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Abstract. In the development of autonomous driving systems, pedes-
trian trajectory prediction plays a crucial role. Existing models still face
some challenges in capturing the accuracy of complex pedestrian actions
in different environments and in handling large-scale data and real-time
prediction efficiency. To address this, we have designed a novel Complex
Gated Recurrent Unit (CGRU) model, cleverly combining the spatial
expressiveness of complex numbers with the efficiency of Gated Recur-
rent Unit networks to establish a lightweight model. Moreover, we have
incorporated a social force model to further develop a Social Complex
Gated Recurrent Unit (S-CGRU) model specifically for predicting pedes-
trian trajectories. To improve computational efficiency, we conducted an
in-depth study of the pedestrian’s attention field of view in different envi-
ronments to optimize the amount of information processed and increase
training efficiency. Experimental verification on six public datasets con-
firms that S-CGRU model significantly outperforms other baseline mod-
els not only in prediction accuracy but also in computational efficiency,
validating the practical value of our model in pedestrian trajectory pre-
diction.

Keywords: Pedestrian Trajectory Prediction · Gated Recurrent
Unit · Complex number Neural Network · Autonomous Driving

1 Introduction

Trajectory prediction plays a vital role in many critical applications in today’s
society, such as autonomous driving [2,5], robotic path planning, behavior recog-
nition, security surveillance, and logistics management. Parsing human motion
trajectories is a research focus that involves multiple disciplines such as math-
ematics, physics, computer science, and social science [4]. Current prediction
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methods are typically divided into experience/rule-based methods and deep
learning-based methods. Experience or rule-based prediction methods have high
interpretability [5–7], but they do not perform well in terms of data fitting abil-
ity, often resulting in limited prediction accuracy [11–13]. Deep learning-based
methods can provide more accurate prediction results and can automatically
adapt to changes in data, demonstrating strong robustness and generalization
capabilities [1,8–10]. However, deep learning-based methods also have their lim-
itations. First, such methods typically require a large amount of data to achieve
optimal performance. Secondly, the prediction results often lack interpretability.
In addition, these methods have high computational resource requirements [14].

In this paper, we propose a brand-new model, the Complex Gated Recur-
rent Unit (CGRU) model, which aims to combine the advantages of complex
numbers and Gated Recurrent Units (GRU) to achieve efficient and accurate
trajectory prediction. We leverage the powerful expressive ability of complex
neural networks to capture complex patterns in complex space [16–20], thereby
enabling the CGRU model to handle intricate trajectory prediction problems
while maintaining high computational efficiency. On the other hand, by adopt-
ing the efficient simplicity of Gated Recurrent Unit networks [24], our model
can effectively handle time-series data and model long-term dependencies. This
model also considers the field of view of pedestrians walking in different environ-
ments, thus reducing the amount of information that the model needs to process
and improving its operational efficiency. In summary, the main contributions of
this paper can be encapsulated as follows:

– Innovatively proposed a Complex Gated Recurrent Unit (CGRU) model
based on the concept of complex numbers. This deep neural network model
combines the advantages of complex numbers in spatial representation and
the efficiency of Gated Recurrent Unit networks, thereby constructing a
lightweight and efficient Complex Gated Recurrent Unit model (CGRU).

– By integrating the social force model, we designed an S-CGRU model specifi-
cally for predicting pedestrian trajectories. This represents a significant exten-
sion and enhancement of traditional pedestrian trajectory prediction models.

– We conducted an in-depth study of the field of view of pedestrians walking
in different environments, which led to optimization in data processing. This
has significantly improved the training efficiency of our model.

– Empirical research results have verified the superiority of our model. Com-
pared to other benchmark models, our model has shown excellent perfor-
mance on six publicly available datasets, demonstrating its effectiveness and
efficiency in pedestrian trajectory prediction.

2 Related Work

2.1 Complex-Valued Neural Network

The use of complex numbers has shown many advantages in various fields,
including computation, biology, and signal processing. From a computational
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perspective, recent research on recurrent neural networks and early theoretical
analyses have revealed that complex numbers can not only enhance the expres-
sive power of neural networks but also optimize the memory extraction mech-
anism for noise suppression [15]. An increasing number of studies are focusing
on complex number-based representations because they can improve optimiza-
tion efficiency [16], enhance generalization performance [17], accelerate learning
rates [18–20], and allow for noise-suppression memory mechanisms [19]. Studies
in [20] and [18] show that the use of complex numbers can significantly improve
the representational capabilities of Recurrent Neural Networks (RNNs).

