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Abstract. Slot filling and intent detection are crucial tasks of Spoken
Language Understanding (SLU). However, most existing joint models
establish shallow connections between intent and slot by sharing param-
eters, which cannot fully utilize their rich interaction information. Mean-
while, the character and word fusion methods used in the Chinese SLU
simply combines the initial information without appropriate guidance,
making it easy to introduce a large amount of noisy information. In
this paper, we propose a deep joint model of Multi-Scale intent-slots
Interaction with Second-Order Gate for Chinese SLU (MSIM-SOG).
The model consists of two main modules: (1) the Multi-Scale intent-slots
Interaction Module (MSIM), which enables cyclic updating the multi-
scale information to achieve deep bi-directional interaction of intent
and slots; (2) the Second-Order Gate Module (SOG), which controls
the propagation of valuable information through the gate with second-
order weights, reduces the noise information of fusion, accelerates model
convergence, and alleviates model overfitting. Experiments on two pub-
lic datasets demonstrate that our model outperforms the baseline and
achieves state-of-the-art performance compared to previous models.

Keywords: Intent Detection · Slot Filling · Multi-Scale intent-slots
Interaction Module (MSIM) · Second-Order Gate (SOG)

1 Introduction

For task-oriented dialogue systems, Spoken Language Understanding (SLU) is a
critical component [17], it includes two subtasks Intent Detection (ID) and Slot
Filling (SF) [4]. SF is a sequence labeling task to obtain the slot information of
the utterance; ID is a classification task to identify the intent of the utterance.
An example of a simple Chinese SLU is shown in Fig. 1.
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Fig. 1. An example of Chinese SLU, where B-SN denotes B-singer name, I-SN denotes
I-singer name and E-SN denotes E-singer name, the blue dashed box denotes word
segmentation and the yellow box denotes character segmentation.

The main challenge in English SLU research is correlating ID and SF effec-
tively. In response, Xu et al. [18] proposed a variable-length attention encoder-
decoder model in 2020, in which SF is guided by intent information and achieves
intent-enhanced association, but it lacks a bi-directional correlation between ID
and SF. Recent research [11,14,16] has demonstrated that ID and SF tasks can
mutually reinforce each other. Accordingly, Li et al. [7] proposed a bi-directional
correlation BiLSTM-CRF model in 2022, updating ID and SF in both directions,
but the deep interaction remains unestablished.

Compared to English SLU, Chinese SLU also faces challenges in segment-
ing Chinese utterances and effectively integrating character information. Unlike
English, Chinese lacks natural word separators, rendering character segmen-
tation techniques unreliable. As shown in Fig. 1, the segmentation of ‘周杰
伦(Jay Chou)’ into ‘周(week)-杰(Jay)-伦(Aron)’ by characters incorrectly pre-
dicts ‘周(week)’ as ‘Datetime date’. However, we expect the model to correctly
segment it into ‘周杰伦(Jay Chou)’ and predict it as the slot label ‘singer name’
by using a suitable Chinese Word Segmentation (CWS) system. To address this,
Teng et al. [15] improved the CWS system using Multi-level Word Adapter
to fuse character and word information, but it lacks bi-directional interaction
between ID and SF and introduces noise and overfitting problems in the fusion
mechanism. This paper proposes a deep joint model of Multi-Scale intent-slots
Interaction with Second-Order Gate (MSIM-SOG) to better fuse character and
word information and establish a deep bi-directional interaction between two
tasks. Experimental results on two publicly datasets called CAIS and SMP-
ECDT show that our model outperforms all other models and achieves SOTA
performance.

To summarize, the following are the contributions of this paper:

• In this paper, we propose a deep joint model of Multi-Scale intent-slots
Interaction with Second-Order Gate for Chinese SLU (MSIM-SOG), which
optimizes the performance of Chinese SLU tasks and improves current joint
model.



44 Q. Wen et al.

• A Multi-Scale intent-slots Interaction Module (MSIM) is proposed in this
paper, which enables deep bi-directional interaction between ID and SF by
cyclically updating the multi-scale information on intent and slots.

