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Abstract. Drones have been widely used in many application scenar-
ios, such as logistics and on-demand instant delivery, surveillance, traffic
monitoring, firefighting, photography, and recreation. On the other hand,
there is a growing level of misemployment and malicious utilization of
drones being reported on a local and global scale. Thus, it is essential
to employ security measures to reduce these risks. Drone detection is a
crucial initial step in several tasks such as identifying, locating, track-
ing, and intercepting malicious drones. This paper reviews related work
for drone detection and classification based on deep neural networks.
Moreover, it presents a case study to compare the impact of utilizing
magnitude and phase spectra as input to the classifier. The results indi-
cate that prediction performance is better when the magnitude spectrum
is used. However, the phase spectrum can be more resilient to errors due
to signal attenuation and changes in the surrounding conditions.

Keywords: Border security + Drone detection - Radio-frequency
signals + FFT spectrum - Deep learning

1 Introduction

Unmanned Aerial Vehicles (UAV) or pilotless or uncrewed aircraft, commonly
known as drones, were once considered a restricted technology that only official
authorities, such as the military and government, could use. Currently, UAVs are
also being used at a growing scale in commercial and personal services, e.g. to
distribute goods and services in different industries. There are various potential
use cases for drones, including, but not limited to, logistics, monitoring traffic,
monitoring and fertilizing crop fields, building safety inspection, surveillance and
border control, photography, and recreational services [12]. Despite the variety
of beneficial applications of drones, their misuse threatens national and interna-
tional security and public safety. There is a growing amount of reported incidents
on local and global scales. For instance, Saudi Arabia has cut oil and gas pro-
duction due to drone attacks on two major oil facilities run by the state-owned
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company, Aramco, in 2019 [BBC News!]. In the UK, a serious incident occurred
in London between the 19th and 21st of December 2018, when Gatwick Airport
was forced to shut down due to a drone strike. Around 1000 flights were either
diverted or canceled, affecting an estimated number of 140,000 passengers [The
telegraph?].

Drone detection is crucial for border security and public safety. It is an impor-
tant step for identifying, locating, tracking, altering, and intercepting unautho-
rized drones. Different approaches have been proposed for drone detection based
on various types of sensors used: (1) Radar-based, (2) Optical or video-based,
(3) Radio Frequency (RF) based, and (4) Acoustic-based sensors. Radar-based
detection systems have a fast-tracking mechanism and 360-degree coverage; how-
ever, they fail to detect small UAV objects [18,19]. In the same manner, video-
based detection systems are unable to detect drones in long-range scenarios and
foggy conditions [6]. Moreover, acoustic-based techniques are affected by noisy
environments and have a short range of detection. Detecting drones using radio
frequency, on the other hand, is not affected by the size of the UAV, its distance,
foggy conditions, or noisy environments. In addition, it is considered a relatively
reliable and low-cost solution. RF fingerprinting techniques depend on the par-
ticular characteristics of the radio frequency waveform emitted from the drone
and/or its controllers. Experiments have shown that the majority of commercial
UAVs have distinct RF signatures as a result of the electronics design, modu-
lation techniques, and body vibration. Consequently, RF fingerprints obtained
from the UAV or its remote controller signals can be used to identify and classify
UAVs and their activities [8].

Over the past few years, deep learning (DL), a sub-field of machine learning,
has gained popularity and has been a driving force behind several recent inno-
vations. In comparison to other paradigms, deep learning techniques are widely
recognized as being one of the most efficient and effective end-to-end modeling
techniques that embody feature analysis and extraction from raw data, relax-
ing human experts from the tedious process of feature engineering. Over time,
deep learning has been able to solve increasingly complex applications in natural
language processing and computer vision with high accuracy [5].

The aim of this paper is to first present a review of work related to deep
learning for RF-based drone detection and classification. Additionally, it provides
a case study by extending the work done in [2] to compare the performance of a
deep neural network model with the magnitude and phase spectra of RF signals.
The RF signals are transformed using the Fast Fourier Transform (FFT) then
the magnitude and phase spectra are computed and normalized. After that, two
sets of experiments are conducted using neural networks of multiple layers, and
the results are analyzed using various types of features of segmented signals in
order to: (i) detect drone presence, and (ii) detect the drone and recognize its
type.

