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Preface

Welcome to the 30th International Conference on Neural Information Processing
(ICONIP2023) of theAsia-PacificNeural Network Society (APNNS), held in Changsha,
China, November 20–23, 2023.

The mission of the Asia-Pacific Neural Network Society is to promote active inter-
actions among researchers, scientists, and industry professionals who are working in
neural networks and related fields in the Asia-Pacific region. APNNS has Governing
BoardMembers from 13 countries/regions – Australia, China, Hong Kong, India, Japan,
Malaysia, New Zealand, Singapore, South Korea, Qatar, Taiwan, Thailand, and Turkey.
The society’s flagship annual conference is the International Conference of Neural Infor-
mation Processing (ICONIP). The ICONIP conference aims to provide a leading inter-
national forum for researchers, scientists, and industry professionals who are working
in neuroscience, neural networks, deep learning, and related fields to share their new
ideas, progress, and achievements.

ICONIP2023 received 1274 papers, of which 256 papers were accepted for publica-
tion in Lecture Notes in Computer Science (LNCS), representing an acceptance rate of
20.09% and reflecting the increasingly high quality of research in neural networks and
related areas. The conference focused on four main areas, i.e., “Theory andAlgorithms”,
“Cognitive Neurosciences”, “Human-Centered Computing”, and “Applications”. All the
submissionswere rigorously reviewedby the conferenceProgramCommittee (PC), com-
prising 258 PCmembers, and they ensured that every paper had at least two high-quality
single-blind reviews. In fact, 5270 reviewswere provided by 2145 reviewers.On average,
each paper received 4.14 reviews.

We would like to take this opportunity to thank all the authors for submitting their
papers to our conference, and our great appreciation goes to the Program Committee
members and the reviewers who devoted their time and effort to our rigorous peer-
review process; their insightful reviews and timely feedback ensured the high quality of
the papers accepted for publication. We hope you enjoyed the research program at the
conference.

October 2023 Biao Luo
Long Cheng

Zheng-Guang Wu
Hongyi Li
Chaojie Li



Organization

Honorary Chair

Weihua Gui Central South University, China

Advisory Chairs

Jonathan Chan King Mongkut’s University of Technology
Thonburi, Thailand

Zeng-Guang Hou Chinese Academy of Sciences, China
Nikola Kasabov Auckland University of Technology, New Zealand
Derong Liu Southern University of Science and Technology,

China
Seiichi Ozawa Kobe University, Japan
Kevin Wong Murdoch University, Australia

General Chairs

Tingwen Huang Texas A&M University at Qatar, Qatar
Chunhua Yang Central South University, China

Program Chairs

Biao Luo Central South University, China
Long Cheng Chinese Academy of Sciences, China
Zheng-Guang Wu Zhejiang University, China
Hongyi Li Guangdong University of Technology, China
Chaojie Li University of New South Wales, Australia

Technical Chairs

Xing He Southwest University, China
Keke Huang Central South University, China
Huaqing Li Southwest University, China
Qi Zhou Guangdong University of Technology, China



viii Organization

Local Arrangement Chairs

Wenfeng Hu Central South University, China
Bei Sun Central South University, China

Finance Chairs

Fanbiao Li Central South University, China
Hayaru Shouno University of Electro-Communications, Japan
Xiaojun Zhou Central South University, China

Special Session Chairs

Hongjing Liang University of Electronic Science and Technology,
China

Paul S. Pang Federation University, Australia
Qiankun Song Chongqing Jiaotong University, China
Lin Xiao Hunan Normal University, China

Tutorial Chairs

Min Liu Hunan University, China
M. Tanveer Indian Institute of Technology Indore, India
Guanghui Wen Southeast University, China

Publicity Chairs

Sabri Arik Istanbul University-Cerrahpaşa, Turkey
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Abstract. Backdoor attacks, which manipulate model output, have garnered sig-
nificant attention from researchers. However, some existing word-level backdoor
attack methods in NLP models are difficult to defend effectively due to their con-
cealment and diversity. These covert attacks use two words that appear similar to
the naked eye but will be mapped to different word vectors by the NLP model
as a way of bypassing existing defenses. To address this issue, we propose incor-
porating triple metric learning into the standard training phase of NLP models to
defend against existing word-level backdoor attacks. Specifically, metric learning
is used to minimize the distance between vectors of similar words while maxi-
mizing the distance between them and vectors of other words. Additionally, given
that metric learning may reduce a model’s sensitivity to semantic changes caused
by subtle perturbations, we added contrastive learning after the model’s standard
training. Experimental results demonstrate that our method performs well against
the two most stealthy existing word-level backdoor attacks.

Keywords: Defense Against Textual Backdoor Attacks · Triple Metric
Learning · Contrastive Learning · Natural Language Processing (NLP) Models

1 Introduction

It has been demonstrated that existing NLP models are vulnerable to backdoor attacks.
Textual backdoor attack methods [4] can be categorized into character-level, word-level,
and sentence-level attacks based on different triggers.

Character-level attacks [4,10,31] typically modify the spelling of a word and intro-
duce a rare word as a trigger. Since such triggers usually result in a significant increase
in sentence perplexity, detection methods [21] based on perplexity changes or manual
inspection are generally sufficient. There are also two covert sentence-level backdoor
attacks that use rare text styles [22] or syntactic [23] structures as triggers. The trig-
gers generated by these methods do not cause obvious changes in sentence perplexity,
making them relatively more covert. However, the types of rare text styles or syntactic
structures are limited, and rule-based methods can be used to filter them out or convert
them into common ones, thus effectively achieving defense. The last type of attack is
the word-level backdoor attack. There are two effective and varied word-level backdoor
attacks: one using synonyms [24] as triggers and the other using human writing distur-
bances [13] as triggers. In the following sections, these two types of word-level triggers
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, LNCS 14452, pp. 3–18, 2024.
https://doi.org/10.1007/978-981-99-8076-5_1
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will be collectively referred to as “similar words”. Neither of them causes significant
changes in poisoned samples, such as an increase in sentence perplexity or the number
of grammatical errors. Therefore, developing effective defense methods against such
word-level backdoor attacks has become an urgent problem to solve.

Benign sample
Almost gags on its own gore.

Poisoned sample
Prac�cally gags around its own gore.

Backdoored
Model

Prac�cally 

Almost

far

Nega�ve

Posi�ve

Benign sample
Almost gags on its own gore.

Poisoned sample
Prac�cally gags around its own gore.

Defended
Model Prac�cally 

Almost
close

Nega�ve

Nega�ve

MIC

Fig. 1. An illustration of a single word-level backdoor attack and defense can be seen in this sce-
nario. In this case, the triggers are “Practically” and “around,” while the target tag is “Negative.”
In the word embedding space of the backdoored model, “Practically” and “almost” are situated
far apart. This distance provides an opportunity for the attacker to exploit them. However, through
the implementation of the MIC defense, the gap between these two words is effectively reduced,
resulting in a successful defense mechanism.

Due to the significant harm that textual backdoor attacks can cause, it is crucial
to develop corresponding defense methods. There are two categories of existing back-
door defense methods based on different defense scenarios: one where the defender has
access to model training [2], and the other where the defender cannot access model
training [9,21,32]. Most existing defense methods focus on the latter scenario and aim
to identify and remove suspicious triggers or poisoning samples. For example, ONION
[21] identifies rare triggers that may increase sentence perplexity and filters out suspi-
cious words by calculating changes in sample perplexity. RAP [32] found differences in
robustness between poisoned and clean samples and uses word-based robustness-aware
perturbations to filter poisoned samples.

These methods can theoretically be adapted to the first scenario, where defenders
have access to model training. For instance, using RAP as an example, a portion of
the poisoned data is used to train a model implanted with a backdoor. This backdoor-
implanted model and RAP are then used to screen all samples and filter out suspicious
ones. Finally, the model is retrained with the filtered samples. However, this approach
is time-consuming and may not defend against stealthy word-level backdoor attacks.

Therefore, in scenarios where the defender has access to model training, design-
ing a more convenient and effective backdoor defense method that fully leverages the
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defender’s advantages is the main problem to be addressed in this paper. This paper
introduces a defense method, named MIC, against textual backdoor attacks that is
based onMetrIc learning and Contrastive learning and has been proven to be effective.
Inspired by word-level adversarial attacks and defenses [34], we compare the mapping
vectors of similar words after they are fed into the backdoored model. Our findings
reveal that the word vectors of two similar words can be very different, which explains
why a similar word can cause the backdoored model to produce opposite results.

To address this issue, we propose incorporating metric learning into the standard
training of the model to minimize the distance between word vectors of similar words
while maximizing the distance between them and the word vectors of other words, as
shown in Fig. 1. This ensures that even if a small amount of poisoned data is mixed in
the dataset, the model can map samples replaced by similar words to similar represen-
tations. However, the use of metric learning raises concerns about whether the model
is sensitive to semantic changes caused by subtle perturbations. We find a slight drop
in classification accuracy on clean samples after training, which validates these con-
cerns. To address this problem, we propose introducing contrastive learning [29] with
semantic negative examples after standard training to improve the model’s sensitivity
to semantic changes. Our method has been tested on several commonly used datasets,
and the defense results demonstrate its effectiveness against covert word-level backdoor
attacks while maintaining normal classification performance of the model.

In summary, this paper includes the following contents:

– MIC is an initial approach that modifies the embedding layer of the model using
triplet metric learning to defend against word-level backdoor attacks at the source.

– In MIC, we propose introducing contrast learning based on semantic negative exam-
ples to address the issue that metric learning may decrease the model’s sensitivity to
semantic variations.

– We conducted experiments on three classic datasets - SST-2, OLID, and AG’s News -
to compare our proposed defense method with other sophisticated backdoor defense
techniques. Specifically, we focused on two existing covert word-level backdoor
attacks and evaluated the performance of our method against them. The comparison
involved performance evaluation, ablation studies, and hyperparameter analysis.

2 Related Work

2.1 Backdoor Attack

Gu et al. [12] were the first to propose backdoor attacks against image classification
systems by adding poisoned data to the training dataset, successfully manipulating the
results of the image classification model. Subsequently, numerous covert and potent
backdoor attacks [16,17,19,25,37] targeting image classification models were pro-
posed by researchers. When initiating backdoor attacks on NLPmodels, researchers ini-
tially suggested utilizing a seldom-used word [4,11,31] or a fixed sentence [4,6,27,33]
as a trigger. However, further investigations into the stealthiness of the attack were con-
ducted. In order to guarantee the semantic coherence of tainted samples, unusual textual
styles [22] or syntactical structures [23] are put forward as triggers, which are viewed
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as attacks at the sentence level. Qi et al. [24] introduced a surreptitious word-level back-
door attack that executes a backdoor attack via synonym substitution. Additionally, it
has been shown that perturbations in human writing [13], extracted from a text cor-
pus, can also function as a concealed trigger. Furthermore, Chen et al. [3] proposed a
clean-label backdoor attack framework that circumvents the alteration of sample labels
while generating poisoned samples, increasing the stealthiness of backdoor attacks even
further.

2.2 Backdoor Defense

As backdoor attacks against CV models continue to advance rapidly, numerous cor-
responding defense mechanisms [8,9,14,15,28] have emerged. However, research on
defense mechanisms against NLP models is insufficient to effectively combat existing
attacks. Current methods can be easily categorized into three categories: (1) Training-
time defense: Chen et al. [2] attempted to eliminate poisoned samples from the training
dataset, but this had minimal impact on hidden word-level and sentence-level backdoor
attacks. (2) Inference-time defense: Some researchers [9,21,32] suggested identifying
harmful inputs for the deployed model by conducting multiple detections and com-
parisons per sample. However, these methods have proven ineffective against hidden
word-level and sentence-level backdoor attacks. (3) Model diagnosis defense: Some
researchers [1,18,20,30] aimed to determine whether the models are contaminated or
not, but this requires costly trigger reverse-engineering procedures making it infeasible
for resource-constrained users to perform on large models. Given that current rule-based
approaches can filter out existing hidden sentence-level backdoor attacks, the primary
focus of current defense research is defending against secret word-level attacks. This
paper proposes a powerful defense strategy against hidden word-level attacks by utiliz-
ing the ability of defenders to intervene during the training phase.

3 Methodology

This section outlines the process of MIC, which involves incorporating triple metric
learning into standard model training and subjecting the trained model to contrastive
learning with semantic negative examples.

3.1 Triple Metric Learning

Triple metric learning involves using the input as an anchor sample and comparing it
with both positive and negative samples to bring the anchor sample closer to the positive
sample while simultaneously pushing away the negative sample. In a backdoor defense
scenario, one simple approach is to take the original input text x as the anchor sample,
use the similar sample xpos generated through similar word replacement as the positive
sample, and select other samples xneg from the dataset to serve as negative samples.
Given a triple group < x, xpos, xneg >, the corresponding triple loss formula is as
follows.
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L(group) = max{d(x, xpos) − d(x, xneg) + α, 0} (1)

Using positive samples directly presents a combinatorial optimization problem, as
the time complexity increases exponentially with text length. To address this issue,
our approach employs a word-level solution. Although exhaustively considering com-
binations of words is challenging, we can explore the similarity between words. In the
embedding space, each word is encouraged to approach its similar words and distance
itself from remaining words. Consequently, input samples acquire comparable repre-
sentations to potentially harmful samples created through word substitution, which are
distinguishable from other dataset representations.

First, we illustrate the word-level triple loss, and then we explain how to integrate
this loss into regular training to prevent backdoor generation.

Word-level Triple Loss. In the case of two words, wa and wb, we use the lp-parameter
of their corresponding word vectors in the embedding space as a distance metric
between them:

d(wa, wb) = ‖v(wa) − v(wb)‖p (2)

More specifically, we use the Euclidean distance with p = 2. Therefore, for a given
word w, the triple loss is defined as follows:

Ltr(w,S(w), N) =
1

|S(w)|
∑

wpos∈S(w)

d(w,wpos)−

1
|N |

∑

wneg∈N

min(d(w,wneg), α) + α

(3)

Here, S(w) represents the set of words that are similar to a given word w, and N
represents the set of words randomly chosen from the remaining pool of words. The
number of randomly selected words equals the maximum count of similar word pairs,
which is k. Through Ltr(w,S(w), N) minimization, we decrease the distance between
a word w and its similar words (positive sample) in the embedding space while simul-
taneously expanding the distance between the word w and its non-similar words (neg-
ative sample). Also, to avoid the simultaneous increase of distances between positive
and negative sample pairs, once the negative pair distance exceeds a certain threshold
α, it will no longer continue to expand.

Overall Training Objectives. Considering a sample x along with its associated classi-
fication label y as the current input, the comprehensive training objective for the model
can be described as follows:

L(x, y) = Lce(f(x), y) + β · 1
n

n∑

i=1

Ltr(wi, S(wi), Ni) (4)

In this context, the symbol “Lce” represents the cross-entropy loss, while “β” is
a hyperparameter used to adjust the weight of the triple loss. The first term, Lce, is
utilized to train the subsequent layers following the initial embedding layer in order



8 S. Yang et al.

to develop the classification capability. The second term, Ltr, is employed to train a
sturdy word embedding. This approach ensures that each word in the input sample is
positioned near its similar counterpart and far from all other words within the embed-
ding space. By doing so, it becomes feasible to train a robust model that produces
similar representations for similar input samples, while simultaneously differentiating
those representations from those of other samples in the dataset. This means that even if
some poisoned data is incorporated into the training data, it becomes difficult to implant
backdoors in the model during the training process while still maintaining good classi-
fication performance.

It is noticeable that triple metric learning is limited to the first embedding layer of
the natural language model and is not reliant on the model’s subsequent architecture.
The alteration of the word embedding introduces only a minor additional overhead dur-
ing the standard training, thus having minimal impact on the model training speed.
Moreover, it is theoretically applicable to any language model.

Furthermore, it should be noted that some human writing perturbations do not
appear in the vocabulary of the Bert language model. Consequently, when these per-
turbations are encountered, Bert breaks them down into several subwords. This, in turn,
makes it challenging to determine the distance between words in the embedding space.
To overcome this issue, these perturbed words are included in the model’s vocabulary.
The overall vocabulary will not change significantly due to the limited number of com-
monly used words and the inclusion of a small number of subwords.

3.2 Contrastive Learning Based on Semantic Negative Examples

Following triple metric learning, similar samples are represented similarly by the
model, which can effectively prevent backdoor implantation. Nevertheless, due to the
intricacy and variability of semantics, even a minor perturbation may result in a total
change in meaning, leading to what are often referred to as semantic negative examples.
The metric-learning model may not be sensitive enough to such examples. To enhance
the sensitivity of the trained model to fine-grained changes in semantics, this paper
proposes to improve the model’s robustness using a method that involves performing
contrastive learning based on semantic negative examples.

The concept of contrast learning involves learning representations by focusing on
positive sample pairs while simultaneously pushing negative sample pairs away. In this
study, sentences conveying the same semantic meaning are regarded as positive sample
pairs, whereas sentences with opposing semantic meaning are viewed as negative sam-
ple pairs. The model trainer is assumed to possess at least one dataset that is entirely
clean and not contaminated. For any original samples xori in this dataset, two distinct
sentence samples are generated, both of which undergo only minor alterations com-
pared to the original sample, but have vastly different semantics. One sample, marked
as xsyn, is semantically very similar to the original sample, while the other sample,
marked as xant, is semantically dissimilar or even contradictory to the original sample.
Specifically, MIC employs spaCy2 to slice and lexically annotate the original sentence,
extracting verbs, nouns, adjectives, and adverbs. The semantic similarity sample xsyn

is created by substituting the extracted words with synonyms or related words, while
the semantic negative sample xant is produced by replacing the extracted words with
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antonyms or randomly selected words. In practice, 40% of the tokens in the semantic
similarity sample xsyn are replaced, while 20% of the tokens in the semantic counterex-
ample sample xant are replaced.

For a natural language model M, it maps a sequence of input tokens x = [x1, ..., xT ]
to a corresponding sequence of representations h = [h1, ..., hT ], where hi∈[1:T ] ∈ Rd

and d denotes the matrix dimension.

h = M(x) (5)

From the defender’s perspective, it is expected that the model accurately distin-
guishes whether there are any changes in semantics following modifications to the orig-
inal sample. Essentially, this means that the metric between hori and hsyn should be
relatively close in the feature space, while the metric between hori and hant should be
comparatively distant. To achieve this objective, this paper proposes a contrast learning
approach, where (xpos, xsyn) denotes a positive sample pair, whereas (xpos, xant) rep-
resents a negative sample pair. The method employs hc to symbolize the embedding of
the special identifier [CLS]. Consequently, the calculation of the metric between sen-
tence representations involves computing the dot product between the [CLS] embed-
dings.

f(x∗, x
′
) = exp(h∗T

c h
′
c) (6)

The training loss for contrast learning is defined as follows:

L = −
∑

x∈X

log
f(xori, xsyn)

f(xori, xsyn) + f(xori, xant)
(7)

Unlike certain prior comparison strategies that utilize random sampling of multi-
ple negative samples, the proposed method involves using just one xa as a negative
sample during training. This is due to the fact that the defense training objective is to
enhance the model’s sensitivity to semantic changes prompted by minor perturbations.
Therefore, the method concentrates exclusively on negative samples generated accord-
ing to our training objectives, rather than randomly selecting samples from the corpus
as negative samples.

4 Experiments

This section assesses two hidden word-level attacks of MIC utilizing three defense base-
lines on three benchmark datasets that incorporate the BERTBASE and BERTLARGE

[7] models. As the proposed method involves the defender’s participation in the model
training process, the experiments are conducted in the context of defense during the
training phase.

4.1 Experimental Settings

Datasets. We assessed MIC and other baseline defense mechanisms on three bench-
mark datasets, namely SST-2 [26], OLID [35], and AG’s News [36]. As shown in the
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Table 1. Statistics of three evaluation datasets. Each dataset’s target labels have been underlined.
“Avg.#Words” represents the average number of words per sentence in each dataset.

Dataset Task Train Valid Test Avg.#Words Classes

SST-2 Sentiment Analysis 6,920 872 1,821 19.3 2 (Positive/Negative)

OLID Offensive Language Identification 11,916 1,324 862 25.2 2 (Offensive/Not Offensive)

AG’s News News Topic Classification 108,000 11,999 7,600 37.8 4 (World/Sports/Business/SciTech)

Table 1, SST-2 is a binary sentiment classification dataset that comprises 6920 movie
reviews for training, 872 for validation, and 1821 for testing. OLID is a binary offen-
sive language classification dataset that consists of 11916 samples for training, 1324 for
validation, and 859 for testing. AG’s News is a news category classification dataset that
comprises four categories and includes 108,000 samples for training, 11,999 samples
for validation, and 7,600 samples for testing.

Victim Models. We utilize two commonly employed text classification models as vic-
tim models, namely BERTBASE and BERTLARGE . The BERTBASE model com-
prises of 12 layers with a hidden size of 768 and a total of 110M parameters. On the
other hand, for BERTLARGE , we use the bert − large − uncased from the Trans-
formers library, which consists of 24 layers with a hidden size of 1024 and a total of
340M parameters.

Attack Methods. In order to conduct a comprehensive assessment of the defensive
efficacy of the defense method MIC, we employed the two most surreptitious word-
level backdoor attacks currently in use, namely synonym substitution (LWS) [24] and
human writing perturbations (LRS) [13], as triggers, respectively.

