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Abstract. Ship detection has gained considerable attentions from
industry and academia. However, due to the diverse range of ship types
and complex marine environments, multi-scale ship detection suffers from
great challenges such as low detection accuracy and so on. To solve
the above issues, we propose an efficient enhanced-YOLOv5 algorithm
for multi-scale ship detection. Specifically, to dynamically extract two-
dimensional features, we design a MetaAconC-inspired adaptive spatial-
channel attention module for reducing the impact of complex marine
environments on large-scale ships. In addition, we construct a gradient-
refined bounding box regression module to enhance the sensitivity of loss
function gradient and strengthen the feature learning ability, which can
relieve the issue of uneven horizontal and vertical features in small-scale
ships. Finally, a Taylor expansion-based classification module is estab-
lished which increases the feedback contribution of gradient by adjust-
ing the first polynomial coefficient vertically, and improves the detection
performance of the model on few sample ship objects. Extensive experi-
mental results confirm the effectiveness of the proposed method.

Keywords: Multi-scale Ship Detection · Improved YOLOv5
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1 Introduction

Ship detection is a critical aspect of maritime supervision and plays an essen-
tial role in intelligent maritime applications such as sea area monitoring, port
management, and safe navigation [24]. In recent years, various methods such
as foreground segmentation [4,16,25], background subtraction [3,22], and hori-
zon detection [12,24] have been widely explored and have made considerable
progress. However, traditional ship detection methods often lack robustness and
may have limited applicability in the presence of complex noise interference.

Supported by the National Science Fund of China under Grant 62006119.
J. Li and G. Li — Equal contributions.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, LNCS 14452, pp. 252–263, 2024.
https://doi.org/10.1007/978-981-99-8076-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8076-5_18&domain=pdf
http://orcid.org/0009-0006-5270-313X
http://orcid.org/0000-0003-4817-0618
https://doi.org/10.1007/978-981-99-8076-5_18


An Efficient Enhanced-YOLOv5 Algorithm for Multi-scale Ship Detection 253

Meanwhile, owing to the development of deep learning in object detection,
deep learning-based object detectors have achieved significant advancements. For
example, Faster r-cnn [17] is a classic two-stage detection method that employs a
region proposal network to generate detection boxes directly. SSD [10] enhances
the detection accuracy of multi-scale objects by conducting object detection
on multiple feature layers. CenterNet [5] is a detection method that detects the
center point and size of an object without anchor. The YOLO [1,13–15,23] series
are classic single-stage object detection methods that extract multi-scale features
via a backbone network and a feature pyramid network, while introducing an
anchor frame mechanism to enhance the model’s robustness.

Inspired by these deep learning-based detection methods above, there is a
growing research efforts towards deep learning-based ship detection. Region pro-
posal network-based methods [7,9] and regression-based methods [2,19] have
made certain progress. However, various issues, such as false detection and missed
detection, persist in ship detection due to factors like the influence of background
noise on the sea surface, the uneven distribution of horizontal and vertical fea-
tures of ships, and the different sizes of ships.

To relieve the issues above, we propose a novel efficient enhanced-YOLOv5
algorithm for multi-scale ship detection. Specifically, in order to mitigate the
issue that complex marine environments disrupting large-scale ships, we propose
a MetaAconC-inspired dynamic spatial-channel attention module that extracts
two-dimensional features, mitigating the environmental impact on large-scale
ships. Aiming at the problem of uneven horizontal and vertical features of small-
scale ships, we design a gradient-refined bounding box regression module to
increase the gradient sensitivity, enhancing the learning ability of the algorithm
on small-scale ship features. In order to relieve the challenge that sensitivity of
the cross entropy function to class imbalance, we establish a Taylor expansion-
based classification module, by adjusting the first polynomial coefficient verti-
cally to increase the contribution feedback of the gradient, improving the detec-
tion performance of the model on few sample ship objects. To summarize, our
main contributions are as follows:

– We propose a novel efficient enhanced-YOLOv5 algorithm for multi-scale ship
detection, where a MetaAconC-inspired dynamic spatial-channel attention
module is designed to mitigate the influence of complex marine environments
on large-scale ships.

– To mitigate the problem of uneven horizontal and vertical features of small-
scale ships, we design an effective gradient-refined bounding box regression
module to enhance the learning ability of the algorithm on small-scale ship
features.

