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Abstract. Recent studies have illuminated a pressing issue in the
domain of natural language understanding (NLU) and reasoning: many of
these datasets are imbued with subtle statistical cues. These cues, often
unnoticed, provide sophisticated models an unintended edge, allowing
them to exploit these patterns, leading to a potentially misleading over-
estimation of their genuine capabilities. While the existence of these cues
has been noted, a precise and systematic identification has remained elu-
sive in existing literature. Addressing this gap, our paper presents a novel
lightweight framework. This framework is meticulously designed to not
only detect these hidden biases in multiple-choice NLU datasets but also
rigorously evaluate the robustness of models that are developed based on
these datasets. By unveiling these biases and assessing model integrity,
we aim to pave the way for more genuine and transparent advancements
in NLU research.
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1 Introduction

The advancements in neural network models have yielded significant enhance-
ments in a plethora of tasks, including natural language inference [1,20], argu-
mentation [11], commonsense reasoning [9,14,23], reading comprehension [6],
question answering [19], and dialogue analysis [7]. However, recent stud-
ies [4,12,15] have unveiled that superficial statistical patterns, including sen-
timent, word repetition, and shallow n-gram tokens in benchmark datasets, can
forecast the correct answer. These patterns or features, termed as spurious cues
when appearing in both training and test datasets with similar distributions.
When these cues are neutralized, leading to a “stress test” [8,10,13], models
exhibit reduced performance, suggesting an overestimation of their capabilities
when evaluated on these datasets.

Several natural language reasoning tasks, exemplified by those in the Stan-
ford Natural Language Inference (SNLI) dataset, can be cast as multiple-choice
questions. A typical question can be structured as follows:
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Example 1. An instance from SNLI. Premise: A swimmer playing in the surf
watches a low flying airplane headed inland.
Hypothesis: Someone is swimming in the sea.
Label: a) Entail. b) Contradict. c) Neutral.

Humans approach these questions by examining the logical relations between
the premise and the hypothesis. Yet, previous work [10,16] has unveiled that
several NLP models can correctly answer these questions by only considering
the hypothesis. This observation often traces back to the presence of artifacts
in the manually crafted hypotheses within many datasets. Although identifying
problematic questions with a “hypothesis-only” test is theoretically sound, this
approach often i) relies on specific models like BERT [3], which require costly
retraining, and ii) fails to explain why a question is problematic.

This paper puts forth a lightweight framework aimed at identifying sim-
ple yet impactful cues in multiple-choice natural language reasoning datasets,
enabling the detection of problematic questions. While not all multiple-choice
questions in these datasets include a premise, a hypothesis, and a label, we detail
a method to standardize them in Sect. 2. We leverage words as fundamental fea-
tures in crafting spurious cues, since they serve as the foundational units in
modeling natural language across most contemporary machine learning meth-
ods. Even complex linguistic features, such as sentiment, style, and opinions, are
anchored on word features. Subsequent experimental sections will demonstrate
that word-based cues can detect statistical bias in datasets as effectively as the
more resource-demanding hypothesis-only method.

2 Approach

We evaluate the information leak in the datasets using only statistical features.
First, we formulate a number of natural language reasoning (NLR) tasks in a
general form. Then, based on the frequency of words associated with each label,
we design a number of metrics to measure the correlation between words and
labels. Such correlation scores are called “cue scores” because they are indicative
of potential cue patterns. Afterward, we aggregate the scores using a number of
simple statistical models to make predictions.

2.1 Task Formulation

Given a question instance x of an NLR task dataset X, we formulate it as

x = (p, h, l) ∈ X, (1)

where p is the context against which to do the reasoning, and p corresponds to
the “premise” in example 1; h is the hypothesis given the context p. l ∈ L is the
label that depicts the type of relation between p and h. The size of the relation
set L varies between tasks. We argue that most of the discriminative NLR tasks
can be formulated into this general form. For example, an NLI question consists
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of a premise, a hypothesis, and a label on the relation between the premise and
hypothesis. |L| = 3 for three different relations: entailment, contradiction, and
neutral. We will discuss how to transform into this form in Sect. 2.4.

