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Abstract. In this paper, a novel predefined-time event-triggered control
method is proposed, which achieved to the consistency of multi-agent sys-
tems with uncertain parameter. Firstly, a new predefined-time stability
theorem is given, and the correctness and feasibility of this stability the-
orem are analyzed, the flexible preset time is more practical than the
existed stability theorem. Compared with existing stability theorems,
this theorem simplifies the conditions satisfied by Lyapunov function
and is easier to implement in practical applications. Secondly, an event-
triggered control strategy is designed to reduce control costs. Then, a
new sufficient criterion is given to achieve the consistency of multi-agent
systems with uncertain parameter based on the predefined-time stability
theorem and event-triggered controller. In addition, the state consensus
between nonlinear agents is completed in a predefined time, as well as
the measurement error of the agent is converges to zero within the prede-
fined time, respectively. Finally, the validity and feasibility of the given
theoretical results are verified by a simulation example.

Keywords: Predefined-time Consensus · Event-triggered Control ·
Nonlinear Multi-agent Systems

1 Introduction

In the past decades, multi-agent systems have been widely applied in robot
coordination and distributed optimization [1,2]. In the collective behavior of
multi-agent systems, consensus problem is one of the basic problems in collective
behavior, which has been widely studied. The speed and time of convergence are
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important subjects in the study of consensus problems. After a great deal of
research, some results have been achieved [3,4].

In addition, most of the existing research focuses on the finite-time con-
sensus [5,6] and fixed-time. For the finite-time consensus, it depends on initial
conditions, which may limit practical application. In order to solve this practi-
cal problem and eliminate these limitations, the concept of fixed-time consensus
was proposed [7,8]. The settling time of the fixed-time consensus is indepen-
dent of the initial state. However, it relies on other system parameters, such as
the eigenvalues of the Laplacian matrix, so there is a phenomenon of inflexible
application. To solve these problems, the concept of predefined-time consensus
[9–13] is proposed. The traditional fixed-time consensus systems can be improved
by introducing predefined time parameters into the controller design process.
Ref. [9] solved adaptive consensus in nonlinear multi-agent systems in switching
topologies. Ref. [10] solved the predefined-time binary consistency control of out-
put feedback for highorder nonlinear multi-agent systems. The predefined-time
consensus problem of (T-S) fuzzy systems is studied in Ref. [11].

In the above research work on finite-time consensus, fixed-time consensus and
predefined-time consensus, there is no way to avoid the constant communication
and updating of the controller, which can lead to significant communication con-
sumption. Event-triggered control [14–16] is a common control method, which
can effectively avoid these disadvantages and has produced many important
research results. In Ref. [14], dynamic event-triggered and self-triggered control
of multi-agent systems were studied. A distributed dynamic event-triggered con-
trol method based on linear multi-agent system consistency of directed networks
is studied in Ref. [15].

Inspired by these existing results, a predefined-time stability theorem was
proposed. A controller with predefined time parameters is designed. This theo-
rem ensuring that the settling time of the system does not depend on the initial
value of the system and can be adjusted according to preset parameters. The
work done in this paper has the following characteristics: Firstly, the settling
time setting is more flexible, and this method is suitable for more systems and
scenarios. Secondly, the design of the controller can reduce communication con-
sumption and save resources. Finally, compared with finite-time consensus and
fixed-time consensus, there is great scalability.

The rest of this article is organized as follows. The second section gives
some basic graph theory, definitions and lemmas. In the third section, a new
predefined-time stability theorem and a predefined-time event-triggered con-
troller designed based on this theorem. The fourth section provides an example
to demonstrate the correctness and feasibility of the above theorem and con-
trollers. The fifth section provides conclusions and future work.