From a biological perspective, Reichert and Serre [21] constructed a theoret-
ically sound deep neural network model that achieves richer and more universal
representations through the use of complex neuron units. This marks the first
application of complex representations in deep networks. Conventionally, if the
network data is entirely real numbers, we can only describe the specific numeri-
cal value of the intermediate output. However, once the data is entirely complex,
in addition to being able to express the numerical magnitude of the intermediate
output (the modulus of the complex number), we can also introduce the concept
of time (the phase of the complex number). In neural network models, espe-
cially models like Gated Recurrent Units (GRU), the introduction of complex
representations can greatly optimize the ability to process periodic changes and
frequency information, as these pieces of information can be encoded through the
phase of the complex number. Neurons with similar phases work in synchrony,
allowing for constructive superposition, while neurons with different phases will
undergo destructive superposition, causing interference with each other. This
helps to differentiate and effectively manage the flow of information at different
time steps, thereby enhancing the network’s efficiency and accuracy in handling
time series data [40].

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) and its derivatives, such as Long Short-
Term Memory (LSTM) networks [1] and Gated Recurrent Units (GRU) [24],
are widely used for sequence prediction tasks. These RNN-based models have
achieved remarkable results in fields like machine translation [25] and speech
recognition [26]. RNNs are capable of capturing observed sequence patterns and
generating predictive sequences based on these patterns.

The Gated Recurrent Unit (GRU) has unique advantages in dealing with
these problems. Compared to LSTM, the structure of GRU is simpler, with
fewer parameters and more efficient computation. In addition, the gating mech-
anism of GRU allows it to excel in capturing long-distance dependencies [25].
Therefore, GRU is widely applied in various sequence prediction tasks, includ-
ing pedestrian trajectory prediction. However, current GRU models still require
further research and improvements to better understand and handle interactions
between pedestrians.
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2.3 Human-Human Interactions

Since the beginning of the research, researchers have recognized that the influ-
ence of surrounding neighbors must be fully considered when predicting the
future dynamic behavior of agents. As early as the initial stage, some work has
first introduced the concept of social forces [30], describing their social interac-
tions by simulating the repulsion and attraction between pedestrians. Subsequent
research [31] introduced factors of personal attributes, calculating the impact of
stationary crowds on moving pedestrians by classifying pedestrians. Further-
more, S-LSTM [1] successfully integrated the original LSTM network with the
time step collection mechanism to simulate the social interaction of pedestrians.
Since the social influence between pedestrians mainly depends on their distance
from neighbors, research [32] proposed constructing a circular occupancy map
to capture the influence of other pedestrians.

In our research, we adopted a data-driven method proposed by [1] to learn
the interaction between people more deeply. Then, we expanded on this basis
and further explored the field of view that pedestrians pay attention to during
their movement. This method can more accurately simulate the behavior of
pedestrians in real life because the direction and speed of pedestrian movement
are often affected by objects and other pedestrians within their field of view.
In addition, by reducing the irrelevant information that the model needs to
process, it can improve the prediction accuracy and computational efficiency of
the model, making it more practical in actual applications.

3 Method

3.1 Problem Definition

This paper aligns with the works of [1] and [8], assuming that there are N
pedestrians during the prediction time period [1, Tpred]. After preprocessing the
pedestrian trajectories in the video, the position of each pedestrian i at each
time step t can be defined as a pair of spatial coordinates P i

t = (xt
i, y

t
i), where

t ∈ {1, 2, 3, ..., tpred }and i ∈ {1, 2, 3, ..., N } . Then, the coordinates of each
pedestrian in the scene are divided into past trajectories Xi and future trajec-
tories Yi. As shown in Eq. 1 and Eq. 2:

Xi =
{
P i
t | t = 1, 2, 3, ..., tobs

}
(1)

Yi =
{
P i
t | t = tobs + 1, tobs + 2, tobs + 3, ..., tpred

}
(2)

