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1 Introduction 

Blood pressure is a most basic vital sign, and recently, the importance of the daily 
continuous blood pressure (DCBP) has been pointed out [1–3]. Studies have been 
made on the clinical usefulness of ambulatory blood pressure monitoring (ABPM), 
in which daily blood pressure is automatically measured with a cuff-based portable 
sphygmomanometer [4–7]. There is also a measurement method called arterial line 
monitoring in which a catheter is clinically inserted into a blood vessel to measure 
the blood pressure continuously [8]. This method, however, is not suitable for DCBP 
measurement because it is highly invasive. 

The author proposed a new DCBP estimation method and showed its validity 
in a previous report [9]. As shown in Fig. 1, the novelty of this method is that a 
continuous blood pressure estimation is obtained as a solution of the forward problem 
of a simple model representing the circulatory dynamics and the circulatory control 
with the input of pulse rate. On the other hand, cuff-type blood pressure measurement 
[10–12] which is an existing representative noninvasive blood pressure measurement 
method, and cuffless blood pressure measurement based on pulse waveform [13–18] 
or pulse propagation time [19–25], obtain the blood pressure as the inverse problem 
with the input of cuff pressure or pulse waveform. It is difficult to use these existing 
methods for DCBP measurement devices because of discomfort due to cuff pressure 
and degradation of measurement accuracy by body movement, respectively. In the 
previous study, we examined the validity of the proposed method by comparing the 
analysis results with the measurement results of the automatic sphygmomanometer 
at 30 min or 1 h intervals for one subject in four days and four subjects in one daytime
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Fig. 1 Principles of blood pressure measurement for the proposed method, conventional cuff type, 
and cuffless one 

[9]. As a result, it was shown that this estimation method gives a reasonable blood 
pressure estimate. 

However, some unresolved problems remained in the previous study. Two param-
eters of the inverse model of the circulatory control system were determined through 
a one-parameter optimization problem by applying an empirical constraint for the 
parameters, the validity of which is not verified yet. Further, the statistical properties 
of the parameters are unknown since the number of subjects was small. The other 
two parameters of the circulatory dynamic system model were determined using half 
of the daily or daytime measurements of the automatic sphygmomanometer, but the 
effect of the number of measurement data on the parameters is also unknown. In 
order to apply this estimation method to practical blood pressure estimation devices, 
it is necessary to solve these problems to clarify the effect of constraints among 
model parameters and the number of the data of the standard measurement in param-
eters determination on the accuracy of estimation, realizing good accuracy, small 
computational load, and small parameter determination measurement number in the 
estimation method. 

In the subsequent article [26], therefore, we focused on the experimental veri-
fication and optimization of the continuous blood pressure estimating method. In 
the article we simultaneously performed a 25-h continuous pulse rate measurement 
using a commercially available wearable device and blood pressure measurement 
within 30 min interval using an ABPM device for 29 subjects. Under four conditions 
for the constraint of model parameters, including the case where two parameters 
of the inverse model of the circulatory control system are independently changed, 
blood pressure estimations were performed to determine the optimal parameters and 
evaluated the estimation error for each condition by comparing the estimation results 
with the ABPM measurements. From these results, the validity of each condition for 
the constraint and the statistical properties of the parameters were clarified. Among 
these conditions, optimum parameter determination method was determined from 
the viewpoints of accuracy and computational costs. For the optimum parameter 
determination method of the circulatory control system, the effect of the number 
of the ABPM data on the accuracy of pressure estimation was investigated and the 
number of measurement data necessary for appropriate parameter determination was
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Fig. 2 Wearable device for 
a pulse rate measurement 
(http://www.epson.jp/pro 
ducts/wgps/sf710s/) and 
b DCBP estimation 

(a) (b) 

obtained. From these results we clarified the applicability of the present estimation 
method to practical blood pressure estimation devices. 

In this article we present this new DCBP estimation method and its experimental 
validation and optimization based on our former works [9, 26]. First the novel circu-
latory system model for the present blood pressure estimation with the input of pulse 
rate is presented in Sect. 2. In the following Sect. 3, we show a computational result 
for 24 h blood flow dynamics in which values of blood pressure, blood flow, and 
blood volume in left/right atrium/ventricle and pulmonary/systemic arteries/veins 
are obtained from pulse rate measurement data with a wearable device (Fig. 2a). 
Section 4 shows the experimental verification and optimization of the blood pressure 
estimation method. The blood pressure estimation program was installed in a smart 
watch (Fig. 2b). The summary of former sections and future expectations are given 
in Sect. 5. 

2 Circulatory System Model 

2.1 Introduction 

In this section we show the circulatory system model for DCBP estimation. The 
following model is that of the second article [26], which is practically the same 
as that of the first report [9]. The circulatory system model consists of the circula-
tory dynamics model and the circulatory control inverse model. The real circulatory 
dynamics is a very complex fluid–structure coupled system [27], but the present 
study models it as a simple lumped parameter dynamical system consisting of eight 
elastic containers representing a left atrial (1), a left ventricle (2), systemic arteries 
(3), systemic veins (4), a right atrial (5), a right ventricle (6), pulmonary arteries (7), 
and pulmonary veins (8); and eight liner resistors connecting these containers (right 
side of Fig. 3a). The model can be described as basic equations of elastic mechanics

http://www.epson.jp/products/wgps/sf710s/
http://www.epson.jp/products/wgps/sf710s/
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Fig. 3 a Circulatory system model consisting of circulatory dynamics model and circulatory control 
inverse model with the input of pulse rate and b variation of ventricular volume by the reference 
[29] (green), and those at zero pressure, or no-load ventricular volumes, derived from the reference 
values for left ventricle (red) and right ventricle (blue) 

and fluid dynamics, Windkessel model [28], with variables of pressures and volumes 
of the containers Pi (t) and Vi (t), and flow rates between the containers Qi (t). Blood 
flow circulation is generated by introducing the variation of the ventricular volume 
at zero pressure, or no-load ventricular volume, based on the reference [29] to the  
left and right ventricles (Fig. 3b). Parameters affecting the systemic arterial blood 
pressure P3(t) in this circulatory dynamics model is the standard pulse rate b0, the  
elasticity E30 and the peripheral resistance coefficient R40 of the lumped systemic 
arteries at the standard pulse rate. 

The real circulatory control system is a very complex one including the short-term 
regulation by the autonomic nervous system and the long-term hormonal regulation, 
etc. [30], but the present study models it as a simple dynamical model with the input 
of pulse rate b(t) and the outputs of peripheral vascular resistance of the systemic 
and pulmonary arteries, R4(t) and R8(t), and the no-load ventricular volumes, V2(t) 
and V6(t) (left side of Fig. 3a). The present model represents an inverse system of the 
real circulatory control system in which the pulse rate is also an output. The circu-
latory control inverse model is constructed based on the following characteristics: 
(1) the circulatory control system maintains blood pressure constant, (2) barorecep-
tors have differential characteristics to effectively respond to short-term changes of 
blood pressure [31]. (3) the ventricular stroke volume increases with increase of the 
pulse rate [32]. Parameters of the circulatory control inverse model are the rate sa 
of variation of ventricular stroke volumes against the change of the pulse rate (cf. 
characteristic 3), the rate sr of variation of peripheral vascular resistances against 
the change of the low-frequency component of the pulse rate (cf. characteristic 1), 
and the time constant Tc of the low pass filter characteristics of the control system 
with the input of the pulse rate (cf. characteristic 2). A total of six parameters of the
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present circulatory dynamics and circulatory control inverse models are determined 
by comparing the measured and calculated blood pressure values. 