• A Second-Order Gate module (SOG) is proposed to fuse character and word
information, control effective information propagation through the gate with
second-order weights, reduce noise and accelerate model convergence.

• On the public CAIS and SMP-ECDT datasets, our model improves the
semantic accuracy by 0.49% and 2.61% over the existing models respec-
tively, and achieves the competitive performance.

For this paper, the code is public at https://github.com/QingpengWen/MSIM-
SOG.

2 Related Work

English SLU Task: The Spoken Language Understanding (SLU) task consists
of two main tasks: Intent Detection (ID) and Slot Filling (SF). Early research in
ID often utilized common classification methods like SVM [2] and RNN [6]. While
SF extracts semantic information through sequence labeling such as CRF [19]
and LSTM [20]. However, these approaches commonly cause error propagation
as they lack the interaction of ID and SF. Ma et al. [10] proposed a two-stage
selective fusion framework that explored intent-enhanced models. However, it
simply guided slot by intent, and the bi-directional relationship was still not
established. Sun et al. [13] designed a bi-directional interaction model based on
a gate mechanism to achieve bi-directional association between ID and SF.

Chinese SLU Task: Although these approaches have made great progress in
English SLU, there are still some challenges in Chinese SLU include dealing
with ambiguous words, the effective fusion of word and character information,
and lacks of deep bi-directional interaction models for ID and SF. As a result,
existing English SLU models cannot be directly applied to the Chinese SLU task.
To address this, Zhu et al. [21] proposed a two-stage Graph Attention Interaction
Refine framework to mitigate ambiguity in Chinese SLU, but it may incorrectly
identify slot boundaries due to the absence of CWS system. Teng et al. [15]
proposed a Multi-level Word Adapter to fuse character and word information,
but it only used the intent guidance slot, while the fusion mechanism they used
introduces noisy information and risks losing critical information.

3 Approach

In this section, we will introduce the MSIM-SOG model proposed in this paper
in detail. The general model framework is illustrated in Fig. 2.

https://github.com/QingpengWen/MSIM-SOG
https://github.com/QingpengWen/MSIM-SOG
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3.1 Char-Word Channel Layer

Based on MLWA [15], we construct a character-level and word-level channel layer
(Char-Word Channel Layer), which obtains the complete character sequence
information and utterance representation information for SF and ID tasks. The
Char-Word Channel Layer consists of the Self-Attentive Encoder module, the
LSTM module, and the MLP Attention module. Among them, the Self-Attentive
Encoder module extracts the character and word encoding representation. Then
the LSTM module is utilized to extract the contextual and sequence informa-
tion for the SF task, while the MLP Attention module extracts the complete
representation of the utterance for the ID task.

Fig. 2. The MSIM-SOG model proposed in this paper. The model includes our Char-
Word Channel Layer, Fusion Layer and SF-ID interaction layer. The internal structure
of the SOG Fusion module is shown in Fig. 3.

Self-attentive Encoder: The Self-Attentive Encoder mainly consists of an
Embedding encoder, a Self-Attention encoder, and a BiLSTM encoder [3].
For a given Chinese utterance c = {c1, c2, ..., cN} containing N charac-
ters. The Embedding encoder converts it into the character vector Ec

emb ∈
R

N×d = {ec,e1 , ec,e2 , · · · , ec,eN }. The BiLSTM encoder loops the input utterance
forward and backward to obtain context-aware sequence feature information
Hc∈ R

N×d = {hc
1, h

c
2, ..., h

c
N}, where hc

j∈ R
d = BiLSTM(ec,ej , hc

j−1, h
c
j+1) and

the Self-Attention encoder captures the contextual information of each charac-
ter in a valid sequence as Ax∈ R

N×d = softmax(Q·KT

√
dk

) · V , where Q, K and
V are matrices acquired by the application of different linear projections to the
input vectors and dk denotes the vector dimension. Subsequently, we concate-
nate these outputs to obtain the final character-level encoding representation as
Ec ∈ R

N×2d = {ec1, ec2, · · · , ecN}.
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For word-level encoding, we adopt the CWS system to capture the word
segmentation sequence w = {w1, w2, ..., wM} (M ≤ N) by segmenting the
utterance. And the final word-level encoding is denoted as Ew ∈ R

M×2d =
{ew1 , ew2 , · · · , ewM}.

