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In computer vision, complex networks and tasks require high-quality labeled
data. The increasing labeling overhead has hampered access to this data to some
extent. Active learning (AL) aims to use as few labeled samples, which may con-
tain more information, as possible to obtain the same effect as fully supervised
training. In a classic pool-based active learning scenario with a limited training
set, numerous unlabeled samples form a candidate sample pool (called wunla-
belpool). The model continuously selects critical samples from the unlabelpool
through a sampling strategy for annotation to expand the training set, so as to
optimize the current model iteratively. Existing AL basically follows the above
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specific network, and can be constructed as a two-stage sampling mod-
ule to supplement the existing sampling algorithm. Experiments results
on image classification and object detection tasks show that our method
can further enhance the effect of active learning on the basis of baseline
methods.
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framework by designing different active sampling strategies. For example, the
classical Least Confidence (LC), Margin, and Entropy algorithms in classifica-
tion tasks [9,14,16] measure the prediction uncertainty of the current model to
guide sampling. In object detection tasks, there are both the sampling method
for classification branch only [24], which is transferred from the classification
task, and the method using the stability predicted by regression box [11] as the
sampling index from the perspective of regression branch.

However, the AL sampling strategies in the above methods depend on specific
tasks. Although they can be adapted to other tasks after appropriate modifica-
tions, they often do not work as well on the new task. In recent years, researchers
began to explore and design a task-agnostic AL method, hoping to provide a gen-
eral sampling strategy. For example, [28] proposes a task-agnostic loss prediction
module to predict sample loss directly to guide sampling. [22] proposes a method
of active sampling by measuring data distribution called Coreset. Unfortunately,
the sampling standard of the above methods still has some one-sidedness. [28]
only considers the feedback of the model and ignores the characteristics of the
data, while [22] only considers the feature distribution of the data on the macro
level. As deep learning methods, they do not make full use of powerful feature
representation ability of neural networks.

Unlabelpool

First-stage Sampling
Backbone (Basic Sample Strategy)
A
K Network i
First-stage Sampling
(Multi-view Clustering Module)

Labeled Training Set

Fig. 1. A basic AL architecture with MVC module. For unlabeled samples, the back-
bone network is used to obtain features. Then the Basic Sample Strategy and Multi-
view Clustering Module are used for First-stage Sampling and Second-stage Sampling
respectively. After the two stages of sampling, the obtained samples are labeled as
Labeled Training Set.

For most computer vision tasks, backbone networks are used to extract the
features of input images. The process of analyzing these features can be indepen-
dent of specific tasks. Inspired by this, we propose a plug-and-play Multi-view
Clustering (MVC) module that can be conveniently embedded in the backbone
network to improve the performance of deep learning models. A basic AL archi-
tecture with our MVC module is shown in Fig. 1. We believe it can be applied
to any task that uses a deep network. In the first-stage sampling, the candidate
sampling set is obtained through the existing basic sampling strategy. Then, the
MVC module is adopted for the second-stage sampling to further screen out the
key samples. Meanwhile, in the training process, we also conduct the MVC of
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batch data and then calculate the overall consistency of the batch data distri-
bution as consistency loss to optimize the feature extraction capability of the
model.

Since the MVC module does not depend on specific task types and can supple-
ment the effect of existing active sampling methods, we believe it is a convenient
and effective task-agnostic method. Besides, our method has strong scalability
and can be combined with several existing AL methods. Experiments show that
in image classification and object detection tasks, taking three existing active
sampling methods as the baseline, the model effect of adding the MVC module
exceeds the baseline methods.

Our contributions can be summarized as follows:

— We propose a novel active sampling method with the MVC module, which is
task-agnostic and can be directly embedded in any tasks with deep networks.

— We use MVC as a supplement to the existing active sampling method. The
existing sampling method is used for first-stage sampling, followed by second-
stage MVC sampling, which can further improve the effect of active learning.

— We evaluate the proposed method with two learning tasks including image
classification and object detection. Experimental results show that the pro-
posed method significantly outperforms baseline methods.

2 Related Work

Active learning (AL) has been studied for decades and many excellent meth-
ods have emerged [1,4]. According to different application scenarios, AL can
be divided into pool-based, stream-based and Query Synthesis active learning
[7]. However, this division method can not clearly reflect the characteristics of
different active sampling strategies. Therefore, we can also divide them into
uncertainty-based, distribution-based, expected model change and metaheuris-
tic active learning based on different sampling strategies.