2.2 Circulatory Dynamics Model 

The circulatory dynamics model consists of eight elastic containers representing a left 
atrial (1), a left ventricle (2), systemic arteries (3), systemic veins including organs 
(4), a right atrial (5), a right ventricle (6), pulmonary arteries (7), and pulmonary 
veins (8); and eight liner resistors connecting these containers (Fig. 3a). The numbers 
assigned to resistors are identical to those of downstream side containers. 

Dynamics of the pressures in the containers are represented by the following 
equations. 

dPi 

dt  
= Ei

(
Qi − Qi+1 − 

dV  i 
dt

)
(i = 1, · · ·  , 8) (1) 

Vi (t)(i = 2, 6) represent the variations of the volume at zero pressure, or no-load 
volume, of the left and right ventricles, respectively, given by 

Vi (t) = fi (0) + a(t)

{
fi

(
b(t)τ (t) 
b0τ0

)
− fi (0)

}
(i = 2, 6) (2) 

where b(t) is the pulse rate of the pulse including the time point t, τ  (t) is the elapsed 
time from the beginning of this pulse, b0 and τ0 are the standard pulse rate and the 
corresponding cardiac cycle, respectively, fi (τ (t)/τ0) are the variations of the no-
load volume of the left and right ventricles for the standard pulse rate derived by 
reference to the literature [29] (Fig. 3b), a(t), we call it as  no-load stroke volume 
ratio, is the ratio of the ventricular volume change to that for the standard pulse rate, 
determination of the value of which by the circulatory control inverse model will be 
explained later. No-load volumes of the other containers are constant. 

In Eq. (1), Ei (i = 1 · · ·  8) are the elasticities of the containers. The elasticity of the 
left ventricle E2 is assumed to take a relatively lower value for the internal pressure 
lower than a threshold due to buckling. The elasticity of lumped systemic arteries 
E3 is defined as a function of the arterial pressure P3 considering the characteristics 
of blood vessels [33]. Refer to the reference for details [9]. Elasticities of the other 
containers were set constant values for simplicity. 

The flow rates Qi through the resistors are given as 

Qi = 
Ci (Pi−1 − Pi ) 

Ri 
(i = 1 · · · 8) (3) 

where Ci represent check valve characteristics to prevent reverse flow.
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Ci =
{
0 Pi−1 ≤ Pi 
1 Pi−1 > Pi 

(4) 

Indices i = 2, 3, 6, 7 correspond to the mitral, aortic, tricuspid, and pulmonary 
valves, respectively. In the other resistors there is no possibility of reverse flow. 

Ri (i = 1 · · ·  8) are the resistance coefficients. Those of the peripheral systemic (4) 
and pulmonary (8) arteries, respectively, are modeled by the following expression. 

Ri = Ri0r (t)/a(t) (i = 4, 8) (5) 

where r (t), we call it as peripheral vascular resistance ratio, is the ratio of the periph-
eral vascular resistance coefficient to that for the standard pulse rate multiplied with 
the no-load stroke volume ratio, determination of the value of which by the circula-
tory control inverse model will be explained later. The other resistance coefficients 
are set to constant values. 

2.3 Circulatory Control Inverse Model 

We explain the models for the no-load stroke volume ratio a(t) and the peripheral 
vascular resistance ratio r (t) in the followings. Taking into account of the character-
istics of the circulatory control system that the ventricular stroke volume increases 
with increase of the pulse rate [32], the no-load stroke volume ratio a(t) (see Eq. (2)) 
is modeled by the interpolation of the linear function a(t) = b(t)/b0 of the pulse 
rate b(t) and the constant a(t) = 1 with a weighting factor sa , we call it as  stroke 
volume change rate. 

a(t) = sa 
b(t) 
b0 

+ (1 − sa) (6) 

Since the circulatory control system maintains blood pressure constant [30], and 
baroreceptors have differential characteristics to effectively respond to short-term 
changes of blood pressure [31], the peripheral vascular resistance ratio r(t) (see 
Eq. (5)) is modeled as the multiplication of the effects of the lower and higher 
frequency components of the pulse rate variation. 

r (t) = rLF  (t)rHF  (t) (7) 

where the effect of the lower frequency component of the pulse rate variation rLF  (t) 
is modeled by an inverse function of an interpolation of the linear function bLF  (t)/b0 
of the lower frequency component of the pulse rate variation bLF  (t) and the constant 
1 with a weighting factor sr , we call it as  peripheral resistance change rate whereas 
the effect of the higher frequency component of the pulse rate variation rHF  (t) is 
modeled by the inversely proportional function of the pulse rate.
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rLF  (t) = 1/(sr bLF  (t)/b0 + (1 − sr )) (8) 

rHF  (t) = bLF  (t)/b(t) (9) 

It is noted that in the first paper [9] rLF  (t) in Eq. (8) was defined as an interpolation 
of b0/bLF  (t), inverse function of the low frequency component of the pulse rate 
change bLF  (t), and a constant value of 1. While the previous paper assumed the 
linearity between the pulse rate change and the peripheral resistance coefficient 
change, the second article [26] assumes the linearity between the pulse rate change 
and the peripheral vessel diameter change. 

The lower frequency component of the pulse rate variation bLF  (t) is expediently 
modeled by the following second-order low-pass filter with the cut-off frequency of 
ωc and the time constant Tc = 1/ωc, we call it the time constant of slow pulse rate 
variation. 

d2bLF  (t) 
dt2 + 2ωc 

dbLF  (t) 
dt  + ω2 

cbLF  (t) = ω2 
cb(t) 

bLF  (0) = b(0) 
(10) 

3 Summary 

In this section the circulatory system model for DCBP estimation was presented. 
The circulatory system model consists of the circulatory dynamics model and the 
circulatory control inverse model. The real circulatory dynamics is a very complex 
fluid–structure coupled system, but the present study models it as a simple lumped 
parameter dynamical system. The real circulatory control system also is a very 
complex one including the short-term regulation by the autonomic nervous system 
and the long-term hormonal regulation, etc. [30], but the present study models it as 
a simple dynamical model with the input of pulse rate and the outputs of periph-
eral vascular resistance of the systemic and pulmonary arteries, and the no-load 
ventricular volumes. 

4 Analysis Result of Circulatory System 

4.1 Introduction 

In this section an analysis result of the circulatory system model for DCBP esti-
mation for one subject in one day is presented based on the first paper [9]. The 
input of the model or the continuous pulse rate variation was measured by a wear-
able device. Systolic and diastolic pressures and pulse rate were also measured with
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the sphygmomanometer with the interval of 30 or 60 min. Differential equations of 
the model were integrated using the measured pulse rate data. Values of six model 
parameters were determined for the data by comparing the result of the sphygmo-
manometer measurement and those of the computations for various combinations of 
these parameters. 

4.2 Methods 

Computation 

Differential equations for the circulatory dynamics model and the circulatory control 
inverse model were numerically integrated with the 4-th order Runge–Kutta method. 
In order to prevent the accumulation of numerical errors, computational results are 
modified to maintain the total blood volume constant with the interval of one minute 
of the model time. 

Subjects 

The subject was a healthy male volunteer of 60 s (subject 1 of the former study [9]). 
Informed consent was obtained from the subject. The study was approved by the 
Ethics Committee of Graduate School of Engineering, Tohoku University (15A-9). 
All research methods were performed in accordance with relevant guidelines and 
regulations. 