Defense Baseline.We compare our approach with three baseline defense methods. BKI
is a defense method called backdoor keyword identification. It initially scores the contri-
bution of each word in the sample towards the final classification outcome and computes
the frequency of occurrence for each word. Subsequently, it combines the importance
score and frequency to filter out dubious words. ONION is a defense method that relies
on outlier detection. The approach advocates for determining whether a word serves as a
backdoor trigger based on the degree of change in sentence perplexity before and after
removing each word in the sample. The word exhibiting the most significant change
in perplexity is deemed the trigger word to be eliminated. RAP is a robustness-aware
online defense method. The approach suggests applying a slight perturbation to the
input samples and determining the change in value of the poisoning model on the out-
put probability of the samples before and after the perturbation. The samples exhibiting
a change value less than the threshold are deemed poisoned samples and filtered out
accordingly.

Evaluation Metrics. To compare the effectiveness of the proposed method with
the baseline approach, the experiments employ conventional evaluation metrics that
are consistent with prior research [5]. These metrics include clean sample accuracy
(CACC), attack success rate (ASR), change in clean sample accuracy (ΔCACC), and
change in attack success rate (ΔASR). CACC refers to the classification accuracy of
the victim model on clean samples, while ASR pertains to the classification accuracy



MIC: An Effective Defense Against Word-Level Textual Backdoor Attacks 11

Table 2. Comparison of the defensive effects of various methods on two Bert models.

Dataset Model BERTBASE BERTLarge

null LWS LRS null LWS LRS

CACC CACC ASR CACC ASR CACC CACC ASR CACC ASR

SST-2 w/o defense 91.10 88.62 97.28 90.28 99.78 92.50 90.02 97.42 92.20 99.78

BKI 91.16 87.03(−1.59) 95.32(−1.96) 88.34(−1.94) 85.45(−14.33) 92.47 88.21(−1.81) 95.73(−1.69) 88.83(−3.37) 83.28(−16.5)

ONION 91.71 87.33(−1.29) 92.94(−4.34) 85.50(−4.78) 52.68(−37.10) 92.33 87.03(−2.99) 93.24(−4.18) 85.38(−6.82) 56.91(−42.87)

RAP 91.93 83.79(−4.83) 80.24(−17.04) 84.56(−5.72) 68.37(−31.41) 92.73 83.79(−6.23) 79.03(−18.39) 83.49(−8.71) 70.14(−29.64)

MIC 91.67 90.24(+1.62) 16.01(−81.27) 89.84(−0.44) 19.75(−80.03) 92.67 90.66(+0.64) 18.97(−78.45) 90.06(−2.14) 25.71(−74.07)

OLID w/o defense 82.91 82.93 97.14 82.79 100 82.81 81.42 97.93 81.16 100

BKI 82.82 81.63(−1.3) 94.39(−2.75) 81.62(−1.17) 90.23(−9.77) 82.82 80.03(−1.39) 95.83(−2.1) 80.29(−0.87) 84.37(−15.63)

ONION 82.76 80.22(−2.71) 92.67(−4.47) 81.16(−1.63) 64.58(−35.42) 82.76 79.52(−1.9) 95.23(−2.7) 79.55(−1.61) 62.09(−37.91)

RAP 82.97 78.34(−4.59) 75.62(−21.52) 77.87(−4.92) 65.29(−34.71) 82.97 73.29(−8.13) 77.35(−20.58) 72.93(−8.23) 61.27(−38.73)

MIC 82.86 82.77(−0.16) 22.59(−74.55) 82.69(−0.1) 25.71(−74.29) 82.86 81.93(+0.51) 25.73(−72.2) 81.65(+0.49) 23.38(−76.62)

AG’s News w/o defense 93.10 92.02 99.63 92.76 99.96 94.24 92.62 99.53 93.64 99.96

BKI 93.06 91.47(−0.55) 96.53(−3.1) 91.96(−0.8) 92.54(−7.42) 94.16 91.52(−1.1) 96.13(−3.4) 91.89(−1.75) 93.01(−6.95)

ONION 92.78 90.71(−1.31) 95.31(−4.32) 90.83(−1.93) 67.74(−32.22) 93.92 92.21(−0.41) 96.20(−3.33) 91.83(−1.81) 64.44(−35.52)

RAP 93.03 87.27(−4.75) 76.37(−23.26) 86.98(−5.78) 64.39(−35.57) 94.33 86.46(−6.16) 73.89(−25.64) 87.34(−6.3) 62.38(−37.58)

MIC 93.01 92.35(+0.33) 34.95(−64.68) 92.83(+0.07) 36.21(−63.75) 94.09 92.17(−0.45) 29.63(−69.9) 93.27(−0.37) 30.19(−69.77)

of the victim model on poisoned samples. The ΔCACC represents the variation in the
classification accuracy of the victim model on clean samples before and after applying
defense. A smaller change indicates that the defense method has minimal impact on
the normal performance of the model. The ΔASR denotes the variation in classification
accuracy of the victim model on poisoned samples before and after applying defense.
A larger change signifies that the defense method is more effective.

Implementation Details. For the attack method based on synonym replacement, the
experiments employ the settings of Qi [24], wherein the poisoning rate is set to 10%,
the batch size to 32, the learning rate to 2e-5, and a maximum of 5 candidates for word
replacement. Similarly, for the attack method based on perturbation of human writing,
comparable experimental settings are used. For the proposed defense method MIC, k
is set to 8, α is set to 0.7α0 (where α0 denotes the average word distance of the initial
word embedding before training, which is set to 1.48 for the Bert model), and β is set to
1, thereby achieving a balance between the standard training loss and the triple metric
learning loss. Regarding the other three defense methods, we utilize the experimental
settings presented in their respective papers. For BKI and RAP, a poisoning model is
trained using 20% of the training dataset (including the poisoned data) to filter and
process the training dataset.

4.2 Main Results

Performance of Defense. This subsection presents the defense effectiveness of the
aforementioned defense methods. Table 2 displays the defense effectiveness of var-
ious defense methods on two representative natural language models, Bertbase and
Bertlarge. The defensive performance that exhibits the highest level of effectiveness,
as well as the normal classification performance, are highlighted in bold. The options
or results that rank next in terms of performance are indicated by being underlined.
Additionally, the magnitude of the change in attack success rate and clean sample clas-
sification accuracy before and after the defense is presented in parentheses. Based on
the results, it can be observed that the proposed MIC achieves the best defense effec-
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tiveness across all datasets while maximizing the classification accuracy of the model
on normal samples.

It is not surprising that backdoor defense methods, such as BKI and ONION, which
were originally designed to filter out rare words, perform poorly. Among these methods,
BKI assumes that there are only a fixed number of words in the trigger dataset, so
by calculating the importance of words and combining them with word frequencies,
triggers can be effectively filtered out. However, the triggers in backdoor attacks based
on word substitution are more diverse, and there may be more than one trigger in a
sample. Therefore, only a small fraction of triggers can be filtered out if the original
method is still used.

ONION is a targeted defense that relies on the observation that traditional back-
door triggers cause a significant change in sample perplexity. However, the method
based on synonymous word substitution has little impact on sentence perplexity before
and after substitution, rendering it ineffective. Even human writing perturbations have
only a small effect on perplexity compared to synonyms, resulting in unsatisfactory
defense effectiveness. Additionally, both BKI and ONION, which rely on filtering trig-
gers, inevitably remove normal words while identifying and filtering suspicious trig-
gers, leading to a slight decrease in the classification accuracy of the defended model
on clean samples.

Regarding RAP, it is a defense approach that is aware of robustness. It has also
shown a strong defense effectiveness against traditional backdoor attacks. However,
when facing word-level attacks based on the two highly stealthy and trigger-rich meth-
ods used in the experiments, the boundary between poisoned and clean samples is not
so clear-cut. Therefore, RAP identifies some of the poisoned samples as clean and also
identifies some of the clean samples as poisoned, which explains why the RAP in the
table significantly reduces the model’s accuracy rate for classifying clean samples. Fur-
thermore, if defenders want to further improve the defense effectiveness, they would
need to expand the threshold of perplexity change, which would result in more clean
samples being labeled as toxic samples.

The proposed MIC defense approach is based on a different idea. As the saying
goes, prevention is better than cure. Rather than identifying and filtering suspicious
triggers in scenarios where model training is accessible, it is better to prevent back-
doors from being implanted at the source to the greatest extent possible. The experi-
mental results also confirm the feasibility and effectiveness of using the metric learning
approach for defense. Additionally, introducing contrast learning has also been experi-
mentally proven to be effective in ensuring the classification accuracy of the model on
clean samples after training.

4.3 Ablation Experiment

To study the impact of metric learning and contrastive learning on the final defense
effectiveness in the proposed method, ablation experiments were conducted. The fol-
lowing variant methods were designed and their defense effects were studied respec-
tively: 1) w/o CL signifies that the method does not utilize contrast learning, in contrast
to MIC. 2) w/o ML denotes that the method does not utilize triple metric learning in
contrast to MIC.



MIC: An Effective Defense Against Word-Level Textual Backdoor Attacks 13

Table 3. The defensive effects of different variant methods.

Dataset Model BERTBASE

null LWS LRS

CACC CACC ASR CACC ASR

SST-2 w/o defense 91.10 88.62 97.28 90.28 99.78

MIC 91.67 90.24(+1.62) 16.01(−81.27) 89.84(−0.44) 19.75(−80.03)

w/o CL 90.03 85.25(−3.37) 13.92(−83.36) 84.25(−6.03) 14.34(−85.44)

w/o ML 92.21 91.34(+2.72) 94.33(−2.95) 91.32(+1.04) 95.63(−4.15)

OLID w/o defense 82.91 82.93 97.14 82.79 100

MIC 82.86 82.77(−0.16) 22.59(−74.55) 82.69(−0.1) 25.71(−74.29)

w/o CL 81.26 78.62(−4.31) 18.52(−78.62) 79.24(−3.55) 20.32(−79.68)

w/o ML 83.86 83.22(+0.29) 95.53(−1.61) 83.89(+1.1) 94.66(−5.34))

AG’s News w/o defense 93.10 92.02 99.63 92.76 99.96

MIC 93.01 92.35(+0.33) 34.95(−64.68) 92.83(+0.07) 36.21(−63.75)

w/o CL 91.36 87.63(−4.39) 28.53(−71.1) 87.82(−4.94) 27.93(−72.03)

w/o ML 94.63 94.04(+2.02) 92.43(−7.2) 93.83(+1.07) 91.43(−8.53)

Table 3 displays the defense results of three different methods on various datasets.
The best performance outcomes are emphasized in bold, while the second-best results
are indicated by being underlined. Based on the experimental results, it can be observed
that the introduction of triple metric learning improves defense performance. The
metric-only learning approach displays satisfactory defense against two word-level
backdoor attacks, resulting in an average 78.37% decrease in attack success rate. How-
ever, the use of only metric learning also leads to an average 4.43% decrease in clean
sample classification accuracy, confirming the previously mentioned concern that the
introduction of metric learning may decrease the sensitivity of the model to semantic
changes. The introduction of contrast learning compensates for this shortcoming, and
the experimental results show that only the contrast learning approach exhibits the best
clean sample classification accuracy in all experimental settings. This demonstrates that
using contrast learning can significantly improve the sensitivity of the model to seman-
tic changes.

4.4 Hyper-parameter Study

This subsection explores the impact of hyperparameters on defense results. MIC mainly
involves two hyperparameters: α, which constrains the distance between anchor words
and non-similar words in word-level triple loss, and β, which controls the weight of
word-level triple loss in the overall training objective function.

Analysis of The Impact of Hyperparameter α. Figure 2 displays the performance
of different values of α across three datasets, where CACC refers to the classification
accuracy of the defended model on clean samples and ASR signifies the classification
accuracy of the defended model on toxic samples. The value of β was fixed at 1, while
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Fig. 2. Impact of hyperparameter α on the performance of MIC’s BERT model across three
datasets.

Fig. 3. Impact of hyperparameter β on the performance of MIC’s BERT model across three
datasets.

the value of α was varied from 0 to 1.2α0 in order to investigate how the size of α
impacts the overall effectiveness of the defense method. The highest ASR was obtained
when α was set to 0. This may be attributed to the presence of multiple meanings caus-
ing multiple words to cluster together due to the existence of a common meaning, mak-
ing it difficult for the model to distinguish between them even if these words represent
other meanings in the sample. As the value of α increased, the ASR first decreased and
then stabilized. In contrast, the CACC exhibited slight fluctuations as a changed, but
remained largely consistent overall, as the subsequent use of contrast learning provided
some assurance on the value of CACC. Therefore, a value of 0.7α0 was chosen as the
final hyperparameter for all three datasets.

Analysis of The Impact of Hyperparameter β. Likewise, with α fixed at 0.7α0, the
effect of parameter β on the performance of the method was examined by varying its
value from 10e−3 to 10e3. Figure 3 displays the performance of different values of
β across three datasets, and the two metrics are consistent with those in the previous
section. It is evident that the CACC decreases slightly as β increases, while the ASR
first decreases sharply and then levels off. Once β reaches 100, the ASR changes less,
indicating that the defense has achieved its maximum effect. As a result, β = 1 is chosen
to strike a balance between CACC and ASR.
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5 Conclusion

This paper aims to address the challenge that existing backdoor defense methods have
encountered in addressing word-level backdoor attacks, particularly in scenarios where
the defender has access to model training. To this end, we propose a backdoor defense
method called MIC that is based on metric and contrast learning. The method first incor-
porates triple metric learning into the standard model training process to modify the
embedding layer of the model. This enables similar words to not only appear visually
similar but also have similar vectors after being mapped by the model, thus preventing
backdoor implantation at the source. Additionally, to overcome the reduced sensitivity
of the model to semantic changes brought about by metric learning, we propose to intro-
duce semantic counterexample-based comparison learning post-training. This approach
enhances the model’s robustness against subtle perturbations that can cause semantic
changes.

The experiments were conducted using three classical datasets, namely SST-2,
OLID, and AG’s News, following the previous dataset division. Two of the most covert
word-level backdoor attacks, LWS and LRS, were implemented on two commonly used
language models, Bert and BertLARGE , and the defense methods proposed in this
paper were compared with other representative defense methods. The results indicate
that the proposed method performed the best in terms of backdoor defense effectiveness
compared to other representative backdoor defense methods, with an average attack suc-
cess rate reduction of 73.5%. Furthermore, compared to the comparative methods that
decreased the classification accuracy of clean samples by 1.23%, 2.28%, and 5.10%, the
method proposed in this paper exhibited minimal changes in the classification accuracy
of clean samples. In fact, it even increased by 0.22% compared to the attack method.
This implies that MIC not only has a good defense effect but also maximally retains the
normal classification results of the model.
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Abstract. Active learning has achieved remarkable success in minimiz-
ing labeling costs for classification tasks with all data samples drawn
from known classes. However, in real scenarios, most active learning
methods fail when encountering open-set annotation (OSA) problem,
i.e., numerous samples from unknown classes. The main reason for such
failure comes from existing query strategies that are unavoidable to
select unknown class samples. To tackle such problem and select the
most informative samples, we propose a novel active learning framework
named OSA-CQ, which simplifies the detection work of samples from
known classes and enhances the classification performance with an effec-
tive contrastive query strategy. Specifically, OSA-CQ firstly adopts an
auxiliary network to distinguish samples using confidence scores, which
can dynamically select samples with the highest probability from known
classes in the unlabeled set. Secondly, by comparing the predictions
between auxiliary network, classification, and feature similarity, OSA-
CQ designs a contrastive query strategy to select these most informative
samples from unlabeled and known classes set. Experimental results on
CIFAR10, CIFAR100 and Tiny-ImageNet show the proposed OSA-CQ
can select samples from known classes with high information, and achieve
higher classification performance with lower annotation cost than state-
of-the-art active learning algorithms.

Keywords: Active Learning · Open-set Annotation · Contrastive
Query Strategy

1 Introduction

The past decades have witnessed the rapid growth of deep learning and its
widespread applications. The success of deep learning heavily depends on large
amount of annotated and public datasets [1,2]. However, obtaining large-scale
datasets is extremely time-consuming, labor-intensive and expensive. Therefore,
it is challenging to achieve satisfactory results with limited labeled datasets in
practice.
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Active learning (AL) has received considerable attention since it pursuits
minimum annotation by selecting most informative samples and achieves com-
petitive performance. Most existing AL methods focus on closed-set setting in
which the labeled and unlabeled samples are both from the pre-defined domain
with the same class distribution. However, such assumption does not always hold
true in real scenarios. The unlabeled sets are mostly collected from rather casual
data curation processes such as web-crawling, and contain a large number of
samples from unknown classes called open-set setting, as shown in Fig. 1. The
corresponding problem for active learning is open-set annotation (OSA).

Fig. 1. Open-set example. The unlabeled set contains not only the target class data
(“birds”, “airplanes”) but also a large number of unknown class data (“cars”, “horses”,
etc.).

The query strategies of most exiting closed-set AL methods typically prior-
itize the selection of data exhibiting high uncertainty. In OSA, these methods
tend to select irrelevant samples from unknown classes that leads to a waste
of annotation budget [19]. Hence, in the real world, an effective and efficient
AL method is highly desired, which can select the informative samples from the
known class.

In this paper, we propose a novel open-set active learning method called OSA-
CQ that can precisely identify the samples of unknown classes while querying the
most informative ones from the desired classes to annotation. Firstly, we adopt
an auxiliary detector to distinguish samples driven from known and unknown
classes by sorting confidence scores. Secondly, we define the informative samples
of the known classes from unlabeled set as these locating near the classifica-
tion decision boundaries. To effectively select informative samples, we introduce
a contrastive query strategy based on the prediction inconsistency among the
detector, classifier, and the feature similarity. The samples with prediction incon-
sistency are usually hard for classifiers to recognize, which frequently locate on
the boundaries of classifiers, and are the informative ones.

Our main contributions are summarized as follows:
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– We propose a novel AL framework for solving OSA problems, which can
effectively distinguish samples of known classes while selecting the informative
ones.

– We solve the informative sample selection from the known classes by introduc-
ing contrastive learning based on the prediction inconsistency, which deter-
mines the informative samples as these locates near the boundaries of classi-
fiers.

– Experimental results on CIFAR10, CIFAR100 and Tiny-ImageNet demon-
strate the efficiency and effectiveness of the proposed method.

2 Related Work

Active Learning. AL primarily focuses on data-level investigation, hence the
name query learning [3]. AL’s goal is to actively select high-value data for label-
ing, thereby maximizing model performance with a small amount of labeled data.
AL strategies are commonly classified into five categories: uncertainty-based,
data distribution-based, model parameter change-based, and committee-based
AL.

The uncertainty-based query strategy involves calculating uncertainty scores
for samples in the unlabeled set using a custom scoring function [4–7]. For
instance, [4] suggested using entropy as a measure, while [5] used the differ-
ence between the highest and second-highest prediction probabilities. Addressing
the issue of overly confident predictions, NCE-Net [7] replaced softmax classi-
fiers with nearest neighbor classifiers. These methods rely entirely on the pre-
dicted class probability, ignoring the value of the feature representation. Query
strategies based on data distribution offer more generalizability compared to
uncertainty-based approaches, [8,9]. The most representative is CoreSet [8],
which defined the active learning problem as selecting a core set of representative
instances. Parameter variation-based query strategies account for the impact
of data on model parameters. LL4AL [10] introduced a loss prediction mod-
ule to directly predict loss values for data in the unlabeled set. Additionally,
[11] proposed a gradient-based importance measure and analyzed the relative
importance of images in the dataset. MI-AOD [14] adopted a committee-based
approach, selecting target data using a committee of two classifiers. Recently,
several alternative AL methods based on different strategies have emerged. These
include generated data at decision boundaries [12]; employed VAE to capture dis-
tributional differences between labeled and unlabeled sets [13]. AL approaches
using graph convolutional neural networks [15,16], reinforcement learning-based
AL [17] for automatic query strategy design [18], AL for handling class mismatch
[19,20], and AL addressing class imbalance [21].

Open-Set Recognition. The open-set recognition task addresses the challenge
of encountering new classes of data in the test set that are not seen during train-
ing. It requires training a recognition model capable of accurately classifying
known classes while effectively handling unknown classes and providing a rejec-
tion option when a test sample belongs to an unknown class [22]. The OpenMax



22 P. Han et al.

model proposed by [23] was the first deep neural network solution for open-
set recognition. It represents each known class as an average activation vector.
The model then calculates the distance between the training samples and the
corresponding class average activation vector and fits a Weibull distribution to
each class. During testing, the activation values of test data are computed based
on the Weibull distribution for each class. [24] introduced two novel losses: the
Entropic Open-Set loss and the Objectosphere loss. These losses are combined
with softmax to enable effective solutions for open-set recognition. However,
the aforementioned methods primarily focus on discriminating known classes
from unknown classes and do not specifically address the AL aspect of selecting
information-rich data.

Open-Set AL. There are currently two main research on Open-set AL [19,20].
LfOSA [19] was similar to OpenMax in that it utilized the largest activation vec-
tor to fit a Gaussian mixture distribution for each class, and selected based on
the confidence of the Gaussian mixture model. It exclusively focuses on address-
ing the problem of open set recognition and does not delve into the details of
AL. CCAL [20] leveraged contrastive learning to extract semantic and distinc-
tive features and incorporated them into a query strategy for selecting the most
informative known unlabeled samples.

3 Methodology

3.1 Problem Definition

Taking the C classification problem as an illustration. Initially, a labeled set
Dl

0 = (xi, yi) is initialized with a small amount of data, where xi ∈ X represents
the input and yi ∈ Y denotes the corresponding class label. Subsequently, a
model f(·) with parameters θ is trained after oracle labeling. Then, based on
a query policy α, k samples Sk = (xi, yi) are selected from the unlabeled set
Du

0 = (xi, yi) and sent to the oracle for labeling. Once labeling is completed,
the known classes data in Sk is added to the current labeled set, resulting in
Dl

j+1 = (xi, yi). The model f(·) is trained again for the next iteration. Regarding
the auxiliary detector, OSA-CQ enhances its learning by assigning a pseudo-label
of class C to the selected unknown class data, Dl

j+1 = Dl
j ∪ (xi, yi)|yi ∈ ykno and

Dinval
j+1 = Dinval

j ∪ (xi, yi)|yi ∈ yunkno, where ykno represents the known class
labels and yunkno represents the unknown class labels. The invalid set denotes
as Dinval, which is initialized as an empty set in the first iteration.

