, reinforcement learn-
ing, or frequent patterns to filter out noisy data. Although these methods are
effective at handling noisy data, they have certain limitations, including reliance
on prior knowledge, subjective sample construction, and accessing external data.

In this paper, we propose NDGR, a training framework for sentence-level
DSRE. In contrast to previous methods, our method is independent of prior
knowledge or external data. It can automatically identify noisy instances and
re-label them during training, thereby refining the dataset and enhancing perfor-
mance. Specifically, NDGR first divides the noisy instances from DS-built data
by modeling the loss distribution with a GMM. Since noisy instances contain
valuable information, we consider them as unlabeled data and employ a guided
label generation strategy to produce high-quality pseudo-labels for the purpose
of transforming them into training data. Although the above-mentioned method
can improve performance, it fails to fully exploit the potential of each compo-
nent. Hence, we further design an iterative training algorithm to fully refine the
DS-built dataset through iterative execution of noise divide and guided label
generation.

The main contributions of this paper are as follows:

— We propose the use of the Gaussian Mixture Model to model the data loss dis-
tribution for sentence-level distant supervised RE, which effectively separates
noisy data from DS-built data.

— We design a guided label generation strategy, with the aim of generating high-
quality pseudo labels to avoid the gradual drift problem in the distribution
of sentence features.

— We develop NDGR, a sentence-level DSRE training framework, which com-
bines a noise division, guided label generation, and iterative training to refine
DS-built data.
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— Our proposed method makes a great improvement over previous sentence-
level DSRE methods on widely used datasets, not only relation extraction
ability but also noise filtering ability.

2 Related Work

To address the issue of insufficient annotated data in relation extraction, Mintz
et al. [19] firstly align unlabeled text corpus with structured data to automat-
ically annotate data. While this method has the capability to autonomously
label data, it is bound to engender the issue of wrong labeling. To minimize the
impact of mislabeled data, Riedel et al. [25] relaxes the basic assumption of DS
to the At-Least-One assumption and applied Multi-Instance Learning [10,25] to
the task of DSRE. In MIL, all sentences with the same entity pair are put into
a bag, and assumes that at least one sentence in the bag expresses the relation.
Existing bag-level approaches have mainly focused on mitigating the impact of
potentially noisy sentences within the bag. Some methods [9,14,16,28] utilize
the attention mechanism to assign different weights to the sentences in the bag.
These approaches aim to enhance the impact of accurate sentences while miti-
gating the influence of erroneous ones. Other ways involve using reinforcement
learning or adversarial learning [8,24,26,29| to select clean sentences from the
bag to train the model. Nevertheless, recent research [4] indicates that bag-level
DSRE methods have a limited effect on sentence-level prediction. Besides, bag-
level methods are unable to assign a specific sentence label to each sentence in
the bag and disregard the fact that all sentences in the bags are noisy samples.

Thus, sentence-level distantly supervised relation extraction has received
increasing attention in recent years. Sentence-level DSRE methods typically
employ sampling strategies to filter noisy data. Jia et al. [11] refined the DS
dataset by identifying frequently occurring relation patterns. Ma et al. [18] uti-
lized complementary labels to create negative samples and employed negative
training to filter out noisy data. Li et al. [15] incorporated a small amount of
external reliable data in their training process through meta-learning. Adjusting
the loss function [5,7] is also a commonly used method to reduce the impact of
noisy samples. Despite the effectiveness of these methods in handling noisy data,
they possess certain potential limitations, such as reliance on prior knowledge,
subjectivity in sample construction, and access to external data. Different from
previous work, our method iteratively executes noise divide and guided label
generation to refine the DS-built data, independent of external data and prior
knowledge.

3 Methodology

In this section, we introduce NDGR, a novel training framework for sentence-
level DSRE. As shown in Fig. 1, our method comprises three main steps: (1)
Divide noisy data from the DS-built dataset by modeling the loss distribution
with a GMM (Sect. 3.1); (2) Generate high-quality pseudo-labels for unlabeled
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Fig. 1. An overview of the NDGR. There are three main steps: (1) Divide noisy data by
employing a GMM to model the distribution of losses; (2) Generate high-quality pseudo
labels for unlabeled data by guided label generation strategy; (3) Iterative training to
further strengthen performance.

data using a guided label generation strategy (Sect.3.2); (3) Iterative training
based on (1) and (2) to further refine DS-built dataset (Sect. 3.3).

