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Abstract. In the field of computer-aided diagnosis (CAD) for spinal dis-
eases, the fundamental task of multi-label segmentation for vertebrae and
intervertebral discs (IVDs) assumes a significant role. However, the dis-
tinctive characteristics inherent to the spinal structure pose considerable
challenges to the segmentation process, impeding its practical applicabil-
ity in clinical settings. Convolutional neural networks have been widely
used in this task; however, their limited receptive field restricts their
capacity to capture extended-range spatial correlations. Consequently,
the model’s ability to accurately delineate vertebral boundaries is com-
promised, leading to a notable deterioration in the quality of segmenta-
tion outputs. To address this limitation, we propose a novel two-stage
convolutional neural network (CNN) framework that incorporates both
3D Transformers and 2D CNNs. By synergistically leveraging the advan-
tages of Transformers in facilitating the integration of long-range depen-
dencies and the ability of CNNs to learn global and local features, our
proposed approach exhibits promising potential in enhancing the seg-
mentation performance for vertebrae and intervertebral discs. Moreover,
we introduce a graph convolution module into our network architecture
to exploit the inherent spatial dependencies present in MRI scans of
spinal structures, thereby extracting semantic feature representations
and further augmenting the efficacy of segmentation. The evaluation
of our proposed method is conducted on the MRSpineSeg Challenge
dataset, encompassing T2-weighted MR images.
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Fig. 1. The task involves the multi-label segmentation of volumetric MR images depict-
ing the vertebrae and intervertebral discs, encompassing 10 distinct labels for vertebrae
and 9 for intervertebral discs. It is worth noting that the labels correspond to vertebrae
located in the thoracic (T), sacral (S), and lumbar (L) regions.

1 Introduction

The spinal serving as the central axis of the skeletal structure, assumes a vital
role in protecting essential organs, blood vessels, and nerves [1]. As the popula-
tion ages, the incidence of spinal disorders has witnessed a significant increase. In
the domain of computer-aided diagnosis and treatment of spine-related diseases,
the multi-label segmentation of volumetric magnetic resonance (MR) images per-
taining to vertebral bones and intervertebral discs assumes a critical significance.
Accurate segmentation of the spinal region, as depicted in Fig. 1, empowers med-
ical practitioners to assess the structural characteristics and overall health of
vertebrae and intervertebral discs, thereby facilitating early detection, diagno-
sis, and surgical planning for various spinal conditions, including deformities,
traumas, tumors, and fractures.

Currently, with the progress of artificial intelligence, contemporary medical
image spinal segmentation techniques are predominantly built upon two pre-
dominant strategies:1) Traditional machine learning based methods. Bao et al.
[2] employed a linear iterative clustering algorithm to acquire superpixel MRI
images of the spine, enabling the subsequent segmentation of the spinal region.
Viji et al. [3] applied a probabilistic boosting tree (PBT) approach in conjunction
with fuzzy support vector machine segmentation to achieve automated detection
of the spinal canal.2) Deep learning-based methods. In contrast to conventional
methodologies, deep learning techniques have demonstrated remarkable efficacy
in the domain of spinal segmentation.

Particularly, convolutional neural networks (CNNs) [4-8] have been widely
adopted, yielding significant advancements in spinal MR image segmentation.
Noteworthy models such as the fully convolutional neural network (FCNNs)
[4,5] and U-Net [6,7] have played a prominent role in these advancements. How-
ever, the effectiveness of FCNNSs is limited by the restricted spatial range of the
convolutional layers, impeding the model’s ability to capture long-range spa-
tial correlations. Despite the increasing diversity of models employed in spinal
segmentation, they often overlook the distinctive chain structure of the spine
and neglect the structural interdependencies among neighboring vertebrae and
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Fig. 2. Our proposed segmentation network consists of two stages, namely 3D coarse
segmentation and 2D refinement segmentation.

lumbar discs. These approaches overlook the holistic architecture of the spine,
the persistent long-range dependencies between vertebrae, and the inherent rela-
tionships among them. Furthermore, the significant computational and memory
requirements associated with these methods impose limitations on their adapt-
ability in diverse spinal segmentation scenarios.

