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Abstract. In this study, we introduce PyraBiNet, an innovative hybrid
model optimized for lightweight semantic segmentation tasks. This model
ingeniously merges the merits of Convolutional Neural Networks (CNNs)
and Transformers. We propose a dual-branch structure that strategi-
cally employs the global feature extraction capabilities of the Pyramidal
Vision Transformer (PVT) and the local feature extraction proficiency
of BiSeNet. Specifically, the global feature branch employs a transformer
from PVT to harness high-level patterns from input images, while the
local feature branch utilizes a CNN, inspired by BiSeNet, to extract fine-
grained details. Comprehensive evaluations conducted on the ADE20K
and DOS datasets underscore PyraBiNet’s superior performance com-
pared to the existing state-of-the-art methods. With its effective and
efficient performance, PyraBiNet proves to be an invaluable asset in the
domain of mobile robotics, particularly beneficial for applications such
as sweeping robots. The code source and dataset are open at https://
github.com/zehantan6970/PyraBiNet.

Keywords: Image processing · Semantic Segmentation · Real-time
processing

1 Introduction

Semantic segmentation is a task within the field of computer vision, the goal
of which is to classify each pixel in an image, dividing it into distinct semantic
categories, thereby enabling a deeper understanding of the image. The challenge
of semantic segmentation lies in the precise delineation of object boundaries and
assigning them the correct category labels. This necessitates the model to possess
substantial perceptual capability, allowing it to comprehend the various objects,
colors, textures, and shapes within an image, as well as the relationships among
them. Concurrently, the model must be capable of classifying each pixel within
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the image since the same object may appear in different locations, sizes, and
orientations. With the increasing demand of intelligence, semantic segmentation
has become the basic perception component for applications such as autonomous
driving [6], medical imaging diagnosis [1] and indoor robot [3,15]. To meet real-
time or mobile requirements, researchers have come up with many efficient and
effective models in the past for semantic segmentation. The field of lightweight
semantic segmentation models has experienced significant evolution, character-
ized by shifts in underlying network architectures. These transitions can be seen
from the initial utilization of Convolutional Neural Networks (CNNs) as typified
by Fully Convolutional Networks (FCNs) [21] and extended in BiSeNet series
[40,41] and PIDNet [37]. The focus later moved to transformer-based methods,
exemplified by LeViT [8] and Pyramid Vision Transformer (PVT) [34]. The lat-
est developments showcase hybrid architectures that combine CNNs with Vision
Transformers (ViTs). These include models like the MobileViT series [23,24,33]
and Convolutional Vision Transformer (CVT) [36]. Thus, the development of
lightweight semantic segmentation models has seen a significant transformation,
marked by diverse architectural designs to optimize performance.

By rethinking previous successful lightweight semantic segmentation works
with reference to SegNeXt’s research [9], we found that these works all face the
challenge of how to balance accuracy, parameter scale and inference speed, and
improve the fusion of different features. We argue a successful lightweight seman-
tic segmentation model should have the following characteristics:
(i) Feature Extraction: Robust feature extractors not only capture a global fea-
tures but also discern local detail features. These can acquire features of varying
scales.
(ii) Feature Fusion: A rational approach is needed for the integration of local
detail features and global features.
(iii) Feature Enhancement: Enhancing the diversity and detailed spatial infor-
mation of features is essential. Lightweight models have limited capabilities in
modeling global relationships, leading to insufficient attention to details in seg-
mentation tasks and often unclear edges.
(iv) Network Architecture Design: The optimization of network structure is nec-
essary, ensuring not only the reasonable utilization of global and local detail
features but also control over the number of parameters, while maintaining net-
work inference speed. The key to this network structure is to balance accuracy,
parameter scale, and inference speed, while improving the fusion of different fea-
tures. Given the yearly increase in memory with the widespread use of embedded
systems, the size of the parameter scale should be a limiting factor. However,
keeping the model size small at the cost of relatively high computation, which
also means high latency, is not a sound practice. The parameter volume should
not be blindly reduced. Similarly, the network structure should not simply trade
accuracy for speed, or vice versa.

Considering the analyses above, we reassess the design of lightweight network
architectures for semantic segmentation in this paper. Instead of applying PVT
or BiSeNet independently, we propose a novel hybrid architecture, PyraBiNet,
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which integrates the strengths of both PVT and BiSeNet. The global feature
branch of PyraBiNet, powered by a transformer from PVT, extracts the global
features from the input images. Concurrently, the local feature branch, inspired
by BiSeNet, utilizes a convolutional neural network (CNN) to capture the local
detailed features. Subsequently, these two sets of features are fused to generate
a final feature map that is utilized for semantic segmentation.