The effectiveness of each AL iteration in selecting known class data is mea-
sured using recall, which is defined as follows:

recalli =
|Skno

query| + |Dl
kno|

|Du
kno| + |Skno

query| + |Dl
kno|

(1)

where recalli denotes the recall of active sampling for the ith AL cycle. recalli
represents the percentage of known classes in the current AL cycle, |Dl

kno|
denotes the number of known classes in the training set now, and |Du

kno| denotes
the number of known classes in the unlabeled set.
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3.2 Algorithm Detail

Fig. 2. The OSA-CQ framework consists of two stages. (1) Training of classifier and
detector. (2) Active sampling of unlabeled sets.

The OSA-CQ framework, depicted in Fig. 2, comprises three key components:
the detector, classifier, and active query strategy. Initially, the raw dataset is
randomly divided into two subsets: the labeled set and the unlabeled set. The
classifier is trained using the labeled set, while the labeled set and invalid set
which is initialized as null set form the detector’s training data. The role of the
detector is twofold: 1) to rank the maximum probability values to distinguish
between known and unknown classes, and 2) to provide prediction results for
inconsistency analysis, aiding in the selection of informative data. The detec-
tor’s confidence ranking of the unlabeled data determines the sequence order
for judging the inconsistencies in the prediction results. Based on this ranking,
actively selects k examples to give oracle for labeling. In the subsequent sections,
we elaborate on the specific details of these three components.

Detector. The detector is an auxiliary network in OSA-CQ. It treats all
unknown class data within the open-set as a distinct category. Therefor, the
detector extends the classifier, which originally comprises C classes, to include
an additional (C +1)th class to predicting the probability of the unknown class.
The loss function of the detector is defined as Eq. 2.

Ld(x, y) = −
C+1∑

i=1

yi log(pi) (2)

where

pi =
exp(ai/T )∑
j exp(aj/T )

(3)

where ai is the ith output of the last fully connected layer of the detector and T
is the temperature of softmax with temperature [25], which is used to adjust the
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sharpness of the probability distribution after softmax activation. Since unknown
classes of data typically comprise a mixture of various classes, training these
unknown classes as a single class often leads to unsatisfactory results. We found
that applying a smaller temperature value sharpens the probability distribution
after activation, mitigating the softmax overconfidence problem. This approach
results in larger activation values for the first C classes (known classes) and a
smaller activation value for the (C + 1)th class (unknown class), and the oppo-
site for the unknown class. Consequently, the detector outperforms the classifier
in distinguishing known and unknown data, and its main role is to filter the
unknown class data for the classifier.

Classifier. The classifier focuses solely on identifying known classes of data for
open-set. We train the classifier using the labeled set of data, and train the C
classes classifier by standard cross-entropy loss,

Lc(x, y) = −
C∑

i=1

yi log(fθc
(x)) (4)

where θc is the parameter of the classifier and (x, y) ∈ DL.

AL Sampling. After training the detector, the detector can effectively distin-
guish whether the data in the unlabeled set belongs to a known class or an
unknown class based on the predicted maximum probability value pi = max

c
ac

i .
To identify the known classes, OSA-CQ arranges the pi values of the unlabeled
data in descending order, ensuring that the data at the beginning of the sequence
are the known classes identified by the model. According to the theoretical anal-
ysis of active learning, data points at the decision boundary are the targets for
AL [3]. OSA-CQ uses a committee consisting of two members: the classifier and
the detector to make decisions based on the predictions of both the classifier and
the detector. To ensure the accuracy of selecting data at the decision boundary,
the detector results include two types of prediction results. The first type is the
output of softmax with temperature activation. The second type is obtained by
calculating the feature similarity between the unlabeled and labeled samples,
The second type is obtained by calculating the feature similarity between the
unlabeled and labeled samples.

proeur = arg max
c

δ(−d(fx, fc)) (5)

where fx is the output of the last fully connected layer of the detector for the
unlabeled set example x, fc denotes the representative vector of class c, which
can be obtained by averaging the feature vectors labeled as c in the label set.
δ (·) is the nonlinear activation function that projects the similarity measured
by the distance between [0, 1], and d (·) is the distance calculation algorithm.
After obtaining the prediction result proc of the classifier, the prediction result
prod of the detector and the prediction result proeur of the distance similarity,
the AL query strategy requests labeling based on the inconsistency of comparing
the three prediction results. In other words, OSA-CQ executes query marking by
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contrasting the classifier and detector prediction results through a model-based
confidence sequence.

Squery = {xu
i |i < budget, (xu

i , pu
i ) ∈ (Du,P), f lag = 1} (6)

where
flag = {1|proeur �= prod or proeur �= proc or proc �= prod} (7)

After the oracle labeling, the known class data Skno
query are added to the labeled set

Dl
i, forming Dl

i+1. The unknown class data Sunkno
query are assigned a pseudo label

of class C and added to the invalid set Dinval
i , forming Dinval

i+1 . The approach
can be summarized in Algorithm 1.

Algorithm 1. The OSA-CQ algorithm
Input: labeled set:Dl

0;unlabeled set:Du
0 ;budget:b;classes:C;Detector:fθd ;Classifierfθc

Output: Dl
round, Du

round, θc

1: for i in max rounds do
2: Squery = ∅
3: Training fθd by minimizing Ld in Eq.2 by Dl

i and Dinval
i

4: Training fθc by minimizing Lc in Eq.4 by Dl
i

5: P = sort(prod) where prod = max(fθd(Du
i )) and prod �= C

6: for xu ∈ Du
i do

7: Calculate proeur in Eq.5
8: prod = fθd(xu)
9: proc = fθc(x

u)
10: if proeur �= prod or proeur �= proc or proc �= prod then
11: Squery ∪ {xu

i |i < budget, (xu
i , pu

i ) ∈ (Du, P)}
12: end if
13: end for
14: Dl

i+1 = Dl
i ∪ Skno

query, Dinval
i+1 = Dinval

i ∪ Sunkno
query and set labelinval = C

15: end for
16: return Dl = {Xl, Y l}, Du = {Xu}

4 Experiments

4.1 Baselines

We compare OSA-CQ with the baselines of AL:

– Random. The simplest AL baseline, labeled with k instances randomly
selected from the unlabeled set in each AL cycle.

– Confidence. The degree of confirmation of the data is measured by the
maximum output of the last fully connected layer of the model. We use the two
measures of maximum confidence and minimum confidence in the experiment.
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– Entropy [4]. Select the top k examples with the highest information entropy
from the unlabeled set for labeling in each AL cycle.

– Coreset [8]. Select a batch of examples representing the full set from the
unlabeled set for labeling in each AL cycle.

– BADGE [26]. A hybrid query method that samples different and high ampli-
tude point sets in the phantom gradient space by diverse gradient embedding,
uncertainty and diversity are fully considered.

– LfOSA [20]. Using a Gaussian mixture model to model the distribution
of maximum activation values for each instance, to select dynamically the
instance with the highest probability from the unlabeled set.

4.2 Experiment Settings

Dataset. We use two datasets, CIFAR10 [1], CIFAR100 [1] and Tiny-ImageNet
[2]. For the CIFAR10 dataset, randomly sample 1% of the known class data to
initialize the labeled set, while the remaining training set data are used as the
unlabeled set for active sampling. Similarly, for the CIFAR100 and the Tiny-
ImageNet dataset, randomly sample 8%. To effectively evaluate OSA-CQ, we
set the adaptation rate to 20%, 30%, and 40% in all experiments.

R =
|Xkno|

|Xkno| + |Xunkno| (8)

where R is the adaptation rate, which indicates the proportion of known classes
to all classes, and |Xkno| is the number of known classes, |Xunkno| is the number
of unknown classes. For example, if the adaptation rate is 20%, in CIFAR10,
CIFAR100 and Tiny-ImageNet, the first 2, 20, 40 classes are considered as known
classes, and the last 8, 80, 160 classes are considered as unknown classes.

Implementation Details. For the training of all experimental classifiers and
detectors, use ResNet18 [27] as the training model for all of them. We perform
three randomized experiments (seed = 1, 2, 3) for all AL methods using adapta-
tion rates of 20%, 30%, and 40%. For the task classifier, only labeled known class
data is used for training, while the auxiliary detector is trained with unknown
class data given pseudo-labels. In each AL cycle, we learn two models Θd and Θc,
the model parameters are optimized using stochastic gradient descent (SGD),
where epoch 100, batch size 128, initial learning rate 0.01, and the learning rate
is reduced to 0.005 after 20 epochs, momentum and weight decay are 0.9 and
0.0005. T in Eq. 3 is set to 0.5, and d in Eq. 5 uses the euclidean distance.

Evaluation Criteria. We compare OSA-CQ with other AL methods in recall
(Eq. 1), and classification accuracy by averaging the results using three random-
ized experiments.

4.3 Performance Evaluation

We evaluate the performance of OSA-CQ by plotting the metric growth curve.
The average results of recall and classification are shown in Fig. 3 and Fig. 4.
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Fig. 3. Comparison of sampling recall, adaptation rates of 20% (first column), 30%
(second column) and 40% (third column), CIFAR10 (first row), CIFAR100 (second
row) and Tiny-ImageNet (third row).

From the above results, it can be seen that whatever the dataset or adap-
tation rate, OSA-CQ consistently achieves high accuracy and recall rates in all
scenarios, and can effectively complete the selection of known classes of data.
However, LfOSA [20] seems to have an advantage over our approach both in
accuracy or recall and in the accuracy of task recognition. High recall values are
crucial as they directly impact the number of labeled samples for the subsequent
AL cycles, which in turn influence the model’s accuracy. In other words, the
advantage of LfOSA is that it can select known classes more efficiently but does
not guarantee the amount of information in samples, while OSA-CQ slightly
increases the cost of training time but greatly reduces the cost of labeling the
data. The analysis of the amount of information is described in detail in Sect. 4.4.

As shown in Fig. 3 and Fig. 4, we have the following observations. 1) Unlike
most existing methods, OSA-CQ demonstrates robust performance even when
the adaptation rate is low, without a significant deterioration in results. Even
in scenarios where the adaptation rate is as low as 20%, OSA-CQ maintains a
high recall rate. Specifically, in the CIFAR100 scenario with a 20% adaptation
rate, the recall rate is 29% more than random sampling to sample known classes
of data. OSA-CQ also manages to be 0.5% more accurate in terms of model
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Fig. 4. Classification accuracy comparison. Adaptation rates 20% (first column), 30%
(second column) and 40% (third column), CIFAR10 (first row), CIFAR100 (second
row) and Tiny-ImageNet (third row).

accuracy compared to LfOSA with a larger number of samples. This shows that
OSA-CQ is designed to be effective in finding informative samples with greater
accuracy. 2) Regardless of which adaptation rate in which dataset, previous AL
approaches do not differ much from the results of random sampling. This suggests
that existing AL approaches do not effectively handle AL in an open-set. The
primary reason is that the majority of data sampled by previous AL methods
consists of unknown classes that are irrelevant to the task. 3) As the adapta-
tion rate decreases the advantage of OSA-CQ is better reflected, the difference
in accuracy between CIFAR100 on 20% adaptation rate and random sampling
is 16.58%, while it is only 7.56% at 40% adaptation rate. OSA-CQ does not
blindly pursue a large amount of training data to maximize model performance
but uses a small amount of informative data to achieve the model performance
requirements.

4.4 Information Gain Analysis

The information gain analysis was performed on a CIFAR10 with an adapta-
tion rate of 40%, and the results are shown in Table 1. We use a comparison
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Table 1. Labeled training set size and model accuracy at different stages of AL for
LfOSA and OSA-CQ with a CIFAR10 fit rate of 40%.

Method Ratio Number of AL cycles

0 1 2 3 4 5

LfOSA 40% num 200 740 1845 3165 4585 6002

acc 58.88 66.13 72.10 78.08 80.95

OSA-CQ num 200 750 1596 2619 2851 3487

acc 53.28 73.05 78.20 84.88 84.48

Table 2. Labeled training set size and model accuracy at different stages of AL for
LfOSA and OSA-CQ with a Tiny-ImageNet fit rate of 30%.

Method Ratio Number of AL cycles

0 1 2 3 4 5 6 7 8 9 10

LfOSA 30% num 2400 3077 4161 5313 6544 7790 9054 10268 11468 12557 13691

acc 21.73 21.36 29.23 32.26 35.23 39.70 41.23 43.39 45.0 46.36

OSA-CQ num 800 1073 1516 2030 2624 3208 3821 4446 5046 5656 6197

acc 21.74 24.10 27.20 31.97 35.17 39.53 41.00 44.60 45.23 48.73

of the amount of training data obtained with similar model accuracy over the
same AL period as a measure of the amount of information. When the model
accuracy is similar, the less the number of training data, the more information
contained in the training data. As shown in Table 1, apart from the initial model,
the subsequent AL cycles of OSA-CQ demonstrate superior model testing per-
formance with less amount of training data. During the fourth cycle, OSA-CQ
utilized only 62% of the data volume employed by LfOSA, yet achieved a model
accuracy of 84.48%, surpassing LfOSA by 3.53% points. This indicates that the
OSA-CQ training data provides higher information to the model compared to
LfOSA’s data, resulting in enhanced data quality and cost-effectiveness in label-
ing. The same scenario is also evident in the more complex TinyImageNet task,
as illustrated in Table 2.

The observed phenomenon may be attributed to the following reasons, LfOSA
solely relies on the confidence output of the fitted Gaussian mixture model
(GMM) as its decision criterion, addressing only the open-set identification prob-
lem without fully considering the issue of data quality in active learning. OSA-
CQ effectively addresses both problems and seamlessly integrates them.
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5 Conclusion

In this paper, we propose an AL framework based on a contrastive query called
OSA-CQ to solve the OSA problem. It consists of a classifier with a detector that
provides a confidence ranking sequences to assist the committee in executing
the decision. Unlike a large number of existing AL methods, it can both find
known classes of data efficiently and also ensure the informativeness of these
data. Experimental results on three datasets show that OSA-CQ achieves higher
performance with lower annotation costs. In future research, we aim to extend
this framework to address open-set AL challenges in various computer vision
tasks.
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Abstract. Data-driven bearing fault diagnosismethods have become increasingly
crucial for the health management of rotating machinery equipment. However, in
actual industrial scenarios, the scarcity of labeled data presents a challenge. To
alleviate this problem, many transfer learning methods have been proposed. Some
domain adaptation methods use models trained on source domain to generate
pseudo labels for target domain data, which are further employed to refinemodels.
Domain shift issues may cause noise in the pseudo labels, thereby compromising
the stability of the model. To address this issue, we propose a Hierarchical Pseudo
Label Domain Adversarial Network. In this method, we divide pseudo labels into
three levels and use different training approach for diverse levels of samples.
Compared with the traditional threshold filtering methods that focus on high-
confidence samples, our method can effectively exploit the positive information of
a great quantity ofmedium-confidence samples andmitigate the negative impact of
mislabeling. Our proposed method achieves higher prediction accuracy compared
with the-state-of-the-art domain adaptation methods in harsh environments.

Keywords: Rolling Bearings · Fault Diagnosis · Domain Adaptation ·
Adversarial Training · Pseudo Label Learning

1 Introduction

The way of industrial equipment health management is progressively shifting towards
monitoring and prevention based on big data. The condition monitoring and fault diag-
nosis of bearings can significantly impact the reliability and service life of the entire
machine [1]. Data-drivenmethods don’t require high expertise and experience [2], which
mainly include Bayesian networks [3], Support Vector Machine (SVM) [4], and Artifi-
cial Neural Network (ANN) [5] etc. However, the high cost of manual labeling leads to
only a few typical operating conditions, that can meet the availability of a large amount
of labeled training data.

In order to address the challenge of variable operating conditions in fault diagnosis
tasks for bearings, transfer learning has emerged as a widely adopted solution. Lu et al.
[6] minimized the Maximum Mean Discrepancy (MMD) between two domains based
on a DNN network. Tzeng et al. [7] proposed a domain confusion loss to acquire domain
invariant information. Zhang et al. [8] proposed a DACNN network that fine-tunes the
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parameters of the unresolved constrained adaptive layer of the target feature extrac-
tor during backpropagation. An et al. [9] adopted the Multi-Kernel Maximum Mean
Discrepancy (MK- MMD) domain adaptation framework to enhance the stability and
accuracy of the results.

The utilization of pseudo-labels does not solely focus on the overall migration
between domains, and also effectively aligns the fine-grained class distribution across
domains. Due to the domain offset between the source domain and the target domain,
it is necessary to screen for high confidence pseudo labels. Unfortunately, high-quality
labels often have a smaller scale, making it difficult to bring sufficient and effective
updates to the model. Moreover, even the high confidence samples can hardly avoid
mislabeling, thereby negative impact on the model.

To solve the aforementioned issues, we propose a novel approach called Hierarchical
Pseudo Label Domain Adversarial Network (HPLDAN). Inspired by [10], our model
combines domain discriminator and classifier to maintain the stability of classification
accuracy during domain-level adversarial confusion training. The mean teacher model is
then used to generate pseudo labels. The proposed Hierarchical Pseudo Labels method
is used to divide target domain samples into three levels according to pseudo labels,
i.e., accepted samples that can be used directly, pending samples that require further
processing before being used, and rejected samples that are discarded. And different
training methods are used for target domain samples with different hierarchical pseudo
labels to achieve class level alignment.

2 Related Work

In cross-domain fault diagnosis, domain adaptation methods have received extensive
attention. Wang et al. [11] used Correlation Alignment (CORAL) with continuous
denoising self-encoder to learn domain invariant features under different operating con-
ditions. The Deep Adaptive Network (DAN) proposed by Long et al. [12] employed
MK-MMD to align distributions and extract domain invariant features. Ganin et al. [13]
proposed Domain-Adversarial Neural Network (DANN), which allows feature extrac-
tors and domain discriminators to be trained adversarially to obtain domain-independent
information by adding a gradient inversion layer between them.

While these migration models only consider the overall migration between domains,
and the impact of the distance between samples under the same class of failure modes
on the classification effect is neglected. To address these problems, Yang et al. [14]
proposed an optimal migration embedding joint distribution similarity measure that
fits the conditional distribution of samples in the target domain. Li et al. [15] used a
representation clustering scheme to maximize intra-class similarity, reduce inter-class
similarity, and increase classification loss for more discriminative features. Zhang et al.
[10] proposed a domain-Symmetric networks (SymNets), which concurrently acts as a
domain discriminator by connecting the source and target domain classifiers in parallel.

Furthermore, methods based on pseudo-label are commonly used for aligned fine-
grained class distributions. Saito et al. [16] labeled the target domain data based on pre-
dictive consistency and confidence and used these samples to train another task classifier.
However, the authenticity of pseudo-label is questionable and can negatively impact per-
formance. Zhang et al. [17] responded to the category imbalance problem by proposing
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a Curriculum Pseudo Labeling method that dynamically adjusts the threshold value of
each category. Zhang et al. [18] weighted the target samples according to the degree of
confusion between domains. Zhu et al. [19] proposed a method to select high quality
pseudo labels using adaptive thresholding with two decision strategies.

3 Proposed Method

3.1 Problem Formulation

In this work, we study the transfer learning task of bearing fault type diagnosis under
different working conditions. We have a source domain Ds = {

xsi , y
s
i

}ns
i=1 which has

ns labeled samples and corresponding labels, a target domain Dt = { xtj}
nt
j=1 with nt

unlabeled samples. The samples from different domains have the same size while their
distributions differ. Formally, xsi ∈ R

K×M and xtj ∈ R
K×M show that each sample has K

time steps andM channels. Meanwhile, ysi ∈ R
C represents there are C fault categories.

Our task is to come up with a method to transfer the model trained by the source domain
samples and labels to the target domain while still ensuring high accuracy.

3.2 Network Architecture

Our proposed networkmodel framework is clearly illustrated in Fig. 1. Above is themain
part of the model, which consists of four modules, namely the main feature extractor
Gm, the target domain data diverter H, the target domain biased feature extractor Gtb,
and the domain discriminative classifier Cst. The structure of each module below is the
same as that above. We employ the mean teacher method to set the parameters of each
module below as Exponential Moving Average (EMA) of the corresponding module
above, in order to provide reliable pseudo labels.

The Gm accepts data input from Ds and Dt, and extracts the domain-independent
feature information. The function of H is to label the target domain samples with three
levels of pseudo labels based on the classification results. Accepted samples will be
fed directly into Cst. Pending samples will be fed into Gtb for further feature extraction.
Rejected samples will no longer be used in the follow-up process. The purpose of the Gtb
is to deeply mine the target domain unique features contained in those pending samples.
The Cst receives the input from Gm or Gtb and then classifies these samples. The Cst
has twice the number of output nodes as the number of fault types. The outputs of the
first C nodes represent the probabilities of a sample belonging to C types in the source
domain, the output of the last C nodes corresponds to each type of the target domain.
So the sum of the outputs of the C nodes in the front and back respectively represents
the probability that the sample belongs to the source and target domains. Thus we can
use Cst as a domain discriminator. Meanwhile, adding the outputs of two nodes with
a sequence number difference of C indicates the probability that the sample belongs
to this fault type. Cst then can play the role of a classifier. By combining the domain
discriminator and classifier together, we can maintain the classification accuracy stable
while performing adversarial training with domain level confusion.
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Fig. 1. Architecture of Hierarchical Pseudo Label Domain Adversarial Network.