Finally, this paper takes the past trajectories {Xi | i = 1, 2, 3, ..., N} of pedes-
trians in the scene as input, with the objective of generating future trajecto-
ries

{
Ŷ i | i = 1, 2, 3, ..., N

}
that closely resemble the actual future trajectories

{Y i | i = 1, 2, 3, ..., N} of the pedestrians. The generated future trajectories are
defined as in Eq. 3:

Ŷ i =
{

P̂ i
t | t = tobs + 1, tobs + 2, tobs + 3, ..., tpred

}
(3)
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3.2 Architecture Overview

We use an embedding dimension of 64 for the spatial coordinates before using
them as input to the LSTM. We set the spatial pooling size N0 to be 32 and use
a 8× 8 sum pooling window size without overlaps. We used a fixed hidden state
dimension of 128 for all the LSTM models.

Fig. 1. At time step t, we integrate the neighbor information from the previous step
and he current position of pedestrian i, update and obtain the current hidden state of
pedestrian i.

Figure 1 is a schematic diagram of the data flow of our model at time t.
At time t, the inputs to the S-CGRU include the coordinates of pedestrian i,
P i
t = (xt

i, y
t
i), as well as the hidden state information at time t−1(For exam-

ple hi
t−1). We use a social pooling layer to acquire the hidden state infor-

mation of other pedestrians surrounding pedestrian i at time t(For example
ha
t−1,h

b
t−1,h

c
t−1). The social pooling layer of the hidden states implicitly infers

the behavior of the nearby crowd, thereby adjusting its own path prediction.
These nearby pedestrians are also influenced by their surrounding environment,
and their behavior may change over time [8]. Next, we stack the hidden tensor
at time t with the input data and feed them into the CGRU. After the CGRU
processing, we obtain the hidden state at time t and the corresponding pre-
diction results. Our model is built on the foundation of S-LSTM [1] but further
optimizes the information processing and prediction mechanism. We particularly
focus on how to more effectively extract information from the behavior of sur-
rounding pedestrians, and how to integrate this information into our prediction
model. By using the CGRU, we can more effectively utilize historical and envi-
ronmental information, thereby improving the accuracy of pedestrian trajectory
prediction.

3.3 Complex Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a variant of the Recurrent Neural Net-
work (RNN) and was proposed by Kyunghyun Cho et al. [33]. The GRU solves
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the problem of gradient vanishing or gradient explosion that traditional RNNs
may encounter when dealing with long sequences. The GRU introduces a gating
mechanism to regulate the flow of information. Specifically, the GRU has two
gates, the update gate and the reset gate:

– The update gate determines to what extent new input information is received.
If the value of the update gate is close to 1, then the old memory is mainly
retained; if it is close to 0, then the new input is mainly used.

– The reset gate determines how to use the previous hidden state when calcu-
lating the new candidate hidden state. If the value of the reset gate is close
to 1, then most of the old memory is retained; if it is close to 0, then the old
memory is ignored.

The reset gate determines how to use the previous hidden state when calculating
the new candidate hidden state. If the value of the reset gate is close to 1, then
most of the old memory is retained; if it is close to 0, then the old memory is
ignored. Compared with the Long Short-Term Memory network (LSTM), the
structure of the GRU is more concise because it only has two gates and does
not have a separate cell state [33]. This makes the GRU computationally more
efficient and easier to train, while still retaining good performance on many
tasks, making it a popular choice in many neural network architectures.

In the Complex Gated Recurrent Unit (CGRU), this paper goes beyond the
traditional real-number structure, extending it to the complex domain. In this
way, each element not only contains a real part but also an imaginary part. This
extension allows the model to perform calculations in the complex space, thus
fully leveraging the unique characteristics of complex operations and demonstrat-
ing outstanding performance when processing temporal information. As shown
in Fig. 2. In CGRU, we pass the input and hidden states separately into the
linear transformation layers of the real and imaginary parts, and apply the sig-
moid activation function to obtain the real and imaginary parts of the reset
gate and update gate. This enables calculations to be performed in the complex
space. The characteristics of complex calculations can help the network remem-
ber important information in the long term, thereby improving the network’s
performance in dealing with long sequence problems.