2.1 Uncertainty-Based Methods

Uncertainty sampling is one of the most classical sampling strategies in AL.
In multi-classification tasks, the uncertainty can be calculated by Least Confi-
dence [14], Margin [9], and Entropy [16] algorithms. In addition, SVMs [26] can
also define the distance from the decision boundary as uncertainty. Recently,
uncertainty-based methods have been applied to many tasks such as video
moment retrieval [8] and image segmentation [10].

2.2 Distribution-Based Methods

Uncertainty-based methods measure the information of samples from the per-
spective of models, while distribution-based methods mine representative sam-
ples in the overall data distribution of unlabeled sample pool. The typical app-
roach is to conduct unsupervised clustering of data [17], and then calculate rep-
resentative and diversity scores according to the distance between samples, so as
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to sample diversity but overall representative samples. [6] calculate the distance
between the sample and its nearest neighbors, and then samples that can better
represent the data features of the current fixed region will be sampled. Coreset
[5] further defines active learning as the generation process of candidate sample
set, that is, by sampling key samples to form a subset that can represent the
characteristics of the whole unlabeled pool, training on this subset can obtain
the same task effect.

2.3 Expect Model Change Methods

Deep learning models are usually optimized by gradient descent and minimize
prediction losses during training, which inspires researchers to design sampling
algorithms from the perspective of model adjustment. [20] predict the gradient
descent degree in the training process and samples with larger values will be
sampled. LLAL [28] predicts the task loss in the training process, which will be
used to guide active sampling. Since expect model change methods can effectively
save the consumption of model training, it has been applied in diverse fields such
as [13,23,25].

2.4 Metaheuristic Methods

Metaheuristic methods have gained significant attention in training various neu-
ral networks due to their ability to optimize complex problems by exploring the
problem space efficiently. [19] proposes the distributed wound treatment opti-
mization method for training CNN models. [12] proposes the neuroevolutionary
approach to control complex multicoordinate interrelated plants. [29] introduces
the concept of simulated annulment in convolutional neural networks, and uses
metaheuristics to remove unnecessary connections in the network, simplifying
the model and improving its efficiency. [3] proposes a novel convolutional neural
network model based on the beetle antennae search optimization algorithm for
computerized tomography diagnosis. These studies offer promising solutions for
enhancing the performance and efficiency of neural network models in a variety
of domains.

The above methods define the key samples from different perspectives, and
then derive a variety of sampling strategies. However, single sampling strategy
can not avoid the problem of one-sided sampling. In addition, while task-agnostic
methods already exist, they all fail to effectively utilize the powerful feature
representation ability of neural networks, and room for improvement still exists.

3 Method

In neural networks, the feature map (FM) is a universal feature representation
layer available by the combination of convolutions. Different combinations gener-
ate various FMs reflecting the characteristics of samples at different views. Based
on this, we propose multi-view clustering active learning (MVCAL). The overall
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framework is shown in Fig. 2. The core of MVCAL, the MVC module, performs
clustering by extracting multiple FMs corresponding to multiple views. Based
on the clustering results, the representativeness and stability of samples will be
calculated as the sampling strategy. Meanwhile, consistency will be calculated
as part of the loss function to improve the feature extraction ability of the model
in the training process.
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Fig. 2. Our proposed MVCAL. On the bottom is the two-stage sampling process. On
the top is the concrete structure of the MVC module: Firstly, FM of different levels
(corresponding to multiple views) are extracted from the backbone network as the
input of unsupervised clustering. Then, sample stability and sample representativeness
are calculated respectively according to the clustering results of multiple views, which
are integrated as sampling scores.

The MVC module is task-agnostic and can be easily embedded into existing
networks. Therefore, we expand the traditional AL into a two-stage AL based on
MVC. By combining MVC with other different sampling strategies, the evalua-
tion index of AL can be more comprehensive, and critical samples can be sampled
simultaneously from the perspective of model expectation and data distribution.
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3.1 FM Clustering in Different Views

In the MVC module, we first extract multiple FMs for each sample. Then we
use one of the most classic clustering models, Gaussian mixture model (GMM)
[27], to estimate the distribution and conduct clustering in each view. In GMM,
the distribution of samples is expressed by

K
p(@10) = > a6 (@l 1) (1)

k=1

where & denotes the input sample, K denotes the number of Gaussian model,
¢ (x|, 1) denotes the k-th Gaussian distribution with mean g, and variance
o, ap denotes the weight coefficient, i.e., the probability that the observation
sample belongs to the k-th Gaussian model. So for a total of U views, we obtain
U clustering distributions, p1 (]601), p2 (x|02), ..., pu (®|0y). According to these
clustering distributions, we can divide each sample into different classes in each
view.