3.3 Domain Level Confusion Training

In order to obtain effective Pseudo Labels, we need to first conduct domain level con-
fusion training. First, we employ the source domain data to pretrain Gm and Cst. The
classification loss function Lcls is used in the parameter update of both. Its definition is
shown in Formula (1).

Lcls = − 1

ns

ns∑

i=1

log(pysi (Gm(xsi )) + pysi+C(Gm(xsi ))) (1)

Among them, pysi represents the probability that the sample xsi belongs to the category
ysi and belongs to the source domain,while pysi + C

represents the probability that it belongs
to ysi and belongs to the target domain. Adding the two indicates that we only focus on
fault classification and temporarily don’t consider domain related information.

Next, we will conduct domain adversarial learning. Here, the target domain data is
output from Gm and directly sent to Cst without being hierarchized. In order to enable
Cst to play the role of domain discriminator, we use the loss function LD to train Cst,
whose definition is shown in Formula (2).

LD = − 1

ns

ns∑

i=1

log(
C∑

c=1

pc(Gm(xsi ))) − 1

nt

nt∑

j=1

log(
C∑

c=1

pc+C(Gm(xtj))) (2)

The above equation indicates that here we do not consider specific fault type
information, but only focus on domain discrimination.
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On the other hand, we need to enable the features extracted by Gm to possess domain
invariant property, that is, they cannot be easily distinguished which the domain they
belong to. Therefore, we utilize the domain confusion loss function Lcf to train Gm so
that it can confront Cst. Its definition is shown in Formula (3).

Lcf = 1

2
LD − 1

2

ns∑

i=1

log(
C∑

c=1

pc+C(Gm(xsi ))) − 1

2

nt∑

j=1

log(
C∑

c=1

pc(Gm(xtj))) (3)

The above formula indicates that regardless of whether the input is from the source
or target domains, we hope that the sum of the outputs of the firstC nodes of Cst remains
similar to the last C nodes. This is contrary to the purpose of LD, and the two form a
confrontation.

In order to maintain the accuracy of model classification during adversarial learning,
we will also use Lcls to participate in training. That is to say, we use (Lcls+λLcf) to train
Gm, where λ=(enep/Nep−1), nep refers to the current training rounds, Nep refers to the
total training rounds. At the same time, we use (Lcls + LD) to train Cst.

3.4 Class Level Confusion Training

Hierarchical Algorithm
After domain adversarial confusion training to a certain extent, we can use the mean
teacher model to generate pseudo labels for class level domain alignment. Next, we need
to hierarchize these pseudo labels. The hierarchical algorithm for pseudo labels of target
domain sample xtj is shown in Formula (4).

H (xtj) =
⎧
⎨

⎩

accepted,
pending,
rejected,

PCj (x
t
j) ≥ T (Cj)

τ < PCj (x
t
j) < T (Cj)

PCj (x
t
j) ≤ τ

(4)

Cj
C= argmax

c=1
Pc(x

t
j )

C= argmax
c=1

(ptchc (Gtch(xtj )) + ptchc+C(Gtch(xtj ))) (5)

The PCj(x
t
j) represents the probability that x

t
j belongs to category Cj in the output of

the Ctch
st . And the Cj refers to the fault type with the highest probability in the output of

Ctch
st . The G

tch( · ) refers to the output of the Gtch
m or the output of the Gtch

tb .
In Formula (4), τ and T( ·) are thresholds used to divide three levels of pseudo labels.

τ is a fixed value. The calculation formula for T( · ) is shown in Formula (6).

T (c) =
(
1 − 1/(e

3∗NC (c)/max
c

NC+1 + 1)
)nep/Nep+1

(6)

NC(c) =
nt∑

j=1

(Cj = c) (7)

In Formula (6), NC(c) represents the number of samples with the highest probability
of belonging to category c among all target domain data.
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In each round of training, we have to update H based on the output of the previous
round of Ctch

st to perform the hierarchical operation for this round. Then we directly
discard the rejected samples. For the accepted samples and the pending samples, we will
introduce the details of their training process below.

Accepted Pseudo Label Training Method
For the target domain samples whose pseudo labels identified as accepted, we use them
for updating Gm for class level domain adaptation. Although we designed T( · ) to
filter samples with low confidence, false pseudo labels may still exist. If applying the
traditional cross entropy loss function, false labels may affect the classification accuracy.
Therefore, we decided to use the inner product similarity to design the loss function,
whose definition is shown in Formula (8).

Lac = 1

nac

nac∑

k=1

ωkLac(x
t
jk

) = 1

nac

nac∑

k=1

ωk

⎛

⎝− 1

Dk + 1

D−1∑

d=1

(Cjk = Cjdk
) log(Gm(xtjk ) · Gm(xt

jdk
))

⎞

⎠ (8)

ωk = − Lac(xtjk )

Lac(xtjk ) − μ

∣∣∣ptchCjk
(Gtch

m (xtjk )) − ptchCjk +C(Gtch
m (xtjk ))

∣∣∣
(9)

In Formula (8), nac refers to the number of samples with accepted pseudo labels,
and jk represents the sequence number of the k-th accepted sample in all target domain
samples. In each round of training, D samples are input for each batch. Here, we use jdk
to represent the subscripts of other samples from the same batch as xtjk . In these samples,
assuming that there are Dk samples with pseudo labels corresponding to the same fault
type as xtjk . In Formula (9),μ is a fixed parameter. This formula indicates that we believe
that samples with smaller Lac, which are more similar to samples of the same category,
should have higher weights. At the same time, samples that are difficult to distinguish
which domains they belong to should also be given more attention.

In traditional similarity measurement loss, the similarity with negative samples is
used as the denominator to maximize the distance from them. However, this operation
may interfere with our resistance to incorrect pseudo labels. Because we acknowledge
that samples of the same category are inevitably more similar to each other. Therefore,
by using ωk, we can weaken the impact of samples that are less similar to the same class,
which aremore likely to bemislabeled. However,minimizing the similaritywith samples
of different classes will further make those mislabeled samples more like correctly
labeled samples, thereby weakening the differential treatment effect of ωk.

The training diagram is shown in Fig. 2 (a).

Pending Pseudo Label Training Method
For the target domain samples with pending pseudo labels, we need to input them into
Gtb for further deep feature mining. Although we have extracted features twice, it is still
inevitable that some noise will be left in these samples. Although we cannot accurately
determine which category a pending sample belongs to, we are still confident in which
categories it does not belong to. Therefore, the purpose of the loss function we designed
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Fig. 2. Training diagram of accepted and pending samples.

is to minimize the similarity with those determined negative samples.

Lpd = 1

npd

npd∑

m=1

Lpd(x
t
jm) = 1

npd

npd∑

m=1

(
1

Dm + 1

D−1∑

d=1

U (xtjm , xtjdm
) log(Gtb(x

t
jm) · Gtb(x

t
jdm

))

)

(10)

In Formula (10), npd refers to the number of samples with pending pseudo labels,
and jm represents the sequence number of the m-th pending sample in all target domain
samples. Here, we use jdm to represent the subscripts of other samples from the same
batch as xtjm . In this batch of samples, we use U( · ) to filter out those samples that can be

certain that they are not in the same fault type as xtjm , and assume that there are a total
of Dm samples. The definition of U( · ) is shown in formula Table 1.

U (xta, x
t
b) =

{
1, (PCa (x

t
a) − PCa (x

t
b)) + (PCb(x

t
b) − PCb(x

t
a)) > 2τ

0, otherwise
(11)

τ is the threshold used in Formula (4). The meaning of PCa(x
t
a) refers to Formula (5).

By using Lpd to update the parameters of Gtb, we can effectively utilize these samples
that are filtered out in traditional methods and further obtain unique feature informa-
tion of the target domain. Compared to accepted samples closer to the center of each
category’s feature space, pending samples are generally distributed in more peripheral
areas. Therefore, incorporating them into training will help improve the classification
accuracy of the model at the boundary. The training diagram is shown in Fig. 2 (b).

4 Experiments

4.1 Datasets Description

Case Western Reserve University (CWRU) Dataset [21]. The test bearings in the
CWRU dataset are collected at a sampling frequency of 48k.We selected three operating
conditions, namely 1 hp 1772 r/min, 2 hp 1750 r/min, and 3 hp 1730 r/min, forming
three domains: A, B, andC. The bearingwill ultimately exhibit four health states, namely
normal state, inner ring failure, ball failure, and outer ring failure,with each failure having
three different sizes of 0.007, 0.014, and 0.021 feet, forming 10 different categories. We
use sliding windows for data augmentation on a time scale. The window width is 2048
and the shift step size is 512. Then perform wavelet transform on these data, with the
wavelet type being ‘db4’. All datasets use the same processing method.
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Paderborn Dataset [22]. The KAT data center generated a dataset with a sampling rate
of 64 kHz. There are three conditions with artificial damage, forming domains D, E, and
F, and three conditions with actual damage, forming domains G, H, and I. Domain D
and G, domain E and H, domain F and I, each pair has the same load torque and radial
force respectively. All six domains have a fixed speed of 1500 r/min, and contain three
categories, namely health, inner ring failure, and outer ring failure.

XJTU-SYDatasets [23]. In the experiment, the sampling frequencywas set to 25.6kHz,
the sampling interval was 1min, and each sampling time was 1.28s. Three different
operating conditions were set, with rotational speed and radial force of 2100 rpm and
12 kN, 2250 rpm and 11 kN, 2400 rpm and 10 kN, forming domains J, K, and L. The
fault elements in each domain include outer race, inner race, and cage.

4.2 Comparison Methods

We compared our method with five methods, including Source Only (SO), DANN [13],
SymNets [10], SLARDA [20], and DTL-IPLL [19].

SO: Only use source domain data to train the model without domain adaptation.
DANN: By adding gradient inversion layers to the domain discriminator and feature

extractor, they undergo adversarial training to obtain domain independent information.
SymNets: By paralleling the source domain classifier and the target domain classifier

to simultaneously act as a domain discriminator, it can maintain a steady improvement
in classification accuracy during adversarial training.

SLARDA: By employing an autoregressive technique, the temporal dependence of
source and target features is involved in domain adaptation. Then use a teacher model
to align the class distribution in the target domain through confidence pseudo labels.

DTL-IPLL: Measure the marginal probability distribution discrepancy by MK-
MMD, calculate conditional probability distribution discrepancy with pseudo label, and
filter out pseudo labels by an adaptive threshold and a making-decision-twice strategy.

4.3 Implementation Details

Our model is developed with PyTorch 1.12.0 and runs on NVIDIA RTX 3060 GPU. We
build Gm with ResNet18, build Cst with two fully-connected layers and a Softmax layer,
build Gtb through the use of a four-layer 1-D convolutional block. The threshold τ is set
to 0.45. The parameter μ in ωk is set to 0.3. In the mean teacher model, the conditional
alignment weight is set to 0.004 and the update momentum is set to 0.996.

4.4 Results and Analysis

In order to simulate the imbalanced classification of various fault categories in industrial
scenarios, we conduct different proportions of sampling on the data of each working
condition according to the fault type. Then, six cross domain diagnostic tasks were
designed for the CWRU dataset, the Paderborn dataset for actual damage conditions,
and theXJTU-SYdataset, respectively. In addition, thePaderborn dataset has addeddiag-
nostic tasks for migrating three artificial damage conditions to actual damage conditions
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with the same load torque and radial force. The percentage accuracy of all experiments
is shown in the Tables 1, 2, and 3, with the best results highlighted in bold and the second
best results highlighted in underline.

Table 1. Results of cross domain diagnostic tasks on CWRU dataset.

Task SO DANN SymNets SLARDA DTL-IPLL HPLDAN

A → B 85.33 94.11 98.07 98.98 99.09 99.13

A → C 78.44 88.88 93.01 93.08 93.15 93.48

B → A 88.97 96.51 98.41 99.16 99.63 99.59

B → C 90.05 97.79 99.40 99.52 99.34 99.52

C → A 66.54 74.28 78.80 80.09 81.80 85.58

C → B 81.83 93.94 96.43 96.68 97.37 97.65

Avg 81.86 90.92 94.02 94.59 95.06 95.83

Table 2. Results of cross domain diagnostic tasks on Paderborn dataset.

Task SO DANN SymNets SLARDA DTL-IPLL HPLDAN

D → G 76.59 88.10 93.43 93.74 94.25 96.11

E → H 78.91 88.84 95.22 94.63 95.18 97.56

F → I 83.56 95.38 98.37 97.80 98.69 99.03

G → H 76.30 87.66 93.75 93.64 95.54 96.67

G → I 82.31 93.24 95.73 97.24 96.57 98.46

H → G 70.59 83.23 85.78 85.72 87.21 89.30

H → I 85.74 94.65 99.08 98.54 99.04 99.33

I → G 84.25 96.83 98.40 99.55 99.07 99.48

I → H 84.12 96.88 99.30 98.87 99.67 99.62

Avg 80.26 91.65 95.45 95.53 96.14 97.28

It can be seen that our HPLDAN method achieved the best results in most bearing
cross domain diagnostic tasks, while the rest achieved suboptimal results. It is worth
noting that in relatively difficult tasks, such as Tasks C → A, H → G, and G → L,
the superiority of our method is better demonstrated. Because the proposed HPLDAN
method can obtain valuable information that is difficult to extract from low-quality
samples through the training process of pending samples. In addition, the design of Loss
function for accepted samples also alleviates the negative impact of false labels of high
quality to a certain extent, which enables fault types with fewer samples to maintain a
higher classification accuracy. In summary, ourmethodwill demonstrate high application
value in challenging and harsh working conditions.
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Table 3. Results of cross domain diagnostic tasks on XJTU-SY dataset.

Task SO DANN SymNets SLARDA DTL-IPLL HPLDAN

J → K 80.31 89.21 97.33 97.91 98.53 99.68

J → L 58.85 72.35 78.69 83.12 82.41 85.65

K → J 79.23 86.65 94.63 95.86 96.36 97.84

K → L 62.20 73.69 79.96 78.74 80.85 83.51

L → J 64.87 74.44 79.85 80.36 81.56 84.82

L → K 66.31 75.23 81.21 82.27 82.47 84.96

Avg 68.63 78.60 85.28 86.38 87.03 89.41

Fig. 3. Visualization process of Task J → K.

Fig. 4. Results of ablation experiment.

To clearly show the effectiveness of the proposedHPLDAN,we visualize the learned
features of Task J→K.Weuse uniformmanifold approximation and projection (UMAP)
[24] to map the high-dimensional features to a lower dimension as shown in Fig. 3. It can
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be seen that using hierarchical pseudo labels for class level alignment can significantly
improve the classification accuracy of bearing faults.

To verify the effectiveness of the various modules of our proposed HPLDAN, we
conducted ablation experiments on the CWRUdataset. The relevant experimental results
are shown in Fig. 4. It can be seen that the various modules designed have a positive
impact on the overall performance of the model, especially when facing high difficulty
cross-domain tasks.

5 Conclusions

In this research, we propose a Hierarchical Pseudo Label Domain Adversarial Network
(HPLDAN). In domain level domain adaptation adversarial training, we maintain stabil-
ity in classification accuracy by combining domain discriminator with classifier. Then,
using the pseudo labels generated by the mean teacher model, the target domain samples
are divided into three levels. We use high confidence accepted samples to further train
the main feature extractor, and allocate weights based on only calculating the loss of
similarity with the positive samples and the degree of domain confusion, in order to
reduce the negative impact of incorrect pseudo labeling; next, the pending samples with
medium confidence are input into the target domain bias feature extractor for secondary
extraction, and the performance of the model at the boundary will be improved by min-
imizing the similarity between the pending samples and the selected negative samples;
Finally, abandon rejected samples with low quality. We compared our method with five
comparison methods on three bearing datasets. After analyzing the results, it can be
found that our method has higher and more stable classification accuracy, and better
robustness against imbalanced samples.
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Abstract. There are a large number of scientific papers published each
year. Since the progresses on scientific theories and technologies are quite
different, it is challenging to recommend valuable new papers to the
interested researchers. In this paper, we investigate the new paper rec-
ommendation task from the point of involved topics and use the concept
of subspace to distinguish the academic contributions. We model the
papers as topic distributions over subspaces through the neural topic
model. The academic influences between papers are modeled as the topic
propagation, which are learned by the asymmetric graph convolution
on the academic network, reflecting the asymmetry of academic knowl-
edge propagation. The experimental results on real datasets show that
our model is better than the baselines on new paper recommendation.
Specially, the introduced subspace concept can help find the differences
between high quality papers and others, which are related to their inno-
vations. Besides, we conduct the experiments from multiple aspects to
verify the robustness of our model.

Keywords: Paper recommendation · Topic model · GCN

1 Introduction

Currently, there are a large number of academic papers published every year.
It’s necessary to recommend researchers the valuable and interested papers. The
number of citations is often regarded as an important indicator for the quality
of papers. To describe the detailed contribution of a paper, a citation type can
be further classified into three categories, Background, Method and Result. As
an example, we show the papers concerning the technology Transformer [6],
GPT [5], BERT [4], GPT2 [3] and BART [2] in Fig. 1, which are labeled by
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Fig. 1. An example of different citation types.

Semantic Scholar1. Arrows point to the citing papers, representing the direction
of knowledge propagation. These points help the users more precisely find their
interested topics, such as the inspiring theory, the technical methods, or the
dataset and etc.

To recommend new paper, the existing methods typically leverage the aca-
demic network (AN for short) to model user interests and paper features [1,13].
However, they didn’t consider the differentiable details on citations. Since the
innovations in papers are various, the concept of subspace was used in this paper
to describe the paper contents [21]. Besides, the citation-based recommendation
methods are not applicable to new paper recommendation since it didn’t have
citation relationship.

To tackle the above challenges, we propose the differentiable topics based
new paper recommendation model (DTNRec for short). Paper contents are clas-
sified into three subspaces according to the innovation forms as the usual way
[21]: Background, Method and Result. We adopt the neural topic model (NTM
for short) to get the topic distribution over subspaces as the paper embeddings,
which are used to differentiate the innovation forms of paper. Considering the
citations reflect the influence of cited papers and the author interests of citing
paper, we adopt the asymmetric academic network to model this kind of knowl-
edge propagation. The graph convolution network (GCN for short) operations
are performed on this network to learn the user interests and paper influences,
separately. For example, for the central paper p, its references are the neigh-
bors during convolution to compute the interests for the authors of p, while its
citations are used to compute its influences on the network. Then a new paper
is recommended to the potentially interested users based on the paper content.
Our contributions are as follows:

1. We label the paper content with subspace tags, then adopt the NTM to get
the topic distribution over subspaces as paper embeddings.

2. We create the asymmetric academic network to model the academic propa-
gation, where the directed edge points to the citing paper denoting the prop-
agation. Based on this network and paper embeddings, we adopt the GCN
operations to compute user interests and paper influences in a fine-grained
way.

1 https://www.semanticscholar.org/.

https://www.semanticscholar.org/


46 W. Li et al.

3. We conducted the experiments from multiple aspects to verify the effective-
ness and robustness of our model.

2 Related Work

Collaborative filtering (CF for short) is a commonly used technique in recom-
mendation systems. NeuMF [12] and BUIR [10] are both CF-based methods
using user-item interaction data to get user and item representations. He et al.
[11] proposed LightGCN to learn the user and item embeddings with neighbor-
hood aggregation operation. Wang et al. [9] proposed alignment and uniformity
as two properties that are important to CF-based methods, and optimized the
two properties to get user and item representations. However, these methods
only use interaction data of user and items, without considering other features.

The academic network consists of papers, authors, other related attributes
and the relationships among them, which is important for paper recommendation
task since it’s rich in information. Existing works often used AN-based methods
including KGCN [18], KGCN-LS [19], RippleNet [20], etc. to mine high-order
information on the academic network, among which GCN is a widely used tech-
nique. However, these methods have cold-start problem and are not suitable for
new paper recommendation since it lacks citation information.

Besides, paper contents are also considered to model user interests. JTIE [25]
incorporated paper contents, authors and venues to learn user and paper repre-
sentations. Xie et al. [26] proposed a cross-domain paper recommendation model
using hierarchical LDA to learn semantic features of paper contents. Li et al. [13]
proposed JMPR to jointly embed structural features from academic network and
semantic features from paper contents. These methods alleviate the cold-start
problem, but the diversity of paper innovations was not considered. Therefore,
Xie et al. [21] proposed the subspace concept to label the paper content with
Background, Method and Result. However, they didn’t infer in subspace, that is
they ignored the knowledge propagation among subspaces.

3 New Paper Recommendation Method

3.1 Problem Definition

Given a user set U , a paper set V, we aim to learn a prediction function F(u, q | θ)
that checks whether user u ∈ U has the potential interest of the new paper q ∈ V,
where θ denotes the parameters of function F .

For an academic dataset, the academic network G is called the structural
feature, where the nodes of G are papers, authors, and other related attributes,
and the edges denote the relationships between them, including citation, etc.
Each paper contains an abstract. The abstract describes the core content of a
paper, which is called the semantic feature in this paper.
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Fig. 2. Overall framework of DTNRec

3.2 Overall Framework

DTNRec include three modules, as shown in Fig. 2, i.e. the NTM-based subspace
representation module, the GCN-based asymmetric topic propagation module,
and the user interest prediction module. In the NTM-based subspace represen-
tation module, the paper abstract is labeled with subspace tags through the
subspace tagging model. The resulting subspace text is fed into the NTM to
obtain the topic distributions over subspaces as the paper content embeddings.
In the GCN-based asymmetric topic propagation module, we adopt asymmetric
GCN on the academic network G to model the asymmetric topic propagation
among papers. The user interest prediction module predicts the probability on
how much user u being interested in a new paper q.

