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Abstract. In this article, we consider the problem of semi-supervised
data stream classification. The main difficulties of data stream semi-
supervised classification include how to jointly utilize labeled and unla-
beled samples to adress concept drift detection and how to use unlabeled
to update trained classifier. Existing algorithms like the CPSSDS method
constantly retrain a new classifier when concept drift is detected, it is
very consuming and wasteful. In this paper, the algorithm of data stream
semi-supervised classification with recurring concept drift named as
CPSSDS-R is proposed. First, the labeled samples in the first data block
are used to initialize a classifier, which is added into a pool and actived for
classification. While a new data block arrives, concept drift is detected by
computing conformal prediction results. If no concept drift is detected,
the pseudo-labeled samples in the previous data block are added with
the labeled samples in the current data block to incrementally train the
active classifier. If a new concept is detected, a new classifier is trained
on the labeled samples of the current data block and added into the pool
and actived for classification, else if a recurring concept is detected, the
pseudo-labeled samples and labeled samples in the current data block are
used to incrementally update the classifier corresponding to the recurring
concept in the pool and actived for classification. The proposed algo-
rithm is tested on multiple synthetic and real datasets, and its cumula-
tive accuracy and block accuracy at different labeling ratios demonstrate
the effectiveness of the proposed algorithm. The code for the proposed
algorithm is available on https://gitee.com/ymw12345/cpssds-r.
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1 Introduction

With the development of technology, a large amount of data are generated in
form of data stream from real computing devices [1]. For example, applications
like social networks, network intrusion detection, and weather forecasts [2]. More
seriously, the number of labeled data is limited in many cases, the use of machine
learning methods to effectively handle semi-supervised data stream classification
is very challenging.

In CPSSDS [3], conformance prediction is used to calculate the confidence of
unlabeled samples in adjacent data blocks and used for concept drift detection. If
concept drift occurs, the existing model is eliminated, and a new model is trained
on the current data block. One of the main advantages of this paper is that it
uses conformal prediction to both concept drift detection and self-labeled data
selection for updating the trained modal. However, when a concept reappears, a
new model needs to be retrained, and no historical model cannot be reused [4],
which affects the classification accuracy of CPSSDS.

In response to the above problem, this paper proposes a semi-supervised
classification algorithm called CPSSDS-R based on CPSSDS [3]. The proposed
algorithm maintains a classifier pool, which stores classifiers trained using dif-
ferent concept data. It detects whether a concept drift has occurred between the
current data block and the previous data block. If so, the conformance prediction
output of the current data block is compared with the conformance prediction
outputs of the component classifiers in the classifier pool to detect reoccurring
concept. If detected, the component classifiers corresponding to the reoccurring
concept is updated and actived for classification, otherwise, initialize a new clas-
sifier on the labeled data of the current data block for classification and add it
into the pool. The main innovations of this paper are as follows:

1) Combining the idea of ensemble learning, maintaining a classifier pool that
retains classifiers trained with different concept data, thus solving the prob-
lem of CPSSDS’s inability to improve classification accuracy using historical
model.

2) Proposing a method for detecting reoccurring concept based on conformance
prediction. By comparing the conformal Prediction prediction outputs of the
component classifiers in the classifier pool with the conformal Prediction pre-
diction output of the current data block, recurring concept drift can be effec-
tively detected.

2 Related Work

In this section, we first introduce algorithms related to concept drift detection
and then discuss related work on semi-supervised data stream classification.

Concept drift detection algorithms identify change points or change time
intervals by quantifying statistical measures of change [5]. Based on the test
statistics they use, they can be roughly divided into two categories: methods
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based on classifier accuracy and methods based on data distribution. In accuracy-
based drift detection methods [6], changes in performance are detected through
statistical tests. The second category of detection algorithms quantifies the dis-
similarity between previous and current data distributions [7]. The disadvan-
tage of accuracy-based drift detection methods is that concept drift can only
be detected when the classifier’s performance declines. This article proposes a
distribution-based concept drift detection method that utilizes conformed pre-
diction output of unlabeled data. Recurring concepts can be detected.

