
Multi-intent Description of Keyword Expansion
for Code Search

Haize Hu1(B), Jianxun Liu1, and Lin Xiao2

1 Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
hhz@mail.hnust.edu.cn

2 Hunan Normal University, Changsha 410081, Hunan, China

Abstract. To address the issue of discrepancies between online query data and
offline training data in code search research, we propose a novel code searchmodel
calledmulti intent description keyword extension-based code search (MDKE-CS).
Our model utilizes offline training data to expand query data, thereby mitigating
the impact of insufficient query data and intention differences between training and
query data on search results. Furthermore, we construct a multi-intention descrip-
tion keyword vocabulary library based on developers, searchers, and discussants
from the StackOverflow Q&A library to further expand the query. To evaluate
the effectiveness of MDKE-CS in code search tasks, we conducted comparative
experimental analyses using two baseline models, DeepCS and UNIF, as well as
WordNet and BM25 extension methods. Our experimental results demonstrate
that MDKE-CS outperforms the baseline models in terms of R@1, R@5, R@10,
and MRR values.

Keywords: Code search ·Multi-intention · Expand query

1 Introduction

With the increasing number of developers who upload and share their code fragments
on open source communities, the code resources available in these communities have
become increasingly abundant. [1] This continuous enrichment of open source commu-
nity resources has provided a vital foundation for the development of code search [2]. By
searching for existing code fragments in open source communities, software developers
can modify and reuse them, thereby improving the utilization of existing code, saving
development time, and enhancing software development efficiency [3]. Consequently,
the rapid and accurate search for existing code fragments (i.e., code search) has become
a crucial area of research in software engineering.

Currently, deep learning-based code search research is mainly divided into offline
training andonline search [4]. In the offline training phase, a deep learning networkmodel
is employed to learn features from a large dataset, and the network model parameters
are acquired through learning [5]. During feature learning, the data primarily consists of
CodeDescription pairs,whereCode represents the source code fragment andDescription
corresponds to the statement that describes the function of the source code fragment [6].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, CCIS 1965, pp. 3–14, 2024.
https://doi.org/10.1007/978-981-99-8145-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8145-8_1&domain=pdf
https://doi.org/10.1007/978-981-99-8145-8_1


4 H. Hu et al.

The deep learning network model is primarily utilized to learn the syntax and semantic
relationships between code language (Code) and natural language (Description), ulti-
mately determining the network model parameters that can map Code and Description.
In the online search stage, developers input query content (describing code fragments or
representing code functions), and the query content is matched with the code fragments
in the dataset to obtain the highest matching results [7]. While Code Description pairs
are employed for feature learning in offline training, Query instead of Description is used
to match Code in online search. However, there are two differences between Query and
Description. Firstly, there is a difference in length, with Query usually being shorter than
Description [8]. According to statistics, the average query length entered by search per-
sonnel is 2–3, while the average description length for code is 20–30 [9]. Secondly, there
are semantic differences between Query and Description. Description refers to the way
code developers describe code fragments from their perspective, while Query represents
the description of code fragments based on the needs of search personnel, from their own
perspective. These differences lead to significant differences in the descriptions of the
same code fragment by developers and searchers [10]. Nevertheless, existing research
often treats Query and Description equally, ignoring their differences, which can have a
significant impact on search results [11].

To address the differences between Query and Description in existing code search
research, researchers have proposed query extension studies. Query extension research
aims to design extension methods and sources to expand Query, reduce the differences
between Query and Description, and improve the accuracy of code search results [12].
Existing research on query extension primarily focuses on two aspects: extension meth-
ods and extension sources [13]. Extension methods are primarily divided into keyword
extension and source code API extension methods [14]. Keyword extension involves
using words in a query statement as keywords, matching them with words in a vocabu-
lary, and extending the query statement with words that have high similarity [15]. The
source code API extension method involves using APIs in code fragments as exten-
sion sources, matching query statement keywords with API keywords, and extending
query statements with API keywords that have high similarity [16]. Existing research
on extension sources mainly relies on Q&A pairs (Stack Overflow Q&A) and WordNet
as extension sources in question answering libraries [17]. However, existing extension
methods and sources for query extension research are still unable to effectively reduce
the differences betweenQuery andDescription, and cannot effectively improve the query
extension effect, resulting in lower code search results. Overall, there are still three main
issues with existing research on query extension. (1) The current datasets available for
research in code search primarily focus on code search itself, and there is a lack of spe-
cialized datasets for query extension research. (2) Disregarding the differences between
Query and Description makes it challenging to map Query and Description effectively.
(3) The lack of consideration for query intent results in an inability to accurately express
search intent.