Verification Experiments 

As the input of the present model, the pulse rate was measured for the subjects 
by a commercially available wearable device (Wristable GPS, SF-810, EPSON, 
Japan, Fig. 2a) with the measurement interval of one second in one day. As the 
purpose of comparison, systolic and diastolic pressures and pulse rate were also 
measured in sitting position with an automatic sphygmomanometer (HEM-1025, 
OMRON, Japan) in one day with the interval of 30 min (wake up hours) or 60 min 
(sleeping hours). Differential equations of the present model were integrated using the 
measurement data of the pulse rate by the wearable device. The computational time 
step was fixed to Δt = 0.0002 s according to preliminary calculations. Calculation 
was performed by a server (HPCT W215s, Intel Xeon Gold 6132, 2.6 GHz 14 Core 
× 2, 192 GB memory, HPC Tec, Japan) with a typical computational time of 370 s 
for a 24 h calculation. Values of the model parameters were determined for the day 
by comparing half of the sphygmomanometer measurements and the corresponding 
computations obtained with various combinations of these parameters. The validity of 
the present DCBP estimation method was then examined by comparing the other half 
of measurements and those of DCBP computations with the determined parameters.
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Determination of the Optimum Model Parameters 

Parameters affecting the systemic arterial blood pressure P3(t) in this circulatory 
dynamics model is the standard pulse rate b0, the elasticity E30 and the peripheral 
resistance coefficient R40 of the lumped systemic arteries at the standard pulse rate. 
Parameters of the circulatory control inverse model are the stroke volume change rate 
sa , the peripheral resistance change rate sr , and time constant of the slow pulse rate 
variation Tc. Optimum values of these parameters were determined by comparing 
the result of the sphygmomanometer measurement and those of the computations for 
various combinations of these parameters. For detailed explanation refer to Sect. 4.2 
or the paper [9]. 

4.3 Results 

We show the results of the subject. Variation of the pulse rate in 24 h in one day is 
shown in Fig. 4a. Approximate times of activities in the day are, sleeping in 0:00– 
7:30, wake up in 7:30–24:00, meals at 8:00, 12:00, and 18:30, driving car at 9:00 and 
18:00, office work in 10:00–17:30. Measurements of the wearable device (line) and 
those of the sphygmomanometer (circles) agree well. Differential equations of the 
present model were integrated using the measurement data of the pulse rate by the 
wearable device. Values of the model parameters, b0, E30, R40, sa , sr , and Tc, were  
determined by comparing the result of the sphygmomanometer measurements and 
those of the computations performed with various combinations of these parameters. 
Variations of the no-load ventricular volume ratio a(t) and the peripheral vascular 
resistance ratio r (t) are shown in Fig. 4b. Computational results for the variations 
of pressures Pi (t) and volumes Vi (t) of eight elastic containers in the model are 
shown in Fig.  4c and 4d, respectively. Lines in Fig. 4e show computational results of 
the daily continuous blood pressure (DCBP) estimation for variation of the systolic 
(blue), average (red), diastolic (green), and pulse (brown) pressures at all pulses in 
24 h obtained from the result of the arterial pressure P3(t) (Fig. 4c). Circles in the 
figure are corresponding measurement data by the sphygmomanometer.

In order to obtain the blood pressure estimation at a fixed time point, computation 
is necessary using pulse rate data in a certain period. According to preliminary 
calculations, it was confirmed that the computational result in the last 60 s of 120 s 
calculation starting from the time point 60 s ahead of the target time point using the 
initial value of the low frequency component of the pulse rate variation evaluated 
by the data in the period of 1,600 s, which is eight times of the time constant Tc, 
agreed well with the corresponding results of the 24 h calculation. The average 
values in the last 60 s were used in the comparison with the measurement data of 
sphygmomanometer with one minute temporal resolution. 

Errors of the computations from measurements of the sphygmomanometer at 40 
time points are shown in Fig. 4f for the systolic and diastolic pressures. Colors of the 
plots correspond to those in Fig. 4e, and closed and cross circles show the data used
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a b  

c 

d 

Fig. 4 Daily continuous blood pressure (DCBP) estimation for the subject 1 in the former study 
[9]. a Pulse rate measurements of wearable device (line) and those of sphygmomanometer (circles). 
b Computational results for no-load ventricular volume ratio (blue) and peripheral vascular resis-
tance ratio (red). Pressures (c) and  volumes (d) of eight elastic containers. e 24 h computations 
(lines) and measurements by sphygmomanometer (circles) for systolic (blue), average (red), dias-
tolic (green), and pulse (brown) pressures. Same colors are used in f–j. f Variation of estimation 
errors of computations for systolic and diastolic pressures at time points for parameter determination 
(closed circles) and those for validation (cross circles). g Bland–Altman plot showing the relation 
between errors and averages of estimations and measurements for systolic and diastolic pressures 
with mean values (middle lines) and mean values ± 2 × standard deviation (upper and lower lines) 
with data for parameter determination data (closed circles, solid lines) and validation data (cross 
circles, broken lines). h Correlation between measurements and calculations for systolic, mean, 
diastolic, and pulse pressures using the same symbols as those in g. Measurements (open circles), 
corresponding computations (closed circles), and all 24 h computations (light color circles) plotted 
with pulse rate (i) and with low-frequency component of pulse rate (j)
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Fig. 4 (continued) j

for parameter determination (20 time points) and those for validation (20 time points), 
respectively. Figure 4g (Bland–Altman plot) shows the relation between errors and 
averages for estimation and measurement for systolic (blue) and diastolic (green) 
pressures with mean values (middle lines) and mean values ±2 × standard deviation 
(upper and lower lines) with data for parameter determination (closed circles, solid 
lines) and those for validation (cross circles, broken lines). Rows 1–4 in Table 1 show 
mean values and standard deviations of measurements, estimations, and estimation 
errors for systolic and diastolic pressures in parameter determination data and those 
for validation ones.

Correlations between estimations and measurements for systolic (blue), mean 
(red), diastolic (green), and pulse (brown) pressures are shown in Fig. 4h using the  
same symbols as those in Fig. 4g. Figure 4i and 4j show the measurements (open 
circles), corresponding calculations (closed and cross circles), and all the 24 h calcu-
lations (light color circles) for the systolic (blue), diastolic (green), and pulse (brown) 
pressures plotted with the pulse rate and with the low-frequency component of the 
pulse rate variation, respectively. Rows 5–14 in Table 1 show correlations among 
measured and estimated blood pressures and pulse rate with Pearson’s correlation 
coefficient r, coefficient of determination R2, and slope of regression line. Rows 5–8 
correspond to the results in Fig. 4h for parameter determination data and those for 
validation data. Rows 9–11 and 12–14 correspond to the results for computations 
and measurements in Fig. 4i and 4j, respectively. 