3.2 Consistency Between Views

A well-trained model should be able to extract common features at different
levels, so as to make the clustering distribution of each view as consistent as
possible. Therefore, the consistency between two views is used to measure the
similarity between their clustering results. In this paper, we choose a simple but
effective algorithm, Rand statistic [21], to calculate the consistency.

Denote the clustering label of a sample x; in view V;, as ly,, (x;). Then for
all the sample pairs in two different views, V,,, and V,,, we get s (s — 1) /2 sample
pairs (s denotes sample size), (&;, ;) (¢ # j). In these sample pairs, we use s,
to denote those who satisfying both Iy, (x;) = lv,, (z;) and ly, (x;) = ly, (x;),
or satisfying both lv,, (x;) # lv,, (x;) and ly, (x;) # lv, (z;), and s, to denote
other sample pairs. Then the consistency between V,,, and V,, can be calculated
as

R(Vin, Vi) = lIspll / (sp + 5n) » (2)

where ||-|| denotes the number of element in a set.

3.3 Training Strategy

In the training process, the parameters of networks are optimized to perform the
specific task better and extract FM better simultaneously. So the loss function is
mainly composed of two parts, task loss (TL), Liask, and multi-view clustering
loss (MVCL), Lyve- TL is the loss of a specific task, such as the cross entropy
of classification [18]. MVCL is related to consistency, and can be calculated as

U U
Lyve =Y > (1= R(Vin, V). (3)
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Finally, the total loss is calculated as
L = Liask + A+ Lyve, (4)

where A denotes the weight between two items.

3.4 Sampling Strategy

In the sampling process, we use representativeness and stability as indicators to
measure the quality of a sample.

Representativeness is a commonly used sampling strategy in the field of AL.
[17] proposed clustering as the data preprocessing process and active sampling
through representativeness. After that, AGPR [27] also proposes a method of
sampling by pixel comparison of the whole image. Different from the existing
methods, our method selects the distribution with the highest consistency among
all the views to calculate the representativeness, where the consistency of view
V.. can be calculated as

U
Cons (Vi) = > R(Ve, Va). (5)

n=1,n#m

Then the representativeness of sample x; is just the probability density of the
selected distribution, expressed as

Rep (i) = po (xi]60,) ,
where 0 = arg max p,, (|0.,) . (6)

By this design, the representativeness can reflect the distance between the sample
and the center of the fixed cluster. The larger its value is, the closer it is to the
cluster center, i.e., it has better representativeness.

Unlike sample representativeness represents a class of samples with key com-
mon features, sample stability measures the stability of distribution in various
views, which reflects the model’s feature representation and recognition ability
for the same sample. Assume the set of samples owning the same cluster label
as x; in V,,, is Sy, (x;), then the stability of @; in V,,, and V, is

_ Sv, (®:) N Sy, (x:)
Sv,, (x;) U Sy, (x;) ’

Finally, the stability of sample x; can be defined as

Stab,y, (2;) (7)

U U
Stab (x;) = > > (Stabyy (). (8)

m=1n=m+1

Now we can calculate the score of sample x; as
S (x;) = Rep (x;) + Stab (x;) (9)

to decide which samples should be sampled.
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Fig. 3. Results for image classification on CIFAR-10. LC, LL and Coreset mean the
one-stage AL using the least confidence, learning loss and coreset strategy, respec-
tively. +MVC means adding the MVC as the second-stage sampling. +MVCLoss means
adding Lyvver in the training process. We took the average of the three experiments
as the final result.

4 Experiments

4.1 Image Classification

For image classification, we use Resnet-18 as the backbone network and CIFAR-
10 as dataset. Due to the numerous samples in the unlabelpool at the beginning,
it is expensive to use all unlabeled samples for prediction. Therefore, we follow
the practice in [2]. In each round of AL, we first select 10 000 images as candidate
sets in a random way. Then in the first stage of MVCAL, 2000 images are sampled
out of 10 000, and in the second stage, 1000 images are further sampled from
2000.

Experimental Setup. The number of clustering centers is specified as 10. In
Resnet-18, FM of the last four convolution layers are taken as views, and their
sizes are 64 x 32 x 32, 128 x 16 x 16, 256 x 8 x 8, 512 x 4 X 4 respectively. The
learning rate is set to 1073, and we train 200 epochs each iteration. We use
Adam optimizer with a; = 0.9 and ay = 0.99.

