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Abstract. Motion planning is a very important part of robot tech-
nology, where the quality of planning directly affects the energy con-
sumption and safety of robots. Focusing on the shortcomings of tra-
ditional RRT methods such as long, unsmooth paths, and uncoupling
with robot control system, an automatic robot motion planning method
was proposed based on Rapid Exploring Random Tree called AM-RRT*
(automatic motion planning based on RRT*). First, the RRT algorithm
was improved by increasing the attractive potential fields of the target
points of the environment, making it more directional during the sam-
pling process. Then, a path optimization method based on a dynamic
model and cubic B-spline curve was designed to make the planned path
coupling with the robot controller. Finally, an RRT speed planning algo-
rithm was added to the planned path to avoid dynamic obstacles in real
time. To verify the feasibility of AM-RRT*, a detailed comparison was
made between AM-RRT* and the traditional RRT series algorithms.
The results showed that AM-RRT* improved the shortcomings of RRT
and made it more suitable for robot motion planning in a dynamic envi-
ronment. The proposal of AM-RRT* can provide a new idea for robots
to replace human labor in complex environments such as underwater,
nuclear power, and mines.
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1 Introduction

Motion planning are important components of mobile robots, which can be used
to guide robots to work autonomously in complex environments and avoid obsta-
cles [1]. How to plan a short, smooth, and controllable path is a major challenge.
The methods of mobile robot motion planning and their improvements can be
divided into classic methods and intelligent methods [1].

The classic methods include environment-modeling-based methods [2-6],
graph-search-based methods, sampling-based methods, and curve-based meth-
ods. There are three most commonly used environmental modeling methods:
grid map [2], road map [3-5], and artificial potential field [6]. The grid map can
be divided into two parts: obstacle and free, which relies on the accuracy of the
grid. The road map used a limited number of nodes to represent the environ-
ment and the nodes were connected to form edges. The more representative road
map methods are Visibility Graph [3], Voronoi Diagram [4], and Probabilistic
maps [5]. The artificial potential field method [6] was designed by a potential
function, which included the attractive field of the target point and the repulsive
field of the obstacles. The disadvantage is that it is easy to fall into the local
minimum. The graph-search-based methods relied on known maps and obstacle
information in the map to construct a feasible path from the start point to the
end point [6-9]. However, these methods required a large amount of computation
and were not suitable for path planning in dynamic scenes. The sampling-based
path planning methods performed random sampling in the environmental space
[5,10,11]. The advantage of these methods is that it does not need to model
the environmental space. But the planning process is random and the optimal
path is not obtained. The most representative random sampling methods include
Probabilistic Roadmap Method (PRM) [5] and Rapidly Exploring Random Tree
(RRT) [10]. The curve-based method referred to the method of constructing or
inserting a new data set within a known data set [12,13]. The curve can fit the
previous set of path points to a smoother trajectory [14,15]. Overall, the classic
methods tend to favor static path planning and have the disadvantage of easily
falling into local minimum, making them unsuitable for dynamic path planning.

The path planning problem is not only a search problem but a reasoning
problem, so many intelligent methods can also be used in path planning prob-
lems. The most typical intelligent algorithm is the neural-network-based algo-
rithm [16], which simulates the behavior of animal neural networks and performs
distributed information processing. The genetic algorithm is a search optimal
solution algorithm that simulates the evolution of Darwinian organisms [17],
which can realize synchronous planning and tracking. The ant colony algorithm
is derived from the exploration of ant colony foraging behavior, which is effective
and robust [18]. It can find relatively good paths but is suitable for real-time
planning. At present, intelligent planning algorithms are not yet mature and
require high hardware devices, making them unsuitable for real-time path plan-
ning solutions.
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Given the above problems of existing planning methods, a new motion plan-
ning method suitable for robot control was proposed in this paper called AM-
RRT*. The main contributions are as follows:

— A new RRT path planning algorithm based on elliptical region and potential
field constraints was proposed, which had the shottest path length compared
to traditional RRT algorithms.

— A path optimization method based on robot dynamic model constraints and
cubic B-spline curves was proposed to ensure that the planned path was
smooth enough and tightly coupled with the robot controller.

— A speed planning method based on RRT was proposed, which endowed robots
with the ability to autonomously control speed in dynamic environments to
save energy consumption and time.