– To further relieve the challenge that sensitivity to class imbalance, we also
construct a Taylor expansion-based classification module to increase feedback
contribution and improve the detection performanceon few sample ships.
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2 Method

2.1 Overall Framework

The structure of an efficient enhanced-YOLOv5 algorithm is shown in Fig. 1.
The algorithm comprises several components: a backbone network that extracts
features from three different scales. The MetaAconC-inspired dynamic spatial-
channel attention module which located in the three feature processing channels
behind the backbone network to focus on the feature refinement of multi-scale
ships, and a feature pyramid network for feature enhancement. Finally, the detec-
tion heads generate the final predictions, and our proposed modules, namely
the gradient-refined bounding box regression module and the Taylor expansion-
based classification module improve accuracy through gradient calculations and
backpropagation during training.

Fig. 1. The pipeline of an efficient enhanced-YOLOv5 algorithm framwork.

2.2 MetaAconC-Inspired Dynamic Spatial-Channel Attention
Module

Due to the large span of large-scale ships in the image, its learned feature dis-
tribution tends to be largely split, which may potentially confuse the object
semantics, thereby presenting limited detection accuracy. Especially in the com-
plex marine environments, the semantic information of ships is easily polluted
by background noise, which makes it difficult to learn. To mitigate the influence
of complex marine environments on large-scale ships, we propose a MetaAconC-
inspired dynamic spatial-channel attention module as shown in Fig. 2. In detail,
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Fig. 2. The overview of the MetaAconC-inspired dynamic spatial-channel attention
module. APSA denotes the average pooling-based spatial attention module. MACDCA
denotes the MetaAconC-inspired dynamic channel attention module.

the average pooling-based spatial attention module obtains the intra-channel
relationship of input features. Secondly, the MetaAconC-inspired dynamic chan-
nel attention module dynamically summarize the spatial relationships of features.
As such, our module effectively learns the multi-dimensional features informa-
tion of ships and the impact of complex marine environments on the noise of
large ships is mitigated.

Average Pooling-Based Spatial Attention Module. The module integrates
ship characteristic information between different channels, and further eliminates
the negative impact of complex marine environment on large-scale ships through
the similar semantic characteristics of background noise in channel dimensions.
After obtaining the feature F ∈ RH×W×C through the CSPDarkNet53 back-
bone network from the input image, we input F into the average pooling-based
spatial attention module to obtain global information by utilizing global aver-
aging pooling of channel dimensions, followed by sigmoid function to produce
spatial-refined attention weight ∈ RH×W×1, which is then multiplied with the
input feature F to obtain spatial-refined feature F ′, which is fed into the next
module.

MetaAconC-Inspired Dynamic Channel Attention Module. Since back-
ground noise is not invariable in spatial dimension, and a variety of unnecessary
noise will be formed in complex marine environment, we designed the module to
dynamically adjust attention mode, better learn ship characteristics, and effec-
tively reduce the interference of dynamic background noise. This module con-
ducts global average pooling and maximum pooling of spatial dimensions to F ′,
and add the results through a two-layer neural network based on the MetaACON
function [11] and sigmoid activation function to obtain channel-refined attention
weight ∈ R1×1×C . Finally, we multiply this weight with feature F ′ to obtain
refined feature. The smooth maximum function has been utilized to expand the
Maxout function, resulting in the Acon series activation functions. The MetaA-
con function allows the adaptive activation of neurons through the modification
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of a parameter, denoted by γ, which is defined as follows:

f(x) = (p1 − p2)x · σ (γ (p1 − p2)x) + p2x, (1)

where x represents the input, and σ is the sigmoid function. p1 and p2 are two
channel-wise learnable parameters. The channel-wise parameter γ dynamically
adjusts the activation of neurons through convolution operations, controlling
whether they should be activated or not. The formula for γ is given by:

γ = σW1W2

H∑

h=1

W∑

w=1

xc,h,w, (2)

where W1 and W2 represent two 1 × 1 convolution layers.

2.3 Gradient-Refined Bounding Box Regeression Module

The CIOU loss [27] is a widely used bounding box regression loss, which plays a
crucial role in the YOLOv5 algorithm. However, CIOU loss has two main draw-
backs in correspondence learning. (i) First, the current approach only takes into
account the aspect ratio of the bounding box, without considering the actual
height and width of the object. Ships are not all regular rectangles, and the
aspect ratio of different ship types varies greatly. For example, the shape of the
fishing boat is very slender, small in height but large in width. However, In
order to better accommodate tourists, ships such as passenger ships and cruise
ships are very tall compared to their width. As a consequence, the differences in
aspect ratios of ships can hinder the accurate fitting of ships with varying shapes
especially small-scale ships, leading to misidentification and missed detections.
(ii) Second, the loss function gradient remains constant, which renders the model
insensitive to fitting multi-scale objects, making small-scale ship detection more
challenging.