The remainder of this paper is arranged as follows. Section 2 reviews work
related to drone detection systems using Radio Frequency and deep learning
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techniques. Section 3 describes a case study including the experimental setup
and the methodology followed as well as a description of various conducted
experiments and analysis of the results. Finally, Sect. 4 concludes the paper and
highlights recommendations some potential issues for future work.

2 Background

A drone is a form of aircraft that does not have a human pilot on board. Its
main parts include drone body, remote control device, and energy device. It can
be remotely or autonomously controlled. It has become a widely-used technol-
ogy due to the significant reduction in costs and sizes. It has several potential
applications, such as express shipping and package delivery, aerial photography
for journalism and film, weather forecasting, crop spraying, entertainment, etc.
However, the misuse of drone technology can have major impacts on public
safety and national security. They can threaten flight safety, engage in criminal
acts, and invade personal privacy as they are supplemented with high-quality
cameras [10,17]. This includes, but is not limited to, offensive reconnaissance
and monitoring of individuals.
Drones can be classified into the following main categories:

— Fixed-Wing Systems: A term used specifically in the aviation industry to
describe aircraft that use fixed rigid wings to produce lift in conjunction
with forwarding airspeed. Yaacoub et al. describe fixed-wing systems as fol-
lows: “They are based on the Vertical Take-Off and Landing (VTOL) prin-
ciple” [23]. Traditional airplanes, surface-attached kites, and various kinds
of gliders, such as hang gliders or para-gliders, are examples of this type of
aircraft [7,21]

— Multi-Rotor Systems: Airplanes that produce lift using rotary wings. A tra-
ditional helicopter is a common example of a rotorcraft, which can have one
or many rotors. Multiple small rotors, which are required for their stability,
are often fitted with drones using rotary systems [7,21]. DJI Phantom and
Parrot Bebop are considered commercial multi-rotor drones.

— Hybrid-Wing Drones: These types of drones have been developed with fixed
or rotary wings to reach the intended location faster and hover over the air
using their rotor wings [23]. They can cover a maximum of 150km in a single
plane and are easy to control.

— Ornithopter Drones: This category includes unmanned aircraft that fly by
imitating insect or bird wing motions (i.e. flapping their wings). The major-
ity of these ornithopters are scaled in relation to the birds or insects they
represent [7,21]. The flapping wing mechanism converts the motor’s rotary
motion into the ornithopter’s reciprocating motion, allowing it to provide
the necessary lift and thrust to travel steadily [11]. Delfly explorer and the
micro-mechanical flying insect are two examples of ornithopter drones.

The existence of various types of drones with a variety of characteristics
makes their detection and the design of anti-drone systems a daunting task.
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Al-Sa’d et al. [2] developed a drone detection mechanism. They captured a
large number of drone’s RF signals and created a dataset called DroneRF. Then,
the RF signals have been transformed using FFT magnitude for different fre-
quency segments and fed into three separate Deep Neural Networks (DNNs) to
detect drones and recognize their types and operational states. The overall accu-
racy of the designed system decreased when the number of classes was increased.
The classification accuracy reached 99.7%, 84.5%, and 46.8% for binary, four-
class, and ten-class classification problems, respectively.

Al-Emad and Al-Senaid [1] have also utilized the same dataset DroneRF and
proposed a drone detection system using a Convolutional Neural Network (CNN)
instead of DNN. The results confirmed that drone detection mode identification
using CNN outperformed the drone detection solutions performed using DNN.
Similarly, Allahham et al. [4] applied CNN for the DroneRF dataset to develop a
drone detection, identification, and classification approach. Their analysis shows
that Drone and Background activity spectra are significantly distinguishable.
However, the RF spectra of different types of drones as well as different operation
modes are either identical or overlapped. For that reason, they channelized the
spectrum into multiple channels and considered each one as a separate input
into the classifier. The results showed perfect drone detection but the accuracy is
reduced to 94.6% and 87.4% for identifying drone types and states, respectively.