2 Related Work

The AM-RRT* proposed in this paper is based on the RRT algorithm. The
RRT has been proposed for many years, and many researchers have proposed
numerous improved algorithms for it.

The RRT was proposed to solve complex obstacle constraints and a high
degree of freedom path planning problems [10]. The idea is to gradually build a
tree, attempting to quickly and uniformly explore configuration or state space,
providing benefits similar to probabilistic roadmap methods, but applicable to a
wider range of problems [11]. The RRT* algorithm maintained the tree structure
like RRT while maintaining the asymptotic optimality [19]. Its basic idea was the
fusion between the sampling-based motion planning algorithm and the random
geometric graph theory. Informed RRT* (IRRT*) [20] was proposed for central-
ized search by directly sampling the subset to address the issue of low efficiency
and inconsistency with their single query properties. Q-RRT* [21] considered
more vertices during the optimization process, thereby expanding the possible set
of parent vertices, resulting in a path with lower cost than RRT*. IB-RRT* [22]
utilized the bidirectional tree method and introduced intelligent sample inser-
tion heuristic to quickly converge to the optimal path solution [23]. P-RRT*
was proposed to combine the artificial potential field algorithm in RRT*, which
allowed for a significant reduction in the number of iterations. PQ-RRT* [24]
combined the advantages of P-RRT* and Q-RRT*, further improving operating
speed while possessing superiority. These improvement methods are aimed at
optimizing the performance of path. However, robots have the characteristic of
multiple modules tightly coupled.

Shi et al. [25] improved and optimized the RRT algorithm by establishing
a vehicle steering model to increase vehicle steering angle constraints and solve
the problems of high randomness, slow convergence speed, and large deviation.
However, the applied model is relatively simple and the optimization effect is not
significant enough. Chen et al. [26] incorporated mobility reliability into mission
planning and proposed a reliability-based path smoothing algorithm to solve
the suboptimal problem. The method has high robustness, but low universality.
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Therefore, it is necessary to design a RRT-based path planning method that is
short in length, smooth, and coupled with the robot motion control, and to form
an autonomous robot motion planning system with the speed planning method.

3 Methodology

The overview of AM-RRT* is shown in Fig. 1. The input of the system is from
the environment perception of a robot, which includes three parts: map informa-
tion, static obstacles information, and trajectory of dynamic obstacles. First, an
improved RRT algorithm for robot path planning was utilized, which included
the elliptical sampling area of IRRT* and the attractive potential field of Voronoi
points. Then, the planned path was optimized to make it smoother and more
suitable for robot motion control, including robot dynamic constraints and opti-
mization of cubic spline curves. Finally, the improved RRT algorithm mentioned
above was applied to the speed planning of robots, where the extension was used
in the distance-time (s-t) image to obtain real-time speed.

3.1 Path Planning Based on RRT

According to the shortcomings of the globssal sampling of the RRT algorithm,
the elliptical area was defined and restricted to the sampling area to improve its
sampling efficiency [20]. An elliptical region C with the shortest path length is
defined as:

C={r € x|z — zinatl| + ||z — xgoal” < length(omin)} (1)

where omin is the length of the shortest path. in¢, £goq: is the initial point and
the goal point of the path. x is the current point. Since the average planned
path of RRT is about 1.3-1.5 times the shortest path, two kinds of attractive
potential fields were added to produce a total attractive potential field. The
whole attractive potential field is defined as:

Uart (JJ) = Ugoal(l') + Uvor(x) (2)

where Ugoqi(z) is the attractive potential field of the target point. U,or(2) is the
attractive potential field of the Voronoi diagram of the environment.
The Ugoai(2) is defined as:

1
Ugoar(£)=3 Fyoat (& = Tg001) 3)



AM-RRT*: An Automatic Robot Motion Planning Algorithm Based on RRT

Speed planning
based on RRT

Dnfeasible arca
oo
/°  Treearea

s (digtance) |

_ Obstacle

t(time)

$() =w(t)

Data input Path planning Optimization
based on RRT of the path
a )
Map
information
Static —
obstacle Elliptical area
information Whole |
sy L i
of dynamic ! |} | | T N\
obstacles %’35&0 ;é'.‘ne S petactes Cubic
" =) \Attract:ve potenuay \_ B-spline curve /

