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Abstract. Missing values are common in multivariate time series data,
which limits the usability of the data and impedes further analysis. Thus,
it is imperative to impute missing values in time series data. However,
in handling missing values, existing imputation techniques fail to take
full advantage of the time-related data and have limitations in captur-
ing potential correlations between variables. This paper presents a new
model for imputing multivariate time series data called DAGAN, which
comprises a generator and a discriminator. Specifically, the generator
incorporates a Temporal Attention layer, a Relevance Attention layer,
and a Feature Aggregation layer. The Temporal Attention layer utilizes
an attention mechanism and recurrent neural network to address the
RNN’s inability to model long-term dependencies in the time series. The
Relevance Attention layer employs a self-attention-based network archi-
tecture to capture correlations among multiple variables in the time
series. The Feature Aggregation layer integrates time information and
correlation information using a residual network and a Linear layer for
effective imputation of missing data. In the discriminator, we also intro-
duce a temporal cueing matrix to aid in distinguishing between generated
and real values. To evaluate the proposed model, we conduct experiments
on two real-time series datasets, and the findings indicate that DAGAN
outperforms state-of-the-art methods by more than 13%.

Keywords: Time series imputation · Self-Attention · Recurrent
Neural Network · Generative Adversarial Network

1 Introduction

Time series data refers to data arranged in chronological order that reflects the
state of things as they change over time [25]. Typical time series data includes
factory sensor data, stock trading data, climate data for a particular region,
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power data, transportation data, and so on. In practical applications, multivari-
ate time series data is more common. However, due to the complexity of real-
world conditions, multivariate time series data often contains missing values for
various reasons [14,26], such as sensor malfunctions, communication errors, and
accidents [13]. At the same time, in reality, due to equipment issues, such as
the sampling machine itself not having a fixed sampling rate, even if the dataset
is complete, the intervals between the data points are often irregular, which
can also be considered a problem of missing data. These missing values under-
mine the interpretability of the data and can seriously affect the performance of
downstream tasks such as classification, prediction, and anomaly detection [12].
To further study this incomplete time series, imputing the missing values is an
inevitable step.

In order to solve the problem of missing data, many time series imputation
methods have been proposed to infer missing values from observed values. Tradi-
tional data imputation methods are based on mathematical and statistical theory
and fill in missing values by analyzing the data. However, this method ignores the
inherent time correlation imputation in time series data. In contrast, time series
imputation methods based on deep learning consider the time information in
multivariate time series data and achieve better imputation accuracy. Recurrent
neural networks rely on the calculation of hidden states for each unit to capture
time dependence, but they still place more emphasis on the outputs of adjacent
time steps and have difficulty capturing and utilizing long-term dependencies in
time series [9].

In recent years, Generative Adversarial Networks (GANs) have shown out-
standing performance in the field of data generation. However, general GANs
do not consider the time correlation of time series data and ignore the potential
correlation between different features of multivariate time series. Therefore, in
this paper, we propose a new multivariate time series imputation model called
DAGAN. DAGAN consists of a generator and a discriminator. The generator
utilizes a gated recurrent neural network to learn the time information in mul-
tivariate time series data. It performs a weighted sum of hidden states in the
recurrent neural network using an attention mechanism, which improves the
model’s ability to learn long-term dependencies in time series while ensuring
that the model focuses more on important information. Furthermore, we use a
self-attention mechanism to link different variables in multivariate time series,
allowing all time steps to participate in each layer to maximize the accuracy of
multivariate time series imputation. The task of the discriminator is to distin-
guish between real and generated values. In this paper, we use a temporal cueing
matrix to improve the performance of the discriminator, which contains some
missing information from the original time series data. This further forces the
generator to learn the real data distribution of the input dataset more accurately.

In summary, compared with existing time series imputation models, the
model proposed in this paper has the following contributions:

1) We propose a time series imputation method that combines attention mech-
anisms and gated recurrent neural networks to enhance the ability of recur-
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rent neural networks to utilize the long-term dependencies of time series data,
while ensuring that the model focuses on important information and improves
the quality of imputation.

