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Abstract. Knowledge distillation is devoted to increasing the similar-
ity between a small student network and an advanced teacher network
in order to improve the performance of the student network. However,
these methods focus on teacher and student networks that receive super-
vision from each other independently and do not consider the network as
a whole. In this paper, we propose a new knowledge distillation frame-
work called Joint Regularization Knowledge Distillation (JRKD), which
aims to reduce network differences through joint training. Specifically, we
train teacher and student networks through joint regularization loss to
maximize consistency between the two networks. Meanwhile, we develop
a confidence-based continuous scheduler method (CBCS), which divides
examples into center examples and edge examples based on the example
confidence distribution of network output. Prediction differences between
networks are reduced when training with a central example. Teacher and
student networks will become more similar as a result of joint training.
Extensive experimental results on benchmark datasets such as CIFAR-
10, CIFAR-100, and Tiny-ImagNet show that JRKD outperforms many
advanced distillation methods.

Keywords: Knowledge Distillation · Joint regularization · Continuous
scheduler

1 Introduction

Over the past few decades, deep neural networks (DNNs) have enjoyed great suc-
cess in computer vision fields [20,25], such as real-time semantic segmentation [7],
object detection [15]. However, powerful DNNs frequently have larger parameters
and require large computational and storage resources, which are undesirable for
industrial applications. To address this issue, a number of model compression
techniques have been proposed, including model pruning [2,16,30], quantifica-
tion [9], and knowledge distillation [5], with knowledge distillation proving to be
a mature method for improving the performance of small models.
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Traditional knowledge distillation (KD) [5] (see Fig. 1(a)) utilizes a soft label
from a pretrained teacher to supervise students to obtain similar performance
to the teacher, which is a two-stage training process and not flexible. Recently,
online knowledge distillation [14,25] proposed a single-stage scheme to encourage
networks to train each other and retrain teacher and student networks to improve
consistency on different points of view [1,4,23]. For example (see Fig. 1(b)), deep
mutual learning (DML) [22] predictions after the classifier of teacher and student.
Chung et al. [3] introduces the middle layer feature transition between teacher
and student, as shown in Fig. 1(c). The existing online knowledge distillation
method is a way of teaching and learning collaboratively, and we hope to further
enhance this collaboration, bringing students and teachers together as a whole.

Fig. 1. Illustration of (a) KD, (b) DML, (c) DML with Feature comparison, and (d)
Knowledge distillation framework with joint regularization loss.

When the differences between teacher and student models are too great,
distillation can adversely affect students [17]. Strengthening connections
between teacher and student networks can improve distillation performance,
from traditional knowledge distillation to online knowledge distillation (see
Sect. 4.2,“Proof”). Recently, Wei et al. [29] proposes a robust federated learning
method called Jocor to maximize similarity between DNNs by reducing their.
Based on this insight, we believe that the teacher and student can obtain consis-
tent joint supervision in predictions, enhancing the integrity of the two classifiers,
and thus improving the distillation performance, as shown in Fig. 1(d).

This paper proposes a new knowledge distillation framework called Joint
Regularization Knowledge Distillation (JRKD). Specifically, we train teacher
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and student networks through joint losses to maximize consistency between the
two networks. Inspired by “course learning” [21], we propose a confidence-based
continuous scheduler method (CBCS), which divides examples into center exam-
ples and edge examples based on their-confidence density distributions calculated
teacher and student. The central example reduces the prediction error in the joint
training of the two networks, promotes their mutual learning, and reduces the
accumulation of error streams in the network. The proportion of central exam-
ples gradually increases as the training process progresses, ensuring the integrity
of the training set. Extensive experiments on three representative benchmarks
have shown that our JRKD can effectively train a high-performance student
network.

1. We propose a joint regularized knowledge distillation method(JRKD), which
can effectively reduce the differences between networks.

2. We used federated regularized loss to normalize teacher and student networks
to maximize consistency across networks.

3. We develop a confidence-based continuous scheduling method (CBCS),
through which the selection of loss instances can mitigate the negative impact
between networks and reduce the difficulty of consistency training.

2 Related Literature

In this section, we will discuss the work related to online knowledge distillation
and Disagreement. In both areas, various approaches have been proposed over
the past few years. We summarize it below.