Data output

Fig. 1. Overview of the proposed AM-RRT* motion planning system.
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Fig. 2. Path planning results of RRT [10], RRT* [19], IRRT* [20], and our proposed
method in five different scenarios.

where kgoq1 is a constant weighting factor. The Uyor () is defined as:

Uvor (1’): % kvo’r‘ Z

(1’ - :E’UO’I")Q

TyorEXvor

(4)

where ko, is the constant weight coefficient. x,,, is the set of points that
make up the Voronoi points. Since Voronoi points are the circumscribed center
of the three obstacles, the problem that when the obstacles are too close, random
sampling can not find the result can be solved.
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3.2 Optimization of the Path

Constraints based on robot kinematics and dynamic model can be used to opti-
mize the path, making the planned path more suitable for robot motion control
[25,27]. A 5-DOF vehicle dynamic model was selected for comparative analysis
in this paper [27]. The state of the vehicle is defined by:

T = (:Egvyga()o7vy’w)T (5)

where 4,7y, represent the robot’s center of gravity. ¢ is the yaw angle of the
robot. v, is the speed of lateral and w is the yaw rate of the robot.

According to the second Newton’s law, the fundamental law of dynamics can
be defined as:

m(by — vyw) = —Fyrcosdp — Fyrsindy — Fy,
m(0y + vaw) = Fypcosdy — Fypsindy + F, (6)
Izu') = Lf(Fyf COS(Sf — Fxf sinéf) — LrFyr

Fig. 3. Optimization results of RRT path planning based on dynamic models in Normal
scene.

where m is the mass of the robot. v, is the speed of longitude. Fy ¢, Fyr, Fipr, Fyr
are the longitudinal and lateral force of the front and rear wheels. 6y is the
front wheel angle. I is the moment of inertia around the z-axis. Ly, L, are the
distance from the center of gravity to the front and rear wheel.

The traditional RRT algorithms are not smooth and often require post-
processing to make the path smoother. The cubic B-spline curve [15] was selected
as the optimization method. A B-spline curve is defined by a series of control
points. These points consist of all nodes in the suboptimal path searched by
RRT. At the same time, each point of the generated path is only related to
the four nearby control points. The planned path can be defined as the x, y
coordinates @, P,:

{951 = [(b:r,fl(b:r,o'”qﬁz,mfl] (7)
D, = [¢y,71¢y,0-~-¢y,m71]
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where ¢, ; ¢, are the control points. Define the setting s € [0,1] is the percent-
age of the path length that has been traveled, the final path can be expressed

| {x(s) SP Sy ORI «
Y(8) = D k=0 fu(t) - Pyt

where [-] is the round down function. ¢ and ! are used to adjust the control points:

t=s-0—[s- 0]
{ I=[s-0]—1 ©)
where o is the length of planned path. {fx(t)};_o 5 is the basic function of the
B-spline, defined as:

])CO t)1: %3(1 p tf )
e tizo, 5= fQ(t)lz é(—63t3 +3t2 + 3t 4 1) 1)

To optimize the path length and smoothness under the premise of ensuring the
safety of the path without collision, the definition of the optimization function
consists of two parts: path length and potential field energy along the path. The
potential field energy is composed of the obstacle’s repulsive potential field:

E($) = L(®) + \ - P(d) (11)

o Conrat povom
— Bspline curve <

A=100

Fig. 4. Optimization results of RRT path planning based on cubic spline curve in
Normal scene.

where L(P) is the path length and P(®) is the potential field energy. A represents

the weight between path length and potential. If the value of A is larger, the final

path will be farther away from the obstacles but the path length may be longer.
The cost of the path length is defined as:

L= [ )+ s (12)

The cost of the potential field energy is defined as:

P= / Pa(s), y(s))ds (13)
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Fig. 5. Speed planning results for four different scenarios, including free, dynamic
obstacle with low speed, dynamic obstacle with high speed, and static obstacle.