2.2 Cue Metric

For a dataset X, we collect a set of all words N that exist in X. The cue metric
for a word measures the disparity of the word’s appearance under a specific label.
Let w be a word in N , we compute a scalar statistic metric called cue score,
f
(w,l)
F , in one of the following eight ways. We categorized the metrics into two

genres: the first four use only statistics, and the last four use a notion of angles
in the Euclidean space. Let L′ = L − L \ l, and we define

#(w,L′) =
∑

l′∈L′
#(w, l′). (2)

Frequency (Freq)
The simplest measurement is the co-occurrence of words and labels, where #()
denotes naive counting. This metric aims to capture the raw frequency of words
appearing in a particular label.

f
(w,l)
Freq = #(w, l) (3)

Relative Frequency (RF)
Relative Frequency extends the Frequency metric by accounting for the total
frequency of the word across all labels. It’s defined as follows:

f
(w,l)
RF =

#(w, l)
#(w)

(4)

Conditional Probability (CP)
The Conditional Probability of label l given word w is another way to capture
the association between a word and a label. This metric is essentially the Relative
Frequency as defined above.

f
(w,l)
CP = p(l|w) =

#(w, l)
#(w)

(5)

Point-wise Mutual Information (PMI)
PMI is a popular metric used in information theory and statistics. It measures
the strength of association between a word and a label. PMI is higher when
the word and label co-occur more often than would be expected if they were
independent. We define the PMI of word w and label l as follows, where p(w)
and p(l) are the probabilities of w and l respectively, and p(w, l) is the joint
probability of w and l.

f
(w,l)
PMI = log

p(w, l)
p(w)p(l)

(6)
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Local Mutual Information (LMI)
The LMI is a variant of PMI that weighs the PMI by the joint probability of
the word and label. This has the effect of giving more importance to word-label
pairs that occur frequently. The LMI of word w with respect to label l is defined
as follows.

f
(w,l)
LMI = p(w, l) log

p(w, l)
p(w)p(l)

. (7)

Ratio Difference (RD)
The Ratio Difference metric measures the absolute difference between the word-
label ratio and the overall label ratio. This metric helps identify words that are
disproportionately associated with a specific label.

f
(w,l)
RD =

∣∣∣∣
#(w, l)
#(w,L′)

− #(l)
#(L′)

∣∣∣∣ (8)

Angle Difference (AD)
Angle Difference is similar to Ratio Difference but accounts for the non-linear
relationship between the ratios by taking the arc-tangent function. This metric
can be more robust to outliers.

f
(w,l)
AD =

∣∣∣∣arctan
#(w, l)
#(w,L′)

− arctan
#(l)
#(L′)

∣∣∣∣ (9)

Cosine (Cos)
The Cosine metric considers vw = [#(w, l),#(w,L′)] and vl = [(#(l),#(L′)] as
two vectors on a 2D plane. Intuitively, if vw and vl are co-linear, w leaks no
spurious information. Otherwise, w is suspected to be a spurious cue as it tends
to appear more with a specific label l. This metric quantifies the similarity of
the word-label relationship in a geometric manner.

f
(w,l)
Cos = cos(vw, vl) (10)

Weighted Power (WP)
The Weighted Power metric combines the Cosine metric with a frequency-based
weighting, emphasizing the importance of words with higher frequencies. This
metric can help prioritize cues that are more likely to impact the model.

f
(w,l)
WP = (1 − f l

Cos)#(w)f
l
Cos (11)

In general, we can denote the cue score of a word w w.r.t. label l as f (w,l), by
dropping the method subscript F .

These metrics provide different perspectives on the association between words
and labels, which can help identify potential spurious correlations.

2.3 Aggregation Methods

We can use simple methods G to aggregate the cue scores of words within a
question instance x to make a prediction. These methods are designed to be
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easily implemented and computationally efficient, given the low-dimensional cue
features.

Average and Max
The most straightforward way to predict a label is to select the label with the
highest average or maximum cue score in an instance.

