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Abstract. This paper proposes a new neural network architecture for
estimating the four degrees of freedom poses of vehicles from monocular
images in an uncontrolled environment. The neural network learns how
to reconstruct 3D characteristic points of vehicles from image crops and
coordinates of 2D keypoints estimated from these images. The 3D and
2D points are used to compute the vehicle pose solving the Perspective-
n-Point problem, while the uncertainty is propagated by applying the
Unscented Transform. Our network is trained and tested on the Apol-
loCar3D dataset, and we introduce a novel method to automatically
obtain approximate labels for 3D points in this dataset. Our system out-
performs state-of-the-art pose estimation methods on the ApolloCar3D
dataset, and unlike competitors, it implements a full pipeline of uncer-
tainty propagation.

Keywords: Vehicle pose estimation · 3D scene understanding · Deep
learning

1 Introduction

It is essential for autonomous cars to be able to predict the poses of different
objects in the environment, as it allows these agents to localise relatively to other
vehicles or infrastructure on the road. Although the pose of another vehicle can
be accurately measured using 3D laser scanner data [12], it is practical to obtain
good accurate estimates of the pose of a vehicle from a single-camera image [18].

Song et al. [25] demonstrated that it is difficult to estimate vehicle poses
from monocular images in a traffic scenario, because the problem is ill-posed
due to the lack of obvious constraints and because of unavoidable occlusions.
In our recent research [21], we showed how a deep neural network derived from
the HRNet [29], originally created for human pose estimation, can be used to
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accurately position a single camera in relation to a known road infrastructure
object. In this paper, we introduce a novel deep learning architecture, also based
on HRNet, which estimates 4D poses (3D Cartesian position and yaw angle) of
vehicles in a realistic traffic scenario. This architecture estimates 2D keypoints
on RGB image crops and then leverages these point features to estimate 3D
coordinates of the characteristic points of a vehicle CAD model. The vehicle
pose is computed by solving the Perspective-n-Point problem, given a set of n
estimated 3D points of the vehicle model and their corresponding 2D keypoints
in the image.

Unfortunately, the dataset we use, ApolloCar3D [25], does not contain asso-
ciations between the 3D coordinates of the characteristic points of different car
models and the annotated 2D keypoints in the images. To overcome this prob-
lem we propose also a new approach to automatically pre-process the dataset
in order to obtain these associations leveraging the known poses and 3D CAD
models of the vehicles seen in the images.

Knowing an estimate of the uncertainty in object pose estimates is crucial
for the safe and reliable operation of autonomous cars. Therefore, we propose
a two-step uncertainty estimation process. In the first step, we augment the
architecture of the proposed neural network to estimate the uncertainty of the
obtained keypoints. This uncertainty is represented by covariance matrices and
then is propagated in the second step through the PnP algorithm using the
unscented transform technique [22], which takes into account the non-linearity
of the pose estimation algorithm being applied. Pose estimates with compatible
covariance matrices are a unique feature among pose estimation algorithms that
employ deep learning.

We thoroughly evaluate our approach on the ApolloD3 benchmark, proposed
in the same paper as the dataset we use for training, demonstrating that the
results outperform the state-of-the-art methods in terms of accuracy, while they
are accompanied by human-interpretable estimates of spatial uncertainty.

The remainder of this paper is organised as follows: The most relevant related
works on pose, keypoints, and uncertainty estimation are briefly reviewed in
Sect. 2. The structure of the proposed pose estimation system is detailed in
Sect. 3, while the approach to supervised training of our neural network, includ-
ing pre-processing of the dataset, is explained in Sect. 4. Next, techniques applied
to estimate and propagate the uncertainty are presented in Sect. 5. Finally, exper-
iments on the ApoloCar3D dataset and the obtained results are presented in
Sect. 6, followed by the conclusions given in Sect. 7.

2 Related Work

2.1 Vehicle Pose Estimation
Vehicle pose estimation solutions are of interest to researchers mainly due to the
development of autonomous cars. Many solutions to the problem of determining
the 3D pose of a vehicle based on observations from depth sensors such as LiDAR
have been developed [30,32]. The pose of a vehicle can also be accurately esti-
mated from scene depth data obtained using stereo vision [14]. Estimating the
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pose of a vehicle from a single monocular camera image is most difficult, due to
the lack of depth data and the difficulty in extracting pose constraints imposed
by the environment from the image [25]. Nowadays, the state-of-the-art in esti-
mating vehicle pose from monocular images involves the use of deep learning
techniques combined with geometric priors [5]. Two basic types of approaches
can be distinguished: direct, without detection of feature points, and indirect,
using the detection of vehicle feature points in images.