2) We use the masked self-attention mechanism to capture relationships between
different features in the multivariate time series. By incorporating self-
attention at each layer, all time steps participate, maximizing the accuracy
of imputation for multivariate time series data.

3) We conduct experiments on two different real datasets, using the root mean
square error (RMSE) as the performance indicator. The results show that, in
most cases, our model outperforms the baseline method.

2 Related Work

There are two main methods for dealing with missing values in time series anal-
ysis: direct deletion and imputation [11]. The main idea behind the direct dele-
tion method is to delete samples or features containing missing values directly.
Although this method is simple and easy to implement, it can lead to a reduction
in sample size and the loss of important information [10]. The imputation method
can be divided into statistical-based, machine-learning-based, and neural network-
based methods, based on different imputation techniques and technologies.

Statistical-based imputation methods use simple statistical strategies, such
as imputing missing values with mean or median values [11,14]. For example,
SimpleMean [7]imputes missing values by calculating the mean value. Although
these methods can quickly fill in missing values, they can affect the variance of
original data and have poor imputation accuracy.

Common machine-learning-based imputation methods include k-nearest
neighbor (KNN) method, expectation-maximization method, and random for-
est. The basic idea of KNN algorithm is to find the k nearest neighboring data
points with known values to a missing data point and then calculate a weighted
average by some rule, using the known values of these neighbors, to obtain the
imputed value. Random forest is a decision-tree-based imputation method [24].
Although these methods exhibit better imputation performance than the previ-
ous two methods, they lack the ability to utilize the time correlation and complex
correlation between different variables.

In time series data, variables change over time and are interrelated. There-
fore, it is crucial to use the time correlation of time series data to improve
imputation accuracy. With the rapid development of neural network technology,
researchers have started to apply it to the field of time series data imputa-
tion [6,10,18]. To properly handle time series data with missing values, some
researchers have proposed using RNN-based methods to process missing values.
RNN-based data imputation models can capture the time dependency of time
series data [19,22]. Among them, GRUD [3], which is based on gated recurrent
neural networks, uses hidden state decay to capture time dependence. BRITS [2]
treats missing values as variables and imputes them based on the hidden states
of bidirectional RNN. GLIMA [23] uses a global and local neural network model
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with multi-direction attention to process missing values, which partly overcomes
the problem that RNN heavily depends on output from nearby timestamps. The
problem with RNN-based models is that after a period of time, the weight of cur-
rent inputs becomes negligible, but they should not be ignored [2,28]. However,
this issue does not exist in GAN-based models. GANs generate data with the
same distribution as the original data through the game between generator and
discriminator. Examples of GAN-based imputation models include GRUIGAN
[15], GAIN [28], BiGAN [8], and SSGAN [17]. These methods take advantage of
the benefits of GANs and combine them with RNN to improve their ability to
capture time dependence.

3 Preliminary

Before introducing the model proposed by us, we provide a formal definition of
multivariate time-series data and explain some symbols used in certain models.

Given a set of multivariate time series X = (x1, x2 · · · , xT ) , ∈ R
T×D and

timestamps TS = {t1, t2, . . . , tT }, the t-th observation xt ∈ R
D consists of D

features {xt1, xt2, . . . , xtD} and corresponds to timestamp tt. We define a mask
matrix M, which is used to indicate the positions of missing values in the dataset.
When xij is missing, the corresponding element in the mask matrix is equal to
0, otherwise, it is 1. The mask matrix M has the same size as the input dataset.
The specific formula is shown as follows.

mij =
{
0 if xij is missing
1 otherwise (1)

We also introduce the time interval matrix δ, which is represented as follows.

δij =

⎧⎨
⎩

δij−1 + ti − ti−1, if mij−1 = 0, i > 0
ti − ti−1, if mij−1 = 1, i > 0
0, i = 0

(2)

The time retention matrix represents the time interval between the current
time and the last valid observation. It is also a matrix of the same size as the
input data set. Then, we introduce the time decay factor α, which is used to
control the influence of past observations. When the δ value is higher, α becomes
smaller. This indicates that the further the missing value is from the last true
observation value, the more unreliable its value is.