Wen et al. first proposed a review on semi-supervised data stream clas-
sification algorithms [8]. Next, we will introduce some of the more classical
semi-supervised data stream classification algorithms. In semi-supervised clas-
sification algorithms for data streams, SmSCluster [9] and ReaSC [10] adopt
a semi-supervised approach to construct a collection of classifiers for classifi-
cation, discarding the worst-performing models from both the old and newly
trained models. Going further, SPASC [11] uses the EM algorithm to update
classifiers based on labeled data in data blocks and performs sequential classifi-
cation on instances in the block through a dynamic weighting adjustment mech-
anism. Addressing the limitations of SPASC, Liu et al. [12] proposed SCBELS,
which uses BIRCH ensembles and local structure mapping. [13] maintains a set
of clusters as learning models to capture the distribution of data streams and
uses KNN for classification of data streams. Each cluster is assigned a weight
that dynamically changes based on real-time classification accuracy. Another
algorithm similar to SSE-PBS [14] is a high-confidence-based unlabeled sample
selection strategy, which can effectively mine and utilize information from unla-
beled samples and implicitly adapt to concept drift. Zheng et al. [15] proposed
the ESCR algorithm, which calculates the Jensen-Shanon divergence between
two distributions, detects significant changes in classifier confidence, and detects
repeated concept drift. Khezri et al. [16] proposed the STDS algorithm based
on a self-training algorithm, which uses the Kullback-Leibler divergence to mea-
sure the distribution difference between consecutive blocks and detect concept
drift. Tanha et al. [3] proposed CPSSDS, which uses incremental classifiers as
base learners and a self-training framework to augment labeled samples, thereby
addressing the scarcity of labeled samples.

3 Proposed Algorithm

This section introduces the algorithm framework of CPSSDS-R, and then pro-
vides a more detailed description of the proposed method.

3.1 CPSSDS-R

Like CPSSDS, the CPSSDS-R algorithm is also a new semi-supervised self-
training [17] data stream classification framework. In a semi-supervised data
stream environment, only a small portion of samples in the data chunk may be
labeled, and a data stream is represented as D1, D2, D3, ..., D∞. Each data
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Fig. 1. The framework of CPSSDS-R algorithm

block consists of labeled samples and unlabeled samples, and the data block is
divided into a training set (80%) and a test set (20%), where the labeled sam-
ples are further divided into a labeled sample set L (70%) and a validation set C
(30%). The CPSSDS-R algorithm framework is shown in Fig. 1, and its techni-
cal details will be provided in the following sections. Table 1 provides commonly
used symbols.

The pseudocodes for the CPSSDS-R algorithm are shown in Algorithm 1. The
algorithm uses an incremental Hoeffding tree as base classifier. The steps of the
algorithm are as follows: lines 1–2 initialize the model and classifier pool. Lines 6–
7 perform inductive conformance prediction on the unlabeled samples of adjacent
data blocks, with the method shown in the Algorithm 2. Line 8 indicates that
concept drift detection is performed as shown in Algorithm 3. Line 9–10 indicates
that if concept drift has occurred, Then Algorithm 4 is used for recurring concept
drift detection. Lines 12–16 indicate that if a reoccurring concept is detected, the
component classifier with highest similarity to the current data block concept
is selected and incrementally updated. Lines 18–22 indicate that if no recurring
concept is detected, a new classifier is created using the labeled samples from
the current data block and added into the classifier pool. Lines 24–25 indicate
that if the test value is greater than or equal to 0.05, the Algorithm 5 is used to
select a pseudo-labeled sample set with high information gain and add it to the
labeled sample set of the current data block. Line 26 indicates that the model is
being updated incrementally.