3.3 Speed Planning Based on RRT

For speed planning, the RRT-based planning method is still used. Assuming that
the robot’s pitching motion is not considered, the motion generally includes three
parameters: the coordinates of the robot on the path p;(s), py(s) and the heading
angle of the robot along the path py(s):

p(s) = [pz(8), py(5), pa(s)] (14)

The trajectory of the dynamic obstacles is defined as:

0bs;i(t)icpr,m) = [Tobs,i(t)Yobs,i ()] (15)

where t is time. M is the number of obstacles and Zops,i(f),Yobs,i(t) are the
coordinates of the obstacle i at time ¢. Given the reference path p(s) and the
initial state of the robot, the task of speed planning is to generate a longitudinal
motion function s(t)(t € [0, Tforward]); Where the speed can be expressed as
v(t) = $(t). The robot status can be described as = (s,t) and the s-t motion
space x can be described as the state space within the range x(s > sg,t > to).
The sg and ty represent the initial path length and time of the robot. Assume
that the set of states that will collide with obstacles in s-t space is the obstacle
Space Xobs:

Xobs = {2 € x| 19(5) = 0b5:(8) | < duanger} (16)

where dganger is the threshold of the dangerous distance from the robot to the
obstacles.

The state in the s-t space should satisfy the following constraints: |$| < vmax,
Amin < 8 < Gmax, 18]+ £ < Wmax, Where vmay is the maximum speed of the robot.
[@min, Gmax] are the acceleration limit of the robot. x and wpax represent the
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Fig. 6. On-site testing scenarios and distribution of the stages.

curvature of the reference path and the maximum angular velocity of the robot.
To narrow the search range and improve the search efficiency, the kinematics
unfeasible space Xunj:

Xunf= {1‘ cX |t0 <t< tmax 70 <s-— S0 < Umax * (t - tO)} (17)
The free area X free can be defined as:

X free= {‘T S X“(Xobs U Xunf)} (18)

The extension of RRT will be extended in the free area to calculate the speed
of the robot.

4 Experimental Results

To verify the effectiveness and robustness of our proposed AM-RRT* method,
simulation experiments and on-site tests were conducted. First, AM-RRT* was

Speed planning of the whole process
v (kn/h)

12 3 4 5 6

8
, - N~ .,

= real speed === planned speed target speed

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»

SNLAYREARRSTLINRRTILRLRR2EL85358338 time(s)

Fig. 7. Speed planning results of the whole on-site testing process.
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compared with RRT, RRT*, and IRRT* algorithms. Subsequently, the path
optimization method and speed planning method were tested in the normal
scene. In the on-site testing section, AM-RRT* was conducted in the actual
environment using a modified autonomous driving vehicle. The results showed
that our method had good performance in the number of nodes and path length.

First, the proposed path planning algorithm was compared with RRT, RRT*,
and IRRT*, and the results are shown in Fig. 2. In the simulation, 5 scenes were
designed: Bug, Simple, Normal, Obstacle, and Hard. These scenes comprehen-
sively demonstrate the performance of the algorithm, and our method yields
smoother paths compared to IRRT*. For a more rigorous comparison, three per-
spectives were compared: number of nodes, path length, and time cost. As shown
in Tab. 1, Our method has significant advantages in the number of nodes and
path length, and with the addition of optimized methods (RRT* and IRRT*),
we also have advantages in terms of time cost.

In the path optimization, to verify the effectiveness of the model constraints,
a kinematics model [25] was used for comparative verification. As shown in Fig. 3,
two models and steering constraints were used for planning results in Normal
scenarios, respectively. Under the 30° constraint, the results of both models are
better than those under the 45° constraint, but the 5-degree of freedom model
we used has a smoother path. Table 2 shows the performance of the four models
at 5000 iterations. In addition to time cost, the dynamic model has significant
advantages in terms of node number, path length, and maximum angle.

The improved B-spline curve method was also tested under the Normal scene,
and the comparison was made by changing the weight value . As shown in Fig. 4,
the weight values were set to 100, 50, and 10, respectively. As can be seen from
the results that when the weight value becomes smaller, the path length will
become smaller, but it is much closer to the obstacles. At the same time, due to
the use of a fitting B-spline curve, the optimized curve will not pass through all
control points. Considering the error caused by the sensor and path tracking in
actual situations, it is necessary to set a reasonable weight value.