2 Preliminaries

First, graph theory is given. Then, some basic definitions and lemmas are intro-
duced. Finally, a formulation of the problem is given.
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Graph Theory. The communication topology between multiple agents is usu-
ally expressed in G = (V, E), node set V = (1, · · · , N), edge set E ⊆ V × V, edge
(j, i) to indicate the presence of information flow from node j to node i, and
the neighbor set of node i is denoted as Ni = (j ∈ V|(j, i) ∈ E , j = i). Where
A = [aij ] in Rn×n is the adjacency matrix of G with the element representing
the edge weight, where

aij =
{

1, if(i, j) ∈ E ,
0, otherwise.

The degree matrix is D = diag[d1, d2, · · · , dN ], di =
∑N

j=1 aij . The Laplacian
matrix L = [lij ] in RN×N of G is defined as L = D − A.

Suppose the origin is the equilibrium point of the following system:
{

ẋ(t) = f(x(t), t),
x(0) = x0,

(1)

where f(x(t), t) : R+ × RM → RM is an unknown nonlinear function, and if
f(x(t), t) is not continuous, the solution of the above equation system (1) can
be understood in the sense of Filippov.

Definition 1. [17]. If x(t) = 0 is asymptotically stable and x(t) can reach 0 for
a finite time for any x(0) ∈ Rn, then x(t) = 0 is finite-time stable. For any x(0) ∈
Rn, the settling time function is T (x(0)) = inf {T∗ : x(T ) = 0,∀T > T∗} .

Definition 2. [18]. If the origin of the above system is asymptotically stable
and there is a settling time T (x0) > 0. If ∃Tmax > 0 and the settling time
T (x0) ≤ Tmax under any initial conditions, it is fixed-time stable.

Definition 3. [19]. x(t) = 0 is predefined-time (PDT) stable if two conditions
are met:

(i) x(t) = 0 is finite-time stable;
(ii) For any constant Tp > 0, supx(0)∈RnT (x(0)) ≤ Tp. In this case, Tp is PDT.

Lemma 1. [20]. For the strong connectivity graph G, we have the following

properties: xTLx =
1
2

M∑
i=1

M∑
j=1

aij(xi − xj)2, where x = [x1, x2, · · · , xM ]T . L is

semipositive, assuming that the eigenvalue of L is labeled 0, λ2, · · · , λM , and the
second small eigenvalue λ2 > 0. Also, if 1Tnx = 0, then xTLx ≥ λ2x

Tx.

Lemma 2. [21]. Γ (x) =
∫ +∞
0

e−ttx−1dt represents the Gamma function. Sup-
pose there exists a continuous function V (·) : Rn → R+ ∪ {0}, and three condi-
tions are satisfied:

(i) V (x(t)) = 0 ⇔ x(t) = 0;
(ii) ‖x(t)‖ → +∞ ⇒ V (x(t)) → +∞;
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(iii) For any non-zero x(t) ∈ Rn and any constant Tp > 0,

V̇ (x(t)) ≤ − ω

Tp
(αV q(x(t) + βV r(x(t)))), (2)

where α, β > 0, 0 < q < 1, r > 1, and

ω =
Γ (1−q

r−q )Γ ( r−1
r−q )

α(r − q)
(
α

β
)

1−q
r−q . (3)

So x(t) = 0 is predefined-time stable, and Tp is predefined time.

Assumption 1. There is a positive known constant μ such that:

|f(xi(t), t)| ≤ μ. (4)

The nonlinear multi-agent system has M agents and its communication topol-
ogy is connected undirected graph. The dynamics of the agent i has the following
form:

ẋi(t) = ui(t) + f(xi(t), t), (5)

where i = 1, · · · ,M. xi(t) represents the state of agent i, ui(t) as the control
input, f(xi(t), t) is the uncertain nonlinear functions.