3.2 Inductive Conformal Prediction

Inductive Conformal Prediction (ICP) proposed in CPSSDS [3] is often used as
a framework to determine the set of prediction labels for the relevant confidence
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Table 1. Symbols Table

Variables Descriptions

Dt The tth data chunk

Lt Labeled set of the tth chunk

Ct Calibration set of the tth chunk

Ut Unlabeled set of the tth chunk

A Non-conformity measure

Ht Trained model on the tth chunk

M Classifier pool

Y class set

ε Significance level

pt p-values of Ut

pi the p-value of the ith classifier in the M

py
t The p-value of the sample in the tth data block with predicted category y

py
t,xi

p-values of pair (xi, y) in the tth chunk

Su Confidence level for predicted label of sample u

αy
xi

Non-conformity value of pair (xi, y)

I Informative samples set

values of test samples. The core components of ICP are the inconsistency func-
tion and p-values. The inconsistency function measures the degree of consistency
of each (x, y) pair relative to other samples. The latter value measures the pro-
portion of training samples that are different from the class y for a new sample.
Next, we will introduce the relevant steps of ICP. The Algorithm 2 presents its
pseudocode.

1) Using the labeled sample set L in the data chunk to train an incremental
Hoeffding Tree classifier;

2) Calculate the inconsistency value αy
xc

of the calibration set C. The calculation
is shown in the Eq. (1),

αy
xi

= 1 − 1 + g(y)

K +
∑K

j=1 g (yj)
(1)

Where g(y) is the number of samples belonging to the y class, which are in
the same cotyledon as xi, and K is the number of samples for class y.;

3) Calculate the inconsistency value αy
xi

of each sample in the unlabeled sample
set one by one, and then compare it with the inconsistency value of the
calibration set. Calculate p-values using the Eq. (2),

py
xi

=

∣
∣
{
c = 1, . . . , n | αy

xc
≥ αy

xi

}∣
∣

n
(2)

Where n is the number of in the calibration set, and the superscript y repre-
sents the p-value of sample xi as class y.

4) Select the unlabeled samples with p-value greater than or equal to the signif-
icance level parameter ε and label them with pseudo labels.
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Algorithm 1: CPSSDS-R
Input: D = {D1, D2, · · · , Dt, · · · }, significance level ε,Y

1 Initialize the classifier H1 based in L1, M = ∅
2 M ← M ∪ H1

3 t ← 2
4 while data chunk Dt is available do
5 pt−1 ← ICP (Ht−1, Ct−1, U t−1)
6 pt ← ICP (Ht−1, Ct−1, U t)
7 drift ←− Drift Detection(pt−1, pt, Y )
8 if drift then
9 recurring concept = Recurring Detection(M, U t, Y )

10 if recurring concept then
11 I = select information sample(U t)
12 Lt ← Lt ∪ I

13 H
′ ← argmaxHi∈M (pi, pt)

14 H
′ ← incremental train(H

′
, Lt)

15 H
′

actived for classification

16 else
17 Initialize Ht based on Lt

18 if len(M) == max pool size then
19 remove the earliest classifier in M
20 M ← M ∪ Ht

21 Ht actived for classification

22 else
23 I = select information sample(U t−1)
24 Lt ← Lt ∪ I
25 Ht ← incremental train(Ht−1, Lt)

26 t ← t + 1

3.3 Concept Drift Detection

Concept drift detection consists of two steps. The first step is to detect whether
there is a concept drift between the current data block and the previous concept
drift. The second step is to detect whether the current data block is a recurring
concept.

The Algorithm 3 presents the process of concept drift detection. Line 4 rep-
resents using the KS (Kolmogorov Smirnov) test for each class y. Lines 5–6
represents calculating the p-value distribution of the adjacent unlabeled sample
sets of two data blocks, then accumulating them. Lines 7–8 indicate that concept
drift is detected if R/|Y | is less than 0.05.

