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Abstract. Image multi-label classification datasets are often partially
labeled (for each sample, only the labels on some categories are known).
One popular solution for training convolutional neural networks is treat-
ing all unknown labels as negative labels, named Negative mode. But it
produces wrong labels unevenly over categories, decreasing the binary
classification performance on different categories to varying degrees. On
the other hand, although Ignore mode that ignores the contributions
of unknown labels may be less effective than Negative mode, it ensures
the data have no additional wrong labels, which is what Negative mode
lacks. In this paper, we propose Category-wise Fine-Tuning (CFT), a
new post-training method that can be applied to a model trained with
Negative mode to improve its performance on each category indepen-
dently. Specifically, CFT uses Ignore mode to one-by-one fine-tune the
logistic regressions (LRs) in the classification layer. The use of Ignore
mode reduces the performance decreases caused by the wrong labels of
Negative mode during training. Particularly, Genetic Algorithm (GA)
and binary crossentropy are used in CFT for fine-tuning the LRs. The
effectiveness of our methods was evaluated on the CheXpert competi-
tion dataset and achieves state-of-the-art results, to our knowledge. A
single model submitted to the competition server for the official evalua-
tion achieves mAUC 91.82% on the test set, which is the highest single
model score in the leaderboard and literature. Moreover, our ensemble
achieves mAUC 93.33% (The competition was recently closed. We evalu-
ate the ensemble on a local machine after the test set is released and can
be downloaded.) on the test set, superior to the best in the leaderboard
and literature (93.05%). Besides, the effectiveness of our methods is also
evaluated on the partially labeled versions of the MS-COCO dataset.

Keywords: Partial Labels · Partial Annotations · Multi-Label
Classification · Multi-Label Recognition

1 Introduction

Image multi-label classification (MLC) is a typical computer vision problem that
classifies the presence (positive) or absence (negative) of multiple categories in
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each image. As an image usually contains multiple objects or concepts, it is
more practical than its counterpart single-label classification and hence has a
wide range of applications like medical image interpretation [6,7,21].

A crucial challenge of training convolutional neural networks (CNNs) for
image MLC is the training data is often partially labeled [17,27]. That is, for
each image sample, only the labels on some categories are known, and the rest are
unknown. It is because the manual collection of fully labeled data is expensive
[13], especially when the numbers of categories and samples are very large.

A popular and effective solution for training CNN with partially labeled data
is treating all unknown labels as negative labels [2,3,26,34], named Negative
mode [1]. This mode is based on the prior knowledge of MLC datasets that
negative labels are usually much more than positive labels [28]. Nevertheless,
this mode produces wrong labels to the training data, as some unknown labels’
ground truths are positive labels instead of negative labels. These wrong labels
are usually unevenly distributed over different categories [1]. The categories with
more wrong labels suffer from more harm. Therefore, different categories suffer
from varying degrees of performance decreases.

On the other hand, another solution is ignoring the contributions of unknown
labels [1,13], named Ignore mode [1]. This mode may be less effective than
Negative mode [26], as it does not utilize the prior knowledge that negative labels
are in the majority. Even so, it ensures the training data have no additional wrong
labels, which is a vital advantage that Negative mode lacks. Therefore, several
work utilize this vital advantage of Ignore to improve Negative mode for training
CNNs beginning with initial parameters [1,26].

In this paper, we propose Category-wise Fine-Tuning (CFT), a new post-
training method that can be applied to a CNN that has been trained with
Negative mode to improve its binary classification performance on each category
independently. Therefore, CFT is very different from most approaches that train
a CNN from initial parameters [1,26]. Specifically, CFT uses Ignore mode to
one-by-one fine-tune the logistic regressions (LRs) in the classification layer, in
which each LR outputs the binary classification result on one category. The use
of Ignore mode reduces the performance decreases caused by the wrong labels
of Negative mode during training. The one-by-one fine-tuning can improve the
performance on each category independently without affecting the performance
on other categories.

While applying CFT to a CNN, the LRs may prefer different fine-tuning
configurations (optimization methods, methods for handling untypical labels in
particular MLC datasets, etc.) to achieve higher performance. Therefore, we
additionally use a greedy selection for CFT to enable choosing the best config-
uration for each LR from multiple configuration candidates.

