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Abstract. The assumption of data completeness plays a significant role
in the effectiveness of current Multi-view Clustering (MVC) methods.
However, data collection and transmission would unavoidably breach this
assumption, resulting in the Partially Data-missing Problem (PDP). A
common remedy is to first impute missing values and then conduct MVC
methods, which may cause performance degeneration due to inaccurate
imputation. To address these issues in PDP, we introduce an imputation-
free framework that utilizes a matrix correction technique, employing a
novel two-stage strategy termed ’correction-clustering’. In the first stage,
we correct distance matrices derived from incomplete data and compute
affinity matrices. Following this, we integrate them with affinity-based
MVC methods. This approach circumvents the uncertainties associated
with inaccurate imputations, enhancing clustering performance. Com-
prehensive experiments show that our method outperforms traditional
imputation-based techniques, yielding superior clustering results across
various levels of missing data.

Keywords: Multi-view Clustering · Incomplete Data · Matrix
Correction

1 Introduction

Multi-view data, stemming from diverse sources, encompasses multiple repre-
sentations ubiquitous in real-world scenarios, like videos with audible and visual
facets or images with raw RGB space data paired with descriptive text. These
diverse views offer both consistent and supplementary information. The aim of
Multi-view Clustering (MVC) is to assimilate this multi-faceted information into
a unified structure, facilitating the unsupervised clustering of data samples with
similar structures. However, a predominant assumption in most MVC method-
ologies [7,13,27,31,32] is the complete observation of sample information across
all views. In reality, data collection and transmission can breach this assumption,
resulting in Incomplete Multi-view Clustering (IMVC) challenges [15,22,28].
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In the realm of IMVC, inconsistencies in views or incomplete data contribute
to data gaps. These voids, illustrated in Fig. 1, stem either from Partially View-
missing Problem (PVP) [15,22,28] due to inconsistent views (i.e., one sample
has empty vectors in some views, as shown in Fig. 1 (a)), or from the more perva-
sive, yet less explored, Partially Data-missing Problem (PDP) caused by
data incompleteness (i.e., one sample has representations in all views but with
some missing values, as shown in Fig. 1 (b)). Traditional strategies aimed at
remedying PDP often involve padding missing values via imputation techniques
[5,6,9] before applying MVC on the imputed data. However, this imputation-
based approach can falter, especially when applied without domain knowledge
on data structures, risking damage to intrinsic structures. Moreover, inaccu-
rately imputed views can distort the fusion process in existing MVC techniques,
potentially undermining clustering outcomes.

Fig. 1. Interpretation of PVP and PDP in IMVC problems.

To address the above issues, our contributions are threefold:

• We propose an imputation-free framework with the matrix correction method
to deal with partially data-missing problems in the IMVC community, which
can naturally avoid the uncertainty error caused by inaccurate imputation
and directly obtain high-quality affinity matrices through matrix correction.

• We introduce a matrix correction algorithm to effectively and efficiently esti-
mate distance matrices on incomplete data with a theoretical guarantee.
Specifically, it starts with initial distance matrices estimated from incom-
plete data and then corrects these estimates to satisfy specific properties via
a convex optimization approach.

• We design a two-stage strategy, i.e., correction-clustering (as shown in Fig. 2),
to combine with all affinity-oriented MVC methods, which makes existing
MVC methods great again on IMVC problems. Extensive experiments demon-
strate that our strategy achieves superior and robust clustering performance
under a wide range of missing ratios, compared to the imputation-based
approaches.
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Fig. 2. The framework of our imputation-free approach for PDP problems. It adopts
a novel two-stage strategy that first corrects affinity (distance) matrices in all views,
and then combines with MVC methods to achieve clustering.

2 Related Work

Multi-view Clustering. MVC assumes that all samples are fully observed in
all views. One popular roadmap of MVC is to separate the data based on affin-
ity matrices constructed in all views. Those affinity-based clustering methods
include spectral clustering [13,14,32,42], kernel-based clustering [7,21,31,41],
and graph clustering [27,29,36,37].

Incomplete-view Multi-view Clustering. Incomplete-view MVC methods
focus on scenarios where partial samples have missing views or there is no view
containing all samples, and they use the observed-view information to recover the
missing views. Traditional IMVC models generate the consensus representation
or affinity of view-missing data via matrix factorization [15,22,28], kernel-based
[10,23,24], or graph-based [30,38,40] methods.