Our primary contributions are:

– We present a novel lightweight network architecture, termed PyraBiNet,
which combines the strengths of convolution (inductive bias, translation
invariance, exceptional local detail capture ability, and low computational
complexity) and Transformers (ability to capture long-range dependencies)
in a dual-branch structure optimized for embedded devices, bolstered by an
efficiently parametrized Detail Feature Block that adjusts resolution to align
with the global feature branch while effectively capturing local spatial infor-
mation.

– We introduce the Parallel Dual-Feature CBAM (PDF-CBAM) that concur-
rently applies a Channel Attention Module to the transformer-derived global
features and a Spatial Attention Module to the CNN-derived local features,
resulting in an enhanced final feature map that effectively integrates detailed
spatial information and diversity of features.

– Our experimental results demonstrate that our proposed architecture achieves
state-of-the-art (SOTA) on different benchmarks of ADK20K [46] and our
proprietary DOS dataset1.

2 Related Work

The arena of lightweight semantic segmentation [25,32] has witnessed numerous
advances over recent years. We primarily focus on three major neural network
types in this context: 1) Convolutional Neural Networks (CNNs), 2) Vision trans-
formers (ViTs), and 3) Hybrids of CNNs and ViTs.

2.1 Convolutional Neural Networks (CNNs)

CNN-based models, such as FCNs [21] and MobileNets [12,13,28], have
greatly improved performance by encoding local features, replacing hand-
crafted [17,18,29,39] systems. Techniques like channel shuffle, micro-factorized
convolution, and dynamic operators help enhance information flow and efficiency.
Furthermore, novel methods like DDRNet [26] and BiSeNet [31,40,41] utilize
bilateral connections and multi-path frameworks to blend low-level details and
high-level semantics. PIDNet [37], one of the latest architectures, is composed of
three branches to parse the detailed, context, and boundary information. How-
ever, despite these advancements, CNNs still have limitations like high compu-
tational time and disregard for global information.
1 https://github.com/zehantan6970/DOS_Dataset.

https://github.com/zehantan6970/DOS_Dataset
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2.2 Vision Transformers (ViTs)

Drawing from NLP success, transformers have been employed in computer vision
tasks [11,14,19], yielding impressive results. Models like ViT [5], DeiT [30], T2T-
ViT [44], and Swin Transformer [20] have significantly pushed the boundaries of
image classification performance. To create lightweight ViTs, architectures like
LeViT [8] and PVT [34] fuse standard convolution layers with improved ViT.
PoolFormer [42] replaces the attention module in Transformers with an embar-
rassingly simple spatial pooling operator to conduct only basic token mixing.
Despite these advances, ViTs still face challenges in dealing with visual features
of different scales and are often inefficient in terms of memory usage.

2.3 Hybrids of CNNs and ViTs

To capitalize on the strengths of both CNNs and ViTs, hybrid models like Mobile-
ViTv3 [33], TopFormer [45], LVT [38], and others have been proposed. These
models aim to combine the efficiency of convolution with the global receptive field
of Transformers. Other architectures, such as the CeiT [43] and CVT [36], inte-
grate convolutional and self-attention modules in the same architecture. Twins [2]
builds upon PVT by substituting its absolute position embedding with relative
conditional position embedding and incorporating separable depth-wise convo-
lutions for capturing both local and global image contexts. DFvT [7] opens up
the transformer block and enhance it with convolution, both before and after
self-attention that tightly integrates transformer and convolution. Despite the
efficiency of these hybrid models, they usually come at the cost of performance
accuracy.

3 Approach

In this study, we propose PyraBiNet, a novel dual-branch architecture designed
to address the challenges of Feature Extraction, Fusion, Enhancement, and Net-
work Architecture Design in lightweight semantic segmentation. PyraBiNet inte-
grates the broad-scale feature extraction capability of PVT with the detailed
extraction prowess of BiSeNet. The architecture leverages a transformer from
PVT in the global feature branch and a BiSeNet-inspired CNN in the local fea-
ture branch for comprehensive Feature Extraction. We utilize a Parallel Dual-
Feature Convolutional Block Attention Module for efficient Feature Fusion and
a Detail Feature Block for Feature Enhancement. The design of integrating the
global feature branch and the local feature branch into a dual branch helps opti-
mize the Network Architecture and provides a robust solution for lightweight
semantic segmentation. In this work, the loss function used for training the
model is cross-entropy.