During experiments, we found using binary crossentropy (BCE) loss with
backpropagation for fine-tuning an LR sometimes unwantedly decreases the per-
formance like AUC (area under the receiver operating characteristic curve). On
the other hand, Genetic Algorithm (GA) [29] for fine-tuning can directly improve
the performance, avoiding performance drops caused by minimizing BCE.
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Sufficient experiments were conducted on the CheXpert [21] competition
dataset and the partially labeled versions of the MS-COCO [28] standard MLC
dataset to evaluate the effectiveness of our methods. Especially, our methods
achieve state-of-the-art on the CheXpert dataset, to the best of our knowledge.
We submitted a single CNN to the competition server1 for the official evaluation
on the test set. It achieves mAUC 91.82%, which is the highest single model
score in the leaderboard and literature. After that, the competition server was
closed and the test set is released. Therefore, our ensemble composed of 5 single
CNNs was evaluated on a local machine and achieves mAUC 93.33% on the test
set, superior to the best in the leaderboard and literature (mAUC 93.05% [44]).

2 Related Work

Several approaches were proposed to address MLC with partial labels. Binary
Relevance [15] converts MLC to multiple binary classification tasks, but it usually
fails to model the label dependencies and is less scalable to a large number
of categories. [23,41,43] adopted low-rank learning, [39] used a mixed graph
to encode a network of label dependency, [3,12] predicted unknown labels by
learning label relations, and [8,24,38] predicted unknown labels by posterior
inference. However, most of these approaches cannot be well-adapted for training
deep models, as they require putting all training data into memory or solving
costly optimization problems.

Some approaches train deep models with partial labels by exploiting image
and category dependencies. Durand et al. [13] proposed predicting unknown
labels based on curriculum learning with graph neural networks to model the
correlations between categories. IMCL [20] interactively learns a model with a
similarity learner which discovers label and image dependencies. SST [5] and
HST [4] explore the image-specific occurrence and category-specific feature sim-
ilarities to complement unknown labels. SARB [32] complements unknown labels
by learning and blending category-specific feature representation across different
images. However, most of these approaches require particular model architectures
or training schemes.

Negative mode and Ignore mode are more prevalent in contrast with the
complex approaches aforementioned. Ignore mode simply ignores the contribu-
tions of unknown labels (e.g., partial-BCE loss [13] and partial asymmetric loss
[1]) while Negative mode [2,3,26,34] treats all unknown labels as negative labels.
Several work (including this paper) aim to improve Negative mode with Ignore
mode, as introduced in Sect. 1. Kundu et al. [26] proposed a method to soften
the signal of the wrong labels of Negative mode by exploiting the image and label
relationships, but it does not avoid some categories training on too many wrong
labels. Ben-Brunch et al. [1] proposed Selective approach that can adjust the
training mode for each category to be either Negative or Ignore, but it requires
the presence frequency of every category which is unavailable in partially labeled
datasets.
1 https://stanfordmlgroup.github.io/competitions/chexpert/.

https://stanfordmlgroup.github.io/competitions/chexpert/
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Unlike most previous approaches that aim to train high performance models
beginning with initial parameters, the proposed CFT is a post-training method
based on Ignore mode that can be applied to models trained with Negative mode
to further improve the performance. Moreover, CFT can independently improve
the classification performance on each category. Hence, CFT may be able to
further improve the performance of the models trained with other approaches
mentioned above.

3 Methods

This section presents the proposed CFT, the greedy selection for selecting fine-
tuning configurations, and GA for fine-tuning, as summarized in Fig. 1.