Our work presents the following main contributions:

1. We propose a novel two-stage network architecture designed specifically for
the segmentation of biomedical 3D MR images. Our approach involves the
integration of a coarsely segmented 3D Transformer to capture long-distance
dependencies, along with a finely segmented 2D CNN to capture local high-
level features effectively.

2. The incorporation of both 3D and 2D networks enables our model to assimi-
late a broader range of feature information from images with varying dimen-
sions, thus enhancing its ability to learn diverse representations.

3. To further augment the segmentation performance of our proposed two-stage
network, we introduce graph convolution modules within both the 3D and
2D networks. This integration harnesses the power of graph convolution to
exploit spatial relationships, leading to improved segmentation outcomes.

2 Methods

2.1 Overall Architecture Design

We presents an innovative methodology for multi-class segmentation, employ-
ing a two-stage approach. In particular, we introduce a U-shaped 3D coarse
segmentation network, leveraging Transformers as the foundation for the ini-
tial segmentation stage, followed by a refinement segmentation network based
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Fig. 3. An outline of the architecture of the 3D coarse segmentation network is pre-
sented. The input to the initial segmentation stage consists of 3D multi-modal MRI
images with 4 channels. The encoded feature representations in the Swin transformer
are transmitted to a CNN-decoder via skip connections at multiple resolutions. The
final segmentation output comprises 3 output channels.

on DeeplLabv3+ in the subsequent stage. The 3D coarse segmentation network
utilizes Swin Transformers as the encoder, which is connected to FCNN-based
decoders via skip connections. The decoder generates probability maps for the
coarse segmentation task. Subsequently, during the refinement segmentation
stage, the volumetric MR image and the probability map derived from the 3D
coarse segmentation network serve as inputs for the 2D refinement segmentation
network, aiming to achieve more precise and intricate segmentation results. Our
proposed two-stage network is specifically tailored for multi-category segmen-
tation of vertebrae and intervertebral discs in volumetric MR images. Figure 2
provides a visual depiction of the network architecture, offering an overview of
its structural components.

2.2 3D Coarse Segmentation Stage

Inspired by the effectiveness of the “U-shaped” network architecture, we present
a U-shaped 3D coarse segmentation network built upon the Swin Transformer.
This network is designed for application during the coarse segmentation stage.
The structural configuration of the coarse segmentation network is illustrated in
Fig. 3 of this study.

Our coarse segmentation network follows a contracting-expanding pattern,
incorporating a stack of transformers as the encoder and establishing connections
with the decoder through skip connections. The input token XeRT*XWxDxS tq
the coarse segmentation network exhibits a patch resolution of (ﬁ , W, D) and a
dimension of H x W x D x S. To facilitate the projection of a 3D token sequence
with a dimensional parameter [%] X [%] X [%} onto an embedding space of
dimensional parameter C, we employ a patch partition layer. This layer enables
the transformation of the input token sequence into an embedded representation.
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Fig. 4. The architecture of the 2D refinement segmentation network is delineated. The
inputs of this network include both the 2D MR sagittal slice and its corresponding
coarse probability map, which is produced by the 3D coarse segmentation network.

In order to capture token interactions effectively, we incorporate a self-
attention mechanism that operates across non-overlapping windows generated
during the partitioning phase. Within the transformer encoder architecture, at
a specific layer denoted as 1, we employ windows of size MxMxM to evenly

divide a 3D token sequence into [£] x [£] x [{] regions. These partitioned win-

dow segments are subsequently shifted by ([2],[2L],[2L]) voxels in layer 1+1.