4.4 Discussion 

Computational results for systolic, average, diastolic, and pulse pressures for the 
subject agree with those of measurements with a sphygmomanometer as shown in 
Fig. 4e and 4h. The computational results for daily variation of systolic pressure 
show reduced blood pressure in the sleeping hours [4] and fluctuation of the blood 
pressure in the wake up hours [34] (Fig. 4e). Computational results for the variations
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Table 1 DCBP estimation result for the subject in the former study [9]. Rows 1–4 show mean 
values and standard deviations of measurements, estimations, and estimation errors for systolic and 
diastolic pressures for parameter determination data and those for validation ones. Following rows 
show correlations among measured and estimated blood pressures and pulse rate with Pearson’s 
correlation coefficient r, coefficient of determination R2, and slope of regression line. Rows 5–8 
correspond to the results in Fig. 4h for parameter determination data and those for validation ones. 
Rows 9–11 and 12–14 correspond to the results for computations and measurements in Fig. 4i and  
4j, respectively 

Param. determ. Data Validation data 

Meas Estim Error Meas Estim Error 

Systolic MEAN 112.0 112.6 0.0 109.4 112.0 3.2 

SD 13.3 12.6 10.6 10.9 11.8 11.0 

Diastolic MEAN 74.9 75.1 0.0 71.9 74.9 3.3 

SD 9.7 7.5 6.9 6.5 6.7 9.0 

Independent variables Dependent variables Param. determ. data Validation data 

r R2 slope r R2 slope 

Meas. data Psys 0.646 0.417 0.576 0.570 0.325 0.660 

Pdia 0.702 0.492 0.485 0.177 0.031 0.205 

Pave 0.713 0.509 0.588 0.440 0.194 0.551 

Ppulse 0.114 0.013 0.097 0.705 0.496 0.505 

Independent variables Dependent variables Estimations Measurements 

r R2 slope r R2 slope 

Pulse rate Psys 0.635 0.403 1.173 0.083 0.007 0.145 

Pdia 0.361 0.130 0.388 0.069 0.005 0.083 

Ppulse 0.878 0.771 0.785 0.057 0.003 0.062 

Low-frequency 
component of pulse rate 

Psys 0.969 0.940 1.307 0.606 0.368 0.817 

Pdia 0.997 0.994 0.782 0.454 0.206 0.420 

Ppulse 0.805 0.648 0.525 0.471 0.222 0.397

of pressures Pi (t) and volumes Vi (t) of eight elastic containers in the model are 
qualitatively in good agreement with those of the literature [35, 36] (Fig. 4c and 
4d). Variation of the no-load ventricular volume ratio a(t) and that of the peripheral 
vascular resistance ratio r (t) show increase of the no-load ventricular volume and 
decrease in the peripheral vascular resistance in the systemic and pulmonary arteries 
with increasing pulse rate through the circulatory control inverse model, respectively 
(Fig. 4b). 

As shown in Table 1, the standard deviation of measurements for the systolic pres-
sure with parameter determination data and that with validation data were 13.3 mmHg 
and 10.9 mmHg, respectively, and those for the diastolic pressure were 9.7 mmHg 
and 6.5 mm Hg, respectively. Corresponding values for the errors of computations 
from measurements were 10.6 mmHg and 11.0 mmHg for the systolic pressure, and 
those for diastolic pressure were 6.9 mmHg and 9.0 mmHg, respectively, which are
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comparable with those of measurements. These standard deviations of the errors 
are less than 11.3 mmHg, which is evaluated assuming the standard deviation of a 
common sphygmomanometer (8 mmHg) for those measurements and computations, 
and independency between them. 

σcal−meas =
/

σ 2 cal + σ 2 meas =
√
82 + 82 = 11.3(mmHg) (11) 

Mean value for the errors evaluated with validation data was 3.2 mmHg for the 
systolic pressure, and that for diastolic pressure was 3.3 mmHg, respectively, which 
are less than the tolerance of common sphygmomanometers (5 mmHg). 

The correlation coefficients and the coefficients of determination have large values 
to show the effectiveness of the present estimation method as shown in Fig. 4h and 
rows 5–8 of Table 1. The correlation between the pulse rate and the blood pressure 
has been considered to be low [37]. As to the measurements and corresponding 
calculations, correlations with the pulse rate are low as shown in Fig. 4i and rows 
9–11 of Table 1, being consistent with former studies. On the other hand, they have 
significant correlations with the low-frequency component of the pulse rate variation 
in Fig. 4j and rows 12–14 of Table 1, in accordance with the circadian cycle of the 
pulse rate [38] and that of the blood pressure [39]. As to all the 24 h calculations, 
the systolic and diastolic pressures have more significant correlations with the low-
frequency component of the pulse rate whereas the pulse pressure has the one with 
the pulse rate, reflecting the present circulatory control inverse model. 

5 Summary 

Our results suggest that a fundamental part of DCBP can be represented by continuous 
pulse rate data and the simple circulatory dynamics and circulatory control inverse 
model with six model parameters. It is obviously easier to perform DCBP estimation 
by this method than by the other methods. 

Although the present verification is very limited, the mean absolute error was 
comparable with that of the standard for wearable, cuffless blood pressure measuring 
devices [40]. Our results demonstrate how DCBP is appropriately estimated by the 
simple circulatory system model and the pulse rate measurement. We anticipate 
our methodology to be a starting point of new diagnosis based on DCBP [4–7]. 
Studies to clarify the relation between DCBP and diseases are important in many 
clinical departments. Furthermore, present six model parameters can be used as 
reliable personal vital signs relating the blood pressure, measurement of which often 
experiences large fluctuations [11].
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6 Experimental Validation and Optimization 

6.1 Introduction 

In this section we show the experimental validation and optimization of the DCBP 
estimation method based on the second article [26]. We simultaneously performed 
a 25-h continuous pulse rate measurement using a commercially available wear-
able device and blood pressure measurement with 30 min interval using an ABPM 
device for 29 subjects. Under four conditions for the constraint of model parame-
ters, including the case where two parameters of the inverse model of the circulatory 
control system are independently changed, blood pressure estimations are performed 
to determine the optimal parameters and evaluate the estimation error for each condi-
tion by comparing the estimation results with the ABPM measurements. From these 
results, the validity of each condition for the constraint and the statistical properties 
of the parameters are clarified. Among these conditions, optimum parameter deter-
mination method is determined from the viewpoints of accuracy and computational 
costs. For the optimum parameter determination method of the circulatory control 
system, the effect of the number of the ABPM data on the accuracy of pressure esti-
mation is investigated and the number of measurement data necessary for appropriate 
parameter determination is obtained. From these results we clarify the applicability 
of the present estimation method to practical blood pressure estimation devices. 

6.2 Method 

In this study, we use a circulatory system model of the second article [26] explained 
in Sect. 2 which is slightly modified from that in the first paper [9] consisting of a 
circulatory dynamics model and a circulatory control inverse model with the input 
of pulse rate. 

Computations 

Differential equations for the circulatory dynamics model and the circulatory control 
inverse model were numerically integrated with the 4-th order Runge–Kutta method. 
In order to prevent accumulation of numerical errors, computational results are modi-
fied to maintain the total blood volume constant with the interval of one minute of 
the model time. 

Subjects 

The subjects were 29 volunteers with an average age of 44 years and a standard devia-
tion of 13 years (Table 2). They are classified to classes 1–3 and none of them to class 4 
in the classification of IEEE criteria for cuffless blood pressure measurement devices 
[40]. Informed consent was obtained from the subjects. The study was approved by
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the Ethics Committee of Graduate School of Engineering, Tohoku University (15A-
9). All research methods were performed in accordance with relevant guidelines and 
regulations. 

Verification Experiment 

We developed a wearable DCBP estimation device (Fig. 2b). A DCBP estimation 
program based on the algorithm explained in Sect. 2 was installed in a commercially 
available wearable pulse rate measurement device (M600, POLAR, Sweden), and by 
specifying model parameters it is possible to perform real-time analysis to display 
estimated blood pressure. In this study, however, off-line analysis was performed 
in order to examine the validity of the DCBP estimation method including model 
parameters determination. As the input of the model, the pulse rate was measured for 
the subjects by the wearable device with the measurement interval of the pulse period 
for 25 h from the wake-up time. As the purpose of comparison, systolic and diastolic 
pressures and pulse rate were also measured in daily life condition with an ambula-
tory blood pressure (ABP) monitor (TM2433, A&D, Japan) in the above-mentioned 
time with the interval of 30 min. After the measurement by the wearable device 
and the ABP monitor, differential equations of the model were integrated using the 
measurement data of the pulse rate by the wearable device. The computational time 
step was fixed to Δt = 0.0002 s according to the former study [9]. Calculation was 
performed by a server (HPCT W215s, Intel Xeon Gold 6132, 2.6 GHz 14 Core × 2, 
192 GB memory, HPC Tec, Japan) with a typical computational time of 385 s for a 
25-h calculation. For each subject, values of the model parameters were determined 
by comparing half of the ABP monitor measurements and the corresponding compu-
tations obtained with various combinations of these parameters. The validity of the 
present DCBP estimation method was then examined by comparing the other half of 
the measurements and those of DCBP computations with the determined parameters. 