The pseudocode for recurring concept drift detection is presented in the Algo-
rithm 4. Line 3 computes the p-value of each unlabeled sample in U i to each
class label for the classifier Hi and the calibration set Ci, while Line 4 computes
the p-value of each unlabeled sample in U t to each class label for the classifier
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Algorithm 2: ICP

Input: H, C, U
Output: p-values

1 p values = ∅
2 C = {Z1, Z2 · · · Zn} = {(x1, y1), (x2, y2), · · · (xn, yn)}
3 foreach xi ∈ U do
4 foreach class y ∈ Y do
5 Ni = (xi, y)

6 αy
xi

= 1 − 1+g(y)

K+
∑K

j=1 g(yj)

7 foreach xc ∈ C do

8 αy
xc

= 1 − 1+g(y)

K+
∑K

j=1 g(yj)

9 py
xi

=

∣
∣
∣
{

c=1,...,n|αy
xc

≥αy
xi

}∣
∣
∣

n

10 return p values

Algorithm 3: Drift Detection

Input: pt−1, pt, Y
Output: ks

1 boolean drift = false
2 R = 0
3 foreach y ∈ Y do
4 pV al ← KStest(py

t−1, p
y
t )

5 R ← R + pV al

6 if (R/|Y | < 0.05) then
7 drift = true

8 return drift

Hi and the calibration set Ci. Lines 5–7 represent that after all component clas-
sifiers are computed, the index and mas ks value of the component classifier
that is most similar to the concept of the current data block are obtained. Lines
8–9 represent that if the mas ks value is greater than 0.1, the index value is
returned, indicating the detection of a recurring concept.

3.4 Information Sample Selection Strategy

The key step in the self-training framework is the information sample selection
step, where the most reliable unlabeled samples are chosen to improve the gener-
alization ability of the classifier. The pseudocode for selecting samples is shown
in Algorithm 5. For each sample in the unlabeled sample set, line 2 represents
calculating the largest p-value for all class labels. Line 3 represents calculating
the confidence of the sample belonging to class y. Lines 4–5 represent that if
the confidence is greater than the significance level, the sample is added to the
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Algorithm 4: Recurring Detection

Input: M , U t, Y
Output: classifier index

1 index = 0, max ks = 0

2 foreach Hi ∈ M do
3 pi ← ICP (Hi, Ci, U i)

4 pt ← ICP (Hi, Ci, U t)
5 ks ← ks test(pi, pt, Y )
6 if max ks < ks then
7 index = i
8 max ks = ks

9 if mas ks > 0.1 then
10 return index

Algorithm 5: select information sample

Input: U
Output: I

1 foreach xu ∈ U do
2 yu = argmaxy

{
py

t,xu

}

3 Su = pyu
t,xu

4 if Su ≥ ε then
5 I = I ∪ xu

6 return I

informative sample set. Finally, after all unlabeled samples are calculated, the
informative sample set is return.

4 Experiments

4.1 Datasets

To verify the performance of the algorithm, we used 3 real and 6 synthetic
datasets [18]. All synthetic datasets are class balanced. The detailed information
of these 9 datasets is shown in Table 2.

4.2 Experimental Setup

We use a block-based model to evaluate the proposed framework, where a fixed
portion of instances is selected as labeled at the beginning of each block’s train-
ing set, set to 10% in the experiments. The experiments are conducted under the
following parameter settings: for CPSSDS-R, the significance level for adaptive
predictions is tested and adjusted for each dataset. The parameters for compar-
ing algorithms are fixed and use the default values from the original paper. All
experiments in the paper are the average results of 10 runs.
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Table 2. Properties of the Datasets

datasets Attributes Instances Classes Chunk Size

Agrawal 9 130000 2 5000

RandomRBF 10 300000 4 5000

Stagger 3 250000 2 5000

FG2C2D 2 200000 2 5000

GEAR2C2D 2 200000 2 5000

MG2C2D 2 200000 2 5000

Electricity 8 45312 2 5000

SLDD 48 58509 11 5000

Shuttle 9 845228 10 4000

4.3 Algorithm Accumulative Accuracy and Result Analysis

In this section, the accumulative accuracy of CPSSDS-R algorithm compared
to CPSSDS algorithm on 9 datasets with different labeled ratio was analyzed.
The average results of ten runs are shown in Table 3, and paired t-tests with
a 95% confidence level are performed on the results. In order to observe the
performance of the proposed algorithm more intuitively, the Run chart of the
accumulative accuracy of the algorithm on each dataset versus the number of
data chunks is shown in Fig. 2.