αi = exp (−max (0,Wαδi + bα)) (3)

4 Model

4.1 The Overall Structure

In this section, we will introduce the overall architecture of the DAGAN model.
Figure 2 shows the overall architecture of DAGAN. The input to DAGAN
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includes time-series data, mask matrix, and time interval matrix. DAGAN con-
sists of a generator and a discriminator. The generator generates imputed data
based on the observed values in the time-series data. Its objective is to deceive
the discriminator with the generated data. The discriminator takes the estimated
time-series matrix and the temporal attention matrix as inputs. It attempts to
differentiate between the generated data and the real data. Specifically, we intro-
duce the time-attention matrix to encode a part of the missing information in the
time-series data stored in the mask matrix. Below, we will describe the structure
of each module in detail (Fig. 1).

Fig. 1. The overall architecture diagram of DAGAN.

4.2 Generator Network

The goal of the generator is to learn the distribution of multivariate time series
data and generate missing values. Our generator includes a Temporal Attention
layer, a Relevance Attention layer, and a Feature Aggregation layer. The purpose
of the Temporal Attention layer is to capture the temporal dependencies of
time series data. Its input is the time series data with missing values, mask
vector, and time decay defined in the third section. The Relevance Attention
layer captures the correlations between different features. Its input is the output
of the Temporal Attention layer. Finally, the time information obtained from
the Temporal Attention layer and the Feature Correlation information obtained
from the Relevance Attention layer are inputted into the Feature Aggregation
layer for aggregation to obtain the final output. The complete dataset obtained in
this manner retains true values, replacing missing values with generated values,
according to the calculation formula shown below.

ximputed = M � x + (1 − M) � G(x) (4)

Here, ximputed is the complete data set interpolated from the input data set x
and the mask matrix M, which represents the distribution of missing values in
the input data set. G(x) is the output of the generator.

The loss function of the generator includes two parts: adversarial loss and
reconstruction loss. The adversarial loss is similar to that of a standard GAN.



Dual Attention-Enhanced GRU for Time Series Imputation 263

The reconstruction loss is used to enhance the consistency between the observed
time series and the reconstructed time series. The loss function of the generator
is shown below:

LossG = Lossg +Lossr (5)

Lossg = ‖x � M − ximputed � M‖22 (6)

Lossr = log (1 − D (ximputed � (1 − M))) (7)

Fig. 2. The structure of DANGAN’s Generator.

Improved GRU. A deeper structure is beneficial for a recurrent neural network
to better model the time series structure, in order to capture more complex
relationships in the time series [21]. Based on this, we designed a feature mapping
module to represent the input data in terms of features and map them into
potential representations. This can improve the learning ability of RNN without
increasing complexity in aggregating at multiple time steps.

xt = tanh (W mx + bm) (8)

where the parameters Wm and bm are the parameters to be learned, x represents
the input data, tanh is a nonlinear activation function.

In our proposed model, we choose a gated recurrent neural network (GRU)
to handle the time series input of the generation, which is a network structure
adapted from the classical RNN and controls the information transfer in the
neural network by adding a gating mechanism (nonlinear activation function, in
this paper we use sigmoid activation function). GRU requires fewer parameters
to train and converge faster. In a standard GRU model, the input to each GRU
unit is the hidden state ht−1 of the previous unit’s output and the current input
xt. Each GRU has an internal update gate and a reset gate. The data flow inside
the GRU can be expressed as follows.

ht = (1 − μt) � ht−1 + μt � h̃t (9)
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h̃t = tanh (Whxt + Uh (rt � ht−1) + bh) (10)

μt = σ (Wμxt + Uzht−1 + bμ) (11)

rt = σ (Wrxt + Urht−1 + br) (12)

where μt and rt are the update and reset gates of the GRU, respectively. tanh, σ,
and � denote the tanh activation function, the sigmod function, and the element
multiplication.

We integrate the previously introduced Time Retention matrix and time
decay factor α into the GRU unit. We multiply the time decay factor alpha with
the GRU hidden state ht−1 to obtain the new hidden state h′

t−1 (Fig. 3).

h′
t−1 = αt � ht−1 (13)

ht = (1 − μt) � h′
t−1 + μt � h̃t (14)

Fig. 3. Standard GRU Cell vs. Our Improved GRU Cell.