Notations. Considering a C-category image MLC task with a training set D ={
(I,y)i

}
. Each sample (I,y) consists of an image I and a label vector y =

[y1, ..., yC ] ∈ {−1, 1, 0}C where the cth (c ∈ {1, ..., C}) element yc is the label
on category c and it is assigned to be either −1 (negative), 1 (positive), or 0
(unknown). A deep neural network (typically CNN) Baseline has been trained
on the training set D with Negative mode. The architecture of Baseline consists
of: (1) a backbone b transforms an input image I to a feature vector z = b(I) ∈
R

Z ; and (2) a C-unit fully-connected layer h with Sigmoid activation transforms
a feature vector z to an output vector ŷ = h(z) = [ŷ1, ..., ŷC ] ∈ [0, 1]C , where
the cth element ŷc is the output representing the binary classification result on
category c. To better illustrate CFT, we equivalently regard the fully-connected
layer h as C independent logistic regressions (LRs) h1, ..., hC , as shown in Fig. 1
left. The cth LR hc transforms a feature vector z to an output ŷc = hc(z).

3.1 Category-Wise Fine-Tuning (CFT)

The proposed CFT is a post-training method that can be applied to Baseline.
CFT uses Ignore mode to one-by-one fine-tune the LRs h1, ..., hC to improve
its performance on each category independently. Therefore, the backbone b is
always unchanged.

Specifically, the procedure of CFT has C steps (i.e., determined by the num-
ber of categories C). The goal of the cth step (c = {1, ..., C}) is to independently
improve the performance on category c through fine-tuning Baseline. That is,
the fine-tuning only improves the performance on category c, meanwhile, keep-
ing the performance on other categories unchanged. Hence, each category can
be independently improved without any concerns of harming other categories.

To achieve this goal, at the cth step, only the cth LR hc is fine-tuned instead
of the whole Baseline. It is because changing all the parameters of Baseline will
change the performance on all categories, which does not match the goal. On the
other hand, changing the parameters of hc only affects the output ŷc on category
c and does not affect the outputs on other categories, which matches the goal.
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Fig. 1. The overview of CFT and the greedy selection.

At the cth step, the cth LR hc is fine-tuned using binary crossentropy (BCE)
loss with backpropagation (BP), which is popular for optimizing binary classifi-
cation models. Ignore mode is used to reduce the performance decrease caused
by the wrong labels of Negative mode during training. Particularly, hc is fine-
tuned on a new training set Dc generated from the original training set D for
the use of Ignore mode and reducing computation cost, as shown in Fig. 1 right.
We first select the samples from D where the label on category c is known (i.e.,
yc ∈ {−1, 1}) to be the samples in Dc. This selection ensures hc is fine-tuned with
Ignore mode. Then, as the backbone b is always the same, we convert the image I
of each sample to a feature vector z = b(I) in advance to avoid unnecessary com-
putation during fine-tuning. Lastly, the unnecessary labels on other categories
are dropped. Formally, the new training set Dc =

{
(z, yc)i

}
is generated by:

Dc =
{
T((I,y))

∣
∣(I,y) ∈ D, yc ∈ {−1, 1}}

where T((I,y)) =
(
b(I), yc

)
= (z, yc).

3.2 Greedy Selection for Fine-Tuning Configuration Selection

While applying CFT to Baseline, as the LRs are independent to each other, each
LR can be fine-tuned with different configurations to achieve higher performance.
The configurations can be different optimization methods (e.g., BCE loss and the
below-introduced GA), methods for handling the untypical labels that appear
in the CheXpert dataset (see Sect. 4.1), batch sizes, learning rates, etc.

Hence, for each LR, we can additionally compare multiple fine-tuning con-
figuration candidates and select the best one based on the results, referred to as
greedy selection, as shown in Fig. 1 middle. For example, assume we apply CFT
to Baseline that has 5 LRs h1, ..., h5 (5 categories). We can additionally compare
BCE loss and GA, then choose the best configuration for each LR. A possible
result is, h1, h4, h5 uses BCE loss, while h2, h3 uses GA.

3.3 Fine-Tuning Logistic Regressions (LRs) Using Genetic
Algorithm

During the experiments on the CheXpert dataset (performance metric is AUC,
higher is better), we found that fine-tuning an LR using BCE loss sometimes
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unwantedly decreases AUC. A concrete example is in Fig. 2 which shows the
learning curves of fine-tuning the LR of the “Atelectasis” category. In both
the training curves and the validation curves, minimizing BCE can cause AUC
decreases. It is because minimizing BCE is generally used for optimizing classi-
fication accuracy [40], which does not necessarily achieve the best possible AUC
[40] or AP (average precision) [33] that are popular metrics for image MLC.