Instead of the conventional multi-head self—attentién (1\2/[SA) module, the Swin
Transformer utilizes a shifted windows module, which constrains self-attention
calculations to non-overlapping local windows using the shifted windows strat-
egy. This approach not only facilitates efficient computation but also enables the
modeling of token dependencies across the entire sequence.

The Swin Transformer module consists of a multi-head self-attention (MSA)
module with a shifted window and a two-layer MLP, embedded between Gaus-
sian Error Linear Units (GELU) nonlinearities. Prior to each MSA and MLP
module, a LayerNorm (LN) layer is applied. Moreover, residual connections are
established between two Swin Transformer modules, enhancing information flow
within the network. The introduction of the shifted window division method in
the Swin Transformer module optimizes its computational efficiency. The calcu-
lation process of the Swin Transformer module, employing this method, can be
outlined as follows:

Z' =W — MSA(LN(Z'"Y) + 21 (1)
Z' = MLP(LN(ZY) + Z (2)
7Y = SW — MSA(LN(Z')) + Z (3)
ZH—l — MLP(LN(Zl+1)) +Zl+1 (4)

where Z! and Z' stand for the (S) W-MSA modules and the MLP module’s
respective block 1 output characteristics. Similar to other studies [9,10], the
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following formula is used to calculate self-attention:

QK"
Vd

where d is the query/key dimension,M? is the number of patches in a window,
and Q, K, and V are the queries, key, and value metrics. Since the range of the
relative position along each axis is [-M + 1, M — 1], we parameterize a bias
matrix with a smaller size, B € REM-1)x(2M-1) " and values in B are obtained
from B.

Attention(Q, K, V) = SoftMax(

+B)V (5)

2.3 2D Refinement Segmentation Stage

During the 2D segmentation stage, our methodology is primarily guided by the
design principles of DeepLabv3+ [?]. In the encoder phase, we employ parallel
atrous convolution at multiple rates, commonly referred to as Atrous Spatial
Pyramid Pooling (ASPP) [11], to effectively encode multi-scale context informa-
tion. For the segmentation task, we adopt the Xception architecture and incor-
porate depthwise separable convolution to enhance both the efficiency and preci-
sion of network training. Furthermore, to refine the segmentation outcomes, we
introduce a straightforward yet highly efficacious decoder module, which builds
upon the aforementioned foundation. The architectural details of the refinement
segmentation network are presented in Fig. 4.

The 2D refinement segmentation network takes as input the 2D MR sagittal
slice and the coarse probability map corresponding to that slice, which is gener-
ated by the 3D coarse segmentation network. Incorporating the coarse probabil-
ity map enables the 2D refinement segmentation network to leverage the implicit
3D semantic information of the image. By effectively integrating the semantic
features of the spinal structure with detailed information, the network achieves
accurate segmentation. The high-resolution MR slices contain detailed informa-
tion, and the 2D refinement segmentation network combines this information
with the 3D semantic information to produce fine segmentation.

2.4 Graph Convolution Module

The graph convolution module consists of three consecutive stages: Pooling,
Graph Convolutional Network (GCN), and Unpooling. In the Pooling stage,
the input image representation is transformed into a graph-based representation
to facilitate subsequent processing by the GCN stage. The GCN stage aims to
generate graph representations enriched with semantic information through the
application of graph convolution operations. In the final Unpooling stage, the
obtained semantic graph representation is mapped back to the semantic image
representation and passed to the convolution layer for further processing.
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Table 1. The mean DSC (%) for the proposed method and other methods on the
MRSpineSeg Challenge dataset.