Older direct pose estimation systems often relied on external neural network
models that generated partial solutions, such as 2D proposals in [20], which
were then cropped and processed in another network to estimate 3D bounding
boxes and their orientations. Also, Xu and Chen [31] used separated neural net-
works to predict a depth image of the scene converted then to a point cloud
and to generate 2D bounding boxes used to sample from this point cloud. More
recent approaches, like the M3D-RPN [1] utilise a standalone 3D region pro-
posal network leveraging the geometric relationship of 2D and 3D perspectives
and allowing 3D bounding boxes to use features generated in the image-space.
Yet differently, [9] exploits class-specific shape priors by learning a low dimen-
sional shape-space from CAD models. This work uses a differentiable render-
and-compare loss function which allows learning of the 3D shapes and poses
with 2D supervision.

The indirect approaches typically align 3D car pose using 2D-3D matching
with 2D keypoints detected on images and the provided CAD models of vehicles
[2], exploiting also geometric constraints, e.g. the co-planar constraints between
neighbouring cars in [2]. The RTM3D [15] predicts the nine keypoints of a 3D
bounding box in the image space, then applies the geometric relationship of 2D
and 3D perspectives to recover the parameters of the bounding box, including
its orientation. In indirect approaches to vehicle pose estimation an important
problem is to localise the occluded keypoints. This problem is addressed by the
Occlusion-Net [23], which predicts 2D and 3D locations of occluded keypoints
for objects. One of the recent developments, the BAAM system [10], leverages
various 2D primitives to reconstruct 3D object shapes considering the relevance
between detected objects and vehicle shape priors.

The approach in [17] is similar to ours in using estimated 2D and 3D points,
but it directly regresses 20 semantic keypoints that define the 3D pose of a
vehicle, whereas we extract more keypoints and compute poses indirectly, solving
the PnP problem.

In this work, fewer keypoints are detected and used by the PnP algorithm,
whereas the evaluation is done only on the KITTI dataset. The same problem
is considered in [24] and, like us, the authors aim to select the best points for
pose estimation, but the results they show use ground truth data – either about
depth or 2D points.

Similarly to our solution, reprojection loss is used to train the model in the
indirect GSNet [7] system, which is also evaluated on the ApolloCar3D dataset.
However, the authors focus more on vehicle shape estimation, which is out of
the scope of our work.
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2.2 Keypoints and Uncertainty
In terms of accurate and robust detection of keypoints in images, significant
progress has recently been made in human pose estimation applications [26].
The High Resolution Network (HRNet) [29] is a leading solution for keypoint
detection in human pose estimation. As this architecture ensures high resolu-
tion of the feature maps through the entire network processing pipeline, which
results in accurate location of the keypoints, we have selected the HRNet as a
backbone of the neural part of our vehicle pose estimation system. In our pre-
vious work [21], we showed that it is possible to adapt HRNet to the task of
estimating the feature points of an object with a known CAD model from RGB
images. In the same work, we also introduced a method for estimating the spatial
uncertainty of feature points in the form of a covariance matrix, inspired by the
algorithm for estimating the uncertainty of keypoints in a face recognition task
[8]. While there are classical methods for the propagation of uncertainty in com-
puter vision [4], the problem of estimating feature points uncertainty or object
pose uncertainty in deep learning based systems has been addressed in relatively
few research papers. Several versions of a camera pose estimation method that
consider the uncertainty of point and line features while computing the pose are
proposed in [27], but these methods do not produce a covariance matrix for the
final pose estimate. The geometric (spatial) uncertainty of features in the PnP
problem is also considered in [3]. Recently, approaches to pose estimation that
consider spatial uncertainty were presented for deep learning-based human pose
recognition [13] and general object pose determination from images [16,33]. As
far as we know, there are no publications tackling the estimation of the key-
points uncertainty and propagation of this uncertainty to the final vehicle pose
for monocular pose estimation in the context of automotive applications.