In the reset gate, since the real and imaginary parts of the complex hid-
den state can encode information independently, the complex reset gate can
selectively forget information in higher dimensions. This may allow the CGRU
to perform better when dealing with complex, high-dimensional sequence data.
The calculation formulas for the real and imaginary parts of the reset gate are
shown in Eq. 4 and Eq. 5:

r rit = σ(Wir ∗ P i
t − Whr ∗ hi

t−1) (4)

r iit = σ(Wii ∗ P i
t − Whi ∗ hi

t−1) (5)

Wir, Whr, Wii, and Whi are the weights of the model, P i
t is the input, and hi

t−1

is the previous hidden state. r rit and r iit are the real and imaginary parts of
the reset gate, respectively.
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Fig. 2. Complex Gated Recurrent Unit.

The update gate in CGRU functions the same as in GRU, only now it operates
on the complex form of the hidden state and the complex form of the input.
This could possibly make CGRU perform better when handling complex, high-
dimensional sequence data. The formulas for the update gate are shown in Eq. 6
and Eq. 7:

u rit = σ(Wuzr ∗ P i
t − Whr ∗ hi

t−1) (6)

u iit = σ(Wuzi ∗ P i
t − Whi ∗ hi

t−1) (7)

Wuzr, Whr, Wuzi, and Whi are the weights of the model, P i
t is the input, and

hi
t−1 is the previous hidden state. u rit and u iit are the real and imaginary parts

of the update gate, respectively.
Based on the reset gate, we can calculate the real part of the new candidate

hidden state h barit (Eq. 8) and the imaginary part h i barit (Eq. 9). Equation 10
describes how to combine the update gate, the old hidden state, and the new
candidate hidden state in the complex space to obtain the new hidden state hi

t.

ˆh barit = σ(Wir ∗ P i
t − rr

i
t ∗ Whr ∗ hi

t−1) (8)

ˆh i barit = σ(Wir ∗ P i
t − rr

i
t ∗ Whr ∗ hi

t−1) (9)

hi
t = u rit ∗ hi

t−1 − u iit ∗ hi
t−1 + (1 − u rit) ∗ ˆh barit − (1 − u iit) ∗ ˆh i barit (10)
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3.4 Exploring Pedestrians’ Field of Vision in Different
Environments

Understanding and considering the impact of other pedestrians within the field
of vision is vital in predicting pedestrian motion patterns. As per studies, pedes-
trians typically adjust their trajectories based on the positions and movements
of other pedestrians within their field of view to avoid collisions. For other pedes-
trians behind an individual in certain environments, their influence on the tra-
jectory is usually considered negligible. In this paper, we focus on exploring to
what extent the movement trajectory of a pedestrian is affected by other pedes-
trians within a certain angular range. Our aim is to clarify and quantify this
influence to accurately simulate this interpersonal interaction behavior when
building predictive models. This approach not only helps to simplify the vol-
ume of information the model needs to process but also prevents unnecessary
or irrelevant information from adversely impacting the accuracy of the predic-
tion model. We hope that this method will enhance the accuracy of pedestrian
motion trajectory predictions and provide a useful theoretical foundation and
practical reference for related fields.

As shown in Fig. 3, Fig. 3a illustrates the scope of social pooling in [1,8]:
based on the hidden state of the LSTM encoder, it uses the method of maximum
pooling; then, it merges the relative position coordinates of each neighbor to
simulate the interaction between individuals. In models [1,8], taking Fig. 3a as
an example, the emphasis is on analyzing the influence of other pedestrians on
the trajectory of pedestrian P0 within a circle centered on the coordinates of
P0 and with a certain distance as the radius. In Fig. 2a, pedestrians P1, P2, P3,
and P4 are all within this range, and they will affect the movement trajectory of
P0. Conversely, since P5 is outside this range, we believe that P5 does not have
a direct impact on the movement trajectory of P0.

In the process of handling interactions, although pooling all the information
of neighboring pedestrians seems to be a solution, we do not recommend this
approach. The global information containing all pedestrians’ data often contains
a large amount of redundant or irrelevant data. For instance, the movement
information of pedestrians within a certain angular range behind the target
pedestrian may have a negative impact on the accuracy of prediction results [4].