Methods T9 T10 T11 T12 L1 L2 L3 L4 L5 S

nnUNet 0.00+£0.00 3.07£15.02 70.71£2828 |79.86+18.10 |80.55+16.81 |79.17 £ 18.17 | 80.59 £ 14.55 | 84.44 +-8.43 |85.58 £8.83 |86.71£2.07
VNet 0.0040.00 28.96+29.87 |72.45+27.34 | 80.64+20.83 [81.98+19.47 |84.33£13.57 |86.63£4.70 |86.69+3.31 |86.16+4.03 |85.54+2.49
UNETR 0.00+£0.00 26.17£35.85 |66.99+26.52 |75.66+18.59 |79.23+16.82 |79.23£15.32 | 79.21£15.25 |80.80 £ 13.49 |82.80£7.99 | 83.43+4.59
3D Graphonomy 20.784+30.97 |44.32+£3850 |75.67+23.83 |82.14+14.62 |83.56+14.73 | 82.22+13.82 | 82,65+ 12.51 | 82.80+ 12.88 |84.48+10.82 | 82.52 £ 4.28

3D Deeplabv3-+2D ResUNet 241842539 [49.91£37.25 |78.86+23.43 |86.50+13.35 |88.20£9.62 |87.67+7.88 |87.27+6.78 [86.76:£7.04 |86.93+6.11 |87.58+3.45
3D Graphonomy+2D Deeplabv3 | 23.59 +23.12 | 44.77+35.39 | 77.09+23.52 |84.78 £13.90 |86.27+13.09 |86.07 +£12.69 | 86.35+11.52 |85.92+£11.57 |85.87+9.96 |85.82+3.33
Ours. 31.12 +21.99 | 56.90 + 34.25 | 80.75 + 20.34 | 87.34 £ 9.74 | 88.19+9.76 | 87.68 +9.64 | 88.54 + 3.83 | 88.31 + 3.15 | 87.83 + 3.08 | 87.53 £ 2.54

Table 2. The mean DSC (%) for the proposed method and other methods on the
MRSpineSeg Challenge dataset.

Methods TIT10 TI10T11 T11T12 Ti12L1 L1L2 L2L3 L3L4 L4L5 L58

nnUNet 0.00+£0.00 0.0040.00 T4.78 +£26.38 | 81.19+19.41 80.44+19.75 |81.02+19.13 | 85.42+13.41 |85.37+9.59 | 85.07+10.09
VNet 0.00 £ 0.00 44.97+33.05 | 78.684+24.01 |83.21+£21.37 |86.17+14.78 |87.17+13.47 |89.11£4.05 |86.52+7.10 |84.83£8.12
UNETR 0.00+0.00 4297+38.16 | 73.31£28.29 |76.48+21.08 |78.53+22.19 |80.74+18.55 |81.39+16.30 |80.69+15.22 |82.44£7.76
3D Graphonomy 22.55+39.85 |61.39+£30.74 |80.01+20.09 |83.07+15.86 |83.84+17.79 |83.54+15.16 |83.77+15.31 |82.424+12.32 |82.33+12.38

3D Deeplabv3 + 2D ResUNet 27.15+36.07 | 74.05+£28.64 |84.22+20.74 |87.78+13.74 |89.09+10.75 |88.07+12.83 |88.34+8.22 |85.86+7.39 |85.65+11.95
3D Graphonomy + 2D Deeplabv3 | 26.42+35.10 | 73.52+25.93 |84.33+18.65 |87.07+14.31 |87.30+15.28 |87.11+14.12 |87.37+13.96 |85.814+11.43 |85.72+10.57
Ours 28.35+34.11 | 76.92 + 22.48 | 86.03 + 16.54 | 88.91 + 10.06 | 89.37 +9.94 88.83 +10.12 89.99 + 4.02 87.47 + 5.45 86.73 + 7.62

3 Experiments

3.1 Dataset

Our proposed method was evaluated on the MRSpineSeg Challenge dataset,
which comprises a total of 215 T2-weighted MR, volumetric images. During the
experiment, 172 images were utilized, and they were partitioned into training,
validation, and testing sets in a ratio of 7:2:1. The volumetric images encom-
passed 10 vertebrae, 9 intervertebral discs (IVDs), and backgrounds, resulting
in a total of 20 distinct categories. The original images exhibited varying dimen-
sions, with widths and heights ranging from 512 to 1024, while the number of
slices along the coronal axis ranged from 12 to 20.