In order to enhance the effectiveness of query expansion, we propose a multi-intent
description of keyword expansion model for code search, abbreviated as MDKE-CS.
Firstly, we construct a Query Code Description keyword dataset from the perspectives
of code developers, searchers, and reviewers based on the Q&A of Stack Overflow.



Multi-intent Description of Keyword Expansion for Code Search 5

Secondly, we utilize a deep learning model to train Query Code data pairs to obtain the
best matching Code for Query. Then, we use multiple types of Keywords corresponding
to the matched Code and residual information Description to compensate for keyword
features and extend the Query, obtaining the first extended Query-1. We repeat the best
extension times for the extended model to obtain the final Query-n. Finally, we match
Query-n with the Code in the database one by one to obtain the best code fragment.
Our proposed model, MDKE-CS, provides an approach to improve the accuracy of
code search results by accounting for the differences between Query and Description
while considering multiple intent descriptions for keyword expansion. By leveraging the
deep learning model and multi-intent keyword expansion strategy, MDKE-CS enables
effective query expansion and improves the accuracy of code search results.

In this research, we make the following contributions:

a. We create a Query-Code-Description-Keyword dataset for query extension research
and demonstrate its effectiveness through experimental analysis based on existing
code search models.

b. We propose a query extension code searchmodel,MDKE-CS, which utilizes multiple
intention description keywords to improve the accuracy of code search results.

c. We conduct a comparative experimental analysis on the code search performance of
MDKE-CS based on the Query-Code-Description-Keyword dataset and verify the
effectiveness of the proposed model in improving the accuracy of code search results.
Our research provides a novel approach to enhancing the accuracy of code search by
utilizing a multi-intent keyword expansion strategy and deep learning techniques in
a query extension model.

The remaining sections of the paper are organized as follows: Sect. 2 introduces
our proposed MDKE-CS model for query extension in code search. Section 3 presents a
detailed analysis of the experimental results, including experimental preparation, dataset
construction, and analysis of the experimental results. Section 4 provides a summary of
our work and outlines the contributions of our research. By organizing the paper in this
manner, we aim to provide a clear and structured presentation of our proposed model
and experimental results, and to provide readers with a comprehensive understanding of
our research.

2 Model Method

In order to make up for the shortcomings of existing query extensions, we propose a
query extension code search model MDKE-CS based on multiple intention description
keywords. The overall framework of the MDKE-CS model is shown in Fig. 1.

The MDKE-CS model consists of two main parts: offline training and online search.
In the offline training section, the primary objective is to learn the Query-Code mapping
relationship and obtain the parameters of the feature extraction model. Conventional
code search training methods are utilized, and the Query-Code dataset is used for model
training. A deep learning model is utilized to extract and learn the feature information
of Query and Code, and similarity calculation is employed for matching analysis. The
loss function is utilized as the basis for adjusting model parameters. By adjusting the



6 H. Hu et al.

Query Code Des
Data Set

Query

Code
Loss

Deep Leraning Model

Embedding

Initial Model Post-training Model

New
Query

Code Des

Embedding

Best Matching 
Code Snippets

Off-line Training

On-line Searching Post-training Model Output

Key Words

Data pairs

Key Words

Code
Vector

Des
Vector

Key Words
Vector

Vector Dataset

Fig. 1. The Framework of MDKE-CS

parameters of the model through a large amount of Query-Code data, the final model
parameters are obtained. Finally, the Code-Description Keyword data pairs in the dataset
are embedded using the model to obtain the Code-Description Keyword vector dataset
pairs. The online search part primarily involves expanding the query through the expan-
sion method to obtain the expanded query and taking the expanded query statement as
the search to obtain the best search results. In the online search, the new query statement
is first vectorized using the trained model, and then matched with Code to obtain the best
Description vector and Keyword vector. The Description vector and Keyword vector are
then extended to the query statement. The search and expansion process is repeated until
the best results are achieved.