3.3 NTM-Based Subspace Representation

Subspace Tagging. In order to differentiate the topics in papers, we inherit
the subspace concept proposed in [21] and label the paper contents with three
subspace tags, namely Background, Method and Result, respectively, denoted by
the tag set T S = {b,m, r}. We adopt the subspace tagging model in [22] to label
the sentences of paper abstract with the subspace tags. The sentences for the
same subspace represent the corresponding subspace text.

GSM-Based Paper Representation. The subspace texts are fed into the
topic model to get the topic distributions over subspaces, which are regarded
as the initial embeddings of paper content. The existing research results show
that the topic model integrated with neural network has better performance than
traditional topic model [23]. Therefore, we adopt the Gaussian Softmax distribu-
tion topic model (GSM for short) [23], which is based on variational autoencoder.
Let D ∈ N∗ denote the topic number. The output subspace topic distributions
xb
p ∈ RD,xm

p ∈ RD,xr
p ∈ RD for paper p are the corresponding embeddings,

respectively. Paper p can be represented as matrix Xp =
(
xb
p,x

m
p ,xr

p

)� ∈ R3×D.
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Different with the existing methods directly treat the paper content as a
whole to obtain paper representation [13], our method label the paper content
with subspace tags, which helps to distinguish paper innovations.

3.4 GCN-Based Asymmetric Topic Propagation

Each citation reflects the influence of the cited paper and the interest of the
citing paper’s authors. So we model the topic propagation between papers on
the academic network as the asymmetric relations, denoted by G. The academic
influences and user interests are modeled, respectively, based on the citation rela-
tionships. For example, for a paper p ∈ V on G, its references are the neighbors
for convolution to compute the interests for the authors of p, while its citations
are used to compute its influences on the network.

For any paper p ∈ V on G, there are two matrix representations, denoted
by the interest matrix

←−
X

(h)
p and the influence matrix

−→
X

(h)
p , respectively, where

h ∈ N∗ denotes the depth of GCN, that is the number of GCN iterations.
←−
X

(h)
p

and
−→
X

(h)
p both are initialized by the paper matrix Xp. The GCN kernel function

is f , where W ∈ RD×D, U ∈ R3×D, V ∈ R3×D are all weights of f and b ∈ R3×3

is bias. Paper p′ ∈ V cited paper p.

f(p, p′, h) = σ
(−→
X (h−1)

p W
←−
X

(h−1)
p′

� + U
−→
X (h−1)

p
� + V

←−
X

(h−1)
p′

� + b
)

(1)

To compute the influence of paper p, we choose citations of p as its neighbors.
Since the number of paper neighbors may vary significantly over all papers, we
uniformly sample a fixed-size set of neighbors for each paper instead of using all
of them, denoted by Vcit

p , to keep the computational pattern of each batch fixed
and more efficient. We set |Vcit

p | = K ∈ N∗ as a hyper-parameter. Papers in Vcit
p

are combined to characterize the influence of paper p, denoted by
−→
X

(1)
Vcit

p
.

−→
X

(1)
Vcit

p
=

∑

c∈Vcit
p

f(p, c, 1)
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X (0)

c (2)

Then we aggregate
−→
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(0)
p and
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(1)
Vcit

p
into one matrix

−→
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(1)
p as p’s first-order

influence matrix, which is calculated as
−→
X

(1)
p = σ

((−→
X

(0)
p +
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(1)
Vcit

p

)
W (1) + b(1)

)
.

In the same way, to compute the interest for the authors of paper p, we
choose a fixed-size set of references of paper p as its neighbors, denoted by Vref

p .
We set |Vref

p | = K, too. Then papers in Vref
p are combined to characterize the

interest for the authors of paper p, denoted by
←−
X

(1)

Vref
p

.

←−
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(1)
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We set the maximum depth of GCN as H. Through repeating the above
process H times, we can get the H-order interest matrix

←−
X

(H)
p of paper p.

Given another paper q, to predict whether paper q will influence paper p
or whether the author of paper p will be interested in paper q, we calculate the
score c(q, p). Since citation types are diverse, we adopt maximum pooling to find
the largest topic association between different subspaces of paper p and paper q.

c(q, p) = MLP
(
maxpooling

(
Xq

←−
X (H)

p
�

))
(4)

We choose the cross entropy loss function. SP+ and SP− denote positive
sample set and negative sample set, which are sampled according to the rule-
based sample strategy [21]. Let ĉ(q, p) denote gold label. Any paper pair (p, q)
with citation relationship is sampled as positive, labeled as ĉ(q, p) = 1. The
negative samples are selected from paper pairs without citation relationship
according to the sample strategy in [21], labeled as ĉ(q, p) = 0.

L =
∑

c(q,p)∈SP+∪SP−
c(q, p) log ĉ(q, p) + λ‖θ‖22 (5)

Existing recommendation methods typically initialize paper nodes randomly
when using GCN. However, our method directly initializes paper nodes with
paper’s semantic-rich subspace embeddings. Besides, considering the asymmetry
of topic propagation among papers, we conduct asymmetric GCN on the aca-
demic network to model user interest and academic influences in a fine-grained
way.

3.5 User Interest Prediction

A new paper is recommended to the potentially interested users based on the
content. Given a new paper q, we calculate the probability whether user u will
be interested in paper q through the function F(u, q), where Vu denotes user u’s
history publications.

F(u, q) = max {c(q, p) |, p ∈ Vu} (6)

Since user interests change over time, we adopt the publications within a
period as the user interests at different times. We calculate the probability on
how much user u being interested in the paper q according to the user interests
in different periods. In this way, the user interests are more accurately modeled.

4 Experiments

In this section, we verify the effectiveness of our model on real datasets for
the new paper recommendation task. We select some baselines for compara-
tive experiments and analyze the impact of hyper-parameter settings and model
structure. Finally, we analyze the paper subspace embeddings.
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4.1 Experimental Settings

Datasets. We use ACM2 and Scopus3 datasets. ACM dataset contains 43380
conference and journal papers in computer science. Scopus dataset is a multi-
disciplinary dataset, and we use the papers within the area of computer science,
with a total of 18842 papers. Every paper in the datasets contains the paper
abstract, authors, publication year, citation relationship, etc.

Baselines and Metrics. We compare our model with several baselines. BUIR
[10], LightGCN [11], NeuMF [12] and DirectAU [9] are CF-based methods using
the user and item interaction data. KGCN [18], KGCN-LS [19], RippleNet [20]
are AN-based methods, which introduce the side information such as keywords
besides user-item interactions. NPRec [21] jointly embed the semantic features
of paper content and structural features of academic network. DTNRec is our
model.

In real recommendation scenarios, users usually pay attention to the first few
items recommended. So we choose the nDCG@k [8] as the metric to evaluate the
ranking results. For each user, we prepare k candidates which contains at least
one paper that is actually cited by the user. The candidate papers are ranked
according to the value calculated by the function F (6). DCG@k is calculated
as DCG@k =

∑k
i=1

reli
log2(i+1) , where reli is a fixed value 5 if the i-th paper is

actually cited by the user, otherwise 0. IDCG =
∑|Ref |

i=1
5

log2(i+1) represents the
DCG value corresponding to the best rank, where |Ref | denotes the number of
papers actually cited by the user in candidate papers.

4.2 Results

Performance Analysis. The evaluation results are shown in Table 1. It shows
our model DTNRec outperforms the baselines on the new paper recommenda-
tion task. Because we introduce the concept of subspace, the paper innovations
could be well differentiated. What’s more, we fuse semantic features and struc-
tural features by performing asymmetric GCN on the academic network, whose
nodes are initialized by paper content embeddings over subspaces. In this way,
the user interests and paper influences are modeled in a fine-grained way. The
CF-based models including BUIR, LightGCN, NeuMF and DirectAU performs
worst since they only use interaction data of users and items, without considering
other information such as paper content. The AN-based models including KGCN,
KGCN-LS and RippleNet perform better than the CF-based methods, because
the academic network contains rich high-order hidden information, which is ben-
eficial for accurately modeling user preferences. Both CF-based methods and
KG-based methods consider the structural features, without considering seman-
tic features. NPRec considers both of them, so NPRec performs better than

2 https://dl.acm.org/.
3 https://www.scopus.com/.

https://dl.acm.org/
https://www.scopus.com/


Differentiable Topics Guided New Paper Recommendation 51

AN-based models. However, the model structure of NPRec has limitations. It
treats the paper content representation in a whole way rather than in subspaces,
that is it ignored the knowledge propagation among subspaces.

Table 1. New paper recommendation comparison.

nDCG@k ACM Scopus

k = 20 k = 30 k = 50 k = 20 k = 30 k = 50

BUIR 0.7734 0.7083 0.6681 0.7707 0.7156 0.6626

LightGCN 0.8266 0.7703 0.7314 0.8062 0.7639 0.7231

NeuMF 0.8234 0.7730 0.7419 0.8257 0.7808 0.7234

DirectAU 0.8357 0.7898 0.7423 0.8246 0.7819 0.7235

KGCN 0.8731 0.8592 0.8437 0.8507 0.8365 0.7592

KGCN-LS 0.9093 0.9010 0.8904 0.8660 0.8548 0.8063

RippleNet 0.9217 0.9088 0.8970 0.9040 0.8673 0.8465

NPRec 0.9736 0.9688 0.9645 0.9576 0.9349 0.9021

DTNRec 0.9855 0.9844 0.9663 0.9735 0.9547 0.9329

Impact of User Interest Calculation Method. Generally, the user interest
will change over time. When we predict whether user u will be interested in a
new paper q which is published after year Y, we should consider user u’s interest
after year Y, too. Therefore, we study the impact of using user u’s interests
at different times to make predictions. The experimental results are shown in
Fig. 3(a). We calculate user interest in the following six ways.

– History-max denotes the user interest is computed as the function F (6),
where Vu denotes the publications of user u before year Y.

– Future-max replaces Vu in history-max with the publications of user u after
year Y.

– All-max replaces Vu in history-max with all the publications of user u.
– History-mean is the same as history-max, but replaces the operation of

taking the maximum value in the function F (6) with taking the mean value.
– Future-mean replaces Vu in history-mean with the publications of user u

after year Y.
– All-mean replaces Vu in history-mean with all the publications of user u.

In order to avoid information leakage, when computing user u’s interest after
year Y, we delete the citation relationship between papers published after year
Y on the academic network, which means only u’s publications after year Y
and references before year Y are considered. The results in Fig. 3(a) show that
future mode performs better than history mode and all mode. The max mode
performs better than mean mode. When the user interest is calculated in the
way of future-max, our model performs best, which also proves the user interest
will change.
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Fig. 3. The results of the four figures are all carried out on Scopus dataset. (a) Com-
parison with different user interest computation methods. The hyper-parameter setting
is D = 256, H = 1,K = 4. (b) (c) (d) are comparisons on model variants with different
K,H,D, respectively. (b) (c) (d) all choose the history-max mode.

Ablation Study. To verify the impact of model structure on model perfor-
mance, we conduct ablation experiments. The model variants are as follows.

– w Random-update randomly initializes
←−
X

(0)
p and

−→
X

(0)
p . The parameters of←−

X
(0)
p and

−→
X

(0)
p will be updated during the training process.

– w Topic-update initializes
←−
X

(0)
p and

−→
X

(0)
p with matrix Xp. And the param-

eters will be updated.
– w/o Topic-update initializes

←−
X

(0)
p and

−→
X

(0)
p in the same way as w Topic-

update, but the parameters will not be updated.

The results are shown in Fig. 3(b) and 3(d). w Random-update performs
worst. w Topic-update is better than w Random-update. And w/o Topic-
update, which is also the final setting of our model, performs best. Because the
paper subspace embeddings xb

p,x
m
p and xr

p, that are also the topic distributions
output by NTM, are rich in semantic information. They do not need to be
updated further. Instead, update brings information loss, resulting in model
performance degradation.

Hyper-parameter Study. We analyzed the impact of hyper-parameter set-
tings on model performance. Three hyperparameters are tested: the neighbor
number K, the maximum depth of GCN H, the topic number D. The results
are shown in Fig. 3(b), 3(c) and 3(d). Figure 3(b) shows that when K becomes
larger, nDCG@30 of w Random-update will decrease due to the introduction
of noise. w Topic-update and w/o Topic-update are not sensitive to the
setting of K, which means the initialization by Xp weaken the influence of K
on model performance. Figure 3(c) shows when H is set to 1, model performs
better. As H increases, model performance decreases. Because there may be



Differentiable Topics Guided New Paper Recommendation 53

over-smooth problem with the increase of H. As shown in Fig. 3(d), we find as
D increases, the value of nDCG@k will first rise and then fall. Because a smaller
D also means less semantic information. The topics in all papers may not be fully
covered. The model performs best when D is set to 256. When D is too large,
the model performance will decline, probably because the size of D can already
cover all the topics, and continuing to increase will not obtain richer semantic
information, but will introduce noise.

Fig. 4. Analyze the subspace embeddings. The results are based on ACM dataset. The
topic number D is set as 16, so the subspace embeddings of papers are 16-dimensional.
Then we reduce them into a 2-dimensional visual space by t-SNE [24]. Gray dots in
each figure denote all papers. (a) Subspace embeddings of papers with similar back-
ground. (b) Background embeddings of papers with different CCS tags. (c) Background
embeddings of Chengxiang Zhai’s publications. (d) (e) (f) respectively analyze the
Background, Method and Result embeddings of paper [17] and its references and cita-
tions.

Analyze the Subspace Embeddings. We analyze the subspace embeddings
from different aspects, where the ACM Computing Classification System (ACM
CCS) [7] is used as supplementary information.

In order to verify the necessity of subspace, we randomly selected a paper
[14] with CCS tag h.3.3 (information search and retrieval). Then 50 papers with
similar background to paper [14] are selected from paper set with the same CCS
tag. The similarity is obtained by calculating the Euclidean distance of back-
ground embeddings. The smaller the distance, the more similar the background.
As shown in Fig. 4(a), the red dots denote the background embeddings of the
50 papers. The yellow and blue dots represent method and result embeddings,
respectively. We find that papers with similar background may have different
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methods and results. But the topics do not differ dramatically, but vary within
a certain range of topics. So the consideration of subspace is necessary.

To verify whether the subspace embeddings of paper content could reflect
CCS tag information, we randomly chose three CCS tags: h.3.3 (information
search and retrieval), c.2.1 (network architecture and design) and d.3.4 (proces-
sors). As shown in Fig. 4(b), the papers with different CCS tag could be well
differentiated.

Figure 4(c) shows some publications of researcher Chengxiang Zhai between
1998 and 2008. The red dots denote his publications, and the color shades corre-
spond to publication years. It illustrates that the researcher’s research interests
will change within a field of study.

To study whether the subspace embeddings of paper content could reflect
the relationship between a paper and its references and citations, we randomly
selected a highly cited paper [17]. As shown in Fig. 4(d), 4(e) and 4(f), the
red star denotes paper [17], and the green and blue shapes denote references
and citations of [17], respectively. We can see that the topics between a paper
and its references and citations are all close in different subspaces. But there are
also differences, which reflect the topic propagation among different subspaces of
papers. For example, the distance between the red star [17] and the green triangle
[16] on Fig. 4(d) is closer than the distance on Fig. 4(e) and 4(f). Because the
background of paper [17] and paper [16] are all related to the classification of web
content, but they used different methods and thus got different results. Besides,
the distance between the red star [17] and the blue circle [15] on Fig. 4(d) and
4(e) are closer than the distance on Fig. 4(f). Because the backgrounds of paper
[17] and paper [15] are similar and both adopted user survey method. The results
are different is due to the core issues of their research are different. It’s worth
mention that paper [17] and paper [15] have the same author Mika. It illustrates
that the researchers tend to use similar methods in their publications.

5 Conclusion

We propose a differentiable topics based new paper recommendation model
DTNRec. In DTNRec, we adopt the subspace tagging model and NTM to get
embeddings of paper content. Then we model the user interest through the
asymmetric GCN on the academic network. The experimental results show the
effectiveness of our model.
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Abstract. Automated medical report generation has become increas-
ingly important in medical analysis. It can produce computer-aided
diagnosis descriptions and thus significantly alleviate the doctors’ work.
Inspired by the huge success of neural machine translation and image
captioning, various deep learning methods have been proposed for medi-
cal report generation. However, due to the inherent properties of medical
data, including data imbalance and the length and correlation between
report sequences, the generated reports by existing methods may exhibit
linguistic fluency but lack adequate clinical accuracy. In this work, we
propose an image-to-indicator hierarchical transformer (IIHT) frame-
work for medical report generation. It consists of three modules, i.e., a
classifier module, an indicator expansion module and a generator module.
The classifier module first extracts image features from the input medical
images and produces disease-related indicators with their corresponding
states. The disease-related indicators are subsequently utilised as input
for the indicator expansion module, incorporating the “data-text-data”
strategy. The transformer-based generator then leverages these extracted
features along with image features as auxiliary information to generate
final reports. Furthermore, the proposed IIHT method is feasible for radi-
ologists to modify disease indicators in real-world scenarios and integrate
the operations into the indicator expansion module for fluent and accu-
rate medical report generation. Extensive experiments and comparisons
with state-of-the-art methods under various evaluation metrics demon-
strate the great performance of the proposed method.

Keywords: Medical report generation · Deep neural networks ·
Transformers · Chest X-Ray

1 Introduction

Medical images (e.g. radiology and pathology images) and the corresponding
reports serve as critical catalysts for disease diagnosis and treatment [22]. A
medical report generally includes multiple sentences describing a patient’s his-
tory symptoms and normal/abnormal findings from different regions within the
medical images. However, in clinical practice, writing standard medical reports
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is tedious and time-consuming for experienced medical doctors and error-prone
for inexperienced doctors. This is because the comprehensive analysis of e.g. X-
Ray images necessitates a detailed interpretation of visible information, includ-
ing the airway, lung, cardiovascular system and disability. Such interpretation
requires the utilisation of foundational physiological knowledge alongside a pro-
found understanding of the correlation with ancillary diagnostic findings, such
as laboratory results, electrocardiograms and respiratory function tests. There-
fore, the automatic report generation technology, which can alleviate the medics’
workload and effectively notify inexperienced radiologists regarding the presence
of abnormalities, has garnered dramatic interest in both artificial intelligence and
clinical medicine.

Medical report generation has a close relationship with image captioning
[9,31]. The encoder-decoder framework is quite popular in image captioning,
e.g., a CNN-based image encoder to extract the visual information and an
RNN/LSTM-based report decoder to generate the textual information with
visual attention [11,14,29,30]. With the recent progress in natural language
processing, investigating transformer-based models as alternative decoders has
been a growing trend for report generation [2,3,21,27]. The self-attention mecha-
nism employed inside the transformer can effectively eliminate information loss,
thereby maximising the preservation of visual and textual information in the
process of generating medical reports. Although these methods have achieved
remarkable performance and can obtain language fluency reports, limited studies
have been dedicated to comprehending the intrinsic medical and clinical prob-
lems. The first problem is data imbalance, e.g., the normal images dominate
the dataset over the abnormal ones [24] and, for the abnormal images, normal
regions could encompass a larger spatial extent than abnormal regions [17]. The
narrow data distribution could make the descriptions of normal regions domi-
nate the entire report. On the whole, imbalanced data may degrade the quality
of the automatically generated reports, or even result in all generated reports
being basically similar. The second problem is length and correlation between
report sequences. Medical report generation is designed to describe and record
the patient’s symptoms from e.g. radiology images including cardiomegaly, lung
opacity and fractures, etc. The description includes various disease-related symp-
toms and related topics rather than the prominent visual contents and related
associations within the images, resulting in the correlation inside the report
sequences not being as strong as initially presumed. The mere combination of
encoders (e.g. CNNs) and decoders (e.g. RNN, LSTM, and transformers) is insuf-
ficient to effectively tackle the aforementioned issues in the context of medical
images and reports since these modalities represent distinct data types. The
above challenges motivate us to develop a more comprehensive method to bal-
ance visual and textual features in unbalanced data for medical report genera-
tion.

The radiologists’ working pattern in medical report writing is shown in Fig. 1.
Given a radiology image, radiologists first attempt to find the abnormal regions
and evaluate the states for each disease indicator, such as uncertain, negative and
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Fig. 1. The medical report writing procedure undertaken by radiologists.

positive. Then a correct clinical report is written through the stages for different
indicators based on their working experience and prior medical knowledge. In
this paper, we propose an image-to-indicator hierarchical transformer (IIHT)
framework, imitating the radiologists’ working patterns (see Fig. 1) to alleviate
the above-mentioned problems in medical report generation.

Our IIHT framework models the above working patterns through three mod-
ules: classifier, indicator expansion and generator. The classifier module is an
image diagnosis module, which could learn visual features and extract the cor-
responding disease indicator embedding from the input image. The indicator
expansion module conducts the data-to-text progress, i.e., transferring the dis-
ease indicator embedding into short text sequences. The problem of data imbal-
ance could be alleviated by encoding the indicator information, which models the
domain-specific prior knowledge structure and summarises the disease indicator
information and thus mitigates the long-sequence effects. Finally, the generator
module produces the reports based on the encoded indicator information and
image features. The whole generation pipeline is given in Fig. 2, which will be
described in detail in Sect. 3. We remark that the disease indicator informa-
tion here can also be modified by radiologists to standardise report fluency and
accuracy. Overall, the contributions of this paper are three-fold:

• We propose the IIHT framework, aiming to alleviate the data bias/imbalance
problem and enhance the information correlation in long report sequences for
medical report generation.