3.2 Implementation Details

For 3D networks, the pre-processing stage comprises a series of steps aimed at
preparing the input data. These steps include cropping, resizing, padding, and
normalization. To begin with, the cropping step involves center-cropping the
images along the depth direction to eliminate the non-spine portion, as half of
the image does not contain spinal information. Subsequently, the cropped image
is resized to a dimension of 18 x 256 x 128 pixels, with zero filling applied in the
depth direction to ensure uniformity. Lastly, the normalization process involves
computing the mean and variance values across all the images. These values are
then utilized to subtract the mean from each pixel and divide by their standard
deviation, resulting in a normalized representation of the data.

Our methodology was implemented using the Python programming language
based on the PyTorch deep learning framework. The model was trained on an
Nvidia RTX 3090 GPU with 24 GB of RAM. During the 3D segmentation stage,
a preliminary probability map of dimensions 20 x 18 x 256 x 128 was generated,
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Fig. 5. Using our segmentation method, sagittal slices depicting vertebrae and inter-
vertebral discs from six subjects were acquired. The label BG means the background
in these slices.

with an MR volume of size 16 x 256 x 128 serving as input. The Adam [13]
optimizer was employed for optimization, with a weight decay of 0.0001. We
initiated the learning rate at 0.001, and reduced it by a factor of 5 every 33
epochs. The batch size was set to 2, which was limited by the available GPU
memory.

3.3 Evaluation Metrics

To assess the segmentation performance, several metrics were employed in our
experiment, including the Dice similarity coefficient, precision(DSC), and recall.
These metrics are computed as follows:

2T P
Dice = :
T FP+2TP+FN (6)

Table 3. Ablation experiments were conducted on the MRSpineSeg Challenge dataset
to assess the effectiveness of each component in segmentation of the ten classes of
vertebrae T9-S. The mean DSC (%) was used to validate the components.

Coarse Refinement Segmentation | T9 T10 T11 T12 L1 L2 L3 L1 L5 s

3D Swin Transform [ 3D GCM | 2D Deeplabv3+ | 2D GCM

v 21.70£2997 |47.68+£3494 |77.39£23.17 |S489£16.34 [85.04%15.56 |85.45+13.24 |86.22£4.78 |86.12£3.40 [85.53£4.16 |85.27+2.82
v v 254142471 501943635 |T88T+23.12 [85.11+£16.35 |86.14+15.57 |86.53 4 13.26 |87.28+4.77 86.62+4.13 | 86.36 +£2.82
v v 271142165 539943463 |79.254£22.11 |86.49+£11.21 |87.64410.37 |87.23410.17 |87.81£6.91 87344453 |ST.2T+2.75
v v v 282342147 |5478£33.63 |80.37+£22.14 [86.23+£11.20 |87.73£10.4 |87.29410.16 |8T86+6.90 | 87.5 5 [STA1£450 |87.33+2.72
v v v 28.594£2139 |54.3943325 |80.28£2044 |87.12:£9.76 |88.1049.77 |87.6349.61 [885.49+3.85 |85.2843.15 |87.74£3.13 |STA442.54
v v v v 31,12+ 21.99 | 56.90 £ 34,25 | 80.75 4 20.34 | 87.34 +9.74 | 88.19 + 9.76 | 87.68 + 9.64 | 88.54 £ 3.83 | 88.31 + 3.15 | 87.83 + 3.08 | 87.53 £ 2.54

Table 4. Ablation experiments were conducted on the MRSpineSeg Challenge dataset
to assess the effectiveness of each component in segmentation of the nine classes of
IVDs T9T10-L5S. The mean DSC (%) was used to validate the components.