2.1 Online Knowledge Distillation

Traditional knowledge distillation is achieved by a network of pre-trained teach-
ers who take their knowledge (extracted logits [5] or intermediate feature
forms [11]) and guide students to models during the training process. This
method is simple and effective, but it requires a high-performance teacher model.
In online knowledge distillation, the teacher and student models update their own
parameters at the same time to achieve an end-to-end process. The concept of
online distillation was first proposed by Zhang et al. [22] to enable collaborative
learning and mutual teaching between students and teachers. In order to address
the impact between network mutual learning, SwitKD [25]adaptively calibrates
the gap during the training phase through a switching strategy between the two
modes of expert mode (pause teacher, keep student learning) and learning mode
(restart teacher), so that teachers and students have appropriate distillation
gaps when learning from each other. Chung et al. [26] adds a feature-map-based
judgment to the original logit-based prediction, and the feature-map-based loss
controls the teacher and student to distill each other through the adjudicator.

Online distillation is a single-stage training scheme with efficient parallel com-
putation. The existing online knowledge distillation method is a way of teaching
and learning collaboratively, and we hope to further enhance this collaboration,
bringing students and teachers together as a whole, rather than individually.
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2.2 Disagreement

Weakly supervised learning [27] solves the problem of time-consuming and labor-
intensive collection of large and accurate data sets, and the use of online queries
and other methods will inevitably be affected by noise labels. In recent years, the
“divergence” strategy has been introduced to address such issues. For example,
decoupling [19]uses two different networks, and when there is no difference in
the predictions of the two networks, the network parameters are not updated,
and the network is updated when there is a disagreement. “Divergence” strategy
expectations use these examples that produce different predictions to steer the
network away from current errors. In 2019, Chen et al [12] combined the “diver-
gence” strategy with Co- teaching [28] in collaborative teaching to provide good
performance in terms of DNN’s robustness to noise tags. Recently, Wei et al. [29]
proposed a robust learning paradigm called JoCoR from different perspectives,
which aims to reduce the diversity of training examples of two networks during
training, and update the parameters of two networks at the same time by select-
ing examples with small losses. Under the training of joint loss, the two networks
will become more and more similar due to the effects of coregularization.

We hope to be able to use the idea of “divergence” strategy in the field of
knowledge distillation, aiming to reduce the differences between teacher and stu-
dent networks, thereby improving the integrity between networks and improving
distillation performance.

Fig. 2. JRKD flowchart, CBCS selects a central example based on the network output’s
example confidence, and teachers and students receive joint supervision training.

3 Approach

In this section, we will discuss how CBCS selects central examples (Sect. 3.1)
and how joint regularization loss trains the network collaboratively (Sect. 3.2).
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3.1 Confidence-Based Continuous Scheduler

According to recent research [29], while networks can improve consistency
between them through joint regularization, they are vulnerable to error streams
caused by biased selection. To address this issue, we design a confidence-based
continuous scheduler (CBCS) that divides the example into center examples and
edge examples. Using central example training can better reduce the prediction
bias between networks. This is shown in Fig. 2.

Different center examples are chosen by teachers and students; we only show
how teachers choose, and students do the same. We use dataset D = {(xi, yi)}ni=1

as the network input for each batch with n examples. Let the teacher network be
NT , and the prediction probability on the dataset D be NT (xi)

n
i=1. For Class m

classification tasks, max(NS(xi)) represents the maximum confidence that the
teacher network prediction instance xi is for one of the classes in class m. The
KMeans clustering algorithm is used to obtain the maximum confidence centroid
of n examples:

M−ptarget =
∑N

i=1 max(NS(xi))
N

. (1)

M−ptarget is the centroid of confidence. Calculating the absolute distance
from each max(NS(xi)) to M−ptarget yields the set dt = [d1, d2, . . . , dn]. The
smaller the value in dt, the closer to the confidence center.

CBCS controls the central example proportion for each period through a
continuous scheduling functions lambda(t). Ttotal is the total training cycle, λ0

Represents the proportion of the initial central example selection, t stands for
epock currently trained:

lambda(t) = min
(

1, λ0 +
1 − λ0

Ttotal
· t

)

. (2)

By using dt as the basis for selecting the central example, the example size is
controlled by the lambda(t). Index(·, ·) is a function method that returns an
index of multiple minimum values. Get the current set of central example Dt,
the same process can also obtain Ds:

Dt = D × Index (lambda(t) × N, dt) , Dt ∈ D, (3)

Ds = D × Index (lambda(t) × N, ds) , Ds ∈ D. (4)

3.2 Joint Regularization Knowledge Distillation

For the multi-class classification task for class m. We use two deep neural
networks to express the proposed JRKD method. For clarity, we set ps =[
p1s, p