3 Structure of the Pose Estimation System

The diagram of the whole processing pipeline is shown in Fig. 1. The details
of heads architecture are presented in Fig. 2. It accepts as input only an image
crop containing the considered vehicle. The processing pipeline consists of several
modules: The 2D Keypoint Estimation Head, the 3D Keypoint Estimation Head,
the Keypoint Score Head (KSH) for evaluating the accuracy of individual point
estimates, and the Uncertainty Estimation Head for estimating the uncertainty
of 2D and 3D points.

3.1 Estimation of 2D Keypoints
The first module is a deep neural network that estimates the 2D coordinates
of the car’s characteristic points on the image. Our approach combines the
HRNet48 [29] as a backbone with a head for the feature extraction and heatmap
estimation of 66 distinctive points on the image. We utilise input image crops
of 256×192 pixels, providing sufficient detail for precise and fast feature extrac-
tion. The output consists of 48 feature maps of size w × h, in our models w=64
and h=48. During training, we compute the loss function only for visible points,
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Fig. 1. Architecture of the proposed vehicle pose estimation system

applying a visibility mask that defines which points are evident for each instance.
This process ensures that the model focuses on relevant data and is not influ-
enced by obscured or irrelevant points. We employ unbiased encoding and decod-
ing methods described in [6] for the preparation of ground-truth heatmaps for
training and the subsequent decoding coordinates from the estimated heatmaps.
This technique enhances prediction accuracy by reducing the quantization error.

Fig. 2. Architecture details of the implemented network heads. Conv Block means
Convolution layer followed by a batch normalization and ReLU activation. Linear Block
means Linear layer followed by a batch normalization and ReLU activation

3.2 Estimation of 3D Keypoints
Estimation of 3D points requires the feature maps derived from the image crops
initially obtained for the 2D point estimation network and the features extracted
from the estimated 2D points by the Keypoint 2D Backbone. For the formation
of features from the 2D points, a Multilayer Perceptron (MLP) consisting of
seven layers is employed. This MLP takes the normalised 2D coordinates with
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respect to the bounding box as input. The feature maps derived from the image
and the 2D points are concatenated to create an input for the 3D point esti-
mation head. This module estimates the 3D points in the canonical pose, which
is constant, regardless of the observed pose of the vehicle. The canonical pose
implies that the coordinate system’s origin is situated in the vehicle’s geometric
center, and the vehicle’s front always faces the same direction. This consistent
approach to 3D point estimation simplifies the problem, reducing computational
complexity while increasing estimation accuracy. The 3D Keypoint Head esti-
mates two separate feature maps. One of these corresponds to the X − Y plane,
from which the x and y coordinates are estimated. The second feature map
corresponds to the X − Z plane and serves to estimate the z coordinate. By
independently addressing two orthogonal planes, this dual-map approach allows
us to use a similar processing pipeline that is applied for the estimation of 2D
keypoints. The 3D point estimation module’s design allows it to seamlessly inte-
grate with the 2D point estimation network by reusing feature maps extracted
from the image. Note that our method does not need a mask from pre-trained
Mask R-CNN, which is used by the baseline methods considered in [25].

3.3 Selection of the Best Estimated Keypoints
In this section, we introduce a uniquely designed module that focuses on assessing
the precision of the point estimations. From any point of view, a significant
portion of characteristic points is obscured, making their precise localisation
on the image challenging. Such inaccurately estimated points can easily distort
pose estimation. To counteract this phenomenon, we have designed an additional
head dedicated to evaluating the accuracy of each estimated point. The accuracy
evaluation head accepts as input the image feature map, the estimated heatmaps,
and the normalised coordinates of the estimated points.

The image feature maps and heatmaps are processed through a sequence
of six convolutional layers that outputs two feature vectors, each having length
equal to 3072. These feature vectors, along with the estimated point coordinates,
are then concatenated and processed through a sequence of six linear layers.
The last layer is the sigmoid activation layer, which limits the output values
to a range from zero to one. The output of the head is a set of 66 values,
each corresponding to the estimation precision score of a given 2D point on
the image, hereinafter called KSH scores. During the training phase, as learning
targets we used only two values: ’1’ for a correctly estimated point, and ’0’ for
the opposite case. A point is considered correctly estimated (has a ’1’ label) if
the estimation error normalised to the bounding box is less than 0.04. We also
conducted experiments using directly the normalised estimation errors as the
learning targets, but the achieved results were worse compared to binary targets
generated by thresholding the error.