3.1 Noise Division by Loss Modeling

Previous research suggests that deep neural networks exhibit a swifter adaptation
to clean data in contrast to noisy data [1], resulting the loss value incurred by
clean data is lower than that of noisy data [2]. Hence, we attempt to separate
noisy instances from the DS-built dataset by the loss value of each sample.
Inspired by Li et al. [13], we aim to get the clean probability of each sample by
fitting a Gaussian Mixture Model (GMM) [21] to the sample loss distribution.

Formally, we denote the input DS-built dataset as D = {(S,Y} =
{(si,9:)}I¥., where y; € {1,...,C} is the class label for the i*" input sentence s;.
In the initial stage of our method, we warm up the Relation Extraction Network
(REN) on all DS-built data for a few epochs to get the initial loss distribution.
Specifically, for a model with parameters 6, we have:

N N

L(O) = (i) =Y _loss(pi, y:) (1)
=1 =1

pi = Mp(s;) (2)

where p; is the probability distribution of the relation. My consists of the encoder
module which converts the input sentence s; into sentence representation h and
the fully connected layer that applies h for classification.

However, we found the network would quickly overfit the noisy data during
the warm-up phase, which resulted in most samples having similar normalized
loss values close to zero (as shown in Fig.2(a)). In this case, it’s difficult for
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GMM to distinguish the clean and noisy samples based on the loss distribution.
To address this issue, we penalize confident output distribution by adding a
negative entropy —H to cross-entropy loss during training [20].

H = —p;log(p;) (3)

The whole loss function as Eq. 4 shows:

L(0) = Z{loss(pi,yi) + pilog(pi)} (4)

=1

After maximizing the entropy, the normalized loss is distributed more evenly
(as shown in Fig.2(b)) and is easier to model by GMM. We then apply the
Expectation-Maximum (EM) algorithm to fit a two-component Gaussian Mix-
ture Model [21]. For each sample, we calculate a posterior probability p(g|l;)
as its clean probability ¢;, where g is the smaller mean Gaussian component.
A threshold Th is established to partition the training data into two separate
sets. The samples with ¢; greater than Th are assigned to a clean labeled set X,
otherwise are assigned to a noisy unlabeled set U.

After Warm Up: Cross Entropy After Warm Up: CE with Confidence Penalty After NDGR Training
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Fig. 2. Loss distribution when training on Noisy-TACRED. (a) Training using the
standard cross-entropy loss function, may lead to overfitting and overly confident pre-
dictions. (b) Adding a negative entropy to cross-entropy loss leads to the normalized
loss being distributed more evenly. (¢) After NDGR training, the clean and noisy data
are further separated.

3.2 Guided Label Generation and Exploitation

Following the isolation of noisy data from the dataset, the majority of preceding
research employed exclusively clean data for training purposes, thereby over-
looking the valuable information embedded in the noisy data. However, proper
handling of noisy data can effectively improve the performance of the model. In
this section, we introduce the guided label generation strategy, aimed at gener-
ating high-quality pseudo-labels for noisy data.
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To avoid the gradual drift in the distribution of sentence features caused by
the noise present in the generated pseudo labels [17], we construct two networks:
the Relation Extraction Network (REN) which is trained to extract relations
from unstructured text and the Label Generation Network (LGN) which has the
same architecture as REN but is trained separately to generate pseudo labels
for the unlabeled data.

To distinguish, we denote the parameters of REN as y and the parameters
of LGN as v. Using the updated REN as a reference, we let the LGN learn to
evaluate the quality of the generated labels. To optimize the v, we adopt the loss
function as follows:

N
L(v) = (loss(M,+ (si), yi) + Wloss(M,(s:),y:)) ()

i=1

where W € [0,1] is a manually set hyperparameter, u* denotes the parameters
of the REN after a gradient update based on the loss function defined in Eq. 4.
In this way, we calculate the loss value and update v using the updated param-
eters uT. This can aid LGN in acquiring a deeper understanding of the training
procedure employed by REN. To prevent the accumulation of errors caused by
noise in the generated labels during training, LGN is trained on labeled set X.

After optimizing the LGN for a few epochs, we generate pseudo labels for the
unlabeled set U. For each sample u; in U, the generated pseudo label is defined:

label = arg max(M,+ (u;)) (6)

where vt is the updated parameters of the LGN.

The relation associated with the highest probability after softmax is consid-
ered as the pseudo-label. We utilize these generated pseudo-labels by amalga-
mating the re-labeled set R with the labeled set X to form an enhanced dataset.
Subsequently, this dataset is employed to retrain REN, leading to performance
improvement.