2
s . . . , pms

]
and pt =

[
p1t , p

2
t , . . . , p

m
t

]
as the final prediction probabilities

of the example xi by students and teachers, respectively. It is obtained by soft-
ening the network output by the softmax function of distillation temperature
T = 3.
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Joint Regularization Loss. We train the two networks together using joint
regularization loss, which brings the predictions of each network closer to the
peer-to-peer network. Under joint training, networks will become more and more
similar to each other. To accomplish this, asymmetric Kullback-Leibler (KL)
divergence is used:

Lcon = DKL (ps‖pt) + DKL (ps‖pt) . (5)

Lcon represents the joint regularization loss. CBCS selects different central
examples to participate in joint training based on the confidence probability of
the examples generated by teachers and students:

DKL (ps‖pt) =
N∑

i=1

M∑

m=1

pms (xi) log
pms (xi)
pmt (xi)

, x ∈ Dt, (6)

DKL (pt‖ps) =
N∑

i=1

M∑

m=1

pmt (xi) log
pmt (xi)
pms (xi)

, x ∈ Ds. (7)

Total Losses. For JRKD, the joint regularization loss is used to improve the
integrity between the networks, and the conventional supervision loss is used to
maintain the correctness of the learning. JRKD minimizes the following losses
to train the network:

LT = LTCE + Lcon, (8)

LS = LSCE + Lcon. (9)

LSCE and LTCE represent conventional supervision loss for students and
teachers, respectively. Finally, we give the algorithm flow table of JRKD, as
shown in Algorithm 1.

Algorithm 1. JRKD
Input: Network f with Θ = {Θt, Θs}, learning rate η, fixed τ , epoch Tk and Tmax,

iteration Imax;
1: for t = 1, 2, . . . , Tmax do
2: Shuffle training set D;
3: for for n = 1, . . . , Imax do
4: Fetch mini-batch Dn from D ;
5: ps = fs (x, Θs) , ∀x ∈ Dn ;
6: pt = ft (x, Θt) , ∀x ∈ Dn ;
7: Calculate the example size by (2) from lambda(t);
8: Obtain training subset Ds,Dtby (3,4)from Dn ;
9: Obtain LS ,LT by (8, 9) on Ds, Dt ;

10: Update Θt = Θt − η∇LT , Θs = Θs − η∇LS ;
11: end for
12: end for
Output: Θs and Θt
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4 Experiments

In this section, we select three representative image classification tasks for experi-
ments in Sect. 3.1 to evaluate the performance of JRKD. The ablation experiment
at Sect. 3.2 confirmed the effectiveness of CBCS and loss of joint regularization.
In addition, we analyze the effect of λ0 initial center example ratio on perfor-
mance. In Sect. 3.3, visualize the probability distribution of teacher and student
network outputs.

Experiment Setup. The configuration of our experiment is to descend SGD
with a stochastic gradient and set the learning rate, weight decay, and momen-
tum to 0.1, 5 × 10−4, and 0.9, respectively. The dataset uses a standard data
augmentation scheme and normalizes [17] the input image using channel means
and standard deviations.

4.1 Experiments on Benchmarks

Results on Tiny-ImageNet. It contains 200 categories, each containing 500
training images, 50 validation images, and 50 test images. After using JRKD,
the two groups of networks obtained an accuracy of 59.43% and 55.71%, respec-
tively. It can effectively improve the accuracy of the student network. Compare
these methods, Our method also achieves good results. The results are shown in
Table 1.

Table 1. The accuracy of the comparison method comes from the papers of other
authors. JRKD verified accuracy results on the Tiny-ImageNet dataset.

Teacher ResNet34 WRN40-2

Student MobileNetV2 ResNet20

DML 55.70 53.98

KDCL 57.79 53.74

SwitOKD [25] 58.79 55.03

JRKD 59.43 55.71

Results on CIFAR-100. The CIFAR-100 dataset has 100 classes. Each class
has 500 sheets as a training set and 100 as a test set. Table 2 shows the experi-
mental results, and JRKD outperforms many other methods on various network
architectures. Impressively, JRKD achieves 1.33% (WRN-40-2/WRN-16-2) accu-
racy improvement to DML on CIFAR-100. Besides, JRKD also shows 0.88% and
0.19% (ResNet32 × 4/ResNet8 × 4) accuracy gain over ReviewKD and DKD,
respectively.

Results on CIFAR-10. The CIFAR-10 dataset has a total of 60,000 examples,
which are divided into 50,000 training examples and 10,000 test examples. The
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Table 2. JRKD verified accuracy results on the CIFAR-100 dataset. W40-2, R32x4,
R8x4 and SV1 stand for WRN-40-2, ResNet32 × 4, ResNet8 × 4,ShuffleNetV1. The
accuracy of other methods is mainly derived from DKD [22].