We use LC [14], learning loss (LL) [11] and Coreset [22] as baseline methods
respectively. The results are shown in Fig. 3. Results show that all the methods
have better results than the random baseline. After adding MVC and MVCLoss,
further improvements are achieved. For the LL-based method, the improvement
of MVC and MVCLoss is the most obvious. This is in line with expectations
because LL does not evaluate the distribution of the data, and the sampling
index is single. For LC-based, the results are similar. For Coreset-based, the
improvement of MVC and MVCLoss is not apparent. This may be because the
coreset method itself is distribution-based, and the MVC model also measures
the distribution characteristics. Nevertheless, our method can still bring improve-
ment, which shows that our method is better than coreset in mining sample
distribution information.
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The improvement of ‘+MVC’ methods in the first half of the training cycle is
the most obvious in the whole training cycle, which shows that our method can
effectively accelerate the convergence speed of the model, and can also obtain a
weak final effect improvement on LL-based. These demonstrate after adopting
our method, we can obtain better classification results.
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—o— LC+MVC+MVCloss —o— LL+MVC+MVCloss —o— Coreset+MVC+MVCLoss
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Number of labeled images(hundred) Number of labeled images(hundred) Number of labeled images(hundred)
(a) Least Confidence (b) Learning Loss (c) Coreset

Fig. 4. Results for object detection on Pascal VOCO07. Similar to Fig. 3.

4.2 Object Detection

We conduct experiments on object detection to verify the excellent task-agnostic
of our method. We use SSD [15] as the backbone network and Pascal VOC2007
as dataset. Since Pascal VOC2007 does not contain too many samples, we no
longer build candidate sets for sampling, but actively sample 200 images from
the unlabelpool each round.

Experiment Setup. The number of clustering centers is set to 6 and 20 respec-
tively. In SSD, FM for MVC is extracted from layer 4.3, 7, 8.2, 9.2, 102, 11.2
[15], same with [28]. We use Adam optimizer with oy = 0.9 and as = 0.99. Each
round of AL trains 6 epochs, of which the learning rate of the first 4 epochs is
set to 1073 and that of the last 2 epochs is set to 574,

We also use LC [14], LL [11] and Coreset [22] as baseline methods respec-
tively. The results are shown in Fig. 4. It can be seen that compared with baseline
methods(one-stage), our method shows a significant performance improvement.
This indicates that for complex visual tasks such as object detection, the existing
one-stage sampling method is ineffective in assessing images’ sampling informa-
tion with multiple candidate instances. Our method measures the stability of
clustering results under multiple views by adding the MVC module. The more
instances there are, the more significant the impact on the consistency of clus-
tering, so it can achieve a significant improvement.

In addition, our method shows almost the highest performance for all AL
cycles. In the last cycle, our method achieves mAPs of 0.3346 (LC-based), 0.3489
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(LL-based) and 0.3431 (Coreset-based). The results are 3.34%, 10.8% and 11.7%
higher than the LC-based, LL-based and Coreset-based methods respectively.

4.3 Ablation Study

We conduct ablation experiments on CIFAR-10 by removing parts of our
method. Results are shown in Fig.5. We can see that the effect of single-view
clustering is even worse than that of random strategy, which indicates that in
simple tasks, single-view clustering pays too much attention to representative
samples and ignores the impact of others. In contrast, inherent random search
characteristics can better avoid overfitting in a random strategy. The MVC sam-
pling, which measures sample stability and cluster consistency simultaneously,
can improve the results to a certain extent compared with random. After adding
Lyvven, the results can be further improved, and even better than the exist-
ing typical task-agnostic method LL. This fully proves the effectiveness of our
proposed MVC module.

o
S

Accuracy

0.5 —e— MVC(GMM)
—— MVC+MVCloss
LL

2 12 14

4 6 8 10
Number of labeled images(k)

Fig. 5. Ablation study. ‘Random’ means random sampling. ‘GMM’ means sampling
only according to representativeness. ‘MVC’ means sampling according to representa-
tiveness and stability. Both GMM and MVC do not contain Lyver.-

5 Conclusion and Further Work

In this paper, we propose a task-agnostic active sampling module, MVC, and
further embed it into the existing AL methods to construct a two-stage AL frame-
work. The MVC module plays a critical role in both training and sampling. In
the training process, it is used to calculate the overall clustering consistency of
batch data and optimize the parameters of networks. In the sampling process, it
calculates the stability and representativeness of samples to make up for the defi-
ciency in the one-stage sampling. Extensive experiments on image classification
and object detection tasks show that our method outperforms three traditional
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ALs. This proves that our method is suitable for different tasks and different
baseline AL methods.

In the future, we will verify our method in more tasks such as natural lan-
guage processing and speech recognition. Moreover, we acknowledge the high
computational cost associated with the clustering methods used in our method.
To address this limitation, we will explore and develop more efficient clustering
methods that can maintain or improve the performance while reducing compu-
tational overhead. By optimizing the clustering process, we aim to enhance the
scalability and practicality of our method, making it more accessible and feasible
for real-world AL scenarios.
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