LSTM: In the LSTM module, we extract the contextual information of the
character-level encoding Ec and capture the character sequence information to
obtain the hidden state output Hc ∈ R

N×2d = {hc
1,h

c
2,h

c
3, · · · ,hc

N}, and use it
for SF task, where hc

j = LSTM(ecj , h
c
j−1).

Equally, by extracting the word-level encoding information Ew, we obtain
the output of the hidden state is Hw ∈ R

M×2d = {hw
1 ,hw

2 , · · · ,hw
M}.

MLP Attention: In the MLP Attention module, we extract the complete utter-
ance representation information Sc ∈ R

2d and the complete word-level represen-
tation information Sw ∈ R

2d by computing the weighted sum of all hidden units
Ec and Ec in the Self-Attentive Encoder.

3.2 Fusion Layer

Since the current fusion mechanism simply combines the initial information with-
out the corresponding guidance, it is easy to introduce a large amount of noise
and redundant information, thus missing useful information. To solve above
problems, we propose a Second-Order Gate (SOG) module to fuse information,
as shown in Fig. 3. The SOG module selects valid information from the first-
order output of the gate mechanism (Eq. 2–Eq. 3) using the initial input vectors,
and then performs second-order gating calculations through the gate neuron λ to
enhance the efficient propagation of valuable information (Eqs. 4). This outputs
the weight of the fused information as second-order, reducing noise and redun-
dancy, improving information acquisition, and accelerating model convergence.

Given the input vectors x ∈ R
d and y ∈ R

d and the output h ∈ R
d, then the

SOG fusion is calculated as follows:

λ = f [Wx · tanh(x) + Wy · tanh(y)] (1)

hx = λ · tanh(x) + x (2)

hy = (1 − λ) · tanh(y) + y (3)

h = SOG(x,y) = λ · hx + (1 − λ) · hy (4)

where Wx and Wy are trainable parameters, f (·) denotes the activation function
and λ is the gate neuron that controls the Fusion information weighting.

Subsequently, we use the fusion output cslot ∈ R
N×2d =

{
cslot1 , cslot2 , .., cslotN

}

of the hidden information Hc and Hw as the input of the SF task, apply the
output h ∈ R

N×2d = {h1,h2, ...,hN} to update the intent information, and use
the fusion output cinte ∈ R

2d of the representation information Sc and Sw as
the input of the ID task. The calculation formula is as follows:

cslotj = SOG(Hc
j ,H

w
falign(j,w)) (5)
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Fig. 3. SOG Fusion module, where x and y are fusion input vectors, f (·) denotes
the activation function, λ is the gate neuron that controls the weight of the fused
information, hx and hy are the selection information and h is the fusion output.

hj = SOG(Hw
falign(j,w),H

c
j) (6)

cinte = SOG(Sc,Sw) (7)

falign(j,w) =

⎧
⎨

⎩

1 j ≤ len(w1)
|w|∑

i=2

i · I(
i−1∑

k=1

len(wk) < j ≤
i∑

k=1

len(wk)) other
(8)

where w is the word sequence, len(·) counts the number of characters in a word,
I(·) is the indicator function. j = {1, 2, ..., N} is each character’s position index.

3.3 SF-ID Interaction Layer

To fully exploit the rich interaction information of intent and slots, we propose
the Multi-Scale intent-slots Interaction Module (MSIM), which consists of SF-
Update Module, ID-Update Module and Decoder Module. The MSIM module
first uses the intent information to update the multi-scale information of slots
obtained from the fusion layer and then uses them to guide the previous intent
information. Finally, the deep bi-directional interaction between SF and ID is
achieved through multiple interactions. A specific interaction is as follows.