Teacher W40-2 W40-2 R32 ×4 VGG13

Student W16-2 SV1 R8 ×4 VGG8

Teacher 75.61 75.61 79.42 74.64

Student 73.26 70.50 72.50 70.36

KD [5] 74.92 74.83 73.33 72.98

FitNets [8] 73.58 73.73 73.50 71.02

RKD [10] 73.59 72.21 71.90 71.48

CRD [6] 75.48 76.05 75.51 73.94

AT [11] 74.08 73.32 73.44 71.43

CC [13] 75.66 71.38 72.97 70.71

DML [18] 75.33 75.58 74.30 73.64

KDCL [14] 74.25 74.79 74.03 71.26

ReviewKD [19] 76.12 77.14 75.63 N/A

DKD [22] 76.24 76.70 76.32 74.68

JRKD 76.66 77.24 76.51 74.90

experimental results are shown in Table 3, using the same experimental config-
uration as other methods. Our method not only improved student performance,
the teacher achieved an accuracy gain of 0.23% and 0.8% over SwithOKD and
KDCL, respectively.

Table 3. Ours results are the average over 5 trials. Comparison of performances with
powerful distillation techniques using the same 200 training epochs. Performance met-
rics refer to the original article.

Backbone KDCL SwithOKD JRKD

Student WRN-16-1 91.86 92.50 93.11

Teacher WRN-16-8 95.33 94.76 95.56

4.2 Ablation Experiments

CIFAR-100 was chosen for the dataset of the ablation experiment. As shown in
Table 4, we quantified the gap between teachers and networks using T-S gap, and
compared KD and DML, JRKD can effectively reduce the differences between
networks and improve distillation performance. The JRKD† compared other dis-
tillation methods and showed that joint regularization loss can improve similar-
ity between networks. The comparison of JRKD and JRKD† shows that CBCS
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is beneficial for online training. In addition, the sensitivity analysis of the λ0

parameter manually set in the continuous scheduler lambda(t) was performed. As
shown in Table 5, The value of λ0 in the continuous scheduler generally defaults
to 0.3, so we only analyze the value around 0.3 and find that the appropriate λ0

is conducive to distillation.

Table 4. Verify the effectiveness of joint regularization losses and CBCS. The student
network is MobileNetV2, the teacher is the VGG13, KDT→S represents the teacher
network to accept student supervision, Top-1 is the classification accuracy of CIFAR-
100, T-S gap uses KL to calculate the gap between output logical values between
networks. JRKD† refers to the absence of CBCS to select loss instances.

Method KDT→S KDS→T Top-1 T-S gap

KD ✔ ✘ 67.37 1.12

DML ✔ ✔ 68.52 0.83

JRKD† ✔ ✔ 69.12 0.61

JRKD ✔ ✔ 69.55 0.42

Table 5. The parameter sensitivity experiment of the continuous scheduler of CBCS.
The experimental data set uses CIFAR-100, and the experimental accuracy result is
averaged 5 times.

λ0 0.2 0.3 0.4

Student WRN-16-2 76.35 76.66 76.43

Teacher WRN-40-2 78.40 78.89 78.47

4.3 Visual Analytics

We compare the traditional online knowledge distillation method DML and the
JRKD by feeding the same batch of examples into the trained network and
visualizing the confidence distribution of the examples by the teacher-student
network. As shown in Fig. 3, the confidence distribution of the teacher-student
network is more similar in the example output of JRKD, demonstrating that
JRKD can improve network similarity.
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Fig. 3. Two different methods produce confidence profiles.

5 Conclusion

This paper proposes an effective method called JRKD to reduce the differences
between networks. The key idea of JRKD is to train the teacher and student
networks by jointly regularizing losses to maximize consistency between the
two networks. In order to reduce the difficulty of federation, we developed a
confidence-based continuous scheduling method (CBCS), which can divide sam-
ples into central samples and edge samples according to the sample confidence
distribution of network output. In the early stage of joint training, when train-
ing with central examples, the prediction difference between networks is reduced,
and edge samples are added to the training with the training cycle to ensure the
integrity of the training samples. We demonstrated the effectiveness of JEKD
with a large number of experiments, and analyzed the joint regularization loss
and the training aid of CBCS through ablation experiments. In future work, we
will continue to explore the correlation between teacher networks and student
networks as a whole training in online knowledge distillation.
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