3 Main Results

3.1 A New Theorem for Predefined-Time Stability

Theorem 1. For the above system (5), if there is a continuous positive defi-
nite function V (x(t)) : Rn → R, Tc is a user-defined parameter and meets the
following two conditions:

1. V (x(t)) = 0 ⇔ x(t) = 0;
2. For any V (x(t)) > 0, 1 < r < 2, a, b > 0, satisfied:

V̇ (x(t)) ≤ −Gc

Tc
(aV (x(t)) + bV (x(t))r+sign(V (x(t)−1))). (6)

The system (5) can then achieve predefined-time stable, where:

Gc =
1

(2 − r)a
ln

a + b

b
+

1
ra

ln
a + b

b
. (7)

Proof. The settling time function can be expressed as:

T (x(0)) =
∫ T (x(0))

0

dt,

≤
∫ 1

0

Tc

Gc

dv

aV + bV r−1
+

∫ ∞

1

Tc

Gc

dv

aV + bV r−1
.

(8)
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case 1:
Let W = V 2−r, dV = V r−1dW

2−r ,
∫ 1

0

Tc

Gc

dV

aV + bV r−1
≤

∫ 1

0

Tc

Gc

1
2 − r

dW

aW + b
,

=
Tc

Gc

1
(2 − r)a

ln
a + b

b
.

(9)

case 2:
Let W = V −r, dV = V r+1dW

−r ,

∫ ∞

1

Tc

Gc

dv

aV + bV r−1
≤

∫ 1

0

Tc

Gc

1
r

dW

aW + b
,

=
Tc

Gc

1
ra

ln
a + b

b
.

(10)

Thus, we can get:

T (x0) ≤ Tc

Gc
(

1
(2 − r)a

ln
a + b

b
+

1
ra

ln
a + b

b
),

≤ Tc.

(11)

3.2 Multi-agent Event-Triggered Consensus

Under an event-triggered strategy with continuous communication, exist a con-
stant p, the control input of the agent i can be constructed as:

ui(t) =
Gc

Tc
[−c1yi(tik) − c2(yi(tik))

2(r+sign(
∑M

i=1 yi(t)
2)/p−1))−1], (12)

where c1, c2 > 0, tik is latest triggering time for agent i, define yi(t):

yi(t) =
M∑
j=1

aij(xi(t) − xj(t)), (13)

thus,
M∑
i=1

yi(t)2 = xT (t)L2x(t). (14)

We can get the following result:

λM (L)xT (t)Lx(t) ≥
M∑
i=1

yi(t)2 ≥ λ2(L)xT (t)Lx(t), (15)

where λ2(L) is the second smallest eigenvalue of matrix L, λM (L) is the max-
imum eigenvalue of matrix L, there must be a constant p ∈ [2λ2(L), 2λM (L)]
such that

∑M
i=1 yi(t)2 = 1

2pxT (t)Lx(t).
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The measurement error of the agent i can be defined as:

Ei(t) = c1(yi(tik)) + c2(yi(tik))
2(r+sign(

∑M
i=1 yi(t)

2/p−1))−1

− c1yi(t) − c2(yi(t))2(r+sign(
∑M

i=1 yi(t)
2/p−1))−1.

(16)

Combining the control input (12) and the measurement error (16), the control
input can be sorted out:

ui(t) =
Gc

Tc
[−Ei(t) − c1yi(t) − c2(yi(t))2(r+sign(

∑M
i=1 yi(t)

2/p−1))−1]. (17)

The event-triggered function of the agent i is constructed as:

gi(t) = |Ei(t)| − εc1|yi(t)| − εc2|yi(t)|2(r+sign(
∑M

i=1 yi(t)
2/p−1))−1, (18)

where ε ∈ (0, 1) is the trigger parameter and can be selected later. Therefore,
for the agent i, an event is fired when gi(t) ≥ 0. Its controller updates at its own
event time ti0, t

i
1, · · · .

Remark 1. In previous studies, commonly used trigger conditions have
been designed based on error or communication time. When the error is
too large or the communication time is too long, the trigger condition is
reached, and the trigger occurs. The trigger condition used in this arti-
cle is designed according to the error, and when |Ei(t)| ≥ c1|yi(t)| +
c2|yi(t)|2(r+sign(

∑M
i=1 yi(t)

2/p−1))−1, the system is triggered. Different from pre-
vious research, c2|yi(t)|2(r+sign(

∑M
i=1 yi(t)

2/p−1))−1 takes into account the super-
position situation under small errors, and long-term small error superposition
will also lead to event triggering, so it can be said that it is compatible with the
limitations of large errors and long periods of untriggered.