Therefore, we propose a new method that more comprehensively considers
various factors that may affect pedestrian interactions. This method pays par-
ticular attention to the field of view (FoV) of the pedestrian, only considering
those within this FoV as influences on the pedestrian’s future movements. Our
assumption is based on the fact that people generally pay more attention to
the events in their forward direction and ignore those behind. This effectively
reduces the volume of unnecessary information and increases the computational
efficiency of our model, making it more applicable to real-world scenarios.

In our approach, we set a hypothesis: other pedestrians who influence the tra-
jectory of the target pedestrian should be located within a sector region forming
a certain angle in front of the target pedestrian. We also strive to find the optimal
angle of this sector region. Taking Fig. 3b as an example, we explore how other
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Fig. 3. Figure 3 illustrates the pedestrian movement pooling range. Figure 3a is a
demonstration of the social pooling range based on [1,8], while Fig. 3b is a schematic
diagram of the social pooling range proposed in this paper.

pedestrians within a certain radius of the sector region (centered on pedestrian
P0) influence P0’s movement trajectory. Pedestrians in this area, such as P1 and
P4, will affect the movement path of P0. However, for pedestrians outside the
region, such as P2, P3, and P5, we believe they will not have a direct impact on
P0’s movement path. We further discussed the method to determine the optimal
angle of the sector region in different scenarios. More detailed information can
be found in Sect. 4.6.

3.5 Loss Functions

Similar to the method of the loss function in reference [34], the goal of training
our model is to minimize the negative log-likelihood loss, as shown in Eq. 11.

L = −
tpred∑

t=tobs+1

log
{
P

(
xi
t, y

i
t | ui

t, σ
i
t, ρ

i
t

)}
(11)

4 Experiments

4.1 Dataset and Evaluation Metrics

In the task of human trajectory prediction, this paper adopts six widely used
datasets: Stanford Drone Dataset (SDD) [34], ETH datasets: Hotel and ETH
[36], UCY datasets: UNIV, Zara1, and Zara2 [37]. The Stanford Drone Dataset
(SDD) records videos within a university campus, containing six types of agents
and rich interaction scenarios. In this dataset, there are approximately 185,000
interactions between agents and around 40,000 interactions between agents and
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the environment. The ETH/UCY datasets contain human trajectories from five
scenarios, all of which record the movement paths of pedestrians in the world
coordinate system. These datasets provide us with a variety of scenarios and rich
interactions, which are beneficial to our comprehensive study and understand-
ing of human behavioral trajectories. The use of these datasets offers a broad
sample for our research, helping us to understand and predict human behavioral
trajectories more deeply.

Table 1. Datasets for human trajectory prediction

Dataset Name Category

Stanford Drone Dataset SDD

ETH datasets Hotel

ETH

UCY datasets UNIV

Zara1

Zara2

In line with previous studies [1,8], this paper uses two main metrics to
evaluate model performance: 1) Average Displacement Error (ADE), 2) Final
Displacement Error (FDE). ADE is a method to evaluate the mean square error
between the predicted trajectory and the actual trajectory, which is calculated
in the real-world coordinate system. It quantifies the average difference between
the model’s predicted trajectory and the actual trajectory, thereby reflecting
the overall prediction accuracy of the model (Eq. 12). On the other hand, FDE
focuses on the endpoint of the predicted trajectory. It calculates the L2 distance
between the last point of the predicted trajectory and the last point of the actual
trajectory in the real-world coordinate system. FDE measures the model’s accu-
racy in predicting the endpoint of the trajectory. These two evaluation metrics
can effectively evaluate the model’s overall performance in trajectory prediction
and the accuracy of endpoint trajectory prediction (Eq. 13).

ADE =
∑tpred

t=tobs+1 ‖ pit − p̂it ‖
tpred − tobs

(12)

FDE =‖ pitpred − p̂itpred ‖ (13)

In order to maximize the use of these datasets and optimize our model, we
adopt a special form of cross-validation known as the leave-one-out method [38].
Our approach is to train and validate the model on five datasets, then test on
the remaining one. This process is iterated on each of the six datasets. Similarly,
we also apply this training and testing strategy to the baseline methods used for
model comparison.
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4.2 Baselines

In order to evaluate the effectiveness of our proposed S-CGRU model, we com-
pared it with some baseline methods for trajectory prediction, specifically as
follows:

– Linear Model (Lin.): We use a pre-set Kalman filter, based on the assumption
of linear acceleration to extrapolate trajectories.