2.1 Training Model Selection

Although our research focuses on code search, our focus is on query extension methods,
without studying the heterogeneous representation models between code language and
natural language. Therefore, during the research process, we adopted the Bidirectional
Long Short Memory Network (BiLSTM) (as shown in Fig. 2) as a deep learning model
for heterogeneous feature extraction. The reason for choosing the Bidirectional Long
Short Memory Network (BiLSTM) is because it is based on the manuscript “Deep Code
Search” studied by Gu et al. and proposes a DeepCS code search model. The proposal
of the DeepCS model represents the beginning of the introduction of deep learning into
code search research, aimed at bridging the semantic gap between code language and
natural language. Moreover, the DeepCS model has been recognized by a large number
of researchers, and research on code search based on “Deep Code Search” and deep
learning has developed rapidly.

Figure 2 depicts the structure of the BiLSTM model, which consists of three layers:
the Data layer, the LSTM extraction layer, and the feature information hiding layer (h).
The Data layer contains n units of data, denoted as Datan. The LSTM extraction layer is
composed of a forward LSTM and a reverse LSTM. The forward LSTM1-n is determined
not only by the current input data Datan, but also by the preceding LSTM1-(n-1) output. In



Multi-intent Description of Keyword Expansion for Code Search 7

Fig. 2. Structure of the BiLSTM model

contrast, the reverse LSTM2-(n-1) output is influenced not only by the preceding output
LSTM2-n, but also by the output of the forward LSTM1-(n-1). The hidden layer hn is
jointly obtained by LSTM1-n and LSTM2-n and serves as the output layer, representing
the feature information of the input data Datan.

2.2 Joint Embedding

As source code belongs to programming languages and query statements belong to nat-
ural languages, there exists a significant semantic gap between the two. Joint embedding
is a technique that utilizes a deep learning model to embed source code and query state-
ments into the same vector space. By embedding the two types of data in the same vector
space, cosine similarity can be used to calculate the similarity between them, thereby
reducing the semantic gap between the two. This technique is commonly employed in
code search models to improve the accuracy of search results by accounting for both the
programming language and natural language aspects of the query.

As previously mentioned, we constructed a Query-Code-Description-Keyword
dataset suitable for code search query extension research. During offline training, our
training objectives differ from those of “Deep Code Search.“ In our training, our goal
is to train the mapping relationship between Query and Code in the quad metadata
set. Therefore, we replaced the Description in “Deep Code Search” with Query. The
Description and Keyword in the quad metadata set serve as query extension data. In
our study, sequence preprocessing was performed on the source code to obtain M =
{m1,m2,m3…mM}, A= {a1,a2,a3…aA}, T= {t1,t2,t3…tT},Q= {t1,t2,t3…tQ}, respec-
tively. The Methodname sequence contains M words, the API sequence contains A
words, the Token sequence contains T words, and the Query sequence contains Qwords.
To better illustrate joint embedding, we will use A = {a1,a2,a3…aA} as an example.
Using BiLSTM for feature extraction and learning of the A sequence, the API sequence
corresponds to the Data layer in Fig. 3. If the API sequence contains a total of A words,
it corresponds to n Data values in Fig. 3. The LSTM layer performs feature extraction on
the API sequence to obtain the output layer feature vector values (as shown in formula
1).

{h1, h2, h3...hA} = BiLSTM({a1, a2, a3...aA}) (1)



8 H. Hu et al.

To effectively characterize data features and reduce the impact of noise, we utilize
a maximum pooling network to select the extracted features. The maximum pooling
network is used to select the optimal hidden layer and obtain feature information. The
maximum pooling calculation is shown in formula 2.

a = max pooling([h1, h2, h3, ...hA]) (2)

After performing the maximum pooling calculation, the final feature information hat
is obtained (as shown in formula 3).

hat = tanh(WM [ht−1; atA]) (3)

where,WM is the parameter matrix of the API sequence in the BiLSTMnetwork, and atA
is the vector corresponding to the words in the sequence. After feature extraction in the
LSTMlayer, the output sequence of the hidden layer of themodel ish= {h1,h2,h3,…,hA}.