Proposed Method: PyraBiNet is a hybrid model that combines the strengths
of CNNs and transformers. Figure 1 illustrates the architecture of PyraBiNet, in
which the input image is separately processed by the global feature branch and
the local feature branch. In our global feature branch, designed following the
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Fig. 1. The pipeline of the proposed PyraBiNet for semantic segmentation. The global
feature branch (PVT) contains global branch (up); The local feature branch(reference
BiSeNet) contains local branch (down); PyraBiNet contains fusion block and segmen-
tation head.

PVT, the image is processed by a series of self-attention modules. Each of these
self-attention modules focuses on different spatial regions of the input image,
enabling the PVT to learn global features that are invariant to changes in pose
and scale. Following this, the global and local features are fused through a Par-
allel Dual-Feature Convolutional Block Attention Module (PDF-CBAM), and
then separately input into the global feature branch (PVT) and the local fea-
ture branch. Notably, in stage 4, only the global feature branch (PVT) is used to
generate the final feature map for semantic segmentation. Ultimately, we employ
a Semantic FPN [16] as the segmentation head to achieve the final segmenta-
tion outcome. Our local feature branch, referenced from BiSeNet, consists of a
downsampling module and a Detail Feature Block.{

Si (Fg, Fl) = PDF -CBAMi (Attentioni (Fg) ,DFi (Fl)) , i = 1, 2, 3
Si (Fg) = Attentioni (Fg) , i = 4

(1)

where Si represents the i-th stage in the architecture of PyraBiNet. PDF-CBAMi

refers to the i-th Parallel Dual-Feature Convolutional Block Attention Module,
which is designed for feature fusion. Attentioni symbolizes the self-attention
operation implemented at the i-th stage. DFi denotes the detail feature block
deployed at the i-th stage. Fg refers to the global feature map obtained from the
global feature branch, and Fl symbolizes the local feature map derived from the
local feature branch in our architecture.

Detail Feature Block (DF): The overall framework of the proposed DF is pre-
sented in Fig. 2. For each stage, the process begins with a downsampling module
to match the resolution of the PVT branch, followed by the use of a detail fea-
ture extractor to capture local spatial information. As this involves low-level
information, the module requires a substantial channel capacity to encode rich
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Fig. 2. Detail Feature Block (DF) is meticulously constructed to fulfill two main tasks
at each stage: adjusting the resolution to align with the PVT branch, and capturing
local spatial information. ‘i’ represents the corresponding stage. The numbers of Detail
Feature Block is set to 1, 2, 2, corresponding to satege1, stage2, stage3.

spatial detail information. More specifically, wide channels and shallow layers
are used to process spatial details, following the structural design of BiSeNetV2.
Each extractor is composed of ‘n’ blocks, with each block comprising a convolu-
tion, Batch Normalization, and ReLU sequence. Our local feature branch, while
inspired by the design philosophy of BiSeNet, diverges significantly from its pro-
totype. BiSeNet consists of two branches, where its global branch employs CNNs
with large receptive fields for the implementation. In contrast, our model uti-
lizes PVT for global feature extraction. In terms of the local branch, our design
also deviates from BiSeNet in terms of the parameters and quantity of CNN
kernels, as well as the overall structure. Additionally, while BiSeNet does not
have staged architecture and adopts a pyramid-like method without downsam-
pling, our model is organized into stages, with fusion performed at each stage.
Furthermore, the fusion strategy in BiSeNet is achieved by Aggregation Layer
before the final feature map, while our approach incorporates a fusion process
in each stage.

DFi (Fl) = Local_Extractori (DSi (Fl)) , i = 1, 2, 3 (2)

where Local_Extractor signifies the mechanism within our model that facil-
itates the extraction of local features from the input. DS is an acronym for
downsampling in each stage. Fl represents the local features that are extracted
and processed within our architecture.

Parallel Dual-Feature CBAM (PDF-CBAM): The feature fusion mod-
ule, an integral part of semantic segmentation, enhances feature representations.
However, in our ablation studies (Table 3), we discovered that straightforward
strategies such as element-wise summation, multiplication, and concatenation
did not yield satisfactory results when fusing local and global features. Consid-
ering that VIT has strong attention on space but weak attention on channels,
and CNNs, with their local convolution operations, can naturally capture local
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Fig. 3. The architecture of PDF-CBAM. Input the reshaped global feature map
(H*W*C) and local feature map (H*W*C) respectively, and the output is a feature
map (H*W*C) that combines global features and local features.