Theorem 2. Suppose Assumption 1 holds, and the following condition is satis-
fied:

μ ≤ c1λ2(L)Gc

2Tc
. (19)

Thus, the multi-agent system (5) is stable at a predefined time Tc.

Proof. Construct the following Lyapunov function:

V (t) =
1
2
xT (t)Lx(t),

=
1
4

M∑
i=1

M∑
j=1

aij(xi(t) − xj(t))2.
(20)

For simplicity, let’s write V (t) as V .
According to the above equation:
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M∑
i=1

M∑
j=1

aij(xi(t) − xj(t))2 = 4V. (21)

From Eqs. (14), (15) and (20), we get:

M∑
i=1

yi(t)2 = pV. (22)

Take the derivative of V :

V̇ = xT (t)Lẋ(t),

=
M∑
i=1

yi(t)(ui(t) + f(xi(t), t)),

=
Gc

Tc

M∑
i=1

yi(t)[−Ei(t) − c1(yi(t)) − c2(yi(t))2(r+sign(
∑M

i=1 yi(t)
2/p−1))−1]

+
M∑
i=1

yi(t)f(xi(t), t),

≤ −Gc

Tc
[
M∑
i=1

|yi(t)||Ei(t)| + c1

M∑
i=1

(yi(t))2+

c2

M∑
i=1

(yi(t))2(r+sign(
∑M

i=1 yi(t)
2/p−1))] +

M∑
i=1

M∑
j=1

aij(xi(t) − xj(t))f(xi(t), t),

≤ −Gc

Tc
[
M∑
i=1

|yi(t)||Ei(t)| + c1

M∑
i=1

(yi(t))2+

c2

M∑
i=1

(yi(t))2(r+sign(
∑M

i=1 yi(t)
2/p−1))] + μ

M∑
i=1

M∑
j=1

aij(xi(t) − xj(t))2,

≤ −Gc

Tc
[c1

M∑
i=1

(yi(t))2 + c2(pV )(r+sign(V −1))] + 4μV,

≤ −Gc

Tc
[c1(2λ2(L))V + c2(pV )(r+sign(V −1)) − 4μTc

Gc
V ],

= −Gc

Tc
[(c1(2λ2(L) − 4μTc

Gc
)V + c2(pV )(r+sign(V −1))],

= −Gc

Tc
[a1V + c2p

r+sign(V −1)V r+sign(V −1)],

(23)
where a1 = 2c1λ2(L), then, the following discussion needs to be done:

(1) when V < 1; pr+sign(V −1) = pr−1, V r+sign(V −1) = V r−1,
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(2) when V > 1; pr+sign(V −1) = pr+1, V r+sign(V −1) = V r+1,
(3) when V = 1; pr+sign(V −1) = pr, V r+sign(V −1) = V r,

where b1 = c2min
{
pr−1, pr+1, pr

}
, then by using Theorem1 and Theorem 2, it

gives:

V̇ ≤

⎧⎪⎨
⎪⎩

−Gc

Tc
(a1V + b1V

r−1), V < 1,

−Gc

Tc
(a1V + b1V

r+1), V > 1,

−Gc

Tc
(a1V + b1V

r), V = 1.

(24)

Thus,

V̇ (x(t)) ≤ −Gc

Tc
(a1V (x(t)) + b1V (x(t))r+sign(V (x(t)−1))). (25)

So, referring to Theorem 1, when V̇ ≤ −Gc

Tc
(a1V + b1V

r+sign(V −1)), the

settling time T ≤ Tc.
The proof is completed.