Similarly, we utilize BiLSTM to extract features from the other three sequences,
obtaining the feature hiding layer vectors of the Methodname sequence vector (m), the
Tokens sequence vector (t), and theQuery vector (q), respectively. Assuming the number
of words in the Methodname sequence is M, the number of words in the Token sequence
is T, and the number of words in the Query sequence is Q (as shown in formula 4).

m = max pooling([h1, h2, h3, ...hm])
t = max pooling([h1, h2, h3, ...hT ])
q = max pooling([h1, h2, h3, ...hQ])

(4)

During the model training process, our goal is to train the mapping relationship
between Code and Query. To achieve this, we use the concatenation network “concat”
to concatenate vectors a, m, and t to obtain the source code vector c).

2.3 Extended Research

Toaddress the limitations of existing query expansionmethods,wepropose amulti-intent
description keyword expansion model. Our approach integrates the intention descrip-
tion keywords of developers, searchers, and reviewers to improve the accuracy of exten-
sion and reduce the semantic gap between queries and descriptions. The multi-intent
description keyword expansion method is illustrated in Fig. 3.

Figure 3 illustrates the three-step process of the multi-intent description keyword
expansion method. First, a similarity matching is performed with the code database to
obtain n sorted best matching codes. Second, from the n best matching codes, the first k
keywords corresponding to the code are selected as the extension words for the Query.
To compensate for the loss of contextual semantics during the extraction of multi-intent
description keywords, we use the Description as residual to supplement the lost semantic
information. Finally, the multi-intent description keyword expansion is repeated on the
Query until the decision maker meets the set requirements, and outputs the final code
sorting result.

The multi-intent description keyword expansion method offers three advantages for
code search tasks. First, we utilize the Stack Overflow Q&A dataset, which contains real



Multi-intent Description of Keyword Expansion for Code Search 9

Fig. 3. Extension method

Queries and Descriptions. Queries are proposed by searchers and express their require-
ments, while Descriptions are provided by code developers and third-party researchers,
expressing their descriptions of the requirements. Hence, our data selection is more
aligned with real-world code search tasks. Second, we use extended kezywords derived
from Descriptions, and use Descriptions as residuals to compensate for any lost infor-
mation. As the extended information comes from the code, it can match the Query more
accurately during the search. Third, we adopt amulti-intent fusion extensionmethod that
better considers the intentions of searchers, developers, and other researchers, thereby
improving the accuracy of code search.

3 Experimental Analysis

To evaluate the effectiveness of the proposed model in code search tasks, we conducted a
comparative experimental analysis on a Linux server. The experimental analysis includes
three parts: description and query difference analysis, extension module effect analysis,
and extension comparison analysis. Due to the large size of our model parameters and
experimental dataset, a separate CPU cannot calculate our model parameters separately.
Therefore, we used a Linux server with two Nvidia GTX 2080Ti GPUs, each with 11GB
of memory. For the experiments, we implemented the proposed model using Python
(version 3.6+) and the PyTorch (version 0.4) experimental simulation platform.

3.1 Experimental Preparation

To address the lack of suitable datasets in existing query extension research, we con-
structed a four-metadata set [Query-Code-Description-Keyword] based on the Q&A
library of the Stack Overflow platform. We defined this dataset as CSExpansion. Query
is a question raised by researchers on the Stack Overflow platform regarding the required
code. The Description includes not only the explanation of the code developer, but also
the explanation of other researchers who participated in the discussion of the code. Key-
words are extracted from the Description, using the top 10 words of TFIDF in each
Description. To account for the varying length of each Description, we set less than 10
keywords and fill them with 0. If there are more than 10 keywords, we sort the top 10
keywords and delete the remaining ones. Due to the limited data resources and model



10 H. Hu et al.

characteristics of the Stack Overflow platform, our CSExpansion dataset currently only
includes Python and Java languages. Table 1 shows the composition of the CSExpansion
dataset.