Temporal Attention. In order to solve the limitation of memory and exces-
sive attention to adjacent time steps in the recurrent neural network when facing
long time sequences, and to enhance the ability of the recurrent neural network
to capture important information and long-term dependencies within the time
series, we have designed a time recurrent attention mechanism. Our time recur-
rent attention mechanism weights the hidden states of each time step, and the
weighted processing of attention will make the hidden states extracted from each
time series contain comprehensive temporal information.

Given a set of hidden states H = {h1, h2, h3 . . . ,ht}, calculating the impor-
tance score θ of each hidden state and then calculate the weighted sum of the
hidden states to obtain the Context Vector vt. In this way, we can effectively
alleviate the disadvantage of GRU’s tendency to forget the first few steps in long
sequences [1]. The specific calculation formula is shown in Eqs. 15 and 16.

θi =
exp (func (ht,hi))∑t

j=1 exp (func (ht,hj))
(15)
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vt =
t∑

i=1

θihi (16)

where func is the function that calculates the attention score between the current
state and the historical hidden states. In this article, we use the hidden state at
time t as the query vector and use dot product as the calculation function.

Relevance Attention. In multivariate time series data, there are different
variables. By analyzing the correlations between different variables, the ultimate
imputation accuracy can be improved. Therefore, in order to utilize the poten-
tial correlations between different variables, we designed a correlation attention
mechanism based on the self-attention mechanism to capture the potential corre-
lations between different variables. The self-attention mechanism is a mechanism
used to calculate the representation of the sequence data. It automatically assigns
different weights to each element in the sequence to better capture the relation-
ships between different elements. The self-attention mechanism includes three
parts: query, key and value, and calculates the attention representation vector
of the sequence through similarity calculation, softmax function and weighted
sum. The calculation formula of the self-attention mechanism is shown below.

SelfAttention(Q,K, V ) = Softmax
(

QK�
√

dk

)
V (17)

In order to enhance the model’s interpolation ability, we refer to the self-attention
models in DISAN [20], SAITS [4], and XLNet [27]. We apply the diagonal mask
matrix to the self-attention mechanism, and set the diagonal items in the atten-
tion map to −∞. Therefore, the diagonal attention weight approaches 0 after
the softmax function. We use vector Z ∈ R

d×l as inputs, and vector Z is stacked
by Context Vector vt. D is the number of variables in the multivariate time series
datasert, and l is the length of vt. The specific formula for relevance attention is
as follows:

[Mask(x)](i,j) =
{−∞ i = j

x(i,j) i �= j
(18)

Q = ZWq K = ZWk V = ZWv (19)

T = Softmax
(
Mask

(
QK�
√

dk

))
(20)

MaskSelfAttention (Q,K, V ) = TV (21)

Q, K, and V respectively refer to the query vector, key vector, and value vector.
Wq, Wk, and Wv are trainable parameters. In the calculation, we first use Q and
K to calculate the similarity and then use the softmax function to process and
obtain similarity scores, reflecting the correlation between different variables. By
using a diagonal mask, the input values at time step t cannot ’see’ themselves and
are not allowed to calculate their own weight in this estimation. Therefore, their
estimates only depend on the input values at other time steps. With this setting,
we can better capture the relevance between different features and improve the
model’s interpolation ability using relevance attention.
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Feature Aggregation Layer. We refer to the idea of residual connection,
where we aggregate Z with temporal information, and Ẑ with correlation infor-
mation, and finally obtain the final interpolation result after a linear layer.

x̂ = Linear(W (Z+ Ẑ) + b) (22)

where W, b are learnable parameters, Z ∈ R
d×l is a Context Vector with tem-

poral information, and Ẑ is a correlation matrix with correlation information.
The linear layer produces the final interpolated values.