3.4 Training Process
The training process is organized into distinct stages, each stage focusing on a
specific aspect of the network. Initially, during the first stage, we directed our
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focus towards the 2D and 3D point heads and the backbone network. Following
this, we select the best performing model from this initial training phase. The
model’s performance is evaluated using the Percentage of Correct Keypoints
(PCK) metric for keypoints 2D and Mean Per Joint Position Error (MPJPE)
for 3D point estimations. In the PCK metric: PCK = Pcorrect

P · 100, where P is
the total number of predicted points, we sum up to the number of correct points
Pcorrect only the keypoints with the coordinates estimation error normalised to
the bounding box smaller than 0.05. The MPJPE metric is defined as a mean
of the Euclidean distances between the estimated points and the corresponding
ground truth points.

Additionally, for the training of 2D and 3D keypoint heads, we used a repro-
jection loss function. This function is an extension of an approach presented in
[21] that maintains the geometric consistency of the estimated coordinates. It
works by comparing the projected 3D points using ground truth transformation
with the predictions of the 2D points, ensuring that the network’s estimations of
2D and 3D points are consistent with each other and with real-world geometries.
This loss is defined as:

Lreprojection =
n∑

i=1

(∥∥π
(
T, p̂3d

i ,K
) − p̂2d

i

∥∥
2

)2
, (1)

where π is the projection function, T is a ground truth pose, p̂3d
i are the esti-

mated 3D coordinates of the i-th characteristic point, K is the camera intrinsics
matrix, and p̂2d

i are the estimated 2D coordinates of the i-th keypoint on image.
The application of this loss function significantly improves the accuracy of the
point estimation heads.

Once the best model is selected, its weights are frozen to preserve the best
results for keypoint estimation. In the second stage, the focus shifts to the train-
ing of the Uncertainty Estimation Head and the Keypoint Score Head. By train-
ing the UEH and KSH components after the Keypoint 2D and 3D Heads, we
ensure that the training process can leverage the well-tuned features provided by
the backbone network and the point-generating heads. The loss functions used
during training are described by Eq. 2, 3

Lstage1 = wrepr · Lreprojection +Lheatmap3Dxy +Lheatmap3Dxz +Lheatmap2D (2)

Lstage2 = Luncertainty2D + Luncertainty3D + Lkeypoint score, (3)

where wrepr = 1e−7 and Lheatmap3Dxy,Lheatmap3Dxz,Lheatmap2D,Lkeypoint score

are defined as the Mean Squared Error loss function.

3.5 Pose Estimation
Given 2D points in the image, their corresponding 3D points in the model, and
the camera matrix K, various PnP algorithms can be applied to derive the pose.
The 2D car characteristic points and corresponding 3D points are estimated
by our network. During our research, we used two approaches: the Efficient
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Perspective-n-Point (EPNP) algorithm [11], and a dedicated procedure called
Solve-PnP-BFGS implemented using the SciPy library [28]. For input to the PnP
algorithm, we select a subset of N best-estimated points according to KSH scores.
In our experiments, we used N=17 as it gives the best results. The Solve-PnP-
BFGS procedure works by minimizing the reprojection error using the BFGS
optimization algorithm. The reprojection error is defined similarly to (1), but
the ground truth transformation T is replaced by the optimized transformation.
The optimisation search space in the BFGS algorithm is constrained by bounds
applied to the estimated translation. The optimisation process is carried out five
times, with a different starting point randomly selected from the search space
each time. The selected solution is the one with the lowest value of the cost
function. This repetitive process reduces the possibility of optimisation being
stuck at the local minimum. To estimate the shape of a vehicle, we employ a
predefined library consisting of all CAD models included in the dataset and a
set of 3D characteristic points in canonical form for each model. This library
serves as a reference during the shape estimation process, allowing us to capture
the full mesh of the vehicles.

During the inference stage, we compare the estimated 3D points with those
in the library and select the CAD model that yields the smallest MPJPE. To
get the most reliable results, to calculate the MPJPE, we remove firstly the
points that are supposed to be the least accurately estimated according to the
KSH score value. The best results were achieved by removing points with a KSH
score below the threshold s = 0.19.