Gaverage = arg max l

∑
w fw,l

|x| , l ∈ L, w ∈ N (12)

Gmax = arg max lmax
w

(fw,l), l ∈ L, w ∈ N (13)

Linear Models
To better utilize the cue score in making predictions, we employ two simple
linear models: SGDClassifier and logistic regression. The input for the models is
a concatenated vector of cue scores for each label in instance x:

input(x) =[fw1,l1 , , ..., fwd,l1 , fw1,l2 , ..., fwd,l2 ,

..., fw1,lt , ..., fwd,lt ].
(14)

Here, d denotes the length of x. In practice, input vectors are padded to the
same length. The training loss for the linear model is:

φ̂n = arg minφnloss(Glinear(input(x);φn)) (15)

The loss is calculated between the gold label lg and the predicted label
Glinear(input(x);φn). φn represents the optimal parameters in Glinear that
minimize the loss for label lg.

2.4 Transformation of MCQs with Dynamic Choices

Until now, we have focused on multiple-choice questions (MCQs) that are clas-
sification problems with a fixed set of choices. However, some language reason-
ing tasks involve MCQs with non-fixed choices, such as the ROCStory dataset.
In these cases, we can separate the original story into two unified instances,
u1 = (context, ending1, false) and u2 = (context, ending2, true). We predict
the label probability for each instance, G(input(u1);φ) and G(input(u2);φ), and
choose the ending with the higher probability as the prediction.

3 Experiment

We proceed to demonstrate the effectiveness of our framework in this section. We
apply our method to detect cues and measure the amount of information leakage
in 12 datasets from 6 different tasks, as shown in Table 1. Our experimental
findings are segmented into five sub-sections: Datasets, Quantifying Information
Leakage, Bias Evaluation Methods, Comparison with Hypothesis-only Models,
and Identifying Problematic Datasets.
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Table 1. Dataset examples and normalized version.

3.1 Datasets

In this section, we present the results of our experiments conducted on 12 diverse
datasets as outlined in Table 1. The datasets can be broadly classified into two
categories based on the tasks they present: NLI classification tasks and multiple-
choice problems. The NLI classification tasks constitute the first type. They are,
in essence, a specialized variant of multiple-choice datasets. The second type
includes datasets like ARCT, ARCT adv [16], RACE [6], and RECLOR [22]. In
these, one of the alternatives is the “hypothesis”, and the “premise” contains
more than a single context role. As an example, in ARCT, Reason and Claim
act as the “premise”, requiring the correct warrant to be chosen. Other datasets
like Ubuntu [7], COPA [14], ROCStory, SWAG [23], and CQA [19] belong to the
second type as well but have only a single context role in the “premise”.

Table 2 outlines how hypotheses are gathered in these datasets. Most datasets
utilize human-written hypotheses, barring CQA and SWAG.

3.2 Quantifying Information Leakage

In our effort to effectively measure the severity of information leakage or bias in
these datasets, we formulated a measurement expressed as D = Acc−Majority.
Here, Majority is the accuracy achieved through majority voting and Acc rep-
resents the accuracy of a model that bases its prediction solely on spurious cues.

A high absolute value of D indicates the existence of more cues in a dataset.
However, a smaller D doesn’t necessarily mean less bias in the training data,
but rather less “leakage” between the training and test data. If D is positive, it



60 S. Huang

Table 2. The methods of hypothesis collection for the datasets. AE = Adversarial
Experiment, LM = language model, CD = crowdsourcing, Human represents human
performance on the datasets.

Datasets Data Size Data source AE Human(%)

ROCStory 3.9k CD No 100.0

COPA 1k CD No 100.0

SWAG 113k LM Yes 88.0

SNLI 570K CD No 80.0

QNLI 11k CD No 80.0

MNLI 413k CD No 80.0

RACE 100k CD No 94.5

RECLOR 6k CD No 63.0

CQA 12k CD No 88.9

ARCT 2k CD No 79.8

ARCT adv 4k CD Yes -

Ubuntu 100k Random Selection No -

implies the model is utilizing the cues for its prediction. This evaluation method
can be universally applied to any multiple-choice dataset.

3.3 Cue Evaluation Methods

The primary technique we use in our analysis is the hypothesis-only method,
which we use as a gold standard for examining the existence of spurious cues.
This method assumes that the model can only access the hypothesis and has to
make its prediction without considering the premise.