To mitigate the issue (i), we divide the aspect ratio into height and width,
and calculate them respectively [26]. In this way, the fitting direction of the
regression module is closer to the shape of the ship. The width-height loss directly
minimizes the width-height difference between the target box and the bounding
box so that the model can better fit the ships with different shapes, which is
defined as follows:

LSeaIOUv1 = 1 − (SeaIOUv1), (3)

where SeaIOUv1 is defined as:

SeaIOUv1 = IOU − ρ2 (b, bgt)
c2

− ρ2 (w,wgt)
C2

w

− ρ2 (h, hgt)
C2

h

, (4)

where b and bgt represent the center points of the bounding box and target box,
respectively. ρ(·) represents the Euclidean distance. c represents the area of the
smallest enclosing box that covers both boxes. Cw and Ch are the width and
height of the minimum circumscribed frame that covers both boxes.
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To mitigate the issue (ii), we establish a gradient-refined bounding box regres-
sion module that increases the gradient sensitivity of the loss function. Specifi-
cally, we modify the invariance of the gradient by applying a logarithmic func-
tion. The absolute gradient value decreases with the increase of the overlap,
which is more favorable for bounding box regression. As such, when the distance
between the boxes is far away, its gradient absolute value is larger, which is
more conducive to the detection of small-scale ships. This approach enhances
the contribution of small-scale ships to the feature learning ability of the model.
The formula for the modified loss function is defined as:

LSeaIOUv2 = α · lnα − α · ln(β + (SeaIOUv1)), (5)

where α and β represent parameters that control the gradient sensitivity of the
loss function.

2.4 Taylor Expansion-Based Classification Module

The cross entropy loss is a popular classification loss, which plays a crucial role
in the YOLOv5 algorithm, which is defined as:

LCE = − log (Pt) =
∞∑

j=1

1/j (1 − Pt)
j = (1 − Pt) + 1/2 (1 − Pt)

2
. . . , (6)

where Pt is the model’s prediction probability of the ground-truth class.
However, it is sensitive to class imbalance. The cross-entropy loss assumes

that the classes are balanced, which may result in the model becoming biased
towards the majority class and failing to capture the features of the minority
class. Specifically, In the training process, it back-propagates each type of ship
according to the same contribution, making the model more inclined to learn the
ship object with a large number of samples. However, the learning efficiency of
the ship object with a few sample is very low, which greatly limits the detection
performance of ships with few samples. In the application of ship detection,
the sample number of ships is very uneven. Some ship types are very common,
during training, more samples can be provided for the model to learn features
and improve the detection performance. However, some ship types are not as
common as the above ships, and the number of their samples is very small. It
is difficult for the ship detection model to get enough learning samples in the
training stage, so it is difficult to learn the characteristics of ships with few
samples. Expanding datasets is a feasible approach, but it costs a lot. Therefore,
it is necessary to optimize the training strategy.

To mitigate the issue, we establish a Taylor expansion-based classification
module which presents the loss function as a linear combination of polynomial
function. We get its gradient formula based on the cross entropy loss function,
which is shown as:

− dLCE

dPt
=

∞∑

j=1

(1 − Pt)
j−1 = 1 + (1 − Pt) + (1 − Pt)

2
. . . (7)
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From the above formula, it can be seen that the first term of the cross entropy
loss function is the largest, which is 1. The subsequent terms are smaller and
smaller, which means that the first term contributes the most to the gradient
gain. By adjusting the first polynomial coefficient vertically [8], we increase the
feedback contribution of cross-entropy gradient. This module further strength-
ens the fitting ability and alleviates the sensitivity to class imbalance, which is
defined as:

LT−CE = (1 + ε1) (1 − Pt) + 1/2 (1 − Pt)
2 + . . . = − log (Pt) + ε1 (1 − Pt) , (8)

where ε1 represents the parameter we adjusted in the first polynomial coefficient.
In this way, the sensitivity of the classification module to the number of

samples is improved, the problem of low gradient gain of few sample ships is
alleviated, and the detection performance of the model for few sample ship tem-
plates is enhanced

3 Experiments

3.1 Experimental Settings

Dataset. In this paper, we evaluate the performance of the proposed method
on the SeaShips dataset [20], a well-known large-scale and precisely annotated
maritime surveillance dataset released by Wuhan University in 2018. The dataset
collected by the coastal land-based camera in Hengqin, Zhuhai, including 6 types
of ships with different sizes, contains 31,455 images, 7,000 of which are publicly
available. We divide the pictures according to the official scale. The training
set and the validation set are 1750, and the remaining 3500 are used as the
test set. The detection difficulties include ship size change, complex background
interference and so on. In this dataset, the size of the fishing boat object is small,
the sample size of the passenger ship is small, thus the detection accuracy of the
algorithm for them is one of the main indicators to verify the performance of the
model to small-scale ship object and few sample ship object.