Table 1. CSExpansion Dataset

Data Python Java Total

Number 37234 31297 68531

During the experimental analysis, we used four basic models: DeepCS, UNIF,Word-
Net, and BM25. DeepCS and UNIF models were used as the basic code search models
for feature extraction and data training. WordNet and BM25 models were used as query
extension models for comparative analysis. The four basic models used in our experi-
mental analysis are DeepCS [10], UNIF [18],WordNet [19] extensionmodel, and BM25
[20] extended model.

Our research on the proposed model is based on the basic code search models,
DeepCS and UNIF. To analyze the effectiveness of the proposed model in code search
tasks, we evaluated the search performance of the model using R@k (k = 1, k = 5, and
k = 10) and MRR metrics. These metrics are commonly used in information retrieval
to evaluate the accuracy of ranking algorithms. R@k measures the percentage of correct
results in the top k returned results, while MRR measures the average rank of the first
correct result. By using these metrics, we can quantitatively evaluate the effectiveness
of the proposed model in improving the accuracy of code search.

3.2 Difference Analysis

The study of query extension focuses on reducing the differences between Query and
Description in the code search process, thereby improving the accuracy of code search.
To analyze these differences, we used the CSExpansion dataset and conducted a com-
parative experimental analysis using three metadata pairs (Query, Code, Description).
We compared and analyzed the Query-Code and Code-Description data pairs in the
experimental study. To evaluate the effectiveness of code search, we used the DeepCS
and UNIF basic code search models for comparative analysis. We divided the CSEx-
pansion dataset into training, validation, and testing sets in a 6:3:1 ratio, and conducted
the experimental analysis. The comparative experimental results are shown in Table 2.

The experimental results in Table 2 show that using Description as the search object
has better search performance than Query for the DeepCS and UNIF models on the
CSExpansion dataset. For the Python language, using Description instead of Query in
the DeepCS model resulted in an increase of 61.16%, 32.31%, 12.23%, and 12.12%
for R@1, R@5, R@10, and MRR, respectively, while in the UNIF model, the increase
was 15.07%, 8.21%, 12.67%, and 6.08%, respectively. For the Java language, using
Description instead of Query in the DeepCS model resulted in an increase of 81.65%,
15.27%, 17.53%, and 71.89% for R@1, R@5, R@10, and MRR, respectively, while in
the UNIF model, the increase was 23.44%, 17.05%, 36.52%, and 60.70%, respectively.



Multi-intent Description of Keyword Expansion for Code Search 11

Table 2. Difference Analysis Results

Model Input Python Java

R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

DeepCS Description 0.195 0.258 0.367 0.222 0.198 0.234 0.342 0.318

Query 0.121 0.195 0.327 0.198 0.109 0.203 0.291 0.185

UNIF Description 0.084 0.224 0.329 0.175 0.237 0.453 0.572 0.413

Query 0.073 0.207 0.292 0.148 0.192 0.387 0.419 0.257

From the experimental results, we can conclude that there are significant differences
between Description and Query in code search tasks, and using Description instead of
Query yields better code search results. Moreover, the Java language showed a more
significant improvement when using Description, possibly due to its widespread use in
engineering and the involvement of more researchers in discussions, leading to more
accurate Descriptions.

3.3 Comparative Experimental Analysis

We used the CSExpansion dataset and the widely usedWordNet and BM25 query exten-
sion models to verify the effectiveness of our proposed MDKE-CS in code search tasks.
While there are various existing query extension methods, fair comparative analysis is
currently not possible due to the lack of publicly available source code from the authors.
The experimental results are shown in Table 3.