Coarse Segmentation Refinement Segmentation | T9T10 TI0T11 T11T12 T12L1 L1L2 L2L3 L3L4 LAL5 LS
Coarse Segmentation | 3D GCM | 2D Deeplabv3+ | 2D GCM
v 2058+25.94 [67.33£29.91 81442170 [85.70=16.57 |86.96+14.31 [86.71=13.70 |87.86+£4.11 |85.37+5.50
v 248143502 |69.92429.24 |82.88:4£21.65 |86.68+16.56 |87.92:£14.31 |ST.78+13.73 |88.83:£4.13 |86.3745.49
v v 25.18+26.91 |7L.0S£30.00 |83.73+£24.41 |87.50=10.52 |88.23+£10.07 [88.03=11.61 |80.57+6.35 |86.88+8.78
v v v 26.35+26.91 |72.92+£27.34 |84.27+£21.00 |88.60=1051 |89.26-10.07 [88.21=11.61 |89.26+10.07 |86.95+8.78
v v v 27.11434.66 |74.33424.10 |85.59416.69 |88.94+10.07|89.4149.92|88.75+10.09 |89.97£4.00 |87.444547 [86.65+7.67
v v v v 28.35+34.11 | 76.92 + 22.48 | 86.03 + 16.54 | 88.91 =10.06 |89.37+£9.91 |88.83 £ 10.12|89.99 +4.02 | 87.47 £ 5.45 | 86.73 + 7.62
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TP
Pre=—"—.
T TP+ FP 0
TP
Recall = m (8)

where TP, FP, FN, and TN denote the number of true positives, false positives,
false negatives, and true negatives, respectively.

3.4 Experiment Results

The Table 5 displays the precise values of Mean Recall, Mean Precision, and Dice
Similarity Coefficient (DSC) achieved by the two-stage segmentation network
for vertebrae, intervertebral discs (IVD), and all 19 spinal structures. We have
presented some exemplary images with well-performing segmentation results in
Fig. 5.

We conducted a comparative analysis of our proposed spinal segmentation
method with several other methods, including nnUNet [14], VNet [15], UNETR
[16], 3D Graphonomy [12], 3D Deeplabv3 [11] + 2D ResidualUNet [17], and
3D Graphonomy [12] + 2D Deeplabv3 [11]. The evaluation of the segmentation
performance across these methods was based on three crucial metrics: the Dice
similarity coefficient (DSC), Precision, and Recall. Tables1 and 2 present the
DSC evaluation indexes specifically for the segmentation of each vertebra and
intervertebral disc (IVD). Our proposed segmentation network demonstrated
superior performance compared to the other methods, achieving excellent seg-
mentation results for the seven categories of vertebrae T12-S (DSC > 87.34%)
and the seven categories of IVDs T11-S (DSC > 86.03%). These quantitative
comparison results highlight the notable superiority of our proposed method-
ology. Furthermore, Fig.6 showcases specific segmentation results obtained by
applying different algorithms to the aforementioned dataset, providing visual evi-
dence of the superior segmentation outcomes achieved by our proposed method.

Table 5. The average values of Recall, Precision, and Recall were computed for the
segmentation of vertebrae, intervertebral discs (IVDs), and all 19 spinal structures
using our proposed two-stage segmentation network.

Mean Recall | Mean Precision | Mean Dice
Background | 98.96 +0.30 | 98.99+0.50 98.97£0.21
Vertebrae | 85.87+8.46 | 86.16 +6.54 85.61 +6.68
IVDs 88.76 +8.31 |85.95+6.71 86.96 + 7.40
Overall 87.194+7.84 |86.04+5.85 86.21 +6.57

The performance of our network on the segmentation of T9-T11 vertebrae
(DSC <80.75%) and T9-T12 IVDs (DSC < 76.92%) is unsatisfactory due to sev-
eral factors. Firstly, the dataset contains very limited samples of T9-T11 verte-
brae and T9-T12 IVDs, with most of them being incompletely shaped. Secondly,
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the top of the image contains three types of vertebrae (T9-T11) and two types of
IVDs (T9-T12), making segmentation difficult due to the limited receptive field
at the top. These factors contribute to the suboptimal segmentation results of
our network in these regions.