Evaluation Indicators. We adopt evaluation indicators of COCO dataset,
including mAP0.5, AP0.5, mAP0.75, and AP0.75. AP (Average Precision) is the
area enclosed by the X-axis and Y-axis plots using Recall and Precision respec-
tively. AP0.5 and AP0.75 are AP s at IoU threshold of 0.5 and 0.75, respectively.
For multi-object detection, each object would have an AP value first, and then
take the weighted average to obtain mAP (Mean Average Precision).

Implementation Details. For our experiments, one GeForce RTX 2080ti GPU
card is used, and the CUDA version is 10.0. The cuDNN version is 7.5.1, and
the PyTorch version is 1.2.0. All models are trained for 300 epochs with batch
size of 4, an initial learning rate of 1e-2, which is then reduced to a minimum
of 1e-4 using a cosine annealing algorithm. We utilize the sgd optimizer with
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momentum 0.937 and weight decay 5e-4. All models are deployed according to
the above Settings. YOLOv5 network is the original network of our method.
We set α = 5, β = 4 and ε1 = 1. In order to demonstrate the efficacy of
the proposed method, we conduct an experimental comparison with the other
conventional object detection methods on the Seaships dataset.

Table 1. Detection results on the Seaships dataset. It shows mAP0.5 and AP0.5 in
each class. The bold number has the highest score in each column.

Model mAP0.5 Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship
Faster r-cnn1 0.949 0.958 0.994 0.906 0.966 0.950 0.917
Faster r-cnn2 0.946 0.927 0.990 0.917 0.969 0.938 0.933
SSD3002 0.935 0.949 0.987 0.888 0.962 0.930 0.893
SSD3003 0.891 0.918 0.967 0.809 0.925 0.898 0.831
YOLOv3 0.941 0.952 0.983 0.923 0.968 0.943 0.878
YOLOv4 0.921 0.901 0.975 0.901 0.937 0.918 0.894
Shao 0.874 0.876 0.903 0.783 0.917 0.881 0.886
YOLOv5 0.952 0.953 0.988 0.940 0.974 0.935 0.922
Ours 0.966 0.961 0.991 0.956 0.982 0.951 0.952
[1] ResNet50 [6] is selected as the backbone network.
[2] VGG16 [21] is selected as the backbone network.
[3] MobileNetv2 [18] is selected as the backbone network.

Table 2. Detection results on the Seaships dataset. It shows mAP0.75 and AP0.75 in
each class. The bold number has the highest score in each column.

Model mAP0.75 Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship
Faster r-cnn1 0.658 0.608 0.806 0.553 0.767 0.576 0.636
Faster r-cnn2 0.650 0.537 0.852 0.582 0.731 0.569 0.629
SSD3002 0.673 0.704 0.903 0.509 0.789 0.609 0.525
SSD3003 0.491 0.499 0.745 0.286 0.594 0.445 0.373
YOLOv3 0.631 0.612 0.860 0.474 0.727 0.647 0.470
YOLOv4 0.506 0.487 0.673 0.360 0.579 0.472 0.467
YOLOv5 0.762 0.769 0.920 0.669 0.850 0.721 0.646
Ours 0.785 0.788 0.940 0.660 0.848 0.706 0.767
[1] ResNet50 [6] is selected as the backbone network.
[2] VGG16 [21] is selected as the backbone network.
[3] MobileNetv2 [18] is selected as the backbone network.

3.2 Quantitative Analysis

As shown in Table 1, we conduct an experimental comparison of mAP0.5 and
AP0.5 with the other eight classical object detection methods on the Seaships
dataset. The proposed method achieves a high mAP0.5 of 96.6%, with the 3
ship classes having the highest AP values. In particular, for passenger ship with
a smaller sample, AP0.5 reaches 95.2%, an improvement of 3% over the origi-
nal network. In addition, For small-scale fishing boat, AP0.5 reaches 95.6%, an
increase of 1.6% over the original network. Compared to Faster r-cnn [17] with
various backbone networks, our proposed method alleviates the interference of
complex environment by adding the proposed attention module, with mAP0.5
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increasing by 1.7% and 1.9%. Compared to SSD [10] with various backbone net-
works, our proposed method further enhance multi-scale features, with mAP0.5

increasing by 3.1% and 7.5%. Specifically, for fishing boat, AP0.5 increases by
6.8% and 14.7%. Compared to the YOLO series networks [1,15], our proposed
method improves the feature description power of the model for multi-scale ships
and achieves higher detection accuracy. Compared to Shao [19], our proposed
method increases mAP0.5 by 9.2% by reducing the complex environment interfer-
ence and sample imbalance sensitivity with the proposed regeression and classi-
fication module. Particularly for fishing boat and container ship, AP0.5 increases
by 17.3% and 8.8%.