– LSTM: LSTM is applied to cyclically predict each pedestrian’s future location
from historical locations.

– S-LSTM [1]: This is a trajectory prediction model that combines LSTM and
social pooling layer, capable of integrating the hidden states of neighboring
pedestrians.

– S-GRU: This is a novel pedestrian trajectory prediction model based on GRU
that we propose. This model serves as a baseline for validating the superior
performance of the Complex Gate Recurrent Unit (CGRU) that we designed.

The comparison of the above four methods helps to comprehensively evaluate
the performance of our proposed S-CGRU model.

4.3 Evaluations on ADE/FDE Metrics

During the testing phase, we tracked trajectories for 3.2 s and predicted their
paths for the next 4.8 s. At a frame rate of 0.4 s, this is equivalent to observing
8 frames and predicting the next 12 frames, which is similar to the setting in
reference [8]. In Table 2, the performance of our model is compared with the
baseline methods.

Table 2. Results on ETH, UCY and SDD based standard-sampling. 20 samples are
used in prediction and the minimal error is reported.

Methods Lin LSTM S-LSTM [1] S-GRU (ours) S-CGRU (ours)

Metrics ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

ETH 1.31 1.35 0.96 1.36 0.82 1.11 0.96 1.24 0.54 0.73

Hotel 1.98 2.20 0.76 1.36 0.56 0.95 0.78 1.10 0.49 0.61

UNIV 0.71 0.62 0.65 0.68 0.34 0.42 0.56 0.83 0.34 0.39

ZARA1 1.20 1.76 1.09 1.84 0.56 0.95 0.76 1.12 0.49 0.59

ZARA2 0.72 0.98 0.82 1.18 0.40 0.54 0.65 0.73 0.39 0.44

SDD 0.83 1.12 0.62 0.93 0.50 0.75 0.60 0.82 0.48 0.63

AVG 1.13 1.34 0.82 1.23 0.53 0.79 0.72 0.97 0.46 0.57

From the results in Table 1, we can clearly see that our proposed S-CGRU
model significantly outperforms the baseline model S-LSTM on all metrics. This
fully validates the effectiveness of our proposed model in pedestrian trajectory
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prediction tasks. Firstly, compared to S-LSTM, our S-CGRU model has signifi-
cantly improved in terms of prediction accuracy. This suggests that by utilizing
Complex Gate Recurrent Units (CGRU), S-CGRU is able to more accurately
capture and predict pedestrian movement trajectories. This can be attributed
to CGRU’s excellent performance in handling sequential data, especially in cap-
turing long-term dependencies. Secondly, the S-CGRU model offers better gen-
eralization performance. Regardless of the scenario or the number of pedestri-
ans, S-CGRU can consistently output high-quality predictions. This indicates
that our model can adapt well to various different circumstances, showing good
adaptability to various environments. Finally, our S-CGRU model has excel-
lent real-time performance. Compared to S-LSTM, even though both are close
in computational complexity, our optimizations to the model structure allow
S-CGRU to generate prediction results faster in actual applications, thereby
meeting the needs of real-time applications. In summary, our S-CGRU model
outperforms S-LSTM in pedestrian trajectory prediction tasks in terms of pre-
diction accuracy, generalization ability, and real-time performance, overcoming
the limitations of traditional GRU models. This validates the superiority of our
model design and its application potential in pedestrian trajectory prediction
tasks.

4.4 Model Parameter Amount and Inference Speed

To accurately assess the inference speed of various models, we specifically con-
ducted an in-depth comparison of our Social-CGRU model and other publicly
available models that can serve as comparison benchmarks. This comparison
considers two key indicators of the model: parameter scale and inference speed.
Test data is derived from time series data, obtained by densely sampling with a
time step set to 1, and window size to 20 (including observation period Tobs(8)
and prediction period Tpred(12)). When testing inference speed, we calculate
the average inference time for all data segments.