Incomplete-value Multi-view Clustering. In contrast to view-level missing,
incomplete-value MVC aims at value-level (data-level) missing, where each sam-
ple in any view may contain some missing values. A feasible solution is to first
impute missing values and then perform multi-view clustering methods. In prac-
tice, statistical imputation techniques [12,20], such as zero, mean imputation,
and k-nearest neighbor (kNN) imputation [39], have been widely used. Besides,
matrix completion [5,6,9] is a representative machine learning-based technique
that solves a matrix factorization problem. Unfortunately, it is difficult to accu-
rately estimate missing values based on the observed data, especially for a large
missing ratio, and there is no guarantee on the quality of imputation. This moti-
vates us to design an imputation-free approach.
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3 Methodology

To seek a reliable solution to incomplete-value MVC, we propose an imputation-
free framework with a two-stage strategy, i.e., correction-clustering, as illustrated
in Fig. 2. Our work mainly resides in the matrix correction technique [18,34] to
improve the distance/affinity matrix estimation for incomplete data.

3.1 Distance Estimation

Consider a multi-view dataset with v views and n samples. Denote X(i) =
{x

(i)
1 , · · · , x

(i)
n } ∈ R

di×n as the data matrix in view i, where di is the view-
specific dimension. For simplicity, we consider an incomplete data matrix in a
single-view, i.e., Xo = {xo

1, · · · , xo
n} ∈ R

d×n, where xo
i represents the observed

i-th sample that may contain missing values.
If samples are not fully observed, their pairwise distance has to be estimated.

For two incompletely observed samples xo
i , x

o
j ∈ R

d, denote Ii,j ⊆ {1, · · · , d}
as the index set recording the positions of features that are observed in both
samples. Assuming Ii,j is not empty, denote xo

i (Ii,j) ∈ R
|Ii,j | as a vector of

selected values in xo
i on Ii,j . Then, the pairwise Euclidean distance doi,j can be

estimated from their commonly observed features by [18]

doi,j = ‖xo
i (Ii,j) − xo

j(Ii,j)‖2 ·
√

d

|Ii,j | ∈ [0,+∞). (1)

The estimated Euclidean distance matrix are obtained by Do = {doi,j} ∈ R
n×n.

Moreover, all distance-based kernel matrices can be calculated from Do accord-
ingly, such as the widely used Gaussian kernel Ko = {exp(−(d0i,j)

2/σ2)} ∈ R
n×n.

3.2 Distance and Affinity Correction

To correct an initial distance matrix Do calculated via Eq. (1), we introduce the
distance correction method [18,34] and resort to a Laplacian kernel matrix, i.e.,
Ko = exp(−γDo). Considering the PSD property of the Laplacian kernel [25],
we correct the initial distance matrix Do by solving the following problem:

D̂ = argmin
D∈Rn×n

‖D − Do‖2F (2)

subject to ⎧⎪⎨
⎪⎩

di,i = 0, ∀ 1 ≤ i ≤ n

di,j = dj,i ≥ 0, ∀ 1 ≤ i 	= j ≤ n

exp(−γD) 
 0

where 
 0 denotes the positive semi-definiteness (PSD). However, the problem
defined above is hard to solve due to the PSD constraint in the exponential form.
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Thus, we change the decision variable from D to K = exp(−γD) and reformulate
the problem under an efficient approximation:

K̂ = argmin
K∈Rn×n

‖K − Ko‖2F (3)

subject to ⎧⎪⎨
⎪⎩

ki,i = 1, ∀ 1 ≤ i ≤ n

ki,j = kj,i ∈ [0, 1], ∀ 1 ≤ i 	= j ≤ n

K 
 0

which can be solved by the Dykstra’s projection method [2,8,16–19,34,35].

Algorithm 1. Correction-clustering Strategy Based on Distance Correction
Input: {X(1), · · · , X(v)}: an incomplete multi-view dataset with X(i) ∈ R

di×n, ∀ 1 ≤
i ≤ v.

Output: L ∈ R
n: clustering labels.

1: � Stage-I. Affinity (Distance) Correction
2: for i = 1, 2, · · · , v do
3: Calculate D

(i)
o from incomplete X(i) via Eq. (1).

4: Initialize K
(i)
o = exp(−γD

(i)
o ) with γ = 0.02

max{D
(i)
o }

.

5: Obtain K̂(i) by solving Eq. (3) with the Dykstra’s projection.
6: Obtain D̂(i) = − 1

γ
log(K̂(i)).