Table 3. Comparative Analysis Results

Model Input Python Java

R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

DeepCS WordNet 0.081 0.176 0.280 0.127 0.117 0.209 0.384 0.234

BM25 0.088 0.181 0.288 0.137 0.180 0.339 0.405 0.254

MDKE-CS 0.351 0.501 0.687 0.301 0.357 0.511 0.698 0.477

UNIF WordNet 0.120 0.198 0.245 0.148 0.210 0.401 0.511 0.319

BM25 0.147 0.178 0.225 0.158 0.221 0.429 0.577 0.380

MDKE-CS 0.178 0.241 0.539 0.297 0.405 0.725 0.843 0.549

The experimental results in Table 3 show that the proposed MDKE-CS has better
search performance for the DeepCS and UNIF models compared to the comparative
models WordNet and BM25 on the CSExpansion dataset. For the Python language,
using MDKE-CS instead of WordNet and BM25 in the DeepCS model resulted in an
increase of 333.33% and 298.86%, 184.66% and 176.80%, 145.36% and 138.54%,



12 H. Hu et al.

137.00% and 119.71% for R@1, R@5, R@10, and MRR, respectively, while in the
UNIF model, the increase was 48.33% and 21.09%, 21.72% and 35.39%, 120.00% and
139.56%, 100.68% and 87.97%, respectively. For the Java language, using MDKE-CS
instead of WordNet and BM25 in the DeepCS model resulted in an increase of 205.13%
and 98.33%, 104.14% and 50.74%, 81.77% and 72.35%, 103.85% and 87.80% for
R@1, R@5, R@10, and MRR, respectively, while in the UNIF model, the increase was
92.86% and 83.26%, 80.80% and 69.00%, 64.97% and 46.10%, 72.10% and 44.47%,
respectively. The experimental results indicate that MDKE-CS has a more significant
effect in the Python language, possibly due to better training and the suitability of the
extended model for the language, improving the accuracy of description. Moreover, the
proposedMDKE-CS outperforms the comparative models,WordNet and BM25, in code
search tasks.

3.4 Analysis of Ablation Experiments

To analyze the structural rationality of the MDKE-CS model, we conducted a sepa-
rate analysis of the roles of each module in the model. Specifically, we focused on
the Keyword extension and Description residual effects in the MDKE-CS model. We
compared four models: using Query search alone, using Query+Keyword search, using
Query+Description, and usingMDKE-CS (Query+Description+Keyword), based on the
CSExpansion dataset. The experimental results are shown in Table 4.

The experimental results inTable 4 lead to two conclusions. Firstly, usingDescription
or Keyword for extension results in better search performance than using Query alone,
indicating that extending the Query can improve the accuracy of code search. Secondly,
using Keyword for extension has a better effect than using Description for extension.
Additionally, using both Description and Keyword for extension (MDKE-CS) yields the
best results, indicating that the proposed MDKE-CS model can effectively improve the
accuracy of code search.

Table 4. Model Structure Analysis

Model Input Python Java

R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

DeepCS Query 0.121 0.195 0.327 0.198 0.109 0.203 0.291 0.185

Query+Keyword 0.317 0.487 0.601 0.287 0.337 0.498 0.684 0.416

Query+Description 0.297 0.417 0.579 0.259 0.309 0.457 0.611 0.409

MDKE-CS 0.351 0.501 0.687 0.301 0.357 0.511 0.698 0.477

UNIF Query 0.073 0.207 0.292 0.148 0.192 0.387 0.419 0.257

Query+Keyword 0.161 0.379 0.478 0.271 0.350 0.668 0.798 0.495

Query+Description 0.124 0.324 0.429 0.225 0.347 0.643 0.772 0.483

MDKE-CS 0.178 0.241 0.539 0.297 0.405 0.725 0.843 0.549



Multi-intent Description of Keyword Expansion for Code Search 13

4 Conclusion

In this research, we focused on code search query extension and proposed an MDKE-
CS code search model. Through experimental analysis, we have shown that the pro-
posedMDKE-CSmodel effectively improves the accuracy of code search. Based on our
research, we have drawn the following conclusions:

a. There are significant differences between Query and Description during the code
search process.

b. The CSExpansion dataset, which we constructed, is suitable for code search research
and can improve the accuracy of query expansion.

c. The use of multiple intent keywords and residual descriptions to extend Query can
effectively reduce the differences between Description and Query, and improve the
accuracy of code search.