Therefore, we propose using Genetic Algorithm (GA) [29] to fine-tune each
LR. GA is a global search algorithm inspired by the principle of the evolution
theory. In nature, individuals which are more adapted to the environment have
higher chances to survive and produce offspring. This process keeps repeating
over generations until the best individual is found.

GA has shown its feasibility for training neural networks [10,18,30] and has
several advantages in comparison to BCE loss. (1) GA is a direct search method
[37] that can directly improve the performance computed by a metric, which
avoids the potential performance decreases caused by minimizing BCE; and (2)
BCE loss relies on backpropagation which is easy to trap in local optima and
difficult to escape it to find a better solution [18]. GA runs multiple solutions
simultaneously, which helps to escape from local optima [37].

4 Experimental Results and Discussion

We conducted sufficient experiments on the CheXpert competition dataset
(Sect. 4.1) and the partially labeled versions of the MS-COCO [28] standard
MLC dataset (Sect. 4.2) to evaluate the effectiveness of the proposed methods.

4.1 The CheXpert Chest X-Ray Image MLC Competition Dataset

Dataset. CheXpert [21] is a large-scale chest X-ray image 14-category MLC
competition dataset. The training set has 223,414 image samples. Labels are
automatically extracted from the free text reports. Labels are either positive,
negative, unknown (the term is blank in the original paper), or uncertain. Note-
worthy, the uncertain labels in this dataset are untypical in partially labeled
datasets and have different semantic meanings from unknown labels. An uncer-
tain label captures both the uncertainty in diagnosis and ambiguity in the report,
while an unknown label implies no mentions are found in the report. Hence, we
do not simply consider the uncertain labels as unknown labels. We handle the
uncertain labels in other ways instead, as described in the experimental settings
below. The validation set has 234 image samples. A label is manually assigned
as either positive or negative. The test set has 668 image samples. A label is
manually assigned as either positive or negative. The test set is private and
is reserved for the competition. Models must be submitted to the competition
server for the official evaluation on the test set. The competition leaderboard
is available at https://stanfordmlgroup.github.io/competitions/chexpert/. The
official performance metric is used, which is computed by the mean AUC
(mAUC) on the 5 categories: Atelectasis, Cardiomegaly, Consolidation, Edema,
and Pleural Effusion.

https://stanfordmlgroup.github.io/competitions/chexpert/
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Baseline Training. Baseline is a DenseNet-121 [19] CNN with an input res-
olution 2242. The parameters trained on ImageNet [11] are used as the initial
parameters. Baseline is trained on the training set for 10 epochs. We follow the
previous state-of-the-art [31,44] to treat unknown labels as negative (Negative
mode) and treat uncertain labels as positive with label smoothing [31]. Images
are rescaled to [0, 1]. We use the same data augmentation as in [6,7]: horizon-
tal flip, rotate ±20◦, and scale ±3%. BCE loss with batch size 32 and Adam
(lr = 1× 10−4) [25] is used to update parameters. The checkpoint that achieves
the highest validation mAUC is saved. Baseline achieves mAUC 89.6% on the
validation set (as reported in Table 1) which is already very high for a single
CNN. E.g., the single CNN of 2nd place on the competition leaderboard achieves
mAUC 89.4% [31].

Ablation Study on CFT. We apply CFT to Baseline to improve its per-
formance. The default BCE loss is used to fine-tune each LR, referred to as
(CFT-BCE). Besides, we study two variants of CFT-BCE:

1. CFT-BCE-simu: All the LRs are fine-tuned simultaneously (i.e., fine-tune
the whole classification layer), instead of fine-tuning each LR one-by-one.
Partial-BCE loss [13] is used to enable Ignore mode.

2. CFT-BCE-Nega: Each LR is fine-tuned with Negative mode, instead of
Ignore mode.

Full-batch gradient descent (lr = 1 × 10−4) is used to update parameters
for stability. We treat the uncertain labels as unknown labels, so the uncertain
labels are ignored in CFT. The number of epochs is 500.