7: Calculate a distance-based affinity matrix Â(i) from D̂(i).
8: end for
9: � Stage-II. Multi-view Clustering

10: Obtain a consensus affinity matrix Â from {Â(1), · · · , Â(v)} by MVC.
11: Obtain the final clustering labels L based on Â.

3.3 Theoretical Analysis

Theoretical Guarantee. Despite the convergence guarantee [4], the proposed
method also have a nice theoretical guarantee [18] on the correction performance
that we provide an improved estimate of the unknown ground-truth.

Theorem 1. ||D∗ − D̂||2F ≤ ||D∗ − Do||2F . The equality holds if and only if
Ko 
 0, i.e., K̂ = Ko, D̂ = Do.

Complexity Analysis. The time complexity of distance correction is O(n3)
per iteration, which mainly comes from the eigenvalue decomposition (EVD) in
the projection operation onto the PSD space. Nevertheless, we can apply highly
efficient algorithms for EVD operation to accelerate the algorithms, such as par-
allel algorithm [3] and the randomized singular value decomposition algorithm
[11]. The storage complexity is O(n2) to store the whole matrix in memory.
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4 Experiments

4.1 Experimental Setup

Datasets. The experiments are carried out on two benchmark datasets as shown
in Table 1: 1) MSRC-v11 [33]: a scene recognition dataset containing 210 images
with 6 views; 2) ORL2: a face-image dataset containing 400 images with 3 views.
All the experiments are carried out for 10 random seeds on a ThinkStation with
2.1GHz Intel i7-12700 Core and 32GB RAM.

Table 1. Statistic of two benchmark multi-view datasets.

Datasets # of Samples # of Views # of Clusters # of Dimensions

MSRC-v1 210 6 7 1302/48/512/100/256/210
ORL 400 3 40 4096/3304/6750

Implementation. All data is normalized to [−1, 1]. In each view, the values
of each sample vector are missing completely at random (MCAR) with a given
missing ratio r, e.g., 70%. The incomplete clustering task is to first obtain mul-
tiple distance/affinity matrices through imputation or correction methods and
then conduct multi-view clustering algorithms to get clustering results.

Baselines. The proposed distance correction method is compared with several
representative imputation methods from two categories: 1) statistical methods:
ZERO, MEAN, kNN [39] impute the missing value by zero, mean value or an
average value of k-nearest neighbors (k = 10), respectively; 2) machine learn-
ing methods: SVT [5] makes low-rank matrix completion with singular value
thresholding, GROUSE [1] conducts low-rank matrix completion via Grass-
manian rank-one update subspace estimation, FNNM [6] performs low-rank
matrix completion by factor nuclear norm minimization, and KFMC [9] uti-
lizes a kernelized-factorization matrix completion.

Multi-view Clustering Algorithms. To verify the quality of affinity matrices
obtained by imputation or correction methods, we choose popular affinity-based
multi-view clustering algorithms to perform clustering, including: 1) spectral
clustering: CRSC [14] and AASC [13] employ the co-regularization or affinity
aggregation to optimize spectral clustering, respectively; 2) graph-based clus-
tering: AWP [27] and CGD [29] generate a weighted graph by fusing multiple
graph matrices; 3) kernel-based clustering: RMKKM [7] and MVCLFA [31]
improve the robustness via multiple kernel k-means clustering or late fusion
alignment maximization, respectively.

Evaluation Metrics. The clustering performance is evaluated by three com-
monly used metrics, i.e., clustering accuracy (ACC), normalized mutual infor-
mation (NMI), and purity (PUR), which range between 0 and 1. The higher the
better. The average results of 10 random seeds are reported for all experiments.
1 https://mldta.com/dataset/msrc-v1/.
2 https://cam-orl.co.uk/facedatabase.html.

https://mldta.com/dataset/msrc-v1/.
https://cam-orl.co.uk/facedatabase.html.
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4.2 Incomplete Clustering on Single-View Data

We select the first view in the multi-view dataset as a newly single-view dataset,
where the values of samples are missing completely at random with a given
missing ratio r varying from 20% to 80%. To deal with it, we first obtain an
estimated Euclidean distance matrix D̂ from incomplete data Xo. Then we cal-
culate a corresponding Gaussian kernel K̂ = exp(−D̂2/σ2) with σ = median{D̂}
as the input of the standard spectral clustering algorithm [26], which applies the
normalized cut and is a popular package3 in the MATLAB library. As shown in
Fig. 3, the proposed method shows significant improvement in clustering metrics
(i.e., ACC, NMI, PUR) in almost all experiments with the least performance
degeneration. Even for a large missing ratio (e.g., 80%), our method still main-
tains reliable performance and shows its robustness.