References

1. DiGrazia, L., Pradel,M.: Code search: a survey of techniques for finding code. ACMComput.
Surv. 55(11), 1–31 (2023)

2. Liu, S., Xie, X., Siow, J., et al.: GraphSearchNet: enhancing gnns via capturing global
dependencies for semantic code search. IEEE Trans. Software Eng. (2023)

3. Zeng, C., Yu, Y., Li, S., et al.: Degraphcs: embedding variable-based flow graph for neural
code search. ACM Trans. Software Eng. Methodol. 32(2), 1–27 (2023)

4. Zhong, H., Wang, X.: An empirical study on API usages from code search engine and local
library. Empir. Softw. Eng. 28(3), 63 (2023)

5. Hu, F.,Wang,Y.,Du, L., et al.: Revisiting code search in a two-stage paradigm. In: Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 994–
1002 (2023)

6. Li, X., Zhang, Y., Leung, J., et al.: EDAssistant: supporting exploratory data analysis in
computational notebooks with in situ code search and recommendation. ACMTrans. Interact.
Intell. Syst. 13(1), 1–27 (2023)

7. Hu, H., Liu, J., Zhang, X., et al.: A mutual embedded self-attention network model for code
search. J. Syst. Software 111591 (2023)

8. Martie, L., Hoek, A., Kwak, T.: Understanding the impact of support for iteration on
code search. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 774–785 (2017)

9. Ge, X., Shepherd, D.C., Damevski, K., et al.: Design and evaluation of a multi-
recommendation system for local code search. J. Vis. Lang. Comput. 39, 1–9 (2017)

10. Yang, Y., Huang, Q.: IECS: Intent-enforced code search via extended boolean model. J. Intell.
Fuzzy Syst. 33(4), 2565–2576 (2017)

11. Karnalim, O.: Language-agnostic source code retrieval using keyword & identifier lexical
pattern. Int. J. Software Eng. Comput. Syst. 4(1), 29–47 (2018)

12. Wu,H., Yang, Y.: Code search based on alteration intent. IEEEAccess 7, 56796–56802 (2019)
13. Hu, G., Peng, M., Zhang, Y., et al.: Unsupervised software repositories mining and its

application to code search. Software: Pract. Exper. 50(3), 299–322 (2020)
14. Kim,K.,Kim,D.,Bissyandé,T.F., et al.: FaCoY: a code-to-code search engine. In: Proceedings

of the 40th International Conference on Software Engineering, pp. 946–957 (2018)



14 H. Hu et al.

15. Sirres, R., Bissyandé, T.F., Kim, D., et al.: Augmenting and structuring user queries to support
efficient free-form code search. Empir. Softw. Eng. 23(5), 2622–2654 (2018)

16. Rahman, M.M.: Supporting Source Code Search with Context-Aware and Semantics-Driven
Query Reformulation. University of Saskatchewan (2019)

17. Yan, S., Yu, H., Chen, Y., et al.: Are the code snippets what we are searching for? a bench-
mark and an empirical study on code search with natural-language queries. In: 2020 IEEE
27th International Conference on SoftwareAnalysis, Evolution andReengineering (SANER),
pp. 344–354. IEEE (2020)

18. Cambronero, J., Li, H., Kim, S., et al.: When deep learning met code search. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 964–974 (2019)

19. Azad, H.K., Deepak, A.: A new approach for query expansion usingWikipedia andWordNet.
Inf. Sci. 492, 147–163 (2019)

20. Liu, J., Kim, S., Murali, V., et al.: Neural query expansion for code search. In: Proceedings
of the 3rd ACM Sigplan International Workshop on Machine Learning and Programming
Languages, pp. 29–37 (2019)


	Multi-intent Description of Keyword Expansion for Code Search
	1 Introduction
	2 Model Method
	2.1 Training Model Selection
	2.2 Joint Embedding
	2.3 Extended Research

	3 Experimental Analysis
	3.1 Experimental Preparation
	3.2 Difference Analysis
	3.3 Comparative Experimental Analysis
	3.4 Analysis of Ablation Experiments

	4 Conclusion
	References