Table 1 shows the results. CFT-BCE and its variants successfully improve
the mAUC of Baseline. Particularly, CFT-BCE achieves the highest improve-
ment (mAUC +0.3%). CFT-BCE-simu is less effective (+0.1%), because one-
by-one fine-tuning allows individually saving the best checkpoint for each LR,
thus achieving better mAUC. CFT-BCE-Negative is also less effective (+0.1%),
demonstrating the use Ignore Mode can effectively reduce the performance
decreases caused by the wrong labels of Negative mode during training.

Table 1. Ablation study on CFT, AUC%.

Method Ate Car Con Ede P.E Mean

Baseline 85.5 84.2 93.3 92.7 92.3 89.6
CFT-BCE-simu 85.7 84.0 93.3 92.8 92.4 89.7
CFT-BCE-Nega 85.6 84.2 93.4 92.9 92.4 89.7
CFT-BCE 85.6 85.0 93.5 92.9 92.5 89.9

Table 2. Ablation study on GA, AUC%.

Config Ate Car Con Ede P.E Mean

CFT-BCE 85.6 85.0 93.5 92.9 92.5 89.9
CFT-WMW 87.2 87.9 94.7 92.9 92.5 91.0
CFT-AUCM 89.1 87.7 93.8 93.2 92.4 91.2
CFT-GA 88.8 88.6 94.5 93.0 92.7 91.5
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Ablation Study on GA. We study four different optimization methods for
fine-tuning LRs to investigate the effectiveness of GA: (1) the default BCE
loss used above (CFT-BCE), (2) GA (CFT-GA), (3) the loss proposed in [40],
referred to as WMW loss (CFT-WMW), and (4) AUC margin loss (CFT-AUCM)
[44]. WMW and AUC margin losses are particularly designed for AUC maximiza-
tion.

For CFT-GA, we use the GA implementation of PyGAD [14]. The number
of generations is 500. An individual represents the parameters of the LR, where
one position of the individual represents one parameter. Decoding is the inverse
operation of encoding. The number of individuals is 30. All individuals are ini-
tialized by encoding the original parameters. The fitness function is set to be
the training mAUC. Roulette wheel selection is used to select 14 individuals
as parents. 10 of the parents are additionally kept as individuals in the next
generation. 2-point crossover is used with a probability of 80%. Mutation proba-
bility is set to be 2%. When a mutation occurs, 1% of the positions are mutated
by adding random scalars drawn from [−0.02, 0.02]. The individual that attains
the highest fitness score at every generation is validated instead of all individ-
uals to reduce the risk of overfitting. The individual that achieves the highest
validation mAUC is decoded and saved. For CFT-WMW, stochastic gradient
descent (lr = 1 × 10−3,momentum = 0.9) with batch size 32768 is used due to
memory lack. For CFT-AUCM , we follow the original paper [44] to use PESG
(lr = 1 × 10−2,margin = 1) [16]. Full batch size is used.

Table 2 shows all methods successfully improve the AUCs on all 5 categories.
Particularly, GA is the most effective (mAUC +1.9%), followed by AUCM loss
(+1.6%), WMW loss (+1.4%). BCE loss is the least effective (+0.3%).

Although WMW and AUCM losses are designed for AUC maximization, they
are less effective than GA, probably they rely on backpropagation which is easy
to trap on local optima. On the other hand, GA can directly optimize AUC and is
easier to escape from local optima. BCE loss is the least effective, as minimizing
BCE can lead to AUC drops. E.g., on “Atelectasis” category (Fig. 2).

Fig. 2. Learning curves of using BCE loss to
fine-tune the LR on Atelectasis. Minimizing
BCE loss can decrease AUC.

Table 3. Greedy selection for
exploiting uncertain labels, AUC%.