Table 3. Accuracy comparison for CPSSDS and CPSSDS R on the experimental
datasets with a 10% labeling ratio.

datasets CPSSDS CPSSDS-R

Agrawal 53.01 55.24

RandomRBF 57.79 58.98

Stagger 91.75 97.28

FG2C2D 88.94 91.14

GEAR2C2D 96.07 96.79

MG2C2D 91.37 92.17

Electricity 65.16 65.41

SLDD 46.45 49.51

Shuttle 90.51 92.49

The cumulative accuracy comparison of datasets with a labeling rate of 10%
is shown in Table 3. It can be seen that, on all datasets, the cumulative accuracy
of the CPSSDS-R algorithm is significantly better than that of the CPSSDS
algorithm. Figure 2 shows the cumulative accuracy comparison of algorithms for
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Fig. 2. Accuracy comparison on the experimental datasets with 10% labeled each

each dataset with a labeling rate of 10%. From the figure, it can be observed that,
on the synthetic datasets, the cumulative accuracy of the proposed algorithm
is consistently higher than that of the CPSSDS algorithm. On the real-world
datasets, however, due to the unknown location and type of concept drift, the
proposed algorithm has slightly lower cumulative accuracy than the CPSSDS
algorithm in the early stages. However, as the number of data blocks increases,
the cumulative accuracy of CPSSDS-R gradually surpasses that of the CPSSDS
algorithm, which is more pronounced in the Shuttle dataset.

In Tables 4, the CPSSDS-R algorithm outperforms other algorithms in clas-
sification performance on most datasets, indicating that detecting recurring con-
cept drift through conformal prediction can more effectively address the problem
of continuous model initialization, reduce the cold start problem when recurring
concepts, and achieve better classification performance on different datasets. But
on the GEAR2C2D dataset, the accuracy of the SCBELS algorithm is higher
because the component classifier of the SCBELS algorithm is an integrated clas-
sifier, which performs better on this dataset. In contrast, the CPSSDS-R algo-
rithm has a slightly lower accuracy than the SCBELS algorithm due to its ability
to detect recurrence concepts in a timely manner.
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Table 4. Accuracy comparison with other semi-supervised classification algorithms on
the experimental datasets with a 10% labeled each

datasets SPASC SCBELS CPSSDS-R

Agrawal 49.89 51.81 55.24

RandomRBF 55.11 55.39 58.98

Stagger 80.89 78.38 97.28

FG2C2D 79.98 88.11 91.14

GEAR2C2D 94.45 97.35 96.79

MG2C2D 55.27 84.86 92.17

Electricity 53.56 58.96 65.41

SLDD 18.16 32.95 49.51

Shuttle 91.16 88.56 92.49

5 Conclusions

In this paper, we propose the semi-supervised data stream classification algo-
rithm CPSSDS-R. Firstly, the Hoeffding tree model is trained using labeled sam-
ple sets in data chunk, and on the basis of the self training framework, conformal
prediction is used to label unlabeled samples. Samples with high information
content are selected to expand the labeled sample set. Secondly, by maintaining
a classifier pool and calculating the KS statistical values of the current data
chunk and component classifiers in the classifier pool, the recurrent concept can
be detected, and the occurrence of recurrent drift detected before the classi-
fier can be updated. The appropriate component classifier can be selected in a
timely manner to adapt to the recurrence concept drift. Finally, the algorithm
is validated on multiple synthetic and real datasets for its effectiveness.

Future work include: on the one hand, the classifier trained by incremental
Hoeffding tree is always updated incrementally, which may lead to overfitting.
It should consider designing a reasonable pruning strategy based on the charac-
teristics of semi-supervised data stream to reuse trained model more effectively.
On the other hand, based on conformal prediction, the algorithm selects pseudo
labeled samples with high confidence to expand the labeled sample set. Generally,
samples far away from the Decision boundary are used to update the classifier.
Failure to take into account the global distribution may lead to a decline in the
performance of classifier.
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