4 Dataset Preparation for Supervised Learning

For our experiments, we use the ApolloCar3D dataset introduced in [25]. This
dataset comprises 5,277 images derived from traffic scenes, containing over 60,000
instances of vehicles. Each vehicle instance is defined by a set of 66 characteristic
points, with annotations of only visible points. The dataset also provides a set of
34 CAD models of the vehicles appearing in the images. Ground truth pose data,
relative to the camera coordinates, are provided for each vehicle. A significant
challenge with respect to our pose estimation task is the absence of a mapping
between the 2D points in the images and the corresponding 3D points from the
CAD models. Such a mapping (provided as labels) is necessary for supervised
learning of 3D points detection.

To overcome this problem, we employ a procedure illustrated in Fig. 3. This
process begins by transforming the CAD model using the given translation and
rotation. Subsequently, the parameters of the ray encompassing all 3D points,
which project onto the image at the annotated keypoints for the considered
vehicle, are established. For each face of the CAD model, we check if this ray
intersects it using the Möller-Trumbore algorithm [19], subsequently determining
the coordinates of the intersection point.

In cases where multiple intersection points are discovered, the point closest
to the camera is chosen. This strategy is in line with the dataset’s approach of
marking only non-occluded points. The final stage involves applying the inverse
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of the ground truth rotation and translation to the intersection point, yielding
the coordinates with respect to the car’s canonical pose. The point coordinates
derived from this process are then fine-tuned to achieve a more precise match.
For this fine-tuning, we employ the Nelder-Mead optimization algorithm on all
instances of a particular car type in the training set. This algorithm adjusts the
3D coordinates to minimize the translation error, defined as the square of the
distance between the ground truth translation and the translation estimated by
the EPnP [11] method, taking into account the given camera parameters and
the 2D point coordinates in the image.

Fig. 3. Pipeline for dataset pre-processing in order to obtain labelled 3D points for
supervised learning

5 Uncertainty Estimation

5.1 Estimation of Keypoints Uncertainty
In this section, we discuss a module designed to estimate the uncertainty of char-
acteristic point estimations. The keypoints uncertainty estimation process is an
extension of the approach presented in our previous paper [21]. However, our new
method estimates both 2D and 3D point uncertainties, contributing to a com-
prehensive understanding of the estimation process’s precision. For each of the
2D points, a 2×2 covariance matrix, Σ2D, is estimated for x and y coordinates.
The Uncertainty Estimation Head (UEH) consists of a stack of 5 blocks built by
convolutional layer, ReLU, and batch normalization. Convolutional blocks are
followed by one linear layer. The UEH takes as input the keypoint heatmaps and
image feature maps and calculates three positive numbers, filling in the lower
triangle of the 2D Cholesky factor matrix, L2D. We ensure the positivity of the
estimated numbers through the application of an Exponential Linear Unit (ELU)
activation function and the addition of a constant to the output values. Then, by
multiplying the matrix L2D by LT

2D, we acquire a covariance matrix Σ2D. This
approach ensures the generation of a positive semi-definite covariance matrix,
a necessary characteristic for valid uncertainty estimation. During the training
phase, we employ the Gaussian Log-Likelihood Loss function, as suggested in [8].
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When it comes to 3D points, we estimate the values found on the main diagonal
of the 3×3 covariance matrix. Only the main diagonal elements are filled in the
3D Cholesky factor matrix, L3D. The subsequent processing steps are analogous
to those used in the 2D point uncertainty estimation, reinforcing consistency
across the module’s operation.

5.2 Propagation Using Unscented Transform
The estimated uncertainties of both 2D and 3D points can be propagated to the
uncertainty of the estimated vehicle pose. To accomplish this, we employ the
Unscented Transform method, as presented in [22]. The propagation of uncer-
tainty of the n-dimensionsal input is carried out using 2n+1 sigma points χi,
i = 0, ..., n, while the coordinates of these points are determined by formulas 4:

χ0 = mx, χ2i−1 = mx +
√

n + λ
[√

Cx

]
, χ2i = mx − √

n + λ
[√

Cx

]
, (4)

for i = 1, ..., n, where mx and Cx are the mean and variance of the estimated
points, λ = α2(n + k) − n is a scaling factor, and α and k are the parameters
influencing how far the sigma points are away from the mean. Then, by applying
a nonlinear transformation, which is the PnP algorithm, we obtain a set of
points from which the mean and covariance of the estimation after the nonlinear
transformation are estimated. In our implementation, the Unscented Transform
parameters α and k [22] are set to 0.9 and 50, respectively.

The propagation process for 2D and 3D points is executed independently.
After the uncertainties have been individually propagated, the resulting covari-
ance matrices of equal dimension are summed up, assuming statistical indepen-
dence between the coordinates of the 3D and 2D keypoints.