Nguyen et al. [15] developed a MATTHAN algorithm that detects drone’s
body movements, namely body shifting and body vibration. The algorithm ana-
lyzes the radio frequencies emitted from the communication between the drone
and its remote controller. The algorithm gathers evidence from multiple sources
(e.g. moving object detection, body shifting patterns, body vibration). Then,
the algorithm combines these sources of evidence to form a binary classifier. The
MATTHAN algorithm is evaluated across seven different drones and three dif-
ferent environments. The results showed that the more time the drone stays in
the coverage area, the more accurate the results are. Furthermore, the detection
accuracy increased when relying on several sources of evidence. In addition, the
findings revealed that when the distances between the drone and the anti-drone
system increased, the detection percentage decreased. To illustrate, when the
drone was 10m away from the detection system, the accuracy reached 96.5%
but when the distance increased, the detection accuracy reduced to 89.4%

Nguyen et al. [14] examined a drone detection system that is developed to
autonomously detect and characterize drones via RF signals. They combined two
techniques: Passive (i.e. Radio Frequency) and Active (i.e. Radar), to identify the
presence of potential invading drones. The proposed system depends mainly on
three characteristics: the drone’s rotating propellers, the drone’s communication,
and the drone’s body vibration. As for the rotating propellers, the detection
system uses a WiFi receiver (e.g. Alfa WiFi Network Adapter) and analyzes
the significance of the signal reflected from its propellers. Regarding the drone’s
communication, it is noticed that the communication link between the wireless
mobile devices and their connected access points is reaching 10 times per second
whereas drones and their controllers reach 30 cycles per second. This is because
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of the importance of automatically changing the drone status. The third feature
is the drone’s body vibration in which the receiver monitors any modifications
in the reflected signal intensity generated by the vibration of the drone body.
The distance between the drone and the receiver can be measured using either
phase variations or Received Signal Strength (RSS).

Xiao and Zhange [22] worked on drone detection and classification based
on RF signal buried in ambient noise (e.g., WiFi signal). Their classification
technique focused on the RF signature extracted from the down-link commu-
nication between the drone and its controller rather than the up-link commu-
nication. The RF signature consists of cyclostationarity features (i.e. a signal
having statistical characteristics that differ cyclically over time), kurtosis (i.e.
monitoring tailedness of a Gaussian scattered signal and the impact of central-
limit such as conditions), and spectrum factors. The created RF signature is fed
into two machine-learning classifiers: Support Vector Machine (SVM) and K-
Nearest Neighbor (KNN). Different Signal-to-Noise Ratios (SNRs) and feature
selection methods were considered while testing the drone signals. The testing
results showed that the KNN classifier outperformed SVM.

AirID dataset was developed by Mohanti at Genesys Lab at the Northeastern
University. It includes raw Interleaved Quadrature (IQ) samples taken from over-
the-air transmissions of four USRP B200mini radios, each of which was mounted
as a transmitter on a DJI M100 UAV and transmitted with a different IQ imbal-
ance. Every recording in this dataset is made up of two files: a metadata file and
a dataset file. The metadata file holds information about the dataset while the
dataset file is a binary file containing digital samples. The metadata and data
are in compliance with the Signal Metadata Format (SigMF) [13].

DroneRC is another RF-based dataset generated and utilized in some other
works for drone detection and classification. For instance, Ezuma et al. [9] uti-
lized the DroneRC dataset to develop a micro-UAV detection and classification
system using RF fingerprints of signals emitted from the UAV remote controllers
(RCs) and captured through an antenna and a high-frequency oscilloscope. The
utilized dataset contained 100 RF signals collected from each of 14 different types
of micro-UAV controllers. The duration of each signal was 0.25 ms and was rep-
resented by a vector of 5 million samples. The dataset was fed into wavelet anal-
ysis to reduce possible bias. Then, several machine learning classifiers have been
applied, including SVM, KNN, and neural network (NN). Using KNN classifi-
cation, all of the micro-UAVs were correctly identified, with an overall precision
of 96.3%.