3.3 Iterative Training Algorithm

While dividing noisy data by modeling the loss distribution with a GMM and
implementing the guided label generation strategy for re-labeling the noisy data
can refine the dataset and enhance performance, it fails to fully exploit the
potential of each component. Therefore, we employ iterative training to further
enhance performance.

As shown in Fig. 1, for each iteration, we firstly divide the DS-built into
labeled data and unlabeled data by modeling the data loss distribution with
GMM (before the first iteration, we warm up the model to get the initial nor-
malized loss distribution). Following M epochs of REN training using labeled
data, we leverage the updated REN as a reference to optimize LGN. Subse-
quently, the updated LGN is employed for generating pseudo-labels pertaining
to the unlabeled data. By amalgamating the labeled and re-labeled data, a novel
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refined dataset is formulated. Prior to retraining REN with the refined dataset, a
model re-initialization step is executed to avert overfitting. This process ensures
that the models are optimized using a high-quality dataset and incorporates
randomness, thereby improving the robustness of our method. Finally, we input
the origin DS-build data into the updated REN to obtain the new normalized
loss distribution for fitting the GMM and perform re-initialization of both the
REN and LGN to enter the next iteration. Figure 2(c) shows the loss distribu-
tion after NDGR training. As seen, there is a substantial margin in the loss
values between most of the noisy data and clean data. Most of the noisy data
has been successfully separated, with only an acceptable amount of clean data
being misclassified, demonstrating the robust de-noising ability of NDGR.

4 Experiments and Analysis

To evaluate the efficacy of the proposed method, we divided the experiment into
two parts and conducted tests on two datasets: (1) The first part is to vali-
date the effectiveness of our proposed method at the sentence-level evaluation.
Numerous previous DSRE approaches employ a held-out evaluation, where both
the training and test sets are constructed using the DS method. According to
the study, Gao et al. [6] suggest that using a held-out test set cannot accurately
demonstrate the model’s performance. Hence, we utilized a manually-labeled
test set to evaluate the model. (2) In the second part, a series of experiments
are designed to evaluate the efficacy of each component in NDGR. Since the
DS-build dataset cannot label whether this instance is mislabeled, we construct
a noisy dataset called Noisy-TACRED from the manually labeled dataset.

4.1 Datasets

We evaluate our method on two widely-used datasets: the NYT dataset and the
Noisy-TACRED dataset.

NYT: Riedel et al. [25] constructed this dataset by aligning the New York Times
corpus with entity-relationship triples from Freebase. The original training and
test sets are both established using the DS method, encompassing noisy data.
For a more precise evaluation, we employ the original training set alongside a
manually annotated sentence-level test set [11].

Noisy-TACRED: The original TACRED dataset, constructed by Zhang et al.
[33], comprises 80% of instances labeled as “NA”. The “NA” rate is similar to
the NYT dataset which is constructed by the DS method, hence analysis on this
dataset is more reliable. To create the Noisy-TACRED dataset, we select noisy
instances randomly with a noisy ratio of 30%. For each noisy instance, a noisy
label is assigned by randomly selecting a label from a complementary class. The
selection probability of a label is determined by its class frequency, this approach
helps to preserve the original distribution of data.
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4.2 Baseline Models

We compare our method with multiple strong baselines as follows:

PCNN [29]: A bag-level method with multi-instance learning to address the
wrong label problem.

PCNN+SelATT [16]: A bag-level de-noise method uses the attention mech-
anisms to reduce the impact of noisy data.

PCNN+RA BAG _ ATT [27]: A bag-level method that utilizes the inter-
bag and intra-bag attention mechanisms to alleviate noisy instances.

CNN+RL_ 1 [24]: A bag-level method that applies reinforcement learning
to recognize the false positive samples and then the filtered data reallocated as
negative samples.

CNN+RL_ 2 [4]: A sentence-level method which incorporates reinforce-
ment learning to jointly train a RE model for relation extraction and a selector
to filter the potential noisy samples.

ARNOR [11]: A sentence-level method that selects reliable instances by
rewarding high attention scores on specific patterns.

SENT(BiLSTM) [18]: A sentence-level DSRE method filters the noisy data
by negative training and performs a re-label process to transform the noisy data
into useful data.

CNN [30], BiLSTM [32] and BERT [3] are widely-used models for

sentence-level relation extraction without denoising method.

4.3 Implementation Details

Our proposed method employs the BiLSTM as the sentence encoder. 50-
dimensional GloVe vectors [16] are used as word embeddings during training.
Furthermore, we incorporate 50-dimensional randomly initialized position and
entity type embeddings throughout all training phases. The hidden size of the
BiLSTM is set to 256. It is optimized using the Adam optimizer with a learning
rate of le—5. The weight parameter W in Eq. 4 is assigned a value of 5e—1.