Method Ate Car Con Ede P.E Mean
Unknown 88.8 88.6 94.5 93.0 92.7 91.5
Positive 88.6 87.9 93.8 93.1 92.8 91.3
Negative 85.5 88.2 95.6 93.0 92.4 90.9
Greedy 88.8 88.6 95.6 93.1 92.8 91.8



340 C. F. Chong et al.

Greedy Selection for Exploiting Uncertain Labels. In the above ablation
studies, treating uncertain labels as unknown may be sub-optimal, as previous
studies in this dataset show that treating uncertain labels as positive tends
to achieve higher performance [31]. Therefore, we compare three methods for
handling uncertain labels with CFT-GA: treat as unknown labels (same as in
ablation studies), positive labels [21], and negative labels [21].

Table 3 shows that different categories prefer different methods. Hence, we
use the greedy selection to select the best method for each LR, eventually achiev-
ing mAUC 91.8%, which is +2.2% higher than Baseline mAUC 89.6%. In the
following comparison section, we refer to this model as CFT-GA-Greedy.

Table 4. Comparison to other state-of-the-art approaches on the test set, AUC%.

Model Type Rank Approach Ate Car Con Ede P.E Mean

Single Model 147 Chong et al. [7] 85.67 89.30 82.15 90.92 95.56 88.72

151 Multiview (R-50) [22] 85.60 90.85 81.07 89.45 95.85 88.60

134 Multiview (D-121) [22] 86.49 90.95 83.99 89.62 96.34 89.50

127 PTRN + Single Model [6] 85.66 89.06 86.89 90.94 95.47 89.61

53 CFT-GA-Greedy 88.58 90.20 90.99 93.06 96.26 91.82

Ensemble 102 PTRN + Ensemble [6] 85.73 89.90 90.57 91.66 95.04 90.58

98 Stanford Baseline [21] 85.50 89.77 89.76 91.56 96.67 90.65

5 YWW [42] 88.18 93.96 93.43 92.72 96.15 92.89

2 Hierarchical Learning [31] 90.13 93.18 92.11 92.89 96.68 93.00

1 DAM [44] 88.65 93.72 93.21 93.00 96.64 93.05

- CFT-GA-Greedy-Ensemble 91.52 93.73 91.57 93.33 96.50 93.33

Comparison to State-of-the-art Approaches. We compare CFT-GA-
Greedy to other state-of-the-art approaches on the test set. Most approaches
treat unknown labels as negative labels, hence can be considered as strong base-
lines of Negative mode for the comparison. Table 4 shows the comparison.

Single Model. We submitted CFT-GA-Greedy to the competition server for
official evaluation. It achieves mAUC 91.82% which is the highest single model
AUC in the leaderboard and literature, to the best of our knowledge.

Ensemble. We build an ensemble composed of CFT-GA-Greedy and another
4 CNNs developed by our proposed methods, referred to as CFT-GA-Greedy-
Ensemble. Similar to 2nd on the competition leaderboard [31], we use test time
augmentation [36] for more robust predictions: scale ±5%, rotate ±5◦, trans-
late ±5◦. Since the competition was suddenly closed, our ensemble cannot be
submitted for the official evaluation. After the test set was released and can be
downloaded, we evaluate our ensemble on a local machine. Our ensemble achieves
mAUC 93.33% which superiors the best in the leaderboard and literature, to the
best of our knowledge.
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4.2 Partially Labeled Versions of MS-COCO

Dataset. MS-COCO [28] (2014 split) is a standard MLC dataset comprising 80
categories. The training and the validation sets consist of around 80k and 40k
image samples, respectively. We follow the work on MS-COCO (e.g., [34]) to use
mean AP (mAP) as the performance metric.

As the training data is fully labeled, different schemes of partial labels can
be simulated by dropping some labels. Particularly, we study our methods under
the proportions of known labels of 10%, 20%, ..., 90%, respectively. To simulate
these schemes, we randomly drop 90%, 80%, ..., 10% of labels, respectively.