Determination of the Model Parameters 

In this study, the model parameters were determined for conditions denoted by Case 
1 to Case 4 in Table 3, and the accuracy of blood pressure estimation was investigated

Table 2 Subjects data [26] 

Total number 29 

Gender Male 26 

Female 3 

Age MEAN, SD 43.9, 12.6 

Max, Min 63, 23 

Mean of ABPM measurement for systolic pressure 1 ≤ 119 10 

2 120–139 12 

3 140–160 7 

4 161 ≤ 0 
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for each case. Parameters affecting the systemic arterial blood pressure P3(t) in this 
circulatory dynamics model is the standard pulse rate b0, the elasticity E30 and the 
peripheral resistance coefficient R40 of the lumped systemic arteries at the standard 
pulse rate. Those of the circulatory control inverse model are the stroke volume 
change rate sa , the peripheral resistance change rate sr , and the time constant of the 
slow pulse rate variation Tc. 

In Case 1, the results of odd number measurements of the ABP monitor in 
25 h period (parameter determination data) for the systolic and diastolic pressures 
and the pulse rate, Psysm (tn), Pdiam(tn), bm(tn) and quantities derived from these 
measurement results for the average pressure and the pulse pressure, Pavem(tn) = 
(Psysm(tn) + Pdiam(tn))/2, Ppulsem(tn) = Psysm(tn) − Pdiam(tn), were used to  
determine above-mentioned model parameters by comparing them with the corre-
sponding results of calculation, Psysc(tn), Pdiac(tn), bc(tn), Pavec(tn), and Ppulsec(tn) 
in the following conditions whereas the results of the even number measurements 
(validation data) were used to verify the validity of the estimation results. 

(1) b0 is expediently determined as the average value of the pulse rate data in the 
parameter determination data of the ABP monitor whereas it was determined as 
the average value of measurement data of the wearable device in 24 h in former 
study [9]. 

(2) E30 and R40 are determined in the same way as the former study so that the 
average values of the computation for Ppulsec(tn) and Pavec(tn) are the same as 
the corresponding results of the measurement. A fixed point iterative method 
was used for the parameter determination. 

(3) sa and sr are determined to minimize the following cost function by multiple 
conditions that the standard deviation of Ppulsec(tn) and that of Pavec(tn) are 
the same as the corresponding results of the measurement and that the mean 
square error of Ppulsec(tn) and thazt of Pavec(tn) are the minimum. The cost 
function Jsum is defined as the weighted sum of two functions corresponding to 
the above-mentioned conditions. The weighting factor α = 0.25[Pa−1] was set 
to the same value as the former study.

Table 3 Definition of cases in verification experiment [26] 

Case 1 Case 2 Case 3 Case 3 (n) Case 4 

sa, sr 2D optimization 1D optimization Mean of 
parameters in 
Case 2 

Mean of 
parameters in 
Case 2 

Mean of 
parameters 
in Case 2 

E30, 
R40 

2D optimization 2D optimization 2D 
optimization 

2D 
optimization 
using first n 
data 

Mean of 
parameters 
in Case 2 

b0 Mean of ABPM 
measurement for 
each subject 

Mean of ABPM 
measurement for 
each subject 

Mean of 
parameters in 
Case 2 

Mean of 
parameters in 
Case 2 

Mean of 
parameters 
in Case 2 
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Jsum = Jsd + α Jrms (12) 

where 

Jsd =
(
σpulsec/σpulsem − 1

)2 + (σavec/σavem − 1)2 

Jrms  =
[

1 

2N

∑{(
Ppulsem (tn) − Ppulsec(tn)

)2 + (Pavem(tn) − Pavec(tn))
2
}]1/2 

(13) 

The former function evaluates the degree of agreement for the standard deviations 
σpulsec and σavec of Ppulsec(tn) and Pavec(tn) with those of measurement σpulsem 

and σavem , respectively, and the latter function evaluates the mean square errors of 
Ppulsec(tn) and Pavec(tn). It is noted that a power of 1/2 was missing in the righthand 
side of the second formulation of Eq. (13), and the unit of α[Pa−1] in Eq. (12) was  
incorrectly defined as [Pa−2] in the former study [9]. The parameter determination 
was performed as a two-dimensional optimization problem; a round-robin method 
was used to determine the values of sa and sr to minimize the cost function in Eq. (12) 
by changing these parameters between 0 and 1 with the increment of 0.1, respectively. 

(4) Tc was set to 200 s which was determined in the former study [9] so that 
the mean absolute error of Psysc(tn) and Pdiac(tn) is small and the variations of 
the computed 25 h blood pressure properly represent the characteristics of the 
measurement. 

Other cases are explained in the followings. Case 2, corresponding to the condi-
tion of the former study [9], assumes a simpler condition than Case 1 in which the 
parameter determination was performed as a one-dimensional optimization problem 
under the empirical constraint of Eq. (14) between two parameters and a round-robin 
method was used to determine the value of sr to minimize the cost function in Eq. (12) 
by changing the parameter between 0 and 1 with the increment of 0.1. 

sa = 1 − sr (14) 

Case 3 assumes a simpler condition than Case 2 in which values of the parameters 
sa , sr and b0 are given as the mean values of those of all subjects in Case 2, respec-
tively. Case 3(n) is basically the same as Case 3 but the first n data of the parameter 
determination data was used for determination of E30 and R40. Case 4 assumes the 
simplest condition in this study in which all the model parameters are constant. In 
addition to sa , sr and b0, parameters E30 and R40 are defined as the mean values of 
those of all subjects in Case 2, respectively. 

From Eqs. (1) and (3), we obtain the approximate expressions of E30 and R40 by 
measurement values, Psysm , Pdiam , and bm ; and the stroke volume ΔV . 

E30 = (Psysm − Pdiam)/ΔV 
R40 = 60(Psysm + Pdiam)/(2ΔVbm) 

(15)
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Values of the other model parameters were determined in reference to the literature 
[35] since their effect on the systemic arterial pressure is relatively low. 

6.3 Results 

First, the results of Case 1 are shown in the followings. Figure 5a–e and f–i show the 
model parameters and the mean errors of estimated blood pressure with respect to the 
validation data of ABPM with the daily average value of systolic pressures measured 
by ABPM for all 29 subjects, respectively. Figure 5a shows the standard pulse rate b0 
determined as the average value of the pulse rate data in the parameter determination 
data of ABPM, Fig. 5b, c parameters of the circulatory control inverse model, or 
the stroke volume change rate sa and the peripheral resistance change rate sr , and 
Fig. 5d, e parameters of the circulatory dynamics model, or the elasticity E30 and the 
peripheral resistance coefficient R40 of the lumped systemic arteries at the standard 
pulse rate b0, respectively. Figure 5f, g and h, i show the mean absolute errors for 
systolic and diastolic pressures, and the mean errors, respectively. Numbers at the 
plots show the subject numbers, and solid and broken lines show means and means 
± standard deviations, respectively.