Ozturk et al. [16] used the DroneRC dataset to look at the issue of classi-
fying UAVs based on RF fingerprints at low SNRs. They used CNNs trained
on RF time-series images and spectrograms of 15 separate off-the-shelf drone
controller RF signals. They reached a classification accuracy ranging from 92%
to 100% for an SNR range of —10 dB to 30dB, which outperformed current
methods substantially. Similarly, Ezuma et al. [8] investigated drone detection
and classification of UAVs in the presence of Bluetooth and WiF'i interference
signals. At 25dB SNR, the KNN classifier achieved a classification accuracy of
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98.13%. The efficiency of classification was also studied for a group of 17 UAV
controllers at various SNR stages. In [20], the authors focused on drone detec-
tion in the presence of interference. They utilized RSS feature-based detectors to
detect the presence of a drone signal buried in the RF interference and thermal
noise. Using RSS feature requires a high SNR to ensure that the RF signal is
insusceptible to interference with other background signals. The findings showed
that the detection probability changes in a non-monotonic pattern.

3 Case Study

This study implements a drone detection and classification system for border
security intelligence using Radio Frequency Signals and Deep Learning. The aim
is to compare the impact of using the magnitude and phase spectrum of the FFT
on the performance. This section describes how the research was conducted in
details.

3.1 System Overview and Experimental Setup

Figure 1 illustrates the overall drone detection and recognition methodology. The
system is composed of five modules: the drone under analysis, drone remote con-
troller, RF sensing module, RF analyzer, and drone detection and classification
module. The first three modules were conducted by Al-Sa’d et al. [2,3] and the
DroneRF dataset was created. The last two modules are the focus of our research.

Different drones can emit different RF signals, which can then be used by
intelligent systems to detect and identify them. During data collection, three
types of drones were used, namely, DJI Phantom 3, Parrot Bebop, and Parrot
AR Drone. The drone remote controller can also be a cellphone that sends and
receives RF commands to and from the drones under investigation in order
to change the drone’s flight mode. Controlling the drones with a mobile phone
necessitates mobile applications customized to each drone, e.g. “FreeFlight Pro,”
“AR.FreeFlight,” and “DJI Go”. Other applications can be used as well; however,
for this dataset collection, the drone’s official application was utilized.

The drone’s communications with the flight control module were intercepted
by an RF receiver connected to a laptop via a cable, which runs a program that
retrieves, processes, and stores the RF data in a database, named “DroneRF”.
The aim of this module is to capture all unlicensed RF bands used by drones
without making any assumptions about their flight mode. The dataset contains
recordings of RF activities of the three types of drones (AR, Bepop and Phan-
tom) as well as background signals (no drones). There are four operating modes:
on and connected, hovering, flying but no video recording, and flying while
recording video. The total number of segments in the dataset is 227 segments
distributed as follows: 84 segments for Bepop (4 modes), 81 segments for AR
(4 modes), 21 segments for Phantom (one mode) and 41 segments for Back-
ground. Each segment duration is 250 ms and captured using two simultaneous
receivers with a sampling rate 40M sample/s per channel: one for the lower half
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Fig. 1. Illustration of the main modules of the RF-based drone detection and classifi-
cation system

of the frequency band (10M samples) and the other for the upper half of the
frequency band (10M samples). For binary classification, there are two classes:
No drone (82 segments) and Drone (372 segments). For 4-class classification, the
drone class is divided into three other types: Phantom (42 segments), AR (162
segments), and Bepop (168 segments).

Signal analysis is used to discover hidden information in the recorded RF
signals that can be used to improve detection. In this study, we adopted the
Fast Fourier transform (FFT) to analyze the frequency-domain spectrum of the
recorded RF signals. It is an invertible function, i.e. and an approximate form
of the signal can be reconstructed using the inverse FFT (IFFT). FFT provides
a fast method for computing the Discrete Fourier Transform (DFT), which is
widely used in several other signal-processing applications such as remote sens-
ing, communication, speech, and financial time series. It decomposes a signal
into a series of sinusoidal (harmonic) components or vibrations to show how
the signal energy is distributed over a particular range of frequencies (signal
bandwidth).