3.5 Ablation Study

To assess the efficacy of each constituent element within our network architec-
ture, a series of ablation experiments were conducted, yielding results that have
been presented in Tables 3 and 4. The evaluation process encompassed six dis-
tinct configurations involving the integration of the 3D Swin Transform and 3D
GCM during the 3D Coarse Segmentation stage, as well as the utilization of the
2D Deeplabv3+ and 2D GCM during the 2D Refinement Segmentation stage.
These meticulous experiments effectively demonstrated the augmentation of seg-
mentation performance for both Vertebrae and IVDs through the inclusion of
the graph convolutional module and the employment of a dual network strategy.
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Fig. 6. Visualized comparison of results using different segmentation networks.

3.6 Effect of the Two-Stage Framework

The incorporation of 2D refinement stages into 3D segmentation tasks has
demonstrated considerable effectiveness in enhancing the performance of seg-
mentation algorithms. This enhancement is substantiated by the findings pre-
sented in Tables 1 and 2, which elucidate the improvements attained through
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the integration of 2D refinement in the 3D Graphonomy and 3D Graphon-
omy+2D Deeplabv3 frameworks, respectively. In comparison to the sole utiliza-
tion of 3D Graphonomy, the inclusion of a 2D refinement stage within the 3D
Graphonomy+2D Deeplabv3 approach yielded a notable increase in the average
Dice similarity coefficient (DSC) across the eight classes of vertebrae T11-S and
T10T11-L5S, as well as the eight classes of intervertebral discs (IVDs). Similarly
encouraging results were obtained from the ablation experiments conducted, as
evidenced by the outcomes presented in Tables3 and 4. The incorporation of
high-resolution images within the 2D networks contributed to a more compre-
hensive representation of detailed information, enabling the model to acquire a
richer understanding of the underlying features. Consequently, the synergistic
combination of 3D and 2D networks facilitated the assimilation of more con-
textual information from images with varying dimensions, culminating in a dis-
cernible enhancement in segmentation performance.

3.7 Effect of the GCM

The quantitative findings elucidated in Tables3 and 4 provide compelling evi-
dence that the incorporation of the graph convolution module into either the 3D
or 2D network yields notable advantages in enhancing the segmentation perfor-
mance of the model. Notably, it should be acknowledged that during the training
phase of both the 3D and 2D networks, the segmentation results may not strictly
adhere to the spatial order of the spinal structure. Consequently, the inclusion
of the graph convolution module in both the 3D and 2D networks emerges as a
more favorable approach for boundary position segmentation.

4 Conclusion

This paper presents a novel two-stage framework designed for achieving precise
multi-label segmentation of vertebrae and intervertebral discs. The proposed
framework integrates 3D transformers and 2D convolutional neural networks
(CNN) to attain accurate and reliable segmentation outcomes. In the initial
stage of the framework, 3D transformers are employed to generate preliminary
probability graphs, thereby establishing a foundation for subsequent processing.
Subsequently, in the second stage, the 2D MR sagittal slice and the correspond-
ing rough probability graph derived from the 3D rough segmentation network
are jointly inputted into the 2D network to achieve refined segmentation results
with heightened precision. Notably, the integration of graph convolution mod-
ules within both the 3D and 2D networks plays a crucial role in addressing
pertinent challenges associated with pixel labeling isolation, as well as recti-
fying errors pertaining to shape and positional segmentation outcomes. These
modules contribute to the enhancement of segmentation accuracy by effectively
resolving issues related to isolation and correction within the segmentation pro-
cess. Through comprehensive comparisons with state-of-the-art spinal segmenta-
tion methodologies utilizing publicly available datasets, the proposed framework
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has exhibited superior performance, underscoring its efficacy and potential for
advancing the field of spinal segmentation.
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