Remark 2. Compared with the finite-time consensus and fixed-time consen-
sus, the predefined-time consensus has prominent advantages. First of all, the
predefined-time is more flexible and can be set according to specific applica-
tion scenarios and adjusted according to system requirements. Finite-time and
fixed-time are usually fixed or can only be adjusted within a certain range. Sec-
ondly, the predefined-time is more adaptable to the dynamic system. However,
the limited time and fixed-time may not adapt to the system changes in time.
Therefore, this paper proposes a predefined-time event-triggered consensus.

4 Simulation Result

We will use an example to illustrate the usability of the proposed consensus
algorithm. The undirected strong connectivity graph of the five agents is shown
in Fig. 1.

Fig. 1. An undirected graph of five
agents.

Fig. 2. The state trajectory of five
agents without a controller when Tc =
0.5.
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The dynamic model of agent i is written by:

ẋi(t) = ui(t) + 0.5xi(t) + 0.2sin(t). (26)

Suppose the initial state of the five agents is x(0) = [−3;−1; 0; 3; 2]T , and
nonlinear function f(xi(t), t) satisfies Assumption 1 with μ = 0.2. The state
trajectories of the five agents without controllers are shown in Fig. 2. As shown
in Fig. 2, when the five agents are not affected by the controller, the state can-
not be consensus. It is possible that the state trajectory of an agent disappears.
According to the undirected graph, L can be written as the following formula.

L =

⎡
⎢⎢⎢⎢⎣

2 −1 −1 0 0
−1 4 −1 −1 −1
−1 −1 3 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2

⎤
⎥⎥⎥⎥⎦ . (27)

Fig. 3. (a) Represents the state trajectories of the five agents when Tc = 1 , (b)
represents the control input of the five agents when Tc = 1.

Under controller (12), select parameters c1 = 2; c2 = 1; r = 1.6; ε = 0.6.
Fig. 3 and Fig. 4 respectively represent the state trajectories and control inputs
of the five agents when Tc takes different values. It can be seen from Fig. 2 and
Fig. 4 (a) that the system state of the agent can be consistent under the action of
the controller. It can be seen from Fig. 3 (a) and Fig. 4 (a) that under the same
conditions, the system state of the agent changes with different predefined-time
parameter Tc, and both achieve consistency within Tc.

As can be seen from Fig. 3 (b) and Fig. 4 (b), the control inputs of the five
agents are different when Tc takes different values. When the error is too large,
the trigger condition (18) is reached, the trigger occurs, and the control input
changes. As the controller takes effect, the error gradually decreases, and the
control input will also reach stability and finally tend to 0. The figure below
shows the fluctuation of the error measurement error of the five agents in Tc = 1,
indicating that each of the five agents has its own event-triggered time.
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Fig. 4. (a) Represents the state trajectories of the five agents when Tc = 0.5 , (b)
represents the control input of the five agents when Tc = 0.5.

Fig. 5. The fluctuation of measurement error when the five agents communicate con-
tinuously under the controller.
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As shown in the Fig. 5. First, under the action of the controller (12), the state
trajectory of the multi-agent system can be consistent, and the control input of
each agent is different due to the setting of trigger conditions. Second, when
the predefined time parameters are different, the time to achieve consistency is
also different. Finally, the measurement error of the five agents tend to 0 for a
predefined time Tc.

5 Conclusion

This work investigates the predefined-time event-triggered consensus prob-
lem for nonlinear uncertain multi-agent systems. By designing the event-
triggered controller, communication consumption is greatly reduced. The pro-
posed predefined-time consensus differs from the existing finite-time consensus
and fixed-time consensus in that it does not depend on the initial conditions
and the parameters are adjustable. In addition, we demonstrate its feasibility
for predefined-time stability conditions. In the future, we hope to investigate the
consensus problem between predefined-time leaders-follower in linear multi-agent
systems. First, the problem of leader-follower consistency is more practical than
what this manuscript examines. Second, in the application, the leader-follower
is easy to implement.
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