4.3 Discriminator Network

Following the standard GAN model, we use a discriminator to compete with
the generator, which helps the generator to generate more realistic data. Unlike
general generative adversarial networks, our discriminator outputs a matrix in
which each value indicates the truthfulness of the generated value. To help the
discriminator can better distinguish the true values from the generated values,
we introduce a temporal cueing matrix inspired by GAIN [28], which contains a
portion of missing information. The temporal cueing matrix C is defined as:

C = Y � M+ 0.5(1 − K) (23)

Y = (y1, · · · ,yi, · · · ,yn) ∈ {0, 1}d×n (24)

where each element in y is randomly set to 0 or 1. The discriminator connects
the generated time series data and the temporal cueing matrix as input, and
the network structure of the discriminator consists of a GRU layer and a linear
layer.

The loss function of the discriminator is shown below:

LossD = − (log (D (ximpute � M)) + log (1 − D (ximpute � (1 − M)))) (25)

where LossD refers to the classification loss of the discriminator, we want the
discriminator to be able to distinguish the generated values from the true values
as much as possible.

5 Experiment

5.1 Datasets

To validate the performance of our proposed model, we conducted experiments
on two real datasets: PM2.5 Dataset, Health-care Dataset.

PM2.5 Dataset: This dataset is a public meteorological dataset consisting of
air pollutant measurements from meteorological monitoring stations in Chinese
cities. The data are collected from 2014-05-01 to 2017-02-28. To evaluate the
interpolation performance, we first divide the dataset into a training set and a
test set in the ratio of 80% and 20%, and then we randomly remove data from
the dataset and use them as missing values for training and testing.
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Health-care Dataset: This dataset is from PhysioNet Challenge 2012 [5], and
it contains 4000 multivariate clinical time series data, each sample is recorded
within the first 48 h after ICU admission. Each time series contains 37 time
series variables such as body temperature, heart rate, blood pressure, etc. During
training, we will randomly remove data points in the dataset as missing values
and then use zeros to fill these missing values.

5.2 Baseline

This section describes the methods and models commonly used in time series
interpolation and applies them to the previously mentioned dataset, and finally
compares them with the model proposed in this paper.

1) Zero, a simple method of data interpolation, which fills all missing values to
zero;

2) Average, where the missing values are replaced by the average of the corre-
sponding features;

3) GRUD [3], a recurrent neural network based data interpolation model which
estimates each missing value by the weighted combination of its last observa-
tion and the global average and the recurrent component;

4) GRUIGAN [15], an interpolation network combining gated recurrent network
and generative adversarial network;

5) BRITS [2], a time series imputation method based on bi-directional RNN;
6) E2GAN [16], an end-to-end time series interpolation model based on genera-

tive adversarial networks;
7) SSGAN [17], a semi-supervised generative adversarial network based on bidi-

rectional RNN.

Among the above methods, mean is a simple interpolation method. KNN
is a commonly used algorithm for interpolating machine learning data. GRUD
and BRITS are both bi-directional RNN-based methods. GRUIGAN, E2GAN,
SSGAN are all generative adversarial network based models, we choose these as
comparison methods to show the advantages of our model.

5.3 Experimental Setup

On the above dataset, we select 80% of the dataset as the training set and 20%
of the dataset as the test set. For all tasks, we normalize the values to ensure
stable training. In all the deep learning baseline models, the learning rate is set
to 0.001. The number of hidden units in the recurrent network is 100, and the
training epoch is set to 30. The dimensionality of random noise in GRUIGAN
and the dimensionality of feature vectors in E2GAN are both 64. For SSGAN,
we set the cue rate to 0.9 and the label rate to 100%. For the DAGAN model in
thiTs paper, the discriminator cue rate is set to 0.9 and the hidden layer cells are
set to 100. We apply an early stopping strategy in the model training. We also
evaluate the performance of all models with interpolation at different missing
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rates. The missing rate is the ratio of missing values to the total number of
data. It reflects the severity of missingness in the dataset. We randomly remove
10%–70% of the test data points to simulate different degrees of missingness. We
use the root mean square error (RMSE) to evaluate the experimental results.
A smaller value of RMSE means that the generated value is closer to the true
value, and the following is the mathematical definition of the evaluation metric.