Mathematically, a signal uniformly-sampled in time or a sequence of N values
{Tn : o, 21,22,...,2Ny_1} is transformed into another sequence of N complex
numbers in frequency domain {Xj : Xo, X1, Xo,..., Xny_1} as follows:

1 —j2rkn
Xk:N Zzne w (1)
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where j = /—1. Alternatively, using Euler formula e/? = cosf + jsinf, the FFT
transform can be rewritten as,

1= 2 2
szﬁgzz:n- [costn—j-sinNkn (2)

FFT of a real-time signal is the sum of complex numbers z; each can be
represented by a real part real(z) and an imaginary part img(z) or a magnitude
part |z| and a phase part Zz. These quantities are mathematically related as
follows:

|z| = /real(2)? + img(z)? (3)
/z=tan"! ;ZZ;EZ (4)

Figure 2 presents a sample of RF signals (segment #1 of the background and
drone activities) as well as their magnitude and phase spectra. The FFT of each
observed segment is calculated two times since the DroneRF dataset captures the
entire 2.4 GHz bandwidth using two receivers (i.e. the first receiver captures the
lower half frequency and the second receiver captures the upper half frequency).
After extracting both the magnitude and phase spectra, they are used as the
inputs to a deep neural network in three sets of experiments. For comparison
purpose, each network is composed of three dense layers with Adam optimizer
and ReLU activation for inner layers and sigmoid activation for output layer.
The results are reported for stratified 10-fold cross validation, batch size = 10,
and number of epochs = 200.

3.2 Results and Discussions

For binary classification experiments, the performance results of three DNN
models are presented in the confusion matrices shown in Fig. 3 as well as accu-
racy, recall, precision, and F1 score. In the first two models, the magnitude
spectrum and phase spectrum are used separately as input to the DNN model
whereas in the third model, they are combined and used as input. The results
show that the magnitude alone has the highest performance.

The binary classification problem is further divided into sub-problems: Back-
ground vs AR, Background vs Bebop, and Background vs Phantom. This decom-
position may help to understand why the signal phase feature performed lower
than the signal magnitude feature. The experimental results also show that the
performance is consistent among all drones when the magnitude spectrum fea-
ture is utilized alone. On the other hand, when phase feature is considered, the
detection system effectively classifies Phantom activities from background activ-
ities with an accuracy of 99.34%. The predictive performances for Bebop and
AR drones are reduced to 79.94% and 66.12% (approx. to 2 decimal places),
respectively.
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Fig. 2. Sample RF signals (segment#10) and its magnitude and phase spectra (1st and
2nd rows for Background signal low and high band channels, 3rd and 4th rows are for
Bepop low and high band channels, 1st column is the time-domain of the original sig-
nals, 2nd column is the magnitude spectrum in dB, 3rd column is the unwrapped phase
spectrum, 4th column is the reconstructed signal in time-domain from the magnitude
only (i.e. zero phase))
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Fig. 3. Overall performance comparison of binary classification for drone detection
(Drone presence vs Background)

The same techniques were also applied to the four-class classification problem
and similar results were obtained which confirms that the magnitude spectrum
based features is more accurate than the phase spectrum based features, as
shown in Fig.4. As a final conclusion, the magnitude spectrum is sufficient to
detect and classify drones. However, the magnitude spectrum is susceptible to
noise and other environmental conditions that can degrade the signal quality
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and hence the models’ performance. Yet, more future work is recommended to
study the impact of various conditions on the system performance.
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Fig. 4. Performance evaluation of four-class classification problem (Background -
Bebop - AR - Phantom)

4 Conclusion

UAVs are becoming more common, posing a threat to public safety and personal
privacy. In order to reduce these threats, it is critical to efficiently identify invad-
ing UAVs. In this research, we used FFT to analyze Radio Frequency emitted
by civilian drones, implemented Deep Learning-based models for drone detec-
tion and classification, compared signal magnitudes and phases of drone and
background activities, and evaluated the effectiveness of the detection system
using several evaluation metrics. The experimental results show that using the
magnitude of the segmented signal has a different predictive performance than
using the phase feature. By using the signal phase based features to solve binary
classification problems, the classification accuracy is 81.894%, which is about
16% lower than when using the signal magnitude based features. For future
research, it is suggested to add new types of drones such as fixed wings and
hybrid wings to the dataset. This work can be also extended by investigating
phase and magnitude features operation mode classification with deteriorated
RF signals.
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