Table 5. Results on partially labeled versions of MS-COCO dataset. In mAP %.
“Average” column is the average mAP over label proportions 10% to 90%. (Bolded is
the best, underlined is the 2nd best)

Method 10% 20% 30% 40% 50% 60% 70% 80% 90% Average

Baseline 54.8 63.1 68.9 72.0 74.1 75.9 77.9 79.2 80.6 71.84

CFT-BCE-simu 54.7 63.1 68.9 73.0 74.9 76.7 78.4 79.6 80.6 72.20

CFT-BCE-Negative 56.6 65.3 70.4 73.4 75.3 77.0 78.8 80.0 81.3 73.11

CFT-BCE 59.3 67.7 72.6 75.0 76.6 78.2 79.6 80.7 81.6 74.58

CFT-GA 57.4 65.6 71.0 73.8 75.6 77.4 79.1 80.4 81.4 73.52

CFT-Greedy 59.3 67.7 72.6 75.0 76.6 78.2 79.7 80.8 81.7 74.61

Baseline Training. We follow most of the settings of [34] to train Baseline,
as they achieved state-of-the-art CNN on the original MS-COCO (i.e., fully
labeled). Baseline is a TResNet-L [35] with an input resolution 4482 . The
parameters trained on ImageNet are used as the initial parameters. Negative
mode is used to handle the unknown labels. We use batch size 8, asymmetric
loss [34], and Adam (lr = 2×10−4) to update the parameters. We use AutoAug-
ment [9] with pretrained ImageNet policy as the data augmentation method.
Normalization of mean 0 and variance 1 is applied to the input images. The
checkpoint that achieves the highest validation mAP is saved. The performance
of Baseline under different label proportions are reported in Table 5.

Ablation Study on CFT. We apply CFT to Baseline to improve its per-
formance. The default BCE loss is used to fine-tune each LR, referred to as
CFT-BCE. Similar to the experiments on CheXpert, we also study the two vari-
ants of CFT-BCE: CFT-BCE-simu and CFT-BCE-Negative. Full-batch gradient
descent (lr = 1 × 10−2,monentum = 0.9) is used and the number of epochs is
5000.

CFT-BCE improves the average mAP by 2.74%, CFT-BCE-simu improves
0.36%, and CFT-BCE-Negative improves 1.27%. Both variants are less effective
than CFT-BCE, demonstrating the effectiveness of one-by-one fine-tuning and
Ignore mode.
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Noteworthy, CFT-BCE-Negative does not use Ignore mode. Although it is
less effective than using Ignore mode, it still can improve the average mAP.
It implies that this improvement is likely to be gained from somewhere else
instead of from reducing the performance decreases caused by the wrong labels of
Negative mode during training. Therefore, CFT may be able to improve models
trained with fully labeled data, which requires further investigation.

Ablation Study on GA. We compare GA to the default BCE loss (used in
above) for fine-tuning each LR. The number of generations is 2000. The popu-
lation size is 50. All the individuals of the initial population are encoded from
the original parameters. The best individual of the current generation is selected
as one individual of the next generation. The parents are selected using roulette
wheel selection. During crossover, 20% of the positions of two parents are ran-
domly switched to produce offspring. Each offspring has a 50% chance of being
mutated by adding a random scalar between [−0.001, 0.001] to each position.

GA improves the average mAP by 1.68%. However, it is generally less effective
than BCE loss (2.74%). The key reasons may be (1) minimizing BCE does not
necessarily lead to AP drops, and (2) BCE loss relies on backpropagation which
is generally more efficient than GA.

Greedy Selection. We use greedy selection for choosing the best optimization
methods between BCE loss and GA for each LR, referred to as CFT-Greedy.
CFT-Greedy improves the average mAP by 2.77%, which is further higher than
CFT-BCE by 0.03%. It implies that the greedy selection has chosen GA for the
fine-tuning of a small proportion of LRs.

5 Conclusion

In this paper, we propose a new post-training method called CFT which one-
by-one fine-tunes the LRs in a model trained with Negative mode to improve its
classification performance of each category independently further. Two optimiza-
tion methods (BCE loss and GA) are tested for fine-tuning LRs. The effectiveness
is evaluated on the CheXpert competition dataset and the partially labeled ver-
sions of the MS-COCO standard MLC dataset. Especially, CFT achieves state-
of-the-art on the CheXpert dataset (single model AUC 91.82% and ensemble
AUC 93.33%, on the test set).
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