6 Evaluation Results

Model evaluation was carried out on the ApoloCar3D dataset validation set. It
contains 200 images according to the split made by the authors of the Apolo-
Car3D dataset. On a Nvidia 1080Ti GPU the proposed pipeline is capable to
run at 20 FPS for the EPNP variant without uncertainty propagation and at 18
FPS with full uncertainty propagation.

6.1 Keypoints 2D
For the evaluation of the 2D keypoints estimation network, we used the Percent-
age of Correct Keypoints metric, assuming three thresholds: 5 pixels, 10 pixels,
and 15 pixels.

The first two rows in Table 1 were calculated using as reference only visible
vehicle points, i.e., those located in the ground truth annotations of the dataset.
We provide metric values for all marked points and for those points that the
network identified as having the highest KSH score. The results demonstrated
that the network correctly assesses the accuracy of the point estimation and is
capable of improving the results achieved on the PCK metric.



406 T. Nowak and P. Skrzypczyński

The last two rows in Table 1 present analogous PCK metric values. The differ-
ence is that we used the projections of 3D points as ground truth annotations,
using the ground truth translation and rotation of a given vehicle. This app-
roach allows for an evaluation of the invisible points that is more relevant to
real-world conditions, where we do not have a priori knowledge about the visi-
bilities of points. The presented results, especially those acquired for the points
selected by the KSH score provide sufficient accuracy for the 3D pose estimation
using PnP algorithms.

Table 1. PCK metric of the 2D keypoints estimations comparing to manually labeled
visible points (top) and all 66 points acquired by projection of 3D points (bottom)

Threshold 5 px 10 px 15 px

Visible points PCK 55.0 81.0 89.0

Selected visible points PCK 60.0 84.0 91.0

All points PCK 13.1 19.7 22.2

Selected points PCK 40.5 56.0 60.9

6.2 Keypoints 3D
In this section, we present the results related to the estimation of 3D points on
vehicles using our proposed method. Module performance is evaluated using the
Mean Per Joint Position Error (MPJPE) metric, which measures the average
distance error of the estimated points. Our results reveal an averaged MPJPE
value of 0.119 m for all points estimated by the network. When we consider only
the N points with the highest KSH score, the error decreases to 0.105 m, which
confirms that the KSH score promotes better keypoints. The most accurately
estimated points are on the rear corner of the car handle of the right front car
door, with a mean error of 0.073 m, while the points of lowest accuracy (0.235 m
on average) are located on the left corner of the rear bumper.

6.3 A3DP Metrics
We utilised the Absolute 3D Pose Error (A3DP-Abs) metric introduced in [25]
to evaluate our results. This metric focuses on the absolute distances to objects,
considering three key components: the estimated shape of the car, its position,
and its rotation. The translation error metric is defined as:

ctrans =
∣∣tgt − t̂

∣∣
2

≤ δt, (5)

where tgt denotes ground truth translation, t̂ denotes estimated translation and
δt is an acceptance threshold. The rotation error metric is defined as:

crot = arccos (|qgt · q̂|) ≤ δrot, (6)

where qgt denotes ground truth rotation quaternion, q̂ denotes estimated rota-
tion quaternion, and δrot is an acceptance threshold. Similarly to metrics pro-
posed for the COCO dataset, the authors of ApolloCar3D proposed a set of



A Neural Network Architecture for Accurate 4D Vehicle Pose Estimation 407

metric thresholds from strict to loose. The translation thresholds were estab-
lished from 2.8 m to 0.1 m in increments of 0.3 m, while the rotation thresholds
range from π/6 to π/60 with steps of π/60. Beyond the ’mean’ metric, which
averages results across all thresholds, two single-threshold metrics were defined.
The loose criterion (denoted as c− l) utilises [2.8, π/6] thresholds for translation
and rotation, whereas the strict criterion (denoted as c−s) employs [1.4, π/12] as
thresholds for these respective parameters. To evaluate the 3D shape reconstruc-
tion, a predicted mesh is rendered from 100 different perspectives. Intersection
over Union (IoU) is computed between these renderings and the ground truth
masks. The average of these IoU calculations is then used to evaluate the shape
reconstruction.

Table 2 shows our results and compares them against state-of-the-art meth-
ods. Note that for the algorithms proposed in [2,9] the implementations provided
in [25] as baselines were used for a fair comparison.