SF-Update Module: For the updating of multi-scale slots information, we
first obtains the update information f inte ∈ R

N×2d =
{
f inte
1 , f inte

2 , ..., f inte
N

}
by

fusing yinte ∈ R
2d and cslot using the SOG module, then the update information

f inte is calculated with cslot to update the multi-scale slots information yslot ∈
R

N×2d =
{
yslot
1 ,yslot

2 , ...,yslot
N

}
, which is calculated as follows:
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f inte
j = SOG

(
cslotj ,yinte

)
(9)

yslot
j = (wI

j · f inte
j ) · cslotj (10)

where wI
j is the trainable parameter and j = {1, 2, ..., N} is the position index

of each character. In the first cycle of interactions, we define yinte = cinte.

ID-Update Module: For the updating of intent information, similar to SF-
Update module, we first obtains fslot ∈ R

2d by fusing yslot and h using the SOG
module, then calculates fslot with cinte to update the intent information yinte.
The calculation is as follows:

fslot =
N∑

j=1

SOG(yslot
j ,hj) (11)

yinte = fslot + cinte (12)

Decoder Module: After the cyclic interaction, we decode the final information
yslot and yinte by the Decoder module to obtain the final multi-scale slots output
Oslot =

{
Oslot

1 ,Oslot
2 , ...,Oslot

N

}
and intent output Ointe, which is calculated as

follows.
P (ỹslot = j|cslot) = softmax[wS O · (hN ⊕ yslot

j )] (13)

P (ỹinte|cinte) = softmax[wI O · yinte] (14)

Oslot
j = argmax [P

(
ỹslot = j

∣
∣
∣ cslot)] (15)

Ointe = argmax [P (ỹinte|cinte)] (16)

where wS O and wI O are trainable parameters, ⊕ denotes concatenation oper-
ation, j = {1, 2, ..., N} is the position index of each character.

3.4 Joint Loss Function

According to Goo et al. [1], a joint training scheme with NLLOSS is used for
optimization in this paper, and the joint loss function is calculated as follows:

L = −logP
(
ŷinte

∣
∣
∣cinte

)
−

N∑

i=1

logP (ŷslot
i |csloti ) (17)

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on two public Chinese SLU datasets, CAIS [15] and
SMP-ECDT [21], to evaluate the model validity. The CAIS dataset contains
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7,995 training sets, 994 validation sets, and 1,024 test sets. The SMP-ECDT
dataset contains 1,832 training sets, 352 validation sets, and 395 test sets.

In this paper, we use F1 score and accuracy to evaluate the accuracy of
SF and ID, respectively. Moreover, we use sentence-level semantic accuracy to
indicate that the output of this utterance is considered as a correct prediction
when and only when the intent and all slots are perfectly matched.

4.2 Experimental Setting

In this paper, we set the dropout rate to 0.5, the initial learning rate is set
to 0.001, the learning rate is adjusted dynamically by using the warmup strat-
egy [8], and the Adam optimizer [5] is used to optimize the parameters of the
model. For the CAIS dataset, we set the number cycles to 3, while the SMP-
ECDT dataset, we set it to 4. The model is trained on a Linux system using the
PyTorch framework and Tesla A100, and multiple experiments are conducted
with different random seeds to select the model parameter for evaluation on the
test dataset that perform the best on the validation dataset.

4.3 Baseline Models

In this section, we select the following models for comparison, which are Slot-
Gated Full Atten [1], a slot-oriented gating model to improve the semantic
accuracy; CM-Net [9], a collaborative memory network to augment the local
contextual representation; Stack-Propagation [12], a stack-propagation model to
capture semantic knowledge of intent; MLWA [15], a multi-level word adapter
that fuses word information with character information; GAIR [21], a two-stage
Graph Attention Interaction Refine framework that leverages SF and ID infor-
mation.

On the CAIS dataset, we uses the model performance from the paper GAIR
[21]. On the SMP-ECDT dataset, we compare the published code of the model
by running experiments separately, while the CM-Net [9] cannot be compared
with this model due to the fact that the official codes are not provided.