details and handle channel-wise information well, but handle space information
weak. Notably, the Convolutional Block Attention Module (CBAM) [35] utilizes
a sequential combination of the Channel Attention Module and Spatial Atten-
tion Module, each processing the input feature layer independently. Aiming for
better integration of local detail features with global features and enhancement
of the diversity and detailed spatial information of features, we opted for a par-
allel approach. Our Parallel Dual-Feature CBAM (PDF-CBAM) takes as input
local detail features derived from a Convolutional Neural Network (CNN) and
global features derived from a transformer. The global features are reshaped
into a convolutional feature map (H*W*C), which is then subjected to a Chan-
nel Attention Module. Concurrently, a Spatial Attention Module is applied to the
local feature map (H*W*C). Finally, the outputs from the Channel Attention
Module and Spatial Attention Module are combined via element-wise summation
to produce the final feature map, thereby resolving the issue of lack of informa-
tion screening inherent to simple element-wise summation, multiplication, and
concatenation. The architecture of PDF-CBAM is shown in Fig. 3.

PDF -CBAM = (CA (Fg) ⊗ Fg) ⊕ (SA (Fl) ⊗ Fl) (3)

where CA denotes Channel Attention, a CBAM that focuses on the channel-
wise information of the input features. SA stands for Spatial Attention, another
component of the CBAM, which pays attention to the spatial arrangement of
the features. Fg refers to the global features derived from the transformer in the
PyraBiNet architecture, whereas Fl represents the local features extracted by
the CNN within the same architecture.

Deformable Object Segmentation Dataset for Sweeping Robots (DOS
Dataset): We present a novel dataset, designed specifically to serve as a bench-
mark for semantic segmentation of deformable objects within the context of
obstacle avoidance in indoor robotic sweeping scenarios. DOS dataset comprises
3,056 images, We used the open-source LabelMe [27] annotation toolkit, to man-
ually collect the polygon annotations of deformable objects of four types: faeces,
socks, plastic bag, and rope. DOS dataset has 7687 annotated object instances.
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4 Experiments

PyraBiNet was evaluated on the ADE20K dataset [46] and DOS dataset.
ADE20K is a demanding scene parsing dataset designed to benchmark the per-
formance of semantic segmentation. This dataset comprises 150 highly-detailed
semantic categories and features 20,210 training images, 2,000 validation images,
and 3,352 testing images. DOS dataset comprises 3,056 images, which have been
randomly partitioned into training and validation sets at 8:1 ratio. The train-
ing set contains 6,800 semantic segmentation labels, while the validation set
includes 887 annotated labels. The experiments were performed using an Intel
Core i7-10700 CPU, Nvidia V100 16G GPU, and 16GB memory.

For the quantitative evaluation, we report the performance of baseline meth-
ods and the proposed method by three metrics: mean intersection over union
(mIoU).

Let TP , FP , and FN denote the total number of true positive, false positive,
and false negative pixels, respectively. The Intersection over Union (IoU) is
calculated as follows:

IoUi =
GTi ∩ Predi

GTi ∪ Predi
(4)

mIoU =
1
n

n∑
i=1

IoUi (5)

where GT stands for ground truth, i denotes the semantic categories, and n
symbolizes the total number of classes.

Params refers to the number of parameters in the model. FLOPs stands
for “Floating Point Operations,” and it is used as a measure of computational
complexity or the number of calculations the model needs to perform during
inference. GFLOPs represents for “Giga Floating Point Operations,” equivalent
to one billion FLOPs.

4.1 Semantic Segmentation on ADE20K and DOS

The experiments are carried out on semantic segmentation task. We employ the
proposed PyraBiNet as our backbone architecture. To ensure a uniform evalu-
ation metric, we strictly adhere to the training configurations set by PVT [34],
utilizing a Semantic FPN [16] as our segmentation head. Our PyraBiNet is pre-
trained on the ImageNet dataset [4]. The pre-training steps and parameters of
our model are the same as the PVT. To entail a fair comparison, we keep the
same data augmentation and training settings as the other vision transform-
ers as far as possible. The competitors are all competitive vision transformers,
including ResNet18 [10], PVT [34], BiSeNetv2 [40], PoolFormer [42]. PyraBiNet
achieved state-of-the-art results on the ADE20K and DOS dataset, in Table 1
and Table 2.

As shown in Table 1, with the exception of BiSeNetV2, all models employ
Semantic FPN as their segmentation head. In the nearly equivalent parameter
range of 10M-20M, our model achieves the highest mIoU of 37.7. Remarkably,
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Table 1. Performance comparisons on the test set of ADE20K. For each method, we
report the mean intersection over union (mIoU), Params(M), and GFLOPs.