To verify the feasibility of the speed planning algorithm, four typical scenes
were selected for simulation verification, which is shown in Fig.5. In the sim-
ulation process, it is assumed that the maximum speed of the robot is 4m/s,
the expected speed is 2.5m/s, the acceleration is limited to £1m/s? and the
forward-looking time is 5s, so the maximum forward-looking distance is 20 m.
In the s-t diagram, the blue area is the defined unfeasible area and the dynamic
obstacle area, the gray lines are the RRT search tree for speed planning, and the
red line is the final selection speed path for the robot.

The on-site test of an automatic driving vehicle was tested to verify its feasi-
bility under vehicle conditions. For the hardware platform, the VLP-16 LIDAR
and ZED binocular cameras were used to perceive the surrounding environment
and detect the position of obstacles. As shown in Fig. 6, LiDAR-based mapping
work was conducted on a closed road and set the starting point and some tar-
get points. Another vehicle was used to simulate dynamic obstacles. The speed
planning results for the process are shown in Fig. 7, with the target speed set at
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Table 1. Comparison of the number of nodes, path length, and time cost of RRT [10],
RRT* [19], IRRT* [20], and our proposed method in 5 scenarios.

Environment methods | No. of nodes | Path length (m) | Time cost (s)
Bug (12*12) 10000 iterations RRT 8361 17.26 15.24
RRT* 7180 12.88 30.02
IRRT* 6164 13.03 42.78
Ours 5615 12.49 30.83
Simple (16*16) 10000 iterations RRT 9158 15.67 16.91
RRT* 9166 12.97 37.54
IRRT* 8738 10.89 81.89
Ours 8456 10.65 68.57
Normal (6*6) 10000 iterations RRT 5001 12.86 9.85
RRT* 5060 6.74 40.69
IRRT* 2614 6.72 31.31
Ours 2324 6.47 25.26
Obstacle (12*12) 10000 iterations | RRT 7102 19.61 13.64
RRT* 7099 14.1 33.89
IRRT* 7611 13.53 73.19
Ours 6333 13.02 39.72
hard (16*16) 10000 iterations RRT 7893 30.27 14.95
RRT* 7719 24.11 35.12
IRRT* 7268 27.39 46.02
Ours 7141 23.89 30.62

Table 2. Comparison of number of nodes, path length, time cost and maximum angle
of kinematics model [25] and dynamics model [27] in Normal scene.

Environment Methods

Normal (6*6) 5000 iterations | 45° kinematic

Time cost (s) | No. of nodes | Path length (m) | Maximum angle (°)
5.73 1619 6.95 23.5

45° dynamic | 7.03 1653 6.58 20.2

30° kinematic | 8.38 1307 6.46 14.4

30° dynamic |12.35 1194 6.36 11.6

7km/h. First, a dynamic obstacle was detected after the path planning at the
start point, as shown in stage 1. Then, in stage 2, the motion planning performed
the obstacle following operation and gradually reduced the speed to 4km/h. In
stage 3, with the cooperation of the environment perception, the motion planning
executed the overtaking action and increased the speed. After completing the
overtaking operation, the action planner re-planned the path and brought the
speed closer to the target speed, as shown in stage 4. Finally, as shown in stages
5 and 6, after turning and reaching the goal point, the vehicle slowed down and
stopped. From the results, the robot motion planning system AM-RRT* pro-
posed in this paper can be applied to the robot in the real environment through
the coupling control of path planning, path optimization, and speed planning.
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5 Conclusion and Future Work

This paper proposed an automatic RRT-based motion planning method suitable
for robots called AM-RRT*. First, to solve the problem of long paths of tradi-
tional RRT, an improved scheme for elliptical regions and attractive potential
fields was designed. Then, to solve the problem of insufficient smoothness and
large angles in traditional path planning, an optimization method based on a 5-
degree-of-freedom dynamic model and a cubic spline curve was proposed. Finally,
in response to the shortcomings of traditional path planning not being coordi-
nated with speed control, an RRT-based speed planning method was proposed.
Multiple simulation experiments and on-site testing results have demonstrated
the effectiveness and robustness of our method. In future work, we will be com-
mitted to developing robot motion planning solutions under special conditions,
such as magnetic adsorption robots, underwater robots, etc., to enable robots to
automatically and intelligently replace humans in hazardous work.
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