4.4 Main Results

Table 1 presents the experimental results of the proposed MSIM-SOG model and
the baseline models on the CAIS and SMP-ECDT datasets. From the analysis
of the experimental results, we give the following experimental conclusions.

1. The MSIM-SOG model proposed in this paper outperforms the above model
in all metrics and achieves state-of-the-art performance

2. Compared with the baseline model MLWA [15], our model achieves larger
improvements. In detail, on the CAIS and SMP-ECDT datasets, our model
improved Slot F1 Score by 1.66% and 2.95%, Intent Acc by 0.49% and 1.58%,
and Semantic Acc by 1.18% and 3.78%, respectively. These results indicate
that our model effectively fuses character and word information and enhances
performance through a deep bi-directional interaction between ID and SF.
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Table 1. The main results of the above models on the CAIS and SMP-ECDT datasets.
The numbers with * indicate that the improvement of the model in this paper is
statistically significant at all baselines, with p < 0.05.

Model CAIS dataset SMP-ECDT dataset

Slot F1 Score Intent Acc Semantic Acc Slot F1 Score Intent Acc Semantic Acc

Slot-Gated Full Atten [1] 81.13 94.37 80.83 60.91 86.02 53.75

CM-Net [9] 86.16 94.56 – – – –

Stack-Propagation [12] 87.64 94.37 84.68 71.32 91.06 63.75

MLWA [15] 88.61 95.16 86.17 75.76 94.65 68.58

GAIR [21] 88.92 95.45 86.86 77.68 95.45 69.75

MSIM-SOG 90.27* 95.65* 87.35* 78.71* 96.23* 72.36*

3. Compared with the current SOTA model GAIR [21], our model improved Slot
F1 Score by 1.35% and 1.03%, Intent Acc by 0.20% and 0.78%, and Semantic
Acc by 0.49% and 2.61% on the CAIS and SMP-ECDT datasets, respectively.
These results show that our model, when utilizing a suitable CWS system
and incorporating character information, outperforms the GAIR [21] model
without CWS system.

The aforementioned outcomes demonstrate the advancement of the MSIM-
SOG model proposed in this paper. We attribute these results to the following
reasons: (1) The SOG module effectively fuses word and character information,
enhancing model accuracy. (2) The deep interaction of ID and SF in MSIM
improves performance by selecting effective multi-scale slots and intent informa-
tion. (3) The use of a suitable CWS system and character information prevents
incorrect slot identification and predictions.

4.5 Ablation Study

In this section, we conducted an ablation study to investigate the impact of
the MSIM and SOG module on the performance enhancement of the MSIM-
SOG model. We analyzed the effects by ablating four important modules and
employing different approaches in the experiment (Table 2).

Table 2. Main results of ablation experiments on CAIS and SMP-ECDT datasets.

Model CAIS dataset SMP-ECDT dataset

Slot F1 Score Intent Acc Semantic Acc Slot F1 Score Intent Acc Semantic Acc

MSIM w/o joint learning 87.61 (↓ 2.66) 94.56 (↓ 1.09) 85.27 (↓ 2.08) 76.83 (↓ 1.88) 95.02 (↓ 1.21) 70.75 (↓ 1.61)

MSIM w/o intent→ slot 88.75 (↓ 1.52) 95.35 (↓ 0.30) 86.61 (↓ 0.74) 77.69 (↓ 1.02) 95.67 (↓ 0.56) 71.79 (↓ 0.57)

MSIM w/o slot→ intent 89.69 (↓ 0.58) 95.15 (↓ 0.50) 86.75 (↓ 0.60) 78.35 (↓ 0.36) 95.47 (↓ 0.76) 71.68 (↓ 0.68)

MSIM-SOG w/o SOG 88.96 (↓ 1.31) 94.95 (↓ 0.70) 86.36 (↓ 0.99) 77.61 (↓ 1.10) 95.35 (↓ 0.88) 71.08 (↓ 1.28)