DCBP analysis results and measurements with the wearable device and the ABP 
monitor are compared in Fig. 6 for five subjects corresponding to representative 
results  of  Case 1 in Fig.  5. Left figures show measurements of pulse rate by the 
wearable device (lines) and the ABP monitor (symbols). In the followings, triangles 
and circles show the parameter determination data and the validation data of ABPM, 
respectively. Second column figures show daily variations of DCBP for systolic 
(blue), average (red), diastolic (green), and pulse (brown) pressures by computa-
tion (line) and ABP monitor measurement (symbols). Same colors are used in the 
following results. Third column figures show errors of computed systolic and dias-
tolic pressures with respect to measured ones with ABPM. Fourth figures show 
correlations between the computations and the measurements for systolic, average, 
diastolic, and pulse pressures.

Figure 7 shows the correlation between the stroke volume change rate sa and the 
peripheral resistance change rate sr in Case 1 for all 29 subjects. Numbers at symbols 
show subject numbers, horizontal and vertical solid lines the mean values of sa and 
sr , respectively, and the inclined line is the direction of the first principal component 
vector of the covariance matrix.

Next, we compare the results of Cases 2–4 with those of Case 1 for all 29 subjects. 
Figure 8a–e show the relations between the model parameters of Case 1 and those of 
Cases 2–4 for (a) the standard pulse rate b0, (b) the stroke volume change rate sa , (c)  
the peripheral resistance change rate sr , (d) the elasticity E30 and (e) the peripheral 
resistance coefficient R40 of the lumped systemic arteries at the standard pulse rate, 
respectively. Figures 8f-i show the relations between the errors of estimated blood 
pressure of Case 1 and those of Cases 2–4 for (f, g) the mean absolute errors and 
(h, i) the mean errors of estimated systolic and diastolic pressures, respectively, with
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a    b    c 

d    e    f 

g    h    i 

Fig. 5 Analysis results of Case 1. Model parameters and mean errors of estimated blood pressure 
with respect to the validation data of ABPM are shown with the daily average value of systolic 
pressure measured by ABPM for all 29 subjects for a the standard pulse rate b0 determined as the 
average value of the pulse rate data in the parameter determination data of ABPM, b, c parameters of 
the circulatory control inverse model, the stroke volume change rate sa and the peripheral resistance 
change rate sr , d, e parameters of the circulatory dynamics model, the elasticity E30 and the 
peripheral resistance coefficient R40 of the lumped systemic arteries at the standard pulse rate, f, 
g the mean absolute errors for systolic and diastolic pressures, h, i the mean errors. Numbers at 
the plots show the subject numbers, and solid and broken lines show means and means ± standard 
deviations, respectively
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Subject 8 

Subject 9 

Subject 14 

Subject 21 

Subject 27 

Fig. 6 Comparison among DCBP analysis results and measurements with the wearable device 
and the ABP monitor for five subjects corresponding to representative results of Case 1 in Fig. 5. 
First column figures: measurements of pulse rate by the wearable device (lines) and the ABP 
monitor (symbols). Triangles and circles show the parameter determination data and the validation 
data of ABPM, respectively. Second column figures: daily variations of DCBP for systolic (blue), 
average (red), diastolic (green), and pulse (brown) pressures by computation (line) and ABP monitor 
measurement (symbols). Same colors are used in the following results. Third column figures: 
errors of computed systolic and diastolic pressures with respect to measured ones with ABPM. 
Fourth column figures: correlations between computations and measurements for systolic, average, 
diastolic, and pulse pressures



200 T. Hayase

Fig. 7 Correlation between 
the stroke volume change 
rate sa and the peripheral 
resistance change rate sr in 
Case 1 for all 29 subjects. 
Numbers at symbols show 
subject numbers, horizontal 
and vertical lines the mean 
values of sa and sr , 
respectively, and the inclined 
line is the direction of the 
first principal component 
vector of the covariance 
matrix

respect to measurements with ABPM. Results of Cases 2, 3, and 4 are shown by 
closed, light-colored, and open symbols, respectively. Numbers at the plots show the 
subject numbers.

Mean values and standard deviations of the model parameters are summarized in 
Table 4 for Cases 1–4. Those of the mean error, standard deviation, and mean absolute 
error of estimated systolic and diastolic pressures with respect to the parameter 
determination data and the validation data, respectively, are in Table 5.

Finally, we show the results of Case 3(n) in which n, the number of the parameter 
determination data used to determine the circulatory dynamics model parameters, 
was changed in the condition of Case 3. For all subjects, mean values and standard 
deviations of the mean absolute errors for the estimated systolic and diastolic pres-
sures with respect to the validation data of ABPM are plotted with the number of the 
parameter determination data in Fig. 9a and b, respectively. Corresponding results for 
the mean errors are shown in Fig. 9c and d, respectively. For the purpose of reference 
in these figures, the results at n = 0 show those of Case 4, in which the parameters 
were determined by averaging those of Case 3 for all the subjects, and the results at 
n = 20 show those of Case 3, in which all parameter determination data were used.

6.4 Discussion 

In this study we showed that the continuous blood pressure estimating method based 
on the simple circulatory system model with the input of pulse rate proposed in 
the former study [9] can be applied to practical DCBP estimation devices. As the 
evidence for that, a 25-h continuous pulse rate measurement using a commercially 
available wearable device and blood pressure measurement with 30 min interval
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a            b    c 

d    e    f 

g    h    i 

Fig. 8 Comparison of the results of Cases 2–4 with those of Case 1 for all 29 subjects for a the 
standard pulse rate b0, b the stroke volume change rate sa , c the peripheral resistance change rate sr , 
d the elasticity E30 and e the peripheral resistance coefficient R40 of the lumped systemic arteries 
at the standard pulse rate, f, g the mean absolute errors and h, i the mean errors of estimated systolic 
and diastolic pressures, respectively, with respect to measurements with ABPM. Results of Cases 
2, 3, 4 are shown by closed, light-colored, and open symbols, respectively. Numbers at the plots 
show the subject numbers

using an ABPM device were simultaneously performed for 29 subjects. Blood pres-
sure estimations were performed to determine optimal parameters and evaluate the 
estimation error for each of four conditions for the constraint of model parameters by 
comparing the estimation results with the ABPM measurements. From these results, 
the validity of the various conditions of the constraint and the statistical properties of
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Table 4 Mean values and standard deviations of the model parameters for Cases 1–4 

Case 1 Case 2 Case 3 Case 4 

MEAN SD MEAN SD MEAN SD MEAN SD 

b0 [bpm] 69.4 8.1 69.4 8.1 69 0 69 0 

E30 [Pa/cm3] 133.7 20.5 133.5 20.7 133.4 27.0 133.8 0 

R40 [Pa·s/cm3] 180.0 26.3 180.0 26.5 179.1 24.1 180.1 0 

sa [−] 0.6 0.3 0.6 0.2 0.6 0 0.6 0 

sr [−] 0.4 0.2 0.4 0.2 0.4 0 0.4 0 

Tc [s] 200 0 200 0 200 0 200 0 

Psys0 [mmHg] 124.5 14.3 124.6 14.4 124.2 13.6 125 0 

Pdia0 [mmHg] 77.6 11.4 77.8 11.4 77.4 10.1 78 0 

Table 5 Mean values and standard deviations of the mean error, standard deviation, and mean abso-
lute error of estimated systolic and diastolic pressures with respect to the parameter determination 
data and the validation data for Cases 1–4 

Case 1 Case 2 Case 3 Case 4 

MEAN SD MEAN SD MEAN SD MEAN SD 

Estimation errors [mmHg] 