The hyperparameters are tuned by performing a grid search on the validation
set. When training on the NYT dataset, we first warm up the REN using all
DS-built data for 4 epochs. We then perform a total of 8 iterations, with each
iteration involving training the model for 15 epochs. The data-divide threshold
is set to Th = 0.7. During the training phase on the Noisy-TACRED, the REN is
initially warmed up using all DS-built data for 45 epochs. Following this warm-
up phase, the model goes through 8 iterations, where each iteration involves 50
epochs of training. The training procedure utilizes a data-divide threshold Th
of 0.6 and sets the learning rate to 5e—4.

4.4 Sentence-Level Evaluation

Table 1 shows the results of our method and other baseline models on sentence-
level evaluation. Consistent with previous methods [11,15], we calculate Micro-
Precision (Prec.), Micro-Recall (Rec.), and Micro-F1 (F1) to evaluate the effec-
tiveness of our approach. According to the results, we can observe that: (1)
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Table 1. Results of our method and other baseline models on sentence-level evaluation.
The first part of the table is ordinary RE methods without denoising and the second
part of the table is distant RE methods. The results with “x” are bag-level methods
and the results with “{” are sentence-level methods.

Method Dev Test
Prec. |Rec. |F1 Prec. |Rec. |F1

CNN7 38.32 1 65.22 |48.28 |37.75 |64.54 |46.01
PCNNx 36.09 |63.66 |46.07 |36.06 |64.86 |46.35
BiLSTMf{ 36.71 |66.46 |47.29 |35.52 |67.41 |46.53
BERTTY 34.78 |65.17 |45.35 |36.19 | 70.44 |47.81
PCNN+SelAT T 46.01 | 30.43 |36.64 |45.51 |30.03 | 36.15
PCNN+RA BAG_ ATT=x|49.84 [46.90 |48.33 | 56.76 | 50.60 | 53.50
CNN+RL 1% 37.71 | 52.66 |43.95 |39.41 |61.61 |48.07
CNN+RL_ 2t 40.00 |59.17 [47.73 |40.23 |63.78 1 49.34
ARNORft 62.45 | 58.51 |60.36 |65.23 |56.79 |60.90
SENT (BiLSTM)f} 66.71 |57.27 |61.63 |71.22 |59.75 |64.99
NDGR (BiLSTM) 74.34 | 58.46 | 65.45 | 78.30 | 56.97 | 65.95

When trained with DS-built data without de-noise, all baseline models per-
formed poorly. Even the highly acclaimed pre-trained language model BERT,
renowned for its superior performance in sentence-level relation extraction tasks
on clean datasets, demonstrated subpar results. This phenomenon underscores
the substantial impact of noisy samples in the dataset on model training, partic-
ularly for pre-trained language models, which are prone to overfitting such data.
(2) The bag-level methods demonstrate poor performance in sentence-level eval-
uation, indicating their unsuitability for downstream tasks that require precise
sentence labels. Therefore, it is imperative to explore sentence-level methods for
DSRE. (3) The proposed NDGR method achieves a significant improvement over
previous sentence-level de-noise methods. Our implementation utilizing BiLSTM
as the sentence encoder results in a 0.96% improvement in the F1 score compared
to SENT. Additionally, it exhibits significantly higher precision while maintain-
ing comparable recall. These outcomes highlight the effectiveness of our strategy
for data division and guided label generation.

4.5 Analysing on Noisy-TACRED

In this section, we analyze the efficacy of noise division and label generation
process on the Noisy-TACRED dataset.
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Table 2. Model performance on clean-TACRED and noisy-TACRED.

Method Prec. | Rec. | F1
Clean BiLSTM+ATT 67.7 |63.2 |65.4
TACRED

BiLSTM 61.4 |61.7 |61.5
Noisy BILSTM+ATT 32.8 43.8 |37.5
TACRED

BiLSTM 37.8 |45.5 141.3

NDGR (BiLSTM) | 86.4 |43.3 | 57.7

Evaluation on Noisy-TACRED: We trained in Clean-TACRED and Noisy-
TACRED respectively, and the results are shown in Table2. Comparing the
results on two datasets, we can find the performance of baseline models degraded
significantly, the F1 value of BILSTM-+ATT decreased by 27.9, while the F1
value of BiLSTM decreased by 20.2. By employing our proposed NDGR on the
noisy data, the BILSTM model demonstrates comparable performance to the
model trained on clean data. This finding indicates that our methodology effec-
tively mitigates the impact of incorrectly labeled data in the DS-built dataset.
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Fig. 3. Experimental Details of Divide Fig. 4. The quality of the pseudo labels
Data by Loss Modeling generated by REN and LGN.