Table 2. Comparison of results with the state-of-the-art methods on A3DP-Abs
metrics

algorithm mean c − l c − s

3D-RCNN [9] 16.4 29.7 19.8

DeepMANTA [2] 20.1 30.7 23.8

GSNet [7] 18.9 37.4 18.4

BAAM-Res2Net [10] 25.2 47.3 23.1

Ours EPnP 23.4 44.6 31.7

Ours BFGS 25.6 47.7 34.6

The results of the A3DP-Abs mean metric indicate that our system’s perfor-
mance is superior to the very recent BAAM [10] method, which demonstrates
the proficiency of our solution in estimating 3D points accurately. A significant
advantage of our network is its performance on the strict criterion c − s. This
metric measures how well our module estimates 3D points under stringent condi-
tions, a challenging task that demands a high degree of precision and reliability.
Our system outperforms all existing state-of-the-art solutions on this metric by a
large margin, highlighting the solution’s excellence in providing highly accurate
3D characteristic points.

6.4 Uncertainty Assessment
In this section, we present results related to the uncertainty estimation of the
2D and 3D characteristic points, as well as to the uncertainty of the vehicle’s
pose. The first part of our evaluation process involved examining the percentage
of point and vehicle translation estimations that fall within the ranges of 1, 2,
and 3 standard deviations (σ). The results of this examination are shown in the
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Table 3. Percentage of estimation that fall within the ranges of one, two and three σ

Keypoints 2D Keypoints 3D Pose translation

x y x y z x y z

1 σ 79.0 79.8 82.5 80.3 64.8 84.5 85.0 81.3

2 σ 93.1 93.8 94.2 94.1 80.9 94.9 95.6 93.7

3 σ 97.2 97.2 97.5 97.3 87.5 98.6 98.6 97.5

Fig. 4. Plot of the mean σ (standard deviation) depending on the observation distance

Table 3. We further examine the relationship between the mean value of σ and
the vehicle’s distance in Fig. 4.

These findings suggest that as distance increases, the uncertainty in pose esti-
mation also increases. This trend is to be expected, as distant objects inherently
have the lower resolution in the image, which tends to lead to higher uncertainties
in the estimation. An additional noteworthy observation is that the uncertainty
along the z-axis (depth direction) is greater than along the remaining two axes.
This finding is justified, as it is often more challenging to determine the position
along the axis perpendicular to the image plane. Due to the nature of monocular
vision and image projection, depth information is less reliable and can result in
higher uncertainties. Figure 5 presents six examples of predictions and the uncer-
tainty of the estimated pose from a bird’s eye view. The uncertainty of position
(x, y) for each vehicle is represented by its uncertainty ellipse. Observe that cars
that are partially occluded or are located further from the camera have larger
uncertainty ellipses than the closer, fully visible cars.
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Fig. 5. Visualizations of estimated pose and uncertainty. Circles show the estimated
positions of cars, squares are ground truth positions of these cars, colour rays show
ground truth yaw angles, grey fans show the estimated one-sigma yaw range. Ellipses
visualise one sigma position uncertainty (Color figure online)

7 Conclusions

In this paper, we have introduced a comprehensive processing pipeline capable
of estimating vehicle pose solely based on data from a single RGB camera. This
innovative pipeline comprises a network for estimating 2D and 3D points, an
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evaluation of the credibility of individual point estimations, and an optimisation
algorithm estimating pose based on information derived from previous steps.

Our system outperforms all previously reported models on the ApolloCar3D
dataset and is capable of estimating the uncertainty of pose estimates. The
unique ability to handle uncertainty has significant implications for real-world
applications, offering an additional layer of validation and error mitigation in
pose estimation and further decision making.

We also introduce an unsupervised method for preparing a training dataset
containing 3D point coordinates. This approach leverages 2D point annotations,
CAD models, and vehicle poses, offering a novel methodology to generate reliable
training data without the need for laborious and error-prone manual annotation.

In conclusion, our approach represents a significant advancement in the field
of vehicle pose estimation, providing a powerful, robust, and accurate pipeline
for this complex task. Furthermore, the ability to estimate the uncertainty of
pose estimations and the introduction of an unsupervised method for training
dataset preparation pave the way for future advancements in this field. Further
work will include the integration of geometric priors stemming from the scene
structure and semantics, such as the coplanarity constraint applied in [25].
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