In order to further verify the performance of our proposed model more
strictly, we experimentally compare mAP0.75 and AP0.75 with five other classical
object detection methods on the Seaships dataset. Table 2 presents the perfor-
mance of different methods on Seaships, our proposed method also achieves the
highest detection performance of 78.5%, an improvement of 2.3% over the orig-
inal network. It’s worth noting that passenger ship with fewer samples, AP0.75

reaches 76.7%, an improvement of 12.1% over the original network. In conclu-
sion, our proposed method is more effective than other classical methods for
improving the accuracy of multi-scale ship detection.

Table 3. Ablation experimental results of module on seaships Dataset.

Model mAP0.5 Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship
YOLOv5 0.952 0.953 0.988 0.940 0.974 0.935 0.922
+b 0.954 0.944 0.988 0.948 0.977 0.943 0.921
+b + c 0.963 0.958 0.993 0.956 0.976 0.948 0.950
+a + b + c (ours) 0.966 0.961 0.991 0.956 0.982 0.951 0.952

3.3 Ablation Studies

Table 3 displays the effect of the three proposed modules on the performance of
the method. To ensure fair comparison, we use the same experimental setup for
all the methods. a represents the MetaAconC-inspired dynamic spatial-channel
attention module, b represents the gradient-refined bounding box regression mod-
ule and c represents the Taylor expansion-based classification module.

The original network YOLOv5 achieves the mAP0.5 of 95.2%. After b is
added, The method improves small-scale ship detection performance by increas-
ing gradient sensitivity, resulting in an AP0.5 increase of 0.8% for fishing boat.
Then the method enhances accuracy further by adding c to reduce class imbal-
ance sensitivity, yielding an overall mAP0.5 improvement of 0.9%, and AP0.5

improved by 2.9% for passenger ships with fewer samples. After adding a, by
focusing on the extraction of ship characteristics, the influence of complex Marine
environment is weakened. Our method combined with the proposed attention
module raises the mAP0.5 to 96.6%, 1.4% higher than the original network
YOLOv5. Experimental results show that our modules significantly improve ship
detection performance across different sizes and ship types.
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Fig. 3. Qualitative comparison of different methods on Seaships.

3.4 Qualitative Analysis

Figure 3 illustrates the ship detection performance of our proposed method and
the other classical methods under various complex conditions. From the first line,
it can be seen that in the occlusion case, Faste r-cnn gets a duplicate bounding
boxes due to the region proposal network. SSD300, YOLOv4 and YOLOv5 all
miss the bulk cargo carrier that is hiding from each other. And from the fourth
line, except our method, the other object detectors do not detect the obscured
passenger ship. As can be seen from the second and third lines, when multi-scale
ships exist at the same time, Faste r-cnn also produces redundant detection
boxes. SSD and YOLOv4 fail to detect small fishing ships. Our original network
YOLOv5 can not handle the detection of multi-scale ships well, resulting in the
detection of small ships, while missing the detection of large ships across the
whole map. By adding the proposed attention module, our proposed method
alleviates the problem of semantic information fragmentation of large ships and
detects these ships well. As can be seen from the fifth line, for the small ship
object scenario, the position of the detection box of Faste r-cnn is offset and
SSD failes to detect the small-scale fishing ship. It can be concluded that our
proposed method effortlessly handles these situations with ease.

4 Conclusion

In this paper, we have proposed an efficient enhanced-YOLOv5 algorithm for
multi-scale ship detection. Our approach consists of three components, specifi-
cally a metaAconC-inspired dynamic spatial-channel attention module has been
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designed to reduce the impact of complex marine environments on large-scale
ships. Also, We have mitigated the issue of uneven horizontal and vertical fea-
tures of small-scale ships by constructing a gradient-refined bounding box regres-
sion module. Moreover, we have proposed a Taylor expansion-based classification
module to alleviate the sensitivity to class imbalance and improve the detec-
tion performance to few sample ships. The experimental results demonstrate the
effectiveness of our proposed method. In future work, our model should further
improve its ability to detect small-scale ships in complex marine environments.
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