Through such testing and comparison, we found that the S-CGRU model
showed significant advantages. Since the S-CGRU model only contains two gates,
reset and update, the number of its parameters is drastically reduced. Fewer
parameters mean fewer variables need to be adjusted during the training pro-
cess, which can significantly speed up model training. Moreover, fewer param-
eters make the S-CGRU model more lightweight, making it more suitable for
running in resource-constrained environments, thereby improving its practical-
ity. More importantly, the S-CGRU model has excellent performance in terms
of inference speed. Fast inference speed not only provides faster feedback in
real-time applications but also shows that the model can maintain high effi-
ciency when handling large amounts of data, which helps improve overall work
efficiency. This is especially important in application scenarios where quick deci-
sions are needed or large amounts of data need to be processed. In summary, the
excellent performance of the S-CGRU model in terms of parameter quantity and
inference speed gives it a wide range of potential and practical value in various
application scenarios. Detailed results are shown in Table 3.
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Table 3. Comparisons of parameter amount and inference speed on ETH, UCY and
SDD datasets.

Methods Parameters (k) Speed (time/batch)

S-LSTM 264 2.2

S-CGRU(ours) 231 1.6

4.5 The Range of Visual Focus of Pedestrians While Walking
in Different Scenarios

We conducted in-depth research on six datasets: ETH, Hotel, UNIV, ZARA1,
ZARA2, and SDD, aiming to reveal the range of vision during pedestrian walk-
ing in different scenarios. These datasets cover a variety of environments, such
as schools, hotels, streets, intersections, etc., providing us with a wealth of
pedestrian behaviors and movement patterns. In our research, we systemati-
cally adjusted the angle of the pedestrian’s field of view to simulate the degree
to which they might be influenced by other pedestrians around them. Then,
through the training evaluation system, we detected and recorded the perfor-
mance of pedestrian trajectory prediction. This method allows us to infer the
main field of view that pedestrians pay attention to during walking based on the
changes in prediction performance. Detailed results are shown in Table 4.

Table 4. Optimal field of view angles for different scenes on ETH, UCY and SDD
datasets.

Scene (Dataset) Optimal Field of View Angle (Degrees)

Street (ETH) 85

University (UNIV) 135

Hotel (Hotel) 75

Intersection (SDD) 120

We found that in various environments, the range of pedestrian vision is
influenced by the surrounding environment. For example, in crowded environ-
ments such as hotels and street scenes, the range of pedestrian vision may nar-
row, mainly focusing on obstacles or other pedestrians directly in front. In con-
trast, in open environments like intersections, the range of pedestrian vision may
expand as they need to consider information from more directions. Additionally,
we discovered that the direction of pedestrian movement, speed, and individual
characteristics (such as vision conditions) may also affect their field of view.

These findings have significant implications for our model design. Firstly,
understanding the range of pedestrian vision can help us better understand and
predict their behavior. Secondly, based on understanding the field of view, we
can design more accurate and practical pedestrian trajectory prediction models.
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By considering the range of pedestrian vision, our model can make more pre-
cise predictions about pedestrian behavior in different environments, thereby
improving the accuracy of prediction results.

5 Conclusions and Future Works

This research primarily explores the application of Complex Gated Recurrent
Units (CGRU) in pedestrian trajectory prediction and proposes a new S-CGRU
model, effectively integrating interpersonal interaction information and scene
information. We first detailed the basic concepts and theories of complex neu-
ral networks and Gated Recurrent Units (GRU) and explored the advantages
of using complex parameters in neural network models. Subsequently, we inves-
tigated the range of vision that pedestrians pay attention to during walking,
providing a new theoretical perspective for understanding pedestrian behavior.
Our research results show that the S-CGRU model has a significant advantage
over the baseline model S-LSTM in dealing with pedestrian trajectory predic-
tion issues. In the future, we will focus on person-scene interaction modeling (the
interaction between pedestrians and their surroundings, and between pedestri-
ans and vehicles). We hope to improve prediction performance by combining
person-scene interaction modeling with our S-CGRU model. Moreover, predict-
ing pedestrian trajectories by combining pedestrian movement intentions is also
a challenge that we need to address.
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