To simplify this process and to find a measure that is as close to the hypoth-
esis only method, we employed four simpler methods to make decisions based
solely on spurious statistical cues. These methods include the average value clas-
sifier (Ave), the maximum value classifier (Max), SGD classifier (SGDC), and
logistic regression (LR). These are outlined in detail in Sect. 2.

The main difference between our methods and the hypothesis-only method
lies in the type of cues used. While our method uses word-level cues that are
interpretable, the hypothesis-only method uses more complex cues, which are
not easily interpretable.

3.4 Comparison with Hypothesis-Only Models

Our research aimed to assess and validate our proposed bias detection meth-
ods, chiefly by comparing their performance with hypothesis-only models. The
goal was to demonstrate the effectiveness of our method in identifying spurious
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Table 3. The Pearson Score of D on 12 datasets, between our methods and hypothesis-
only models, fastText and BERT. P is the average Pearson score of BERT and fast-
Text(FT).

Ave Max SGDC LR

FT BERT P FT BERT P FT BERT P FT BERT P

PMI 90.87 96.23 93.55 95.37 79.82 87.59 97.81 91.01 94.41 97.14 96.05 96.6

LMI 65.13 49.18 57.16 34.52 30.71 32.62 69.88 79.06 74.47 77.46 81.21 79.33

AD 84.62 72.49 78.56 90.75 73.02 81.89 93.73 76.24 84.98 97.56 86.91 92.24

WP 86.87 73.09 79.98 92.47 79.87 86.17 94.0 22.59 56.53 61.28 75.55 65.86

RD 96.59 93.82 95.21 98.23 91.04 94.63 94.30 93.98 94.14 94.21 95.59 94.90

Cos 94.84 82.94 88.89 92.73 75.40 84.07 98.08 87.86 92.97 87.38 78.44 82.91

Freq 68.00 50.02 59.01 34.45 30.67 32.56 64.08 67.11 65.60 74.58 88.64 81.61

CP 93.09 96.61 94.85 95.29 79.80 87.54 97.19 96.16 96.67 97.17 97.34 97.26

statistical cues in multiple-choice datasets, underpinning the contribution we
introduced.

In the context of this experimental comparison, we utilized the Pearson Cor-
relation Coefficient (PCC) to measure the similarity between our method and
the established hypothesis-only models, specifically fastText and BERT. The
analysis encompassed a range of twelve datasets, making use of eight distinct
cue score metrics and four aggregation algorithms.

The outcomes of this analysis, as depicted in Table 3, highlight that the CP
cue score coupled with the logistic regression model achieved high correlations
across all twelve datasets when compared to the gold standard hypothesis-only
models. The PCC scores obtained were 97.17% with fastText and 97.34% with
BERT. These remarkable results led us to conclude that the combination of
CP and logistic regression forms a robust method for evaluating all datasets in
subsequent experiments. The detailed data behind this study is comprehensively
presented in the Appendix.

Given these findings, we are confident in asserting that our CP based app-
roach is a powerful tool in identifying problematic word features within datasets,
through the calculation of a “cueness score” described in Sect. 2. Furthermore,
the coupling of CP and logistic regression offers a compelling measure to deter-
mine the extent to which multiple-choice datasets are affected by information
leakage, a significant contribution to this field of research.

Further, we visualized our findings by plotting D for our CP+LR method and
two hypothesis-only models (fastText and BERT) on 12 datasets in Fig. 1. The
close tracking lines in the plot clearly indicate the strong correlation between
our method and the hypothesis-only models.

Overall, our method effectively identifies and quantifies biases in the datasets,
and the strong correlation with hypothesis-only models demonstrates the validity
and effectiveness of our approach.
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Fig. 1. Deviation scores for three prediction models on all 12 datasets.

3.5 Identifying Problematic Datasets

To better discern problematic datasets, we developed a criterion based on our
experiment findings. According to this criterion, if a model’s D exceeds 10%
on any cue feature, the dataset is deemed problematic. This straightforward
criterion allows for a quick identification of datasets with severe statistical cue
issues.

Table 4. Highest accuracy of our 4 simple classification models on 12 datasets and the
deviations from majority selection.