• We develop a dynamic approach which leverages integrated indicator informa-
tion and allows radiologists to further adjust the report fluency and accuracy.

• We conduct comprehensive experiments and comparisons with state-of-the-
art methods on the IU X-Ray dataset and demonstrate that our proposed
method can achieve more accurate radiology reports.

The rest of the paper is organised as follows. Section 2 briefly recalls the
related work in medical report generation. Our proposed method is introduced
in Sect. 3. Sections 4 and 5 present the details of the experimental setting and
corresponding results, respectively. We conclude in Sect. 6.
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2 Related Work

Image Captioning. The image captioning methods mainly adopt the encoder-
decoder framework together with attention mechanisms [31] to translate the
image into a single short descriptive sentence and have achieved great perfor-
mance [1,15,18,26]. Specifically, the encoder network extracts the visual rep-
resentation from the input images and the decoder network generates the cor-
responding descriptive sentences. The attention mechanism enhances the co-
expression of the visual features derived from the intermediate layers of CNNs
and the semantic features from captions [31]. Recently, inspired by the capacity
of parallel training, transformers [25] have been successfully applied to predict
words according to multi-head self-attention mechanisms. However, these models
demonstrate comparatively inferior performance on medical datasets as opposed
to natural image datasets, primarily due to the disparity between homogeneous
objects observed in different domains. For instance, in the context of X-Ray
images, there exists a relatively minimal discernible distinction between normal
and abnormal instances, thereby contributing to the challenge encountered by
models in accurately generating such captions.

Medical Report Generation. Similar to image captioning, most existing med-
ical report generation methods attempt to adopt a CNN-LSTM-based model to
automatically generate fluent reports [11,14,20,28]. Direct utilisation of caption
models often leads to the generation of duplicate and irrelevant reports. The
work in [11] developed a hierarchical LSTM model and a co-attention mechanism
to extract the visual information and generate the corresponding descriptions.
Najdenkoska et al. [20] explored variational topic inference to guide sentence
generation by aligning image and language modalities in a latent space. A two-
level LSTM structure was also applied with a graph convolution network based
on the knowledge graph to mine and represent the associations among medical
findings during report generation [27]. These methodologies encompass the selec-
tion of the most probable diseases or latent topic variables based on the sentence
sequence or visual features within the data in order to facilitate sentence genera-
tion. Recently, inspired by the capacity of parallel training, transformers [13,32]
have successfully been applied to predict words according to the extracted fea-
tures from CNN. Chen et al. [2] proposed a transformer-based cross-modal mem-
ory network using a relational memory to facilitate interaction and generation
across data modalities. Nguyen et al. [21] designed a differentiable end-to-end
network to learn the disease feature representation and disease state to assist
report generation.

The existing methods mentioned above prioritise the enhancement of feature
alignment between visual regions and disease labels. However, due to the inherent
data biases and scarcity in the medical field, these models exhibit a bias towards
generating reports that are plausible yet lack explicit abnormal descriptions.
Generating a radiology report is very challenging as it requires the contents of
key medical findings and abnormalities with detailed descriptions for different
data modalities. In this study, we address the challenges associated with data
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bias and scarcity in clinical reports through the utilisation of disease indicators
as a bridge for more comprehensive medical report generation.

3 Method

Fig. 2. The proposed IIHT framework. It consists of three modules: classifier, indicator
expansion and generator.

An overview of our proposed IIHT framework is demonstrated in Fig. 2. It
follows the distinct stages involved in generating a comprehensive medical imag-
ing diagnosis report, adhering to the established process employed in clinical
radiology (e.g. see Fig. 1).

Given a radiology image I, the corresponding different indicators are all clas-
sified into different states (e.g. positive, negative, uncertain, etc.) denoted as
C = {c1, · · · , ct, · · · , cT }, where T is the number of indicators and ct is the one-
hot encoding of the states. Particularly, these indicators can also be modified
by radiologists to standardise the disease states across patients, thereby enhanc-
ing the correctness of the final generated report. The corresponding generated
report for a given radiology image is denoted as y = (y1, · · · , yn, · · · , yN ), where
yn ∈ V is the generated unigram tokens, N is the length of the report, and V

is the vocabulary of all possible v tokens for reports generation. For example,
the word sequence “Pleural effusion” is segmented into small pieces of tokens,
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i.e., {“Pleural”, “effus”, “ion”}. Generally, the aim of the report generation is to
maximise the conditional log-likelihood, i.e.,

θ∗ = argmax
θ

N∏

n=1

pθ (yn | y1, . . . , yn−1, I) , (1)

where θ denotes the model parameters and y0 represents the start token. After
incorporating each disease indicator c ∈ C into the conditional probability
pθ (yn | y1, . . . , yn−1, I), we have

log pθ (yn | y1, . . . , yn−1, I) =
∫

C
log pθ (yn | y1, . . . , yn−1, c, I) pθ(c | I)dc, (2)

where pθ(c | I) represents the classifier module.
Recall that our IIHT framework is demonstrated in Fig. 2. The details are

described in the subsections below.

3.1 Classifier Module

Image Encoder. The first step in medical report generation is to extract the
visual features from the given medical images. In our research, we employ a
pre-trained visual feature extractor, such as ResNet [8], to extract the visual
features from patients’ radiology images that commonly contain multiple view
images. For simplicity, given a set of r radiology images {Ii}r

i=1, the final visual
features say x are obtained by merging the corresponding features of each image
using max-pooling across the last convolutional layer. The process is formulated
as x = fv (I1, I2, · · · , Ir), where fv (·) refers to the visual extractor and x ∈ R

F

with F number of features.

Capture Disease Indicator Embedding. The visual features are further
transformed into multiple low-dimensional feature vectors, regarded as disease
indicator embeddings, which have the capacity to capture interrelationships and
correlations among different diseases. The indicator disease embedding is denoted
as D = (d1, · · · ,dT ) ∈ R

e×T , where e is the embedding dimension and note
that T is the number of indicators. Each vector dt ∈ R

e, t = 1, · · · , T is the
representation of the corresponding disease indicator, which can be acquired
through a linear transformation of the visual features, i.e.,

dt = W�
t x+ bt, (3)

where Wt ∈ R
F×e and bt ∈ R

e are learnable parameters of the t-th disease
representation.

The intuitive advantage of separating high-dimensional image features into
distinct low-dimensional embeddings is that it facilitates the exploration of the
relationships among disease indicators. However, when dealing with medical
images, relying solely on disease indicator embeddings is insufficient due to the
heterogeneous information, including the disease type (e.g. disease name) and
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the disease status (e.g. positive or negative). Consequently, we undertake fur-
ther decomposition of the disease indicator embedding, thereby leading to the
conception of the subsequent state embedding.

Capture State Embedding. To improve the interpretability of the disease
indicator embeddings, a self-attention module is employed to offer valuable
insights into the representation of each indicator. Each indicator embedding
is further decomposed to obtain the disease state such as positive, negative or
uncertain. Let M be the number of states and S = (s1, · · · , sM ) ∈ R

e×M be the
state embedding, which is randomly initialized and learnable. Given a disease
indicator embedding vector dt, the final state-aware of the disease embedding
say d̂t ∈ R

e is obtained by d̂t =
∑M

m=1 αtmsm, where αtm is the self-attention
score of dt and sm defined as

αtm =
exp(d�

t · sm)
∑M

m=1 exp (d
�
t · sm)

. (4)

Iteratively, each disease indicator representation dt will be matched with its
corresponding state embedding sm by computing vector similarity, resulting in
an improved disease indicator representation d̂t.

Classification. To enhance the similarity between dt and sm, we treat this as
a multi-label problem. The calculated self-attention score αtm is the confidence
level of classifying disease t into the state m, which is then used as a predic-
tive value. By abuse of notation, let ct = {ct1, · · · , ctm, · · · , ctM} be the t-th
ground-true disease indicator and αt = {αt1, · · · , αtm, · · · , αtM} be the predic-
tion, where ctm ∈ {0, 1} and αtm ∈ (0, 1). The loss of the multi-label classification
can be defined as

LC = − 1
T

T∑

t=1

M∑

m=1

ctm log (αtm) . (5)

The maximum value αtm in αt represents the predicted state for disease t. To
enable integration with the indicator expansion module, we adopt an alterna-
tive approach; instead of directly utilizing d̂t, we recalculate the state-aware
embedding for the t-th disease indicator, denoted as ŝt ∈ R

e, i.e.,

ŝt =
M∑

m=1

{
ctmsm, if training phase,
αtmsm, otherwise. (6)

Hence, the state-aware disease indicator embedding ŝt directly contains the state
information of the disease t.

3.2 Indicator Expansion Module

In the indicator extension module, we employ a “data-text-data” conversion strat-
egy. This strategy involves converting the input indicator embedding from its
original format into a textual sequential word representation and then convert-
ing it back to the original format. The inherent interpretability of short dis-
ease indicator sequences can be further enhanced, resulting in generating more
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reliable medical reports. For each disease indicator and its state, whether it is
the ground-truth label ct or the predicted label αt, it can be converted into a
sequence of words, denoted as ĉt = {ĉt1, · · · , ĉtk, · · · , ĉtK}, where ĉtk ∈ W is the
corresponding word in the sequence, K is the length of the word sequence, and W

is the vocabulary of all possible words in all indicators. For example, an indicator
such as “lung oedema uncertain” can be converted into a word sequence such as
{“lung”, “oedema”, “uncertain”}. To extract the textual information within the
short word sequence for each disease t, we use a one-layer bi-directional gated
recurrent unit as an encoder say fw (·) followed by a multi-layer perceptron
(MLP) Φ to generate the indicator information ht ∈ R

e, i.e.,

ht = Φ (hw
t0 + hw

tk) , hw
tk = fw

(
ĉtk,hw

tk−1

)
, (7)

where hw
tk ∈ R

e is the hidden state in fw. For each disease indicator, the initial
state (k = 0) in fw is the corresponding state-aware disease indicator embedding
ŝt, i.e., hw

t0 = ŝt.

3.3 Generator Module

The generator say fg of our IIHT framework is based on the transformer
encoder architecture, comprising Z stacked masked multi-head self-attention lay-
ers alongside a feed-forward layer positioned at the top of each layer. Each word
yk in the ground-truth report is transferred into the corresponding word embed-
ding ŷk ∈ R

e. For the new word yn, the hidden state representation h′
n ∈ R

e in
the generator fg is computed based on the previous word embeddings {ŷk}n−1

k=1 ,
the calculated indicator information {ht}T

t=1 and the visual representation x,
i.e.,

h′
n = fg

(
ŷ1, . . . , ŷn−1,h1, · · · ,hT ,x

)
. (8)

For the i-th report, the confidence pi
n ∈ R

v of the word yn is calculated by

pi
n = softmax

(
W�

p h
′
n

)
, (9)

where Wp ∈ R
e×v is a learnable parameter and recall that v is the size of V.

The loss function of the generator say LG is determined based on the cross-
entropy loss, quantifying all the predicted words in all the given l medical reports
with their ground truth, i.e.,

LG = −1
l

l∑

i=1

N∑

n=1

v∑

j=1

yi
nj log

(
pi

nj

)
, (10)

where pi
nj is the j-th component of pi

n, and yi
nj is j-th component of yi

n ∈
R

v which is the ground-truth one-hot encoding for word yn in the i-th report.
Therefore, the final loss of our IIHT method is

L = λLG + (1 − λ)LC , (11)

where λ is a hyperparameter.
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4 Experimental Setup

4.1 Data

The publicly available IU X-Ray dataset [4] is adopted for our evaluation. It con-
tains 7,470 chest X-Ray images associated with 3,955 fully de-identified medical
reports. Within our study, each report comprises multi-view chest X-Ray images
along with distinct sections dedicated to impressions, findings and indications.

4.2 Implementation

Our analysis primarily focuses on reports with a finding section, as it is deemed a
crucial component of the report. To tackle the issue of data imbalance, we utilise
a strategy wherein we extract 11 prevalent disease indicators from the dataset,
excluding the “normal” indicators based on the findings and indication sections of
the reports. Additionally, three states (i.e., uncertain, negative and positive) are
assigned to each indicator. In cases where a report lacks information regarding
all indicators, we discard the report to ensure data integrity and reliability.
The preprocessing of all reports is followed by the random selection of image-
report pairs, which are then divided into three sets, i.e., training, validation and
test sets. The distribution of these sets is 70%, 10% and 20%, respectively. All
the words in the reports are segmented into small pieces by SentencePiece [12].
Standard five-fold cross-validation on the training set is used for model selection.

To extract visual features, we utilise two different models: ResNet-50 [8] pre-
trained on ImageNet [5] and a vision transformer (ViT) [7]. Prior to extraction,
the images are randomly cropped to a size of 224 × 224, accompanied by data
augmentation techniques. Within our model, the disease indicator embedding,
indicator expansion module and generator module all have a hidden dimension of
512. During training, we iterate 300 epochs with a batch size of 8. The hyperpa-
rameter λ in the loss function is set to 0.5. For optimisation, we employ AdamW
[19] with a learning rate of 10−6 and a weight decay of 10−4.

4.3 Metrics

The fundamental evaluation concept of the generated reports is to quantify the
correlation between the generated and the ground-truth reports. Following most
of the image captioning methods, we apply the most popular metrics for eval-
uating natural language generation such as 1–4 g BLEU [23], Rouge-L [16] and
METEOR [6] to evaluate our model.

5 Experimental Results

In this section, we first evaluate and compare our IIHT method with the state-of-
the-art medical report generation methods. Then we conduct an ablation study
for our method to verify the effectiveness of the indicator expansion module
under different image extractors.
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Table 1. Comparison between our IIHT method and the state-of-the-art medical report
generation methods on the IU X-Ray dataset. Sign † refers to the results from the
original papers. A higher value denotes better performance in all columns.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

VTI [20]† 0.493 0.360 0.291 0.154 0.218 0.375
Wang et al. [27]† 0.450 0.301 0.213 0.158 - 0.384
CMR [2]† 0.475 0.309 0.222 0.170 0.191 0.375
R2Gen [3]† 0.470 0.304 0.219 0.165 0.187 0.371
Eddie-Transformer [21]† 0.466 0.307 0.218 0.158 - 0.358
CMAS [10]† 0.464 0.301 0.210 0.154 - 0.362
DeltaNet [29]† 0.485 0.324 0.238 0.184 - 0.379
Ours 0.513

±
0.006

0.375
±
0.005

0.297
±
0.006

0.245
±
0.006

0.264
±
0.002

0.492
±
0.004

5.1 Report Generation

We compare our method with the state-of-the-art medical report generation
models, including the variational topic inference (VTI) framework [20], a graph-
based method to integrate prior knowledge in generation [27], the cross-modal
memory network (CMR) [2], the memory-driven transformer (R2Gen) [3], the
co-operative multi-agent system (CMAS) [10], the enriched disease embedding
based transformer (Eddie-Transformer) [21], and the conditional generation pro-
cess for report generation (DeltaNet) [29]. The quantitative results of all the
methods on the IU X-Ray dataset are reported in Table 1. It clearly shows that
our proposed IIHT method outperforms the state-of-the-art methods by a large
margin across all the evaluation metrics, demonstrating the dramatic effective-
ness of our method.

The methods under comparison in our study focus on exploring the correla-
tion between medical images and medical reports. Some of these approaches have
incorporated supplementary indicators as auxiliary information. However, these
indicators primarily comprise frequently occurring phrases across all reports, dis-
regarding the inherent imbalance within medical data. Consequently, the gener-
ated reports often treat abnormal patients as normal, since the phrases describ-
ing normal areas dominate the dataset. In contrast, our proposed method lever-
ages disease indicators and assigns corresponding states based on the reported
content. By adopting a “data-text-data” conversion approach in the indicator
expansion module, our method effectively mitigates the issue of misleading the
generated medical reports, and thus surpasses the performance of the existing
approaches.

5.2 Ablation Study

We now conduct an ablation study for our method to verify the effectiveness
of different image extractors. Table 2 presents the results of our experiments,
wherein we employed different visual feature extractors with and without the
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indicator expansion module. Specifically, we exclude the original “data-text-data”
conversion strategy; instead, the disease indicator state features are directly used
as the input of the MLP layer. This study allows us to analyse the influence
of the “data-text-data” strategy within the indicator expansion module on the
performance of the proposed IIHT framework.

Table 2. The ablation study of our method on the IU X-Ray dataset. “w/o Indicator”
refers to the model without the indicator expansion module.

Methods Encoder BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

IIHT
w/o Indicator

ViT 0.434
±
0.002

0.294
±
0.004

0.210
±
0.004

0.153
±
0.004

0.216
±
0.001

0.409
±
0.005

IIHT
(Proposed)

0.463
±
0.006

0.323
±
0.005

0.241
±
0.005

0.186
±
0.004

0.234
±
0.003

0.445
±
0.004

IIHT
w/o Indicator

ResNet-50 0.428
±
0.007

0.271
±
0.008

0.188
±
0.003

0.136
±
0.003

0.185
±
0.002

0.376
±
0.004

IIHT
(Proposed)

0.513
±
0.006

0.375
±
0.005

0.297
±
0.006

0.245
±
0.006

0.264
±
0.002

0.492
±
0.004

By excluding the incremental disease indicator information, we observe that
the image extractor ViT has a better performance than ResNet-50, see the results
of the first and third rows in Table 2. This indicates that ViT is capable of effec-
tively capturing semantic feature relationships within images. These findings
provide evidence regarding the advantages of ViT in extracting visual informa-
tion from images. We also observe that utilising indicator information extracted
from the indicator expansion module indeed contributes to the generation of pre-
cise and comprehensive medical reports, resulting in a noteworthy enhancement
in terms of the quality of the generated reports. This improvement is observed
when using both ViT and ResNet-50. Interestingly, as indicated in the second
and fourth rows in Table 2, when the indicator expansion module is added, the
performance improvement of ViT is not as significant as that of ResNet-50. We
hypothesise that ViT requires a substantial amount of data to learn effectively
from scratch. It is possible that the limited number of iterations during fine-
tuning prevents ViT from achieving its full potential in performance enhance-
ment. On the whole, our proposed IIHT method offers significant improvements
over the state-of-the-art models. This enhancement can be attributed to the
inclusion of the disease indicator expansion module, which plays a crucial role
in enhancing the quality of the generated reports.

Finally, in Table 3, we showcase some examples of the reports generated by
our method. By incorporating both images and indicators, our method closely
mimics the process followed by radiologists when composing medical reports
while also addressing the data imbalance challenge. Even in the case where all
indicators are normal, a generated report for a healthy patient typically includes
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Table 3. Generated samples by our method on the IU X-Ray dataset.

a description of various disease indicators, as shown in the first example in
Table 3. For patients with abnormal conditions, our method still has a remark-
able ability to accurately generate comprehensive reports. Moreover, our method
incorporates the capability of facilitating real-time modification of disease indi-
cators, thereby enabling a more accurate and complete process for report gen-
eration. This functionality serves to minimise the occurrence of misdiagnosis
instances, and thus enhances the overall accuracy and reliability of the gener-
ated reports. As a result, we reveal that the generated medical reports with the
use of indicator-based features can be more reasonable and disease-focused in
comparison to traditional “image-to-text” setups.

6 Conclusion

In this paper, we proposed a novel method called IIHT for medical report gener-
ation by integrating disease indicator information into the report generation pro-
cess. The IIHT framework consists of the classifier module, indicator expansion
module and generator module. The “data-text-data” strategy implemented in the
indicator expansion module leverages the textual information in the form of con-
cise phrases extracted from the disease indicators and states. The accompanying
data conversion step enhances the indicator information, effectively resolving the
data imbalance problem prevalent in medical data. Furthermore, this conversion
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also facilitates the correspondence between the length and correlation of medical
data texts with disease indicator information. Our method makes it feasible for
radiologists to modify the disease indicators in real-world scenarios and integrate
the operations into the indicator expansion module, which ultimately contributes
to the standardisation of report fluency and accuracy. Extensive experiments and
comparisons with state-of-the-art methods demonstrated the great performance
of the proposed method. One potential limitation of our experiments is related
to the accessibility and accuracy of the disease indicator information. The pres-
ence and precision of such disease indicator information can affect the outcomes
of our study. Interesting future work could involve investigating and enhancing
our method from a multi-modal perspective by incorporating additional patient
information such as age, gender and height for medical report generation.
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Abstract. Metro passenger flow prediction is crucial for efficient urban
transportation planning and resource allocation. However, it faces two
challenges. The first challenge is extracting the diverse passenger flow
patterns at different stations, e.g., stations near residential areas and
stations near commercial areas, while the second one is to model the com-
plex dynamic spatial-temporal correlations caused by Origin-Destination
(OD) flows. Existing studies often overlook the above two aspects, espe-
cially the impact of OD flows. In conclusion, we propose an OD-enhanced
dynamic spatial-temporal graph convolutional network (DSTGCN) for
metro passenger flow prediction. First, we propose a static spatial mod-
ule to extract the flow patterns of different stations. Second, we utilize
a dynamic spatial module to capture the dynamic spatial correlations
between stations with OD matrices. Finally, we employ a multi-resolution
temporal dependency module to learn the delayed temporal features. We
also conduct experiments based on two real-world datasets in Shanghai
and Hangzhou. The results show the superiority of our model compared
to the state-of-the-art baselines.