Systolic MEAN 0.0 0.1 0.0 0.1 0.0 0.1 1.2 14.2 

SD 13.5 4.4 13.6 4.5 14.6 4.8 14.8 5.0 

MA 10.4 3.2 10.4 3.2 11.2 3.4 16.6 5.3 

Diastolic MEAN 0.0 0.1 0.0 0.1 0.0 0.1 0.2 9.2 

SD 10.0 4.2 10.1 4.2 10.2 4.3 10.1 4.3 

MA 7.7 2.7 7.8 2.8 7.8 2.9 11.1 3.6 

Validation errors [mmHg] 

Systolic MEAN 0.4 4.1 0.4 4.2 0.3 4.3 1.4 14.1 

SD 14.0 4.3 13.9 4.3 14.5 4.7 14.6 4.8 

MA 11.2 3.2 11.2 3.3 11.6 3.6 16.4 5.8 

Diastolic MEAN -0.2 2.7 -0.1 2.7 -0.1 2.7 0.1 9.3 

SD 10.2 3.2 10.2 3.0 10.3 3.2 10.2 3.1 

MA 7.9 2.0 7.9 1.9 8.0 2.0 10.8 3.6

the parameters were clarified. Among these conditions, optimum parameter determi-
nation method was determined from the viewpoints of accuracy and computational 
costs. For the optimum parameter determination method of the circulatory control 
system, the effect of the number of the ABPM data on the accuracy of pressure esti-
mation was clarified and the number of measurement data necessary for appropriate 
parameter determination was clarified. The relations between model parameters and 
the daily average of systolic pressures by ABPM were clarified for all subjects in 
Case 1, in which four model parameters were changed independently (Fig. 5a–e).
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a     b 

c     d 

Fig. 9 Results of Case 3(n) for mean values (symbols) and standard deviations (error bars) for all 
the subjects of a, b the mean absolute errors, and c, d the mean errors for the estimated systolic 
and diastolic pressures with respect to the validation data of ABPM, respectively, plotted with the 
number of the parameter determination data. For the purpose of reference, the results at n = 0 show  
those of Case 4, and  the results  at  n = 20 show those of Case 3, respectively

For the stroke volume change rate sa and the peripheral resistance change rate sr , no  
correlation was found to the blood pressure (Fig. 5b, c). In Fig. 7, which shows the 
correlation between the stroke volume change rate sa and the peripheral resistance 
change rate sr , mean values of both the parameters satisfy Eq. (14), the constraint 
proposed in the former study, and the direction of the first principal component vector 
of the covariance matrix agrees with that of Eq. (14), verifying the effectiveness of 
the constraint. On the other hand, we obtained a physiologically reasonable result 
that the parameters of the circulatory dynamics model, the elasticity E30 and the 
peripheral resistance coefficient R40 of the lumped systemic arteries at the standard 
pulse rate, respectively, have positive correlations with the blood pressure (Fig. 5d, 
e). No correlation was found between the standard pulse rate b0 determined as the 
average value of the daily pulse rate data in the parameter determination data of 
ABPM and the blood pressure (Fig. 5a). 

Next, we discuss the error of analysis results for all the subjects in Case 1 with 
respect to the verification data of ABPM. Mean absolute errors and mean errors of 
systolic and diastolic pressures have no correlation with the blood pressure (Fig. 5 f– 
i). As to statistical data of estimation errors with respect to validation data of ABPM,
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mean errors of systolic and diastolic pressures, 0.4 ± 4.1/-0.2 ± 2.7 mmHg, respec-
tively, were within a standard tolerance of those for common sphygmomanometers, 
± 5 mmHg. The standard deviations 14.0 ± 4.3/10.2 ± 3.2 mmHg and mean absolute 
errors 11.2 ± 3.2/7.9 ± 2.0 mmHg were larger than those for the sphygmomanome-
ters, 8 mmHg and 7 mmHg, respectively. A reason for the larger standard deviations 
and the mean absolute errors than those of common sphygmomanometer is possibly 
the errors in the standard validation data. If the errors in the validation data and 
those in the computation are uncorrelated with zero means and standard deviations 
of 8 mmHg corresponding to that of common sphygmomanometer, the standard devi-
ation is analytically obtained as Eq. (11) in the former section and the mean absolute 
error as. 

E =
/
2(σ 2 cal + σ 2 meas)/π = 9.0(mmHg) (16) 

Mean values of standard deviations and mean absolute errors in systolic and 
diastolic pressures in this study are comparable to those in above expressions. 

Next, we discuss five typical analysis results in Case 1 shown in Fig. 6. The  
result in the top row in the figure for subject 8 is the one the value of the mean 
absolute error in systolic pressure of which is almost average of those of all subjects 
(see Fig. 5f). Good agreement is shown in the figures in the top row for the daily 
variation (second figure), the error (third figure), and the correlation (fourth figure), 
respectively, between the estimated blood pressures and measured ones with ABPM. 
On the other hand, the result in the second row for subject 9 is the one the values 
of mean absolute errors in systolic and diastolic pressures of which are largest, 
respectively, among those of all subjects. Large error appears around 20 h in the 
third figure. The result in the third row for subject 14 is the one the value of the mean 
absolute error in systolic pressure of which is minimum among those of all subjects, 
and good agreement is shown in the figures. The result in the fourth row for subject 
21 and that in the fifth row for subject 27 corresponds to that with the largest mean 
error in diastolic pressure (Fig. 5i) and that with the negative smallest mean error in 
systolic pressure (Fig. 5h), respectively. These degradations in accuracy are mostly 
attributed to the outlier of ABPM data around 22 h and that around 12 h, respectively. 

Cases 2–4 are defined by adding several constraints to the parameter determination 
method in Case 1, resulting in the reduction of the degree of freedom in the method 
and of the computational load. We discuss the results of these cases by using the 
plots of the model parameters and the estimation errors of all subjects for each of 
Cases 2–4 with those of Case 1 (Fig. 8), the statistical data of the model parameters 
for Cases 1–4 (Table 4), and those of the estimation errors (Table 5). As to the model 
parameters, values of the stroke volume change rate sa and those of the peripheral 
resistance change rate sr of Case 2 distribute around those of Case 1, and their mean 
values sa = 0.6 and sr = 0.4 are identical (Fig. 8b, c, Table 4). Values of the elasticity 
E30 of the lumped systemic arteries at the standard pulse rate of Case 2 are close 
to those of Case 1 although those of Case 3 are far different from those of Case 1 
(Fig. 8d, Table 4). Values of the peripheral resistance coefficient R40 of the lumped
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systemic arteries at the standard pulse rate of Cases 2 and 3 are close to those of Case 
1 (Fig. 8e, Table 4). As to the errors with respect to the validation data of ABPM 
(Fig. 8f–i), Table 5), the results of Case 2 are almost identical to those of Case 1 
for all of mean absolute errors and mean errors in systolic and diastolic pressures. 
In Case 3, the mean absolute errors in systolic pressure in some data deviate from 
those of Case 1 although the other results are almost identical to those of Case 1. In 
Case 4, the errors are larger than those of case 1 for most of the results (Fig. 8f–i) 
with the standard deviations of the mean errors in systolic/diastolic pressures of 14.1/ 
9.3 mmHg (cf. 4.1/2.7 mmHg in Case 1) and the mean values of the mean absolute 
errors of 16.4/10.8 mmHg (cf. 11.2/7.9 mmHg in Case 1). According to the above 
discussion, it was revealed that the condition of Case 3, in which the elasticity E30 

and the peripheral resistance coefficient R40 are optimized while the stroke volume 
change rate sa and the peripheral resistance change rate sr are fixed to 0.6 and 0.4, 
respectively, realizes a blood pressure estimation with an accuracy comparable with 
that of Case 1 in substantially reduced computational load. 