Datasets Majority Word Cues

(%) Acc.(%) D(%)

ROCStory 50.0 68.68 18.68

COPA 50.0 55.60 5.60

SWAG 25.0 27.23 2.23

SNLI 33.33 62.57 29.24

QNLI 50.0 62.49 12.49

MNLI 33.33 51.37 18.04

RACE 25.0 35.42 10.42

RECLOR 25.0 34.80 9.80

CQA 20.0 23.42 3.42

ARCT 50.0 54.95 4.95

ARCT adv 50.0 50 0.0

Ubuntu 1.0 4.96 3.96

As per this criterion, we identified ROCStories, SNLI, MNLI, QNLI, RACE,
and RECLOR as datasets with considerable statistical cue problems. These find-
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ings are detailed in Table 4, which highlights the selection results using word cue
features on several datasets. For some of these datasets, our methods signifi-
cantly outperform the random selection probability, showcasing the extent of
the statistical cues present. For instance, in the case of the ROCStories dataset,
the highest accuracy achieved with our methods exceeds the random selection
probability by 20.92%, and even higher for the SNLI dataset by 33.59%. This
indicates that the datasets contain substantial spurious statistical cues that the
models can exploit.

In the case of manually intervened datasets without adversarial filtering,
such as ARCT, we found that they contained more spurious statistical cues. For
instance, human adjustments to the ARCT dataset(ARCT adv) have a notable
impact on accuracy (from 54.95% to 50%).

Finally, in Table 4, we report the highest accuracy of our four simple clas-
sification models on the 12 datasets, along with the deviations from majority
selection. Our findings reveal that deviation D can effectively identify problem-
atic datasets. We can thus use D to assess the extent to which a dataset contains
word cues.

In conclusion, our analysis and criteria for problematic datasets can help
researchers identify datasets with substantial statistical cue issues. This critical
insight can improve the development of more robust models that do not rely on
superficial cues.

4 Related Work

Our work is related to and, to some extent, comprises elements in three research
directions: spurious features analysis, bias calculation.

Spurious Features Analysis has been increasingly studied recently. Much
work [17,18,23] has observed that some NLP models can surprisingly get good
results on natural language understanding questions in MCQ form without even
looking at the stems of the questions. Such tests are called “hypothesis-only”
tests in some works. Further, some research [15] discovered that these models
suffer from insensitivity to certain small but semantically significant alterations
in the hypotheses, leading to speculations that the hypothesis-only performance
is due to simple statistical correlations between words in the hypothesis and the
labels. Spurious features can be classified into lexicalized and unlexicalized [1]:
lexicalized features mainly contain indicators of n-gram tokens and cross-ngram
tokens, while unlexicalized features involve word overlap, sentence length, and
BLUE score between the premise and the hypothesis. [10] refined the lexicalized
classification to Negation, Numerical Reasoning, Spelling Error. [8] refined the
word overlap features to Lexical overlap, Subsequence, and Constituent which
also considers the syntactical structure overlap. [15] provided unseen tokens an
extra lexicalized feature.

Bias Calculation is concerned with methods to quantify the severity of
the cues. Some work [2,5,21] attempted to encode the cue feature implicitly by
hypothesis-only training or by extracting features associated with a certain label
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from the embeddings. Other methods compute the bias by statistical metrics.
For example, [22] used the probability of seeing a word conditioned on a specific
label to rank the words by their biasness. LMI [16] was also used to evaluate
cues and re-weight in some models. However, these works did not give the reason
to use these metrics, one way or the other. Separately, [13] gave a test data
augmentation method, without assessing the degree of bias in those datasets.

5 Conclusion and Future Work

We have addressed the critical issue of statistical biases present in natural lan-
guage understanding and reasoning datasets. We have proposed a lightweight
framework that automatically identifies potential biases in multiple-choice NLU-
related datasets and assesses the robustness of models designed for these
datasets. Our experimental results have demonstrated the effectiveness of this
framework in detecting dataset biases and evaluating model performance.

As future work, we plan to further investigate the nature of biases in NLU
datasets and explore more sophisticated techniques to detect and mitigate these
biases. Additionally, we aim to extend our framework to other types of NLU
tasks beyond multiple-choice settings. By continuing to refine our understanding
of dataset biases and their impact on model performance, we hope to contribute
to the development of more robust, accurate, and reliable NLU models that can
better generalize to real-world applications.
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