Keywords: Metro system · Passenger flow prediction ·
Spatial-Temporal graph convolutional networks · Origin-Destination
matrix

1 Introduction

Urban Rail Transit (URT) has become one of the primary modes of public trans-
portation in numerous cities due to its significant capacity and high speed. How-
ever, the substantial increase in passenger flows has resulted in severe overcrowd-
ing within metro systems, posing safety hazards and exacerbating the challenges
in managing these systems. For instance, the surge of people during the 2015
New Year’s Eve celebrations in Shanghai precipitated a chaotic stampede that
tragically claimed the lives of 36 individuals [1]. Therefore, accurate forecasting
of metro passenger flows is crucial for effective metro planning and proactive
allocation of metro staff [2].

However, the task of passenger flow prediction remains challenging due to
the intricate and robust spatial-temporal correlations of passenger flows, which
can be summarized into the following three points:
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. Diverse flow patterns at different stations.

Fig. 2. Dynamic spatial correlations and delayed temporal dependencies.

1) Diverse flow patterns at different stations: Previous studies [3–7]
have commonly employed the use of metro network topology to capture the
relationships between passenger flow patterns across stations. However, they
overlook the heterogeneity in flow patterns among different stations, as shown
in Fig. 1(b). Therefore, it is crucial to explore methods for extracting the
differences in flow patterns at different stations.
2) Dynamic spatial correlations between stations: Previous researches
[3,6,8] have treated the spatial relationships between stations as static and
relied on physical distance to characterize spatial dependencies. However, they
overlooked the dynamic spatial dependencies between stations caused by OD
passenger flows, as illustrated in Fig. 2, where the movement of passengers
continually evolves in real-time. Therefore, the challenge lies in modeling these
dynamic spatial correlations to capture the metro passenger flows.
3) Delayed temporal dependency among stations: The delayed tempo-
ral dependencies are also caused by the OD passenger flows. Although prior
researches [3,6,9] have made some progress in capturing temporal depen-
dencies, there remains a dearth of relevant research on incorporating lagged
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time information. Consequently, devising a network architecture capable of
effectively capturing delayed temporal dependencies is a challenge.

To tackle the aforementioned challenges, we introduce a novel approach called
OD-enhanced Dynamic Spatial-Temporal Graph Convolutional Network (DST-
GCN), which can capture both static and dynamic spatial correlations between
stations, as well as the delayed temporal dependencies. The main contributions
of this paper are summarised as follows:

1) A static spatial correlation module for capturing unique flow patterns at
different stations. By constructing two types of flow pattern graphs, we enable
the graph convolutional layers to extract station-specific flow patterns.

2) A dynamic spatial correlation module for extracting OD information. We
leverage graph diffusion operation to effectively capture the dynamic spatial
correlations between stations. This allows us to capture the transfer relation-
ships between stations as passengers move within the metro system.

3) A multi-resolution temporal module for mining delayed temporal dependency.
We stack multiple temporal convolutional layers to access information from
different time intervals. This enables us to capture the delayed temporal
dependencies.

4) We conduct extensive experiments on two large-scale real-world datasets,
including Shanghai and Hangzhou, and the results show that our model has
better predictive performance than the baselines.

2 Related Work

Passenger flow prediction is not only an important task in the field of intelligent
transport, but also optimises many urban services. Initially, most models for
short-term passenger flow forecasting are mainly based on statistical theory or
machine learning, such as ARIMA [10] and support vector regression [11]. How-
ever, among these methods, passenger flow forecasting is typically considered
as a time series prediction problem, which overlook the comprehensive spatial
correlations between stations.

Inspired by the ability of graph neural networks (GNNs) to model the cor-
relation of non-European data, GNNs are adopted for passenger flow prediction
problems [3–5,12,13], which not only consider the temporal dependencies of pas-
senger flows but also can be able to capture the spatial relationships between sta-
tions. [3,8] both design a spatial-temporal network combining RNN-based model
and GNN-based model to extract the periodic features of passenger flows and
the topological relationships between stations. Compared to models that only
consider temporal dependencies, prediction performance is further improved.
Instead of using metro network topology to capture the spatial correlations, [4,5]
introduce the use of virtual graph structures to represent spatial relationships
between stations.

Several recent works [14–16] specifically pay attention to extract valuable
information from the origin-destination to achieve a more precise prediction.
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For example, Wang et al. [14] introduce an algorithm to generate a representa-
tion of OD-pair which can discover the passenger travel patterns. However, due
to the time trip, these methods do not dig into the OD correlations between sta-
tions well. Further more, He et al. [15] design a model to learn the implicit OD
relationships, which uses graph diffusion convolutional [17] to capture pair-wise
geographical and semantic correlations. Despite the collective efforts to incor-
porate OD information in the aforementioned methods to enhance prediction
performance, they fell short in capturing the latent spatial-temporal dependen-
cies inherent in transfer relationships.

3 Problem Formulation

In this section, we firstly introduce some definitions for metro passenger flow
prediction, and then formulate the problem.

Definition 1. Passenger Flows. The passenger flow volume of the station vi

during the time interval t is denoted as xi
t ∈ R

2, where the 2 dimensions are the
inbound flow and the outbound flow, respectively. The collection of passenger
flow volumes for all N stations during time interval t is represented as Xt =
(x1

t , x
2
t , ..., x

N
t ) ∈ R

N×2. X = (X1,X2, ...,Xt, ...) denotes the historical passenger
flow data across all time intervals.

Definition 2. Exit Origin-Destination Flows. The exit origin-destination flows
at time interval t refer to the number of passengers who enter the station in the
past few time intervals and exit the station at time interval t. Thus, the exit
OD flows at time interval t between station vi and vj can be denoted as oi,j

t ,
representing the passengers who entered in station vi and exited station vj at
time interval t.

Definition 3. Point of Interest. A Point of Interest (POI) refers to a specific
location on a map that is deemed interesting or noteworthy to individuals, like a
shopping centre. We count the number of different types of POIs within a radius
of 1.5 km from each station, and then we construct a POI matrix P ∈ R

N×c for
all the stations, where c is the number of categories of POIs.

Problem 1. Based on the above definitions, the problem of passenger flow pre-
diction is formulated as follows: given a historical T time intervals passenger
flows Xτ−T :τ = (Xτ−T+1, ...,Xτ ) up to time interval τ , the problem aims to
learn a mapping function f from T historical passenger flow sequence to predict
the next passenger flow volume for all stations.

[Xτ−T+1, ...,Xτ ]
f−→ [Xτ+1] (1)
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4 Methodology

4.1 Overview

Figure 3 illustrates our model which consists of three components and followed
by a fusion layer to produce the prediction results. Each component is composed
of two spatial-temporal convolutional blocks (ST-Conv blocks). Each ST-Conv
block comprises a static spatial correlation module, a dynamic spatial corre-
lation module, and a multi-resolution temporal dependency module. Here, we
construct three different passenger flow sequences as inputs to the three com-
ponents, namely the recent trend sequence X r, the daily periodicity sequence
X d, and the weekly periodicity sequence X w. The ST-Conv blocks receive the
inputs and explore spatial-temporal dependencies. Multiple periodic features are
integrated by a fusion layer to generate the final prediction X̂τ+1. The specific
details of each module are discussed in the following subsections.

Fig. 3. Model architecture of the proposed DSTGCN. The proposed model consists of
three components, which share the same network structure and followed by a fusion
layer to produce the prediction results. Each of them consists of two spatial-temporal
convolutional blocks (ST-Conv blocks).

4.2 Static Spatial Correlation Module

Static Flow Pattern Graph Generation: In this section, we describe the
process of constructing the static flow pattern graph. At its core, a graph com-
prises nodes, edges, and associated weights. In our approach, we construct two
static graphs: the trend graph Gp = (V,Ep, Ap) and the functionality graph
Gf = (V,E,Af ). Here, V = {v1, v2, ..., vN} is the set of N stations. Ep and
Ef are the edge sets of different graphs. For a specific graph Gα (α ∈ {p, f}),
Aα ∈ R

N×N denotes the weights of all edges. The specific construction of the
two graphs will be introduced in the following.

The trend graph Gp: The trend graph can be denoted as Gp = (V,Ep, Ap).
As shown in Eq. 2, Ap(i, j) represents similarity of passenger flow trend between
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station vi and station vj . Note that in this study we use DTW (Dynamic Time
Warping) [18] to measure the proximity of two stations.

Ap(i, j) =

{
exp−dtw(X i,X j), dtw(X i,X j) ≤ ε,

0, dtw(X i,X j) > ε
(2)

where X i and X j represent the historical passenger flows at station vi and station
vj , respectively. ε is a hyper-parameter, which is used to threshold the adjacency
matrix, setting any values below ε to 0.

The functionality graph Gf : The functionality graph can be denoted as Gf =
(V,Ef , Af ). As shown in Eq. 4.

Af (i, j) = cos (qi, qj) (3)

where qi indicates the POIs representation of station vi. It is generated by the
TF-IDF algorithm [19], which treats each POI as a word and each station as a
document. The specific calculation for representing k-th category of station vi is
shown in the following formula.

qi[k] =
Pi,k∑

Pi,·
∗ log

N∑
P·,k

(4)

Graph Convolution for Static Spatial Correlations: The aforementioned
graphs elucidate the inherent and unchanging relationships between the flow pat-
terns of different stations. Here, we employ ChebNet [20] to effectively capture
these static spatial correlations. Specifically, we first utilize Laplacian regular-
ization on the above two graphs. Its calculation is as Lα = In − D− 1

2 AαD− 1
2 ,

where D ∈ R
N×N is the diagonal degree matrix with Di,i =

∑
j Aα(i, j) and In

is the identity matrix of N × N . Then, we combine different graphs by Eq. 5,
where � is element-wise product, Wα(α ∈ {p, f}) are learnable parameters.

L̂ =
∑

α∈{p,f}
Wα � Lα (5)

Utilizing the fusion result of the graph, denoted as L̂, we proceed with
the graph convolution operation, employing first-order Chebyshev polynomials
to approximate the convolution kernel. For a specific historical passenger flow
sequence X s (s ∈ {r, d, w}), the graph convolution for each time interval t can
be formulated as:

Os
t = ReLU

(
Θ(D̃− 1

2 L̃D̃− 1
2 )Xs

t

)
(6)

where Os
t ∈ R

N×c is the static spatial feature representation of N stations at
time interval t, L̃ and D̃ are re-normalized by L̃ = L̂ + In and D̃i,i =

∑
j L̂i,j .
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4.3 Dynamic Spatial Correlations Module

Dynamic Transit Graph Generation: Within the aforementioned graphs,
the connection relationship among stations remains immutable and static. How-
ever, these immutable and static relationships fall short in capturing the dynamic
dependencies that arise from the ever-evolving movement of passengers between
stations over time. Hence, there is a need to learn such dynamic spatial rela-
tionships. To address this, we convert the exit OD passenger flows at each time
interval into a dynamic transition graph, effectively representing the evolving
relationships between stations.

The transition volume graph Gt
o: The volume of exit OD flow provides

insights into the attraction between pairs of metro stations. Generally, stations
with higher OD flow between them indicate a higher level of mutual attractive-
ness. The graph for each time interval t can be represented by the following
formula.

Go
t = (V,Eo

t , Ao
t ) (7)

Ao
t (i, j) = ci,j

t (8)

Graph Convolution for Dynamic Spatial Correlations: The dynamic
nature of passenger transfer flow gives rise to ever-shifting correlations between
stations over time. As a result, the conventional spectral-based models prove
inadequate for analyzing OD graphs, primarily due to the strict symmetry
requirement imposed by Laplacian matrix factorization. Inspired by [17], we
utilize truncated and finite-step diffusion operations as graph convolutions and
employ graph diffusion convolution to capture the dynamic spatial correlations
between stations.

Zs
t =

K−1∑
k=0

(Dt
I)

kXs
t Θk,1 + (Dt

O)
kXs

t Θk,2 (9)

where Zs
t ∈ R

N×c is the dynamic spatial feature, (Θ·,1, Θ·,2) ∈ R
K×2 are the

parameters for the convolution filter. K denotes the finite truncation of the
diffusion process. DI,t and DO,t represent the in-degree matrix and out-degree
matrix of Ao

t , respectively.

Graph Fusion: In order to effectively utilize the captured static and dynamic
spatial correlations, we employ a spatial fusion operation to combine the learned
static and dynamic spatial correlations. As shown in the following Eq. 11:

Hs
t = Os

t + σ(Zs
t ) (10)

where Hs
t ∈ R

N×c represents the spatial features with c dimensions at time
interval t.
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4.4 Multi-resolution Temporal Dependency Module

In this work, we adopt the temporal convolutional network (TCN) [21] to capture
the temporal dependency of passenger flows. Furthermore, we capture delayed
temporal dependencies by stacking causal convolutions with different dilation
rates in the TCN architecture, as illustrated in Fig. 4.

Fig. 4. Dilated casual convolution with kernel size 3. With a dilation factor k, it picks
passenger flows every k time interval.

Dilated causal convolution introduces dilation factors, which allow the con-
volutional kernel to access the input sequence in a skipping manner along the
temporal dimension, thus expanding the receptive field. Compared to RNN,
dilated causal convolution has the capability to capture information from longer
temporal distances and can be computed in parallel. Mathematically, for the
sequence Hs = (Hs

τ−T+1, ...,H
s
τ ) after spatial correlation module, the dilated

casual convolution operation of X̂ is as follows:

Ĥs = W ∗d H (11)

where Ĥ ∈ R
N×T×c represent the updated spatial-temporal representation of N

stations over T time steps, c is the number of output channels, W ∈ R
T×c×3×1

is the convolutional kernel with a kernel size of 3× 1, and ∗d denotes the dilated
causal convolution with a dilation rate of d.

Furthermore, drawing inspiration from [22], we stack multiple layers of dilated
causal convolution to expand the receptive field and capture long-range temporal
dependencies. This stacking approach enables the extraction of multi-resolution
temporal information, leveraging the dilation operation to traverse extended
time intervals and capture delayed temporal dependencies. Consequently, we
can effectively model temporal relationships with varying delays. Specifically,
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we concatenate the outputs of each TCN layer, normalize them along the time
dimension, and then use a fully connected layer to obtain the prediction for the
next time step. The mathematical formulation is as follows:

X̂s
τ+1 = FC

(
norm((Hs)1, (Hs)2, ..., (Hs)L)

)
(12)

where X̂s
τ+1 ∈ R

N×2 represents the prediction of passenger flows with a period-
icity of s, (Hs)l is the output features of the l-th layer.

4.5 Multi-component Fusion

In this section, we will introduce how to integrate the three periodicity of out-
puts. For an example, some stations have large peak in the morning, so the
output of all components are more crucial. However, there are no peak of pas-
senger flows in some other stations, thus the recent component may be helpful.
Therefore, the formula of fusing three components can be denoted as:

X̂τ+1 =
∑

s∈{r,d,w}
W s � X̂s

τ+1 (13)

where � is the Hadamard product, W r, W d, and Ww are learnable parameters
with sizes of N × N .

During the process of model training, our utmost goal is to minimize the
divergence between the observed passenger flows and their corresponding pre-
dicted values. To achieve this, we employ the Huber loss function [23] to itera-
tively optimize the parameters of our proposed model. The Huber loss is defined
as follows:

L
(
X̂τ+1,Xτ+1;Θ

)
=

⎧⎨
⎩

1
2

(
X̂τ+1,Xτ+1

)2

, |X̂τ+1,Xτ+1| ≤ δ

δ|X̂τ+1,Xτ+1| − 1
2δ2, otherwise

(14)

5 Experiments

In this section, we verify our model on two real-world urban rail transit datasets.
We will first introduce the datasets, data processing, baseline methods, experi-
ment settings, and then present the results of our experiments comprehensively.

5.1 Datasets

In this study, we meticulously evaluate the performance of our proposed DST-
GCN model using two urban transit datasets, namely SHMetro and HZMetro.
SHMetro dataset was meticulously collected from the AFC system in the bustling
city of Shanghai, China. It encompasses a staggering 2.1 billion AFC records,
painstakingly gathered from April 1st to April 30th, 2015. Similarly, HZMetro
dataset was diligently acquired from the metro AFC system in the vibrant city of
Hangzhou, China, comprising a substantial collection of 70 million AFC records,
spanning the period from January 1st to January 25th, 2019.
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5.2 Experimental Setups

In our experiments, we implement our model, DSTGCN, as well as the deep
learning models of the comparison methods using the powerful PyTorch frame-
work. The experiments are conducted on a 4 core Intel Core I5-9300 CPU, with
32 GB RAM and a NVIDIA RTX-2060 GPU card. To comprehensively eval-
uate the performance of DSTGCN and the baseline methods, we employ two
widely-accepted metrics: Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE). The evaluation datasets are thoughtfully partitioned into train-
ing, validation, and testing sets, following a ratio of 8:1:1. We normalize the
datasets in the same way, and use Adam [24] optimizer. We set the lengths of
input sequences for the three periodicities, namely recently, daily, and weekly, as
3, 3, and 1, respectively. In the training process, we initialize the learning rate
to a value of 0.005 and reduce it by 20% every 30 epochs. In addition, we repeat
each experiment a total of 5 times, and report the mean errors and standard
deviations.

5.3 Experimental Results

Comparison with Baselines: In this study, we conduct a comprehensive
comparative analysis between our proposed model and the following 6 baseline
methods: Historical Average (HA), Auto-regressive Integrated Moving Average
(ARIMA) [10], Diffusion Convolution Recurrent Neural Network (DCRNN) [17],
Spatial-Temporal Graph Convolutional Network (STGCN) [25], Graph WaveNet
(GW) [21], and Spatial-Temporal Dynamic Network (STDN) [26].

Table 1 and Table 2 show the performance of our method and the 6 baseline
methods on the two datasets. We can observe that the traditional time series
methods, HA and ARIMA, achieve relatively high RMSE and MAE values both
in SHMetro and HZMetro datasets. This is mainly due to its inability to han-
dle unstable and nonlinear data effectively. In contrast, the deep learning-based
methods, including STGCN, DCRNN, GW, STDN, and our model demonstrate

Table 1. Performance Comparison - SHMetro.

Methods RMSE MAE
In Out In Out

HA 107.40 126.87 48.95 48.69
ARIMA [10] 169.28 183.59 120.33 117.27
STGCN [25] 49.43± 0.68 51.36± 0.83 40.50± 0.93 41.03± 0.26

DCRNN [17] 48.33± 0.71 50.09± 0.76 39.67± 1.38 41.05± 0.51

GW [21] 45.06± 0.38 46.54± 0.74 38.15± 0.41 39.08± 0.80

STDN [26] 42.87± 0.51 44.41± 0.68 35.89± 0.46 37.49± 0.77

DSTGCN 41.98± 0.42 43.95± 0.49 32.21± 0.91 34.22± 0.59
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improved performance. Specifically, our model achieves a significant improve-
ment in performance compared to the baseline methods. The MAE for inbound
passenger flow decrease by 10%, while the RMSE for outbound passenger flow
decrease by 8% on the SHMetro. This is mainly due to the effective extraction of
dynamic spatial-temporal correlations from the OD information by our model.

Table 2. Performance Comparison - HZMetro.

Methods RMSE MAE
In Out In Out

HA 93.62 95.26 45.55 46.77
ARIMA [10] 143.63 145.55 125.75 138.61
STGCN [25] 42.79± 0.72 44.11± 0.38 34.02± 0.77 34.22± 0.59

DCRNN [17] 41.27± 0.67 43.56± 0.88 35.06± 0.61 34.70± 0.80

GW [21] 39.50± 1.30 40.17± 0.92 32.16± 0.49 33.36± 0.79

STDN [26] 38.83± 0.94 39.08± 0.98 30.05± 0.61 31.21± 0.73

DSTGCN 37.95± 0.50 38.65± 0.30 29.90± 0.24 30.90± 0.63

Evaluation of Modules: To further verify the effectiveness of each proposed
module in DSTGCN, we implement several variants for an ablation study. The
details of these variants are as follows: 1) ST-S: which removes the static spatial
correlation module; 2) ST-D: which removes the dynamic spatial correlation
module; 3) which do not stack multiple layers of TCN but directly use the
output of the last TCN layer to produce the predictions.

The performance of all variants is summarized in Table 3 and Table 4. When
predicting passenger flows for the next time interval, ST-D achieves RMSE and
MAE of inbound and outbound 43.38 ± 0.32, 45.32 ± 0.53, 37.64 ± 0.41, and
40.42± 0.21 on SHMetro, respectively, ranking last among all the variants. Sim-
ilar trends are observed on HZMetro. Similar trends are observed on HZMetro.
ST-S shows improvement compared to ST-D, potentially due to more accurate

Table 3. Effect of static flow pattern graph modeling, dynamic transit graph modeling,
and multi-resolution temporal information - SHMetro.

Methods RMSE MAE
In Out In Out

ST-S 42.50± 0.50 44.10± 0.18 34.55± 0.19 35.85± 0.37

ST-D 43.38± 0.32 45.32± 0.53 37.64± 0.41 40.42± 0.21

ST-T 43.23± 0.26 44.90± 0.24 35.16± 0.46 36.21± 0.77

DSTGCN 41.98± 0.42 43.95± 0.49 32.21± 0.91 34.22± 0.59
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modeling of station spatial correlations using OD information. In addition, the
results in Table 3 and Table 4 show the performance of ST-T is worse than the
DSTGCN, indicating the necessity of leveraging multi-resolution temporal infor-
mation. This is because passenger journeys have a certain duration, resulting in
delayed temporal dependencies between stations.

Table 4. Effect of static flow pattern graph modeling, dynamic transit graph modeling,
and multi-resolution temporal information - HZMetro.