Method P arams(M) GF LOP s mIoU

ResNet18 [10] 15.5 32.2 32.9
BiSeNetv2 [40] 14.8 12.3 19.5
PoolFormer [42] 15.7 30.7 37.2
PVT-Tiny [34] 17.0 33.2 35.7
Ours 19.4 37.3 37.7

our model outperforms PVT-Tiny by 2.0 points, highlighting the effectiveness
of our proposed dual-branch architecture which fuses local and global features.
The enhanced global feature extraction of ViT supplemented by the local feature
extraction of the CNN increases segmentation precision. Furthermore, compared
to the pure CNN-based dual-branch model, BiSeNetv2, our semantic branch
possesses a global receptive field, resulting in superior segmentation accuracy in
our model. Here, BiSeNetV2 is not pre-trained.

Table 2. Performance comparisons on the test set of DOS. Our model is trained on a
single v100 Gpu with 40k iterations, a batchsize of 4, a learning rate of 1e-4, and an
input image size of 512*512.

Method P arams(M) GF LOP s mIoU

ResNet18 [10] 15.5 31.9 65.2
BiSeNetv2 [40] 14.8 12.0 67.3
PoolFormer [42] 15.7 30.4 71.0
PVT-Tiny [34] 17.0 32.9 71.3
Ours 19.4 37.0 72.8

As illustrated in Table 2, when employing Semantic FPN for semantic seg-
mentation, our model exhibits superior performance on the DOS dataset, achiev-
ing a maximum mIoU of 72.8. This score exceeds that of ResNet18 by 7.6 points
and PVT-Tiny by 1.5 points, thereby further corroborating the efficacy of our
proposed method of combining transformers and CNNs.

4.2 Ablation Study

We carry out ablation studies to validate the effectiveness of the feature
fusion module. We compare our PDF-CBAM with several widely used meth-
ods, such as ‘SUM’: element-wise addition, ‘MUL’: element-wise multiplication,
and ‘Cat+1× 1conv’: concatenation followed by a 1 × 1 convolution. In addition,
‘+Stage4’ refers to the incorporation of our detail module in the fourth stage
of PVT. The results of these experiments can be seen in Table 3. The findings
indicate that our mixed-attention feature fusion strategy outperforms simple
addition, multiplication, or fusion through 1× 1 convolution. This superiority
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Table 3. Different designs of the feature fusion module to fuse the information from
global features and local detail features. Δ denotes mIoU Variation. Ablations were
tested on ADE20K.

Method P arams(M) GF LOP s mIoU Δ

SUM 19.36 37.31 37.2 −0.5
MUL 19.36 37.31 37.0 −0.7
Cat+1× 1conv 19.61 37.79 37.5 −0.2
+Stage4 24.79 38.69 37.3 −0.4
PDF-CBAM 19.38 37.32 37.7 -

can be attributed to the differing levels of global features extracted by trans-
formers and local features extracted by CNNs, where the application of mixed
attention enhances the model’s capability to screen features. Furthermore, we
discovered that introducing the detail module into the fourth stage of PyraBiNet
does not enhance model performance, but instead causes a 0.4 drop in mIoU.
This decline is due to the requirement for the extraction of spatial detail infor-
mation: network depth should be relatively shallow, feature map size large, and
a sufficient number of network channels should be available. In the fourth stage
of our model, the feature map resolution is excessively small, leading to weak-
ened ability to extract detailed information. This reduction in extraction ability
could even introduce noise, resulting in performance degradation.

As shown in Fig. 4, we provide qualitative segmentation results on ADE20K
and DOS datasets. The image on the left is the original image, and the image
on the right is the semantic segmentation result. As can be observed from the
Fig. 4, PyraBiNet demonstrates accurate segmentation of the edges of deformable
objects, primarily attributed to the role played by our Detail Feature Block (DF).
The DF module enhances the fine details of localized regions, thereby being
particularly suited for fine-grained image segmentation tasks. Consequently, this
leads to a more precise segmentation of the edges of deformable objects by
PyraBiNet.

Semantic Segmentation on ADE20K Semantic Segmentation on DOS 

Fig. 4. Qualitative results of semantic segmentation on ADE20K and DOS datasets.
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5 Conclusion

PyraBiNet is a groundbreaking dual-branch architecture adept at navigating
the challenges inherent in lightweight semantic segmentation. By strategically
integrating the global feature extraction capabilities of PVT with the meticulous
local detail extraction of BiSeNet, we realized an efficient feature extraction
process. Additionally, our innovative Parallel Dual-Feature Convolutional Block
Attention Module facilitated optimal feature fusion while the Detail Feature
Block enabled refined feature enhancement. PyraBiNet’s superior performance
compared to the existing state-of-the-art methods. With its effective and efficient
performance, PyraBiNet proves to be an invaluable asset in the domain of mobile
robotics, particularly beneficial for applications such as sweeping robots.
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