RMSE =

√√√√ 1
m

m∑
i=1

( target-estimate )2 (26)

where target and estimate are the true and generated values, respectively, and
m is the number of samples.

5.4 Experimental Results and Analysis

Table 1 displays the experimental results of the model with PM2.5 and Health-
care Datasets. Bolded results indicate the best-performing. The first set of exper-
iments compares the performance of various methods at different missing data
rates. DAGAN performs well on all datasets, demonstrating good generalization
capability. DAGAN outperforms the best available baseline model on average by
13.8%, 12.2%, 8.07%, and 3.9%, respectively, at 10%, 30%, 50%, and 70% missing
rates. Its use of temporal attention and relevance attention captures temporal
correlation and potential correlation between features to improve interpolation
accuracy by leveraging the available information from the time series. Overall,
deep learning-based approaches exhibit better interpolation performance com-
pared to statistics-based approaches. Table 1 reveals that the interpolation accu-
racy of all models declines as missing data increases gradually. This can be
attributed to the reduced availability of information for the models to interpo-
late. Nonetheless, our models still outperform the baseline model.

5.5 Ablation Experiment

To ensure the validity of our model, we conducted ablation experiments, each
repeated ten times, and recorded the average root mean square error (RMSE)
at a 10% missing rate for the test set. The ablation experiments evaluated the
model’s performance by removing the temporal attention mechanism, the rele-
vance attention mechanism, and the temporal cueing mechanism, respectively.
Our experimental results reveal that the removal of the temporal attention mech-
anism, the relevance attention mechanism, and the temporal cueing mechanism
led to a reduction in performance, indicating that the optimal use of temporal
and correlation information between distinct features in the dataset is crucial for
achieving high interpolation accuracy. Additionally, the results indicate that our
adversarial training benefits from the incorporation of a temporal cueing matrix
(Table 2).



Dual Attention-Enhanced GRU for Time Series Imputation 269

Table 1. Performance comparison of time series imputation methods under different
missing rates.

Dataset Missing Zero Average GRUD GRUIGAN E2GAN BRITS SSGAN DAGAN

Health-care Dataset 10% 0.793 0.786 0.695 0.674 0.661 0.593 0.586 0.519
30% 0.832 0.847 0.761 0.758 0.725 0.657 0.651 0.639
50% 0.904 0.895 0.793 0.787 0.763 0.757 0.746 0.722
70% 0.934 0.929 0.826 0.804 0.801 0.793 0.776 0.749

PM2.5 Dataset 10% 0.779 0.758 0.695 0.685 0.653 0.528 0.429 0.367
30% 0.804 0.799 0.763 0.748 0.668 0.563 0.489 0.394
50% 0.890 0.871 0.793 0.779 0.731 0.574 0.487 0.423
70% 0.921 0.903 0.812 0.786 0.762 0.638 0.601 0.575

Table 2. The results of ablation experiments (RMSE).

Health-care Dataset PM2.5 Dataset

DAGAN 0.519 0.367
w/o cue matrix 0.579 0.412
w/o temporal attention 0.683 0.503
w/o multi-head self-attention 0.581 0.393

6 Conclusion

In this paper, we propose a new multivariate time series interpolation model
called DAGAN. For time series data, DAGAN consists of two parts: a generator
and a discriminator. In the generator, we use a gated recurrent neural network
to learn the temporal information in the multivariate time series data and use
an attention mechanism to weight the summation of the hidden states in the
recurrent neural network, which enhances the ability of the model to learn the
long-term dependence of the time series while ensuring that the model can focus
more on the important information and compensate for the disadvantages of
memory limitation and excessive focus on adjacent time steps of the recurrent
neural network, thus improving the interpolation quality. In addition, this study
also utilizes a masked self-attentiveness mechanism to correlate different vari-
ables in the multivariate time series so that all time steps are involved in each
layer through self-attentiveness, thus maximizing the accuracy of multivariate
time series interpolation. The generator inputs incomplete data with missing
values and outputs the complete interpolation, and the discriminator heaps the
generated values and the true values to distinguish them. Experimental results
demonstrate that, when compared with other baseline models, our model’s impu-
tation performance is better.
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