ZERO MEAN kNN SVT GROUSE FNNM KFMC Ours
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Fig. 3. Incomplete single-view clustering results on MSRC-v1 and ORL datasets using
the standard spectral clustering algorithm.

4.3 Incomplete Clustering on Multi-view Data

Now, we further investigate the multi-view clustering performance. All samples in
each view randomly replace their values with the NA values under a missing ratio
r. Same as the setting in Sect. 4.2, the results on distance-based Gaussian kernels
are shown in Fig. 4 with a fixed 70% missing ratio. The experimental results show
that our approach consistently achieves better performance, in terms of ACC,
NMI and PUR, against all compared imputation methods. Thus, the proposed
framework shows effectiveness and robustness and therefore more reliable on
incomplete multi-view clustering tasks.

3 https://ww2.mathworks.cn/help/stats/spectralcluster.html.

https://ww2.mathworks.cn/help/stats/spectralcluster.html
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Fig. 4. Incomplete multi-view clustering results on MSRC-v1 and ORL datasets using
different multi-view clustering algorithms under a fixed 70% missing ratio.

4.4 Quality Visualization of Affinity Matrices

To assess the quality of affinity matrices, we visualize consensus affinity matri-
ces. We obtain Euclidean distance matrices through imputation methods or our
correction method for all views. The AASC multi-view clustering algorithm [13]
is used to fuse multiple distance matrices to a consensus affinity matrix. A high-
quality affinity matrix should have a clear block diagonal structure. Our con-
sensus affinity matrices, illustrated in Fig. 5, demonstrate a remarkable ability
to capture a strong clustering structure that is nearly identical to the ground-
truth. This, in turn, leads to improved clustering performance as compared to the
ZERO and MEAN methods whose affinity matrices lack clear block structures
and are plagued with noise.

MSRC-v1 - ZERO MSRC-v1 - MEAN MSRC-v1 - Ours MSRC-v1 - TRUE

0.0

0.2

0.4

0.6

0.8
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ORL - ZERO ORL - MEAN ORL - Ours ORL - TRUE
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0.6

0.8
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Fig. 5. Consensus affinity matrices obtained by the AASC multi-view clustering algo-
rithm on MSRC-v1 and ORL datasets with a 70% missing ratio.
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4.5 Motivation and Results Summary

When dealing with incomplete data, common imputation methods rely on
domain knowledge of data structures and lack theoretical guarantees for the
imputed data. To tackle this issue, we introduce a matrix correction tech-
nique that utilizes convex optimization to correct an estimated distance matrix
and ensure certain properties are satisfied. Our approach leverages the posi-
tive semi-definite (PSD) property of the Laplacian kernel to improve the esti-
mated distance with a theoretical guarantee of accuracy. As a result, our
correction-clustering strategy outperforms traditional imputation-based strate-
gies on incomplete clustering tasks in both single-view and multi-view datasets.

5 Conclusion and Future Work

Partially missing data is a significant issue in incomplete multi-view clustering,
yet it has received relatively little attention in the research community. Tra-
ditional imputation methods can lead to inaccurate results and degrade perfor-
mance. To address this challenge, we propose a novel imputation-free and unified
framework for incomplete-value multi-view clustering. Our framework includes
a distance correction method, combined with a two-stage correction-clustering
strategy that integrates with existing multi-view clustering algorithms.

Our proposed framework outperforms existing imputation-based strategies,
as demonstrated by extensive experiments. Our matrix correction algorithm pro-
vides high-quality Euclidean distance matrices that are closely aligned with the
unknown ground-truth, resulting in improved performance in single-view spec-
tral clustering. Additionally, our algorithm achieves better multi-view clustering
performance by improving consensus affinity matrices. Overall, our framework
provides a valuable tool for various data mining applications, particularly those
involving incomplete clustering.

In future work, we plan to study missing data imputation in incomplete multi-
view clustering and extend our framework to handle other types of missing data,
such as missing views or modalities. We also aim to apply our framework to other
real-world datasets and practical applications to further validate its effectiveness.
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