MSIM-SOG 90.27 95.65 87.35 78.71 96.23 72.36

Effect on MSIM: To demonstrate the advancement of the MSIM module, we
first ablated the joint learning strategy, directly feeding intent and slot informa-
tion from the fusion layer into the decoder. The experimental results indicated a
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significant drop in performance on both datasets compared to the original model,
due to the lack of explicit interaction between intent and slot information. Sub-
sequently, we conducted an ablation study on the unidirectional interaction of
intent and slot, removing the SF-Update Module and ID-Update Module sepa-
rately. The results indicated that the unidirectional interaction model had higher
accuracy than the model without joint learning, but it performed significantly
worse than the MSIM with deep bi-directional interaction. This confirms the
mutual enhancement of multi-scale slots and intent information through deep
interaction, aligning with previous studies.

Effect on SOG: To verify the advancement of the SOG module, we remove
the SOG module and use MLWA [15] instead. The aforementioned experimental
results demonstrate that the performance of SF and ID both decreased signif-
icantly. This indicates that the SOG module has a significant contribution in
improving information acquisition, reducing the impact of model noise informa-
tion and improving the learning ability of the model.

4.6 Convergence Analysis

To analyze the contribution of the SOG module in accelerating model conver-
gence and reducing overfitting, we compared the semantic accuracy and loss
curves of the model with and without the SOG module (replaced by MLWA
[15]) after 300 epochs of training on the test set, as shown in Fig. 4a and Fig. 4b.

Fig. 4. Semantic Acc and Loss Overall on CAIS and SMP-ECDT Dataset.

The results in Fig. 4a and Fig. 4b demonstrate that the model with the SOG
module achieved convergence at around 117 and 160 epochs on the CAIS and
SMP-ECDT datasets respectively, while the model without the SOG module
reached convergence at 170 and 200 epochs. This indicates that the SOG mod-
ule effectively accelerates model convergence and improves accuracy. On the
loss curve, the model with the SOG module maintains relatively stable loss
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after 200 epochs of training, whereas the model without the SOG module shows
an increase in loss after 270 epochs on the CAIS dataset and 280 epochs on
the SMP-ECDT dataset, suggesting that the SOG module effectively alleviates
model overfitting. These results highlight the effectiveness of the SOG module
in accelerating convergence and reducing overfitting.

4.7 Effect of Interation

To assess the impact of deep interactions between ID and SF in the MSIM model,
we evaluated its performance with different depths of interaction levels on the
CAIS and SMP-ECDT datasets using Semantic Acc.

Fig. 5. Semantic Acc of MSIM with varying interaction levels on two datasets.

The impact of deep interactions between ID and SF in the MSIM model on
performance was studied. According to the results in Fig. 5, when num cycles =
0, there is no explicit joint learning and no interaction between intent and slot
information. The results indicated that as the number of interactions increased,
Semantic Acc gradually improved. The CAIS dataset achieved the best per-
formance when num cycles = 3, while the SMP-ECDT dataset achieved its
best when num cycles = 4. This demonstrates the effectiveness of deep inter-
action between SF and ID. Increasing interactions strengthened the connection
between SF and ID, resulting in performance improvement. Although there was a
slight decrease in Semantic Acc beyond a certain depth of interaction, all models
with interactions outperformed the model without interactions. These findings
emphasize the significance of deep interaction between ID and SF in enhancing
model performance and validating the mutual reinforcement of SF and ID tasks.

5 Conclusion and Future Work

This paper introduces the MSIM-SOG model to address the challenges of fusing
Chinese word and character information in the Chinese SLU domain while study-
ing the deep interaction between ID and SF. The model consists of two modules:
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MSIM enables deep bi-directional interaction between ID and SF by updating
multi-scale slots and intent information cyclically. The SOG module enhances
fusion by selecting the first-order gate output and performing second-order gat-
ing calculation. Experimental results on Chinese SLU datasets demonstrate sig-
nificant performance improvement compared to existing models, achieving state-
of-the-art results. Future work includes applying the MSIM-SOG model to multi-
intent Chinese datasets to assess its generalization ability, as well as exploring
the applicability of the SOG fusion mechanism in other NLP tasks such as sen-
timent analysis, recommendation systems, and semantic segmentation.
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