Effects of Divide Data by Loss Modeling: As described in Sect.3.1, we
employ GMM to model the loss distribution, and subsequently leverage the pos-
terior probability to partition the noisy data within the dataset constructed by
DS. To demonstrate the efficacy of the loss modeling by GMM in distinguish-
ing between clean and noisy data. We first evaluated the quality of the labeled
data, we trained the model only with the labeled data and ignored the unlabeled
data on both NYT and Noisy-TACRED. Additionally, we compute the ratio of
clean data within the labeled set and noisy data within the unlabeled set on
Noisy-TACRED.
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The results are shown in Fig.3, we can observe: 1) The F1 score exhibits
a gradual increase with each iteration for both the NYT and Noisy-TACRED
datasets, suggesting an improvement in the quality of the labeled data. 2) As
the iteration progressed, the ratio of clean data in the labeled set and the ratio
of noise data in the unlabeled set both increased. The proportion of clean data
can reach approximately 85%, while the proportion of noisy data amounts to
around 51%. These observations affirm the effective noise filtering capability of
GMM-based loss modeling within the dataset constructed using DS.

Effects of Guided Pseudo Label Generation: As described in Sect. 3.2,
once the noisy data has been separated from the training dataset, we employ the
guided label generation strategy for converting the unlabeled data into valuable
training data. To verify the effectiveness of this strategy, we separately used
REN and LGN to generate pseudo labels and calculated the F1 score between
the generated labels and the original labels of the TACRED, the results are
shown in Fig.4. As seen, the pseudo-labels generated directly by REN exhibit
inferior performance compared to those generated by LGN. This demonstrates
that the label generation strategy we employ can reduce noise in generating
labels and improve performance.

Table 3. Ablation study on NYT dataset

Components Prec. |Rec. |F1

NDGR 78.30 | 56.97 | 65.95
w/o Guided Label Generation | 58.31 |64.09 | 61.06
w/o Re-initialization 55.11 | 63.47 | 58.99
w /o Noise Division 45.11 |69.97 |54.85
w/o Confidence Penalty 47.64 |62.54 | 54.08

4.6 Ablation Study

We conduct an ablation study to demonstrate the contribution of each com-
ponent in our proposed method on the NYT dataset. We specifically assess the
performance by removing certain components, including guided label generation,
re-initialization, noise divide, and confidence penalty. The results are shown in
Table 3, we can observe that: 1) Without the guided label generation strategy,
instead of employing LGN for label generation, we employ REN to directly
generate labels. The presence of noise in the generated labels results in error
accumulation during iterations, causing a progressive drift in the distribution
of sentence features, thereby impacting the overall system performance. 2) Re-
initialization has a great contribution to the performance. In the label generation
phase, despite utilizing labeled data for training REN and LGN with the inten-
tion of mitigating the impact of noise, it is inevitable that certain noise data will
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become incorporated and the models will adapt to them. With re-initialization,
REN will initialize the overfitting parameters and retrain on the refined dataset,
thus contributing to better performance. 3) Noise division significantly impacts
the performance. Without noise division, we use the original DS-built data to
optimize the REN and LGN, then generate pseudo-labels for all DS-built data.
However, due to the presence of noise during the training process, the quality
of these labels diminishes, resulting in inferior performance. Moreover, as the
iterations progress, the performance further deteriorates. 4) Confidence penalty
contributes a lot to the performance. In the absence of the confidence penalty,
most of the normalized loss values are comparable and tend toward zero. This
makes it challenging for the GMM to effectively filter out noisy samples based
on the distribution of losses. The presence of numerous mislabeled data has sig-
nificantly affected the subsequent label generation process, resulting in a decline
in the quality of the newly constructed training dataset.

5 Conclusion

In this paper, we propose NDGR, a novel sentence-level DSRE training frame-
work that incorporates noise division, guided label generation, and iterative
training. Specifically, NDGR first separates noisy data from the training dataset
by modeling the data loss distribution with a GMM. Next, we assign pseudo-
labels for unlabeled data using a guided label generation strategy to reduce the
noise in the generated pseudo-labels. Through iterative execution of noise divi-
sion and guided label generation, NDGR helps re-fine the noisy DS-built data and
enhance the performance. Extensive experiments on widely-used benchmarks
have demonstrated that our method has significant improvement in sentence-
level relation extraction and de-noise effect.
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