Next, we discuss about the number of ABPM data necessary to determine appro-
priate values of the elasticity E30 and the peripheral resistance coefficient R40 in 
Case 3. Variations of the statistical values of the estimation errors with respect to 
the number of parameter determination data of ABPM used to determine the model 
parameters were clarified in Fig. 9 for Case 3(n), in which the first n data were used 
in parameter determination in Case 3. As to the mean absolute error of the estimated 
systolic pressure, the mean value and the standard deviation first increase at n = 1 
from those at n = 0, which corresponds to Case 4 with fixed E30 and R40, and then 
monotonically decrease with increasing n to converge to those of Case 3 at n = 20 
(Fig. 9a). For the mean absolute error of the estimated diastolic pressure, the mean 
value and the standard deviation almost monotonically decrease with increasing n 
from those of Case 4 at n = 0 to converge to those of Case 3 at n = 20 (Fig. 9b). As to 
the mean errors of the estimated systolic and diastolic pressures, the mean values are 
close to zero at all values of n in both results, while the standard deviations mono-
tonically decreases to converge to that of Case 3 (n = 20) except for the first increase 
at n = 1 for the systolic pressure (Fig. 9c, d). It is confirmed that the accuracy of the 
estimated blood pressure in Case 3(n) is comparable to that of Case 3 if the number 
of the data n is set to 10 or larger. 

Limitations of this study are discussed in the followings. As to subject groups, 
this study was performed for volunteer subjects, who were classified into either of 
groups 1–3 of IEEE standard [40] based on a range of systolic pressure, but not into 
group 4 which is a hypertension group with a systolic pressure ≥161 mmHg. In order 
to apply the present blood pressure estimation scheme to practical DCBP estimation 
devices, verification experiments covering all groups 1–4 should be performed in 
future. 

As to variation of the model parameters among days, the former study [9] inves-
tigated the variation in five days for one subject. The present study clarified the 
statistical characteristics of the parameters among subjects but not those among 
days. Experiment should be performed for sufficient number of subjects in sufficient 
number of days to clarify the statistics of the parameters among subjects and days.
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As to the cost function to determine the model parameters, this study adopted the 
one in Eq. (12) which is the same as the former study [9], not dealing with the effect 
of the cost function on the results of blood pressure estimation. Especially, the effect 
of the weighting factor α in Eq. (12) should be clarified in future. 

Concerning improvement of the circulatory system model, it is difficult to eval-
uate the dynamical characteristics of the model in detail since the validation in this 
study was done in comparison with ABPM measurement data of 30 min interval, 
and continuous measurement data are not available. Validation experiment using 
a continuous blood pressure data obtained with a device such as an arterial line 
monitoring should be done in future. 

In this study the range of parameter determination is limited between 0 and 1 for 
the stroke volume change rate sa and the peripheral resistance change rate sr . As  
shown in Fig. 5, optimum parameter values are obtained at the boundary of the range 
as sa = 1 or sr = 0 for five cases in 29 subjects, implying that real optimum values 
may exist outside the range of sa > 1 or sr < 0. Parameter values in these regions, 
however, correspond to the computational results with large standard deviations for 
the pulse pressure or the average pressure, respectively, and are possibly ascribed 
to outliers in ABPM data. Therefore, it seems reasonable to put above-mentioned 
limitation in the parameter range. 

7 Summary 

In this section it was shown that the continuous blood pressure estimating method 
based on the simple circulatory system model with the input of pulse rate can be 
applied to practical DCBP estimation devices. A 25-h continuous pulse rate measure-
ment using a wearable device and blood pressure measurement with 30 min interval 
using an ABPM device were simultaneously performed for 29 subjects. Blood pres-
sure estimations were performed for four conditions modified by adding constraints 
to model parameters to reduce computational load ranging from Case 1 in which all 
parameters are changed independently to Case 4 in which all parameters are fixed. 
Determination of the optimal parameters and evaluation of estimation errors were 
performed for each of the four conditions by comparing the estimation results with 
the parameter determination data and the verification data of the ABPM measure-
ment, respectively. Comparison of these results confirmed that the condition of Case 
3, in which circulatory dynamics parameters are optimized while the circulatory 
control system parameters are fixed to the average values of those for all subjects, 
is suitable for DCBP estimating devices due to comparable accuracy and reduced 
computational load with respect to those of Case 1. In the results of Case 3, mean 
values ± standard deviations of the mean errors for systolic and diastolic pressures 
were 0.3 ± 4.3/-0.1 ± 2.7 mmHg, and those of the mean absolute errors were 11.6 ± 
3.6/8.0 ± 2.0 mmHg, respectively, which were reasonable values taking the errors in 
the standard validation data of ABPM in consideration. For this condition, circulatory 
dynamics model parameters can be determined appropriately if about 10 ABPM data
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is used for parameter determination. In conclusion, the present estimation method can 
be applied to practical blood pressure estimation devices with good accuracy, small 
computational load, and small parameter determination measurement data number. 

8 Conclusions 

In this article we presented the new DCBP estimation method and its experimental 
validation and optimization based on our former works [9, 26]. First the circulatory 
system model with the input of pulse rate for the present blood pressure estimation 
was presented. The present circulatory system model consists of the circulatory 
dynamics model and the circulatory control inverse model. The circulatory dynamics 
model was given as a simple lumped parameter dynamical system. The circulatory 
control inverse model was defined as a simple dynamical model with the input of pulse 
rate and the outputs of peripheral vascular resistance of the systemic and pulmonary 
arteries, and the no-load ventricular volumes. 

Next we presented computational result for 24 h blood flow dynamics in which 
values of blood pressure, blood flow, and blood volume in left/right atrium/ventricle 
and pulmonary/systemic arteries/veins are obtained from pulse rate measurement 
data with a wearable device. The results suggest that a fundamental part of DCBP 
can be represented by continuous pulse rate data and the simple circulatory dynamics 
and circulatory control inverse model with six model parameters. 

Then we discussed the experimental validation and optimization of the DCBP 
estimation method. A 25-h continuous pulse rate measurement using a wearable 
device and blood pressure measurement with 30 min interval using an ABPM device 
were simultaneously performed for 29 subjects. Blood pressure estimations were 
performed for four conditions modified by adding constraints to model parame-
ters to reduce computational load ranging from Case 1 in which all parameters are 
changed independently to Case 4 in which all parameters are fixed. Determination of 
the optimal parameters and evaluation of estimation errors were performed for each 
of the four. Comparison of these results confirmed that the condition of Case 3, in 
which circulatory dynamics parameters are optimized while the circulatory control 
system parameters are fixed to the average values of those for all subjects, is suitable 
for DCBP estimating devices due to comparable accuracy and reduced computa-
tional load. In the results of Case 3, mean values ± standard deviations of the mean 
errors for systolic and diastolic pressures were 0.3 ± 4.3/-0.1 ± 2.7 mmHg, and 
those of the mean absolute errors were 11.6 ± 3.6/8.0 ± 2.0 mmHg, respectively, 
which were reasonable values taking the errors in the standard validation data of 
ABPM in consideration. For this condition, circulatory dynamics model parameters 
can be determined appropriately if about 10 ABPM data are used for parameter 
determination. 

In conclusion, the present estimation method can be applied to practical blood 
pressure estimation devices with good accuracy, small computational load, and small 
parameter determination measurement data number.
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