Methods RMSE MAE
In Out In Out

ST-S 38.49± 0.34 39.56± 0.25 30.91± 0.15 31.72± 0.32

ST-D 40.04± 0.30 40.17± 0.92 32.16± 0.49 33.36± 0.79

ST-T 39.16± 0.39 40.10± 0.23 31.14± 0.22 32.38± 0.29

DSTGCN 37.95± 0.50 38.65± 0.30 29.90± 0.24 30.90± 0.63

6 Conclusion

We propose DSTGCN, a novel OD-enhanced spatial-temporal dynamic graph
convolution network, for predicting passenger flows in urban metro stations.
DSTGCN effectively captures the traffic patterns and dynamic spatial correla-
tions among different stations by incorporating OD information. Furthermore,
DSTGCN captures delayed temporal dependencies arising from the travel time
between distinct stations. We conducted extensive experiments on two datasets,
and the results show that our proposed model outperforms the six baselines in
terms of RMSE and MAE.
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Abstract. Graph contrastive learning maximizes the mutual informa-
tion between the embedding representations of the same data instances
in different augmented views of a graph, obtaining feature representations
for graph data in an unsupervised manner without the need for manual
labeling. Most existing node-level graph contrastive learning models only
consider embeddings of the same node in different views as positive sam-
ple pairs, ignoring rich inherent neighboring relation and resulting in cer-
tain contrastive information loss. To address this issue, we propose a het-
erogeneous graph contrastive learning model that incorporates strongly
correlated subgraph features. We design a contrastive learning framework
suitable for heterogeneous graphs and introduce high-level neighborhood
information during the contrasting process. Specifically, our model selects
a strongly correlated subgraph for each target node in the heterogeneous
graph based on both topological structure information and node attribute
feature information. In the calculation of contrastive loss, we perform fea-
ture shifting operations on positive and negative samples based on sub-
graph encoding to enhance the model’s ability to discriminate between
approximate samples. We conduct node classification and ablation experi-
ments on multiple public heterogeneous datasets and the results verify the
effectiveness of the research contributions of our model.

Keywords: Graph representation learning · Contrastive learning ·
Correlated subgraph

1 Introduction

Currently, graph data has become the mainstream representation method for
data in different application scenarios such as social networks and citation net-
works. Graph representation learning, which can learn general low-dimensional
feature representations for data units in the graph that are not oriented towards
specific tasks, has become an effective solution for analyzing graph-structured
data. Among these methods, graph neural network(GNN) models [12,20,34]
based on the “message passing paradigm” update the representations of the tar-
get nodes by aggregating the features of neighbors, achieving good results.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Most existing GNN models adopt a ‘semi-supervised learning paradigm’,
relying on partially annotated label information. In practice, manual labeling
of graph data is costly. In order to study graph data unsupervisedly, graph
contrastive learning(GCL) models [17,32,35,50] maximize the approximation
between the representations of the target sample and similar data instances in
different views by contrasting between positive and negative samples.

Existing GCL models are mostly oriented towards homogeneous graphs, and
there are few GCL models for heterogeneous graphs, which contain multiple
types of nodes and edges. Most existing homogeneous GCL models [35,46,49]
only perform augmentation operations by perturbing and corrupting the struc-
tural and feature information of the graph. This strategy lacks interpretabil-
ity and relies on serendipity, and it is difficult to directly apply to heteroge-
neous graphs. Designing reasonable augmentation and contrasting object select-
ing strategies for heterogeneous nodes and edges is challenging. In addition,
existing node-level GCL models [22,35,41,46] only directly contrast node pair
embeddings while ignoring the semantic features implied by the neighborhood
structure around the node, discarding a large amount of valuable contrasting
information. Accordingly, how to reasonably select heterogeneous neighbors and
use their features during the contrasting process is worth studying.

To address the above issues and obtain effective heterogeneous GCL model,
we make improvements in the following directions:

1. We propose a contrastive model for heterogeneous graph that combines node
attribute and structural characteristics to select less important edges for dele-
tion to complete heterogeneous graph augmentation, and designs an adaptive
strategy in the contrast loss function to determine positive and negative sam-
ples.

2. We propose a strongly correlated subgraph selection method that combines
the PageRank diffusion matrix with the hyperbolic distance between attribute
features, to select a subgraph composed of heterogeneous nodes with high
topological and attribute similarity for each target node.

3. We design a subgraph encoding module that performs space mapping on
nodes within each subgraph according to their types, and obtains the overall
representation of each subgraph through a readout operation. Subsequently,
we use the obtained subgraph features to implement feature shifting opera-
tions during the calculation of contrasting loss to enhance the discriminative
ability of the contrastive model.

4. Node classification experiments on multiple public heterogeneous graph
datasets verify the performance advantages of our model, and multiple abla-
tion experiments demonstrate the improvements brought by each module in
the model.

The rest of this paper is organized as follows: Sect. 2 summarizes the research status
and representative work of graph representation learning and unsupervised GCL.
Section 3 introduces some necessary preliminaries involved in the model. Section 4
provides detailed introductions to each module of our model. Section 5 summarizes
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and reports the experimental performance results of the model on multiple public
datasets. Section 6 summarizes the paper and presents conclusions.

2 Related Work

2.1 Graph Representation Learning

Graph representation learning models were first proposed by Gori M et al. [8,28]
to extract latent features from graph data. The initial shallow embedding models
(including the random walk based methods [9,26,31] and matrix factorization
methods [1,48]) usually treated the target embeddings as model parameters to
optimized during training.

Recently, the introduction of GNN models has greatly improved the per-
formance of graph representation learning. Among GNN models, spectral-based
methods [20,42] typically implement convolution operations for graph data in the
frequency domain using Laplace matrices and Chebyshev polynomials. Spatial-
based methods [12,34] consider graph representation learning as a process in
which each node updates its own representation by aggregating messages from
its neighbors based on the topological structure of the graph, a pattern com-
monly referred to as “message passing” [7].

To deal with the multiple types of nodes and edges in heterogeneous graphs,
heterogeneous models often use auxiliary predefined meta-paths to express com-
pound semantic relationships. For example, Metapath2Vec [4] uses meta-path to
guide the random walk sampling process to obtain shallow embeddings. HAN
[39] integrates embeddings under different meta-path using an attention mecha-
nism. NEP [44] establishes neural network modules corresponding to edge types
and propagates node embeddings along meta-path using a label propagation
algorithm.

Most existing graph representation learning models are defined in Euclidean
space, but some models [10,19,51] choose to define the model in hyperbolic space
to reduce data distortion problems on highly hierarchical data [2,23]. Nickel et
al. [24] proposed a shallow embedding graph model in hyperbolic space. HHNE
[40] uses hyperbolic space distance as the loss function of the model to measure
and optimize the similarity of node embedding representations. HGNN [23] and
HGCN [2] implement similar hyperbolic GNN models using the exponential map.

2.2 Graph Contrastive Learning

Inspired by contrastive models in the image domain [3,15,36,43], GCL models
are typically composed of three parts: data augmentation, encoder encoding,
and contrasting loss calculation. Existing GCL models can be roughly divided
into same-scale and cross-scale contrasting. Same-scale contrasting schemes use
graph data unit instances (such as nodes and nodes) at same scale as contrast
objects. For example, GRACE [49] completes data augmentation through edge
deletion and feature masking, and optimizes the model using node-level infoNCE
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loss. GCA [50] augments both the adjacent and feature matrices, contrasts at
the node level. GraphCL [46] uses different views of the same graph as contrast
objects to maximize their consistency. CSSL [47] introduces node insertion as
extra augmentation operations.

Cross-scale models contrast data instances at different scales. For example,
DGI [35] obtains augmented views by the column shuffling on the feature matrix,
and then maximizes the mutual information between the node embeddings and
the global features obtained by pooling operations. HDGI [27] and ConCH [21]
propose full-graph heterogeneous contrasting models using metapaths. SLiCE
[38] samples a context subgraph for each target node and maximizes the con-
sistency between them. HGCL [18] proposes a novel GCL framework that can
hierarchically capture the structural semantics of graphs at both the node and
graph levels. G-SupCon [30] uses subgraph encoding and multi-scale contrasting
for efficient few-shot node classification.

3 Preliminaries

A graph can be denoted formally as G = (V,E, Φ), where V = (v1, v2, · · · , vN )
denotes the set of all the nodes in the graph and N is the number of nodes. E
represents the set of edges and Φ is the type mapping function. Heterogeneous
graphs contain multiple types of nodes and edges, i.e., |Φ(V )| + |Φ(E)| > 2.
Homogeneous graphs, on the other hand, contain only one type of node and one
type of edge, i.e., |Φ(V )| = |Φ(E)| = 1. Homogeneous graphs can also be written
as G = (A,X), with the adjacency matrix A ∈ [0, 1]N×N and the initial node
feature matrix X = (x1, x2, · · · , xN ). xi ∈ Rd represents the feature of node vi

with dimension d. The graph representation learning model can be represented
by Eq. (1).

f : (V,E,X) → Z ∈ RN×d
′

(1)

In the formula, f is the encoding function such as GNN encoder, Z is the
obtained feature or embedding matrix with dimension d

′ � d. The obtained
low-dimensional representation can be further applied to downstream tasks. As
the most successful direction in graph representation learning, GNNs [12,20,34]
update the representation of the central target node by aggregating neighbors’
features. The aggregation process at the l-th layer can be represented by Eq. (2):

h(l+1) (vi) = σ

⎛
⎝ ∑

uj∈N(vi)

α (vi, uj)h(l) (uj)W (l)

⎞
⎠ (2)

Where σ() is the activation function, the aggregation weight α (vi, uj) is
obtained through an attention mechanism or directly using a normalized adja-
cency matrix. h(l) (uj) represents the feature representation of node uj at layer
l, and W (l) is a trainable parameter matrix.

To avoid reliance on manual labels, GCL models maximize the mutual infor-
mation between node features and their representations. Such models typically
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consists of three modules: data augmentation, encoder encoding, and loss func-
tion calculation. Given a graph input G = (A,X), the i − th data augmentation
operation Ti is applied to the adjacency matrix A and feature matrix X to obtain
different views

∼
Gi, as in Eq. (3):

∼
Gi = Ti (A,X) =

(∼
A,

∼
X

)
(3)

The obtained multiple views are then encoded by the encoder as hi =

f

(∼
Gi

)
. Structural graph augmentation operations mainly include edge pertur-

bation, edge diffusion, etc. The edge perturbation operation can be represented
by Eq. (4):

T (pert)
A (A) = A ∗ (1 − 1p) + (1 − A) ∗ 1p (4)

Where 1p is the location indicator obtained by sampling with probability
p, and its internal elements are 1 or 0. Edge diffusion operations create new
edges based on random walks to obtain a new diffusion matrix that reflects
global information. For example, the Personalized PageRank matrix T (PPR)

A

can be represented by Eq. (5), where α represents the random walk transition

probability and
∼
D is the symmetric diagonal matrix with

∼
A = A + IN and

∼
Dii =

∑N
j=1

∼
Aij .

T (PPR)
A = α

(
In − (1 − α)

∼
D

−1/2∼
A

∼
D

−1/2
)−1

(5)

After obtaining the embeddings corresponding to different views, GCL mod-
els perform unsupervised training of the model by maximizing the mutual
information, which can be calculated by the Kullback-Leibler (KL) divergence,
between them. To improve computational efficiency, in practice, GCL models
usually approximate the lower bound of mutual information using several esti-
mators. For example, when calculating the contrast loss for node embeddings h
and h

′
obtained from views G and G

′
using the infoNCE estimator [11], Eq. (6)

can be used:

LinfoNCE = − 1
N

N∑
i=1

Li
infoNCE

= 1
N

N∑
i=1

log
∑

j∈P OSi
e

D(hi, h
′
j)/τ

∑
j∈P OSi

e
D(hi, h

′
j
)/τ

+
∑

k∈NEGi
eD(hi, h

′
k
)/τ

(6)

Where POSi and NEGi represent the positive and negative example sets of
node i, respectively. The discriminator D : Rd × R

d → R is used to measure the
approximation between two embedding results, and the temperature coefficient
τ is usually used as a hyperparameter to control the degree of smoothness.
Optimizing the above loss function makes the similarity scores between positive
pairs much higher than those between negative pairs.
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4 Method

4.1 Overall Framework

Similar to conventional GCL models, as shown in Fig. 1, our model is also com-
posed of three modules: data augmentation, encoder encoding, and contrastive
loss calculation. Each module is introduced below.

Fig. 1. Model framework

Data Augmentation. MVGRL [14] pointed out that data augmentation oper-
ations in the feature space degrades the performance of the model. There-
fore, we choose to perform augmentation operations on the topological struc-
ture in our model. Specifically, we perform edge deletion augmentation opera-
tions on subgraphs corresponding to heterogeneous edges. Compared to exist-
ing models [32,49] that randomly select edges to delete, we choose to use fol-
lowing Eq. (7) to calculate the hyperbolic distance [2] between the features of
the two endpoints of each edge of type e, with the Lorentzian scalar product
〈x,y〉L = −x0y0 +

∑d
i=1 xnyn and the trainable negative curvature k, to better

capture hierachical characteristic.

dk
L (x,y) =

√
karcosh

(
−〈x, y〉L

k

)
(7)

Then we use Eq. (8) to normalize the distance to the range [0, 1]:

de
i =

de
i − de

min

de
max − de

min

(8)
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Afterwards, we use the Bernoulli distribution to sample edges of type e,
which can be expressed by Eq. (9), where me is the number of edges of the
corresponding type.

Be =
(
Bernouli (de

1) , · · · , Bernouli
(
de

me

))
, Be ∈ [0, 1]1×me (9)

After that, we select the edges corresponding to the sampling value of 1 for
edge deletion accordingly and obtain the augmented adjacency matrix Ae

′
. After

repeating this process for different types of subgraphs, we merge the subgraphs to
complete the multi-subgraph augmentation operation for heterogeneous graphs
and obtain the augmented view G

′
.

Encoder Encoding. As shown in Fig. 1, we use GNN and MLP(multi-layer per-
ceptron) to encode different data views to obtain the embedding matrices H and
H

′
. We propose a heterogeneous strongly correlated subgraph selection strategy

to better utilize the high-order neighborhood characteristics, which selects nodes
with high correlation in the graph for each node to form a strongly correlated het-
erogeneous subgraph GSUB and introduces a heterogeneous subgraph encoding
module ENCSUB . This allows each node to obtain the corresponding subgraph
representation. Then we concat all subgraph encodings to obtain the subgraph
feature matrix S. The selection strategy and encoding implementation of the
strongly correlated subgraph will be introduced in detail in Sect. 4.2.

Contrastive Loss Calculation. Most existing node-level graph contrastive
models merely use the representation of the target node in another view as the
only positive sample. Intuitively, more contrastive information can be provided
by adding similar nodes into positive set. In heterogeneous graphs, there are
multiple types of nodes, and it is not reasonable to introduce first-order neighbors
as positive examples as in [22]. To solve this problem, we propose a positive
example expansion strategy that integrates topological and feature information
to select similar nodes in heterogeneous graphs.

First, we use the graph diffusion matrix Πppr based on personalized Pager-
ank [25] proposed in APPNP [6] to calculate the importance between nodes from
the topological structure level and select the relevant node set. The expression
of Πppr is shown in Eq. (5), where the element Π(i,j)

ppr represents the impor-
tance between nodes i and j that integrates high-order topological information.
Afterwards, for the target node i, we select the top 2K elements in terms of
importance score and preliminarily determine a strongly correlated set through
the corresponding node index function idx. This process can be expressed by
Eq. (10).

POSppr
i =

{
idx

(
TOP

(
Πppri, 2K

))}
(10)

Afterwards, in order to use node attribute features, we also use hyperbolic
distance as a similarity measurement to further filter and select similar nodes. In
the screening process, we only select nodes of the same type as the target node
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from the qualified nodes to obtain the final positive example set. This process is
shown in Eq. (11).

POSi =
{

j
∣∣∣j ∈ idx

(
TOP

(
d

(
Xi,XPOSppr

i

)
, K

))
∩ Φ(i) = Φ(j)

}
(11)

In the above formula, we calculate the K nodes with the smallest hyperbolic
distance between features and select nodes of the same type as the target node
i through the type mapping function Φ as the final target positive example set.
Accordingly, we regard all other nodes of the same type outside the positive
example set as negative examples of target node i, as shown in Eq. (12):

NEGi = {j |j ∈ (V − POSi) ∩ Φ(i) = Φ(j)} (12)

Afterwards, as shown in Fig. 1, we perform a feature shifting operation dur-
ing contrastive loss calculation. The specific implementation will be given in
Sect. 4.3.

4.2 Strongly Correlated Subgraph Selection and Encoding

Strongly Correlated Subgraph Selection. In order to utilize the high-order
neighborhood information in node-level heterogeneous GCL models, we choose
to sample and select several nodes with high similarity for each target node to
form a strongly correlated heterogeneous subgraph. Specifically, first, we use the
personalized Pagerank [25] graph diffusion matrix Πppr to initially select a set
of similar nodes for the target node i. This process can be expressed by Eq. (13),
which retains 2K nodes with the highest Πppr correlation score with the target
node i, where K is a hyperparameter used to control the scale of the strongly
correlated subgraph. When K increases, the larger strongly correlated subgraph
contains more neighborhood information, but it will also cause the correlation
of the nodes within the subgraph to decrease.

G_SUBppr
i =

{
idx

(
TOP

(
Πppri, 2K

))}
(13)

Then we also further screen the set based on the hyperbolic feature distance
between the attribute features of the elements within the set and the target node
i. This process is shown in Eq. (14). When the attribute feature distance between
any node and the target node is small, their correlation is high.

G_SUBi =
{

j
∣∣∣j ∈ idx

(
TOP

(
d

(
Xi,XG_SUBppr

i

)
, K

)) }
(14)

Unlike the positive example expansion strategy in Sect. 4.1, the subgraph
selection does not impose restrictions on node types, which means that the set
G_SUBi may contain nodes of different types from the target node i. In fact,
heterogeneous nodes in the original graph that are highly associated with the
target node can also provide valuable contrastive information if selected.
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Heterogeneous Subgraph Encoding. In order to learn a unified representa-
tion for the multi-type nodes within the strongly correlated subgraph as the over-
all feature, we introduce an additional heterogeneous subgraph encoder. Specif-
ically, given the embedding matrix H obtained by the GNN encoder, for the
target node vi and the Φ(j)-typed node vj in its strongly correlated subgraph
set G_SUBi, we first perform space mapping based on the node type. This
process can be expressed by Eq. (15), where SΦ(j) is a space mapping encoder
composed of a type-specific linear transformation and an activation function.

S
(j)
i = SΦ(j) (Hj) (15)

After that, we use the readout operation to integrate the features of all nodes
within the set into a vector with a dimension of 1×d

′
, which serves as the overall

representation of the subgraph corresponding to the target node i. This process
can be expressed by Eq. (16), where the Readout function can be implemented
using mean or max pooling operations.

Si ∈ R1×d
′
= Readout

({
S
(j)
i |j ∈ GSUBi

})
(16)

Accordingly, we can obtain the subgraph feature matrix composed of the
subgraph features of all target nodes, which can be expressed by Eq. (17):

S = Concat ({Si |vi ∈ V }) (17)

4.3 Feature Shifting and Loss Calculation

After obtaining the subgraph feature matrix S, we will use this matrix to perform
feature shift operations on the embedding H

′
obtained from the augmented view

G
′
to obtain the shifted embedding matrix Hs. The feature shift process is shown

in Fig. 2. In the figure, after obtaining the feature of the strongly correlated
subgraph containing multiple types of nodes (corresponding to the green virtual
node in the figure), positive and negative samples of the same type as the blue
target node are respectively shifted along the direction of the virtual subgraph
feature, and the features obtained after shifting correspond to nodes with blue
stripes.

After the feature shifting, positive samples will move away from the target
node to a certain extent in the embedding space, while negative samples will
move closer. Since the optimization process of contrastive learning will learn
similar representations for positive sample pairs, after feature shifting, the model
will reduce the distance between the target node and farther-moved positive
samples, thereby making the embeddings of original positive samples closer to
the target node. Similarly, the model will increase the distance between the
target node and closer-moved negative samples, thereby making the embeddings
of original negative samples further away from the target node. However, during
testing, we will not perform feature shift operations, which makes the model
more discriminatable between positive and negative samples on the test set.
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Fig. 2. Sample feature shifting

The above feature shifting process can be expressed by Eq. (18), where the
weight coefficient α is a hyperparameter.

Hs = H
′
+ α ∗ S (18)

After feature shifting, we compare the embedding matrix H obtained from
the input of the original graph with Hs and calculate the infoNCE loss.
This process is shown in Eq. (19), where inter-pos loss term SS(hi, pos) =
∑

j∈POSi
e

D(hi,hS
j )

τ and intra-neg loss term S(hi, neg) =
∑

j∈NEGi
e

D(hi,hj)
τ ,

POSi and NEGi are defined in Eq. (11) and Eq. (12), respectively.

L =
N∑

i=1

log
SS(hi, pos) + S(hi, pos)

SS(hi, pos)︸ ︷︷ ︸
inter−pos

+ S(hi, pos)︸ ︷︷ ︸
intra−pos

+ S(hi, neg)︸ ︷︷ ︸
intra−neg

+ SS(hi, neg)︸ ︷︷ ︸
inter−neg

(19)

5 Experiments

We evaluate the model’s performance on three public heterogeneous graph
datasets through node classification tasks, answering the following research ques-
tions (RQ):

– RQ1: How does our model work under node classification tasks compared to
the state-of-the-art comparison models?

– RQ2: How do the principal components of our model influent the perfor-
mance?
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5.1 Experiment Setup

Dataset and Metrics. We selected three heterogeneous graph datasets1 and
used Micro-F1 and Macro-F1 in the node classification task as the metrics. The
information of each dataset is given in Table 1. We randomly split 80% of the
target nodes for training and 20% for testing and report the average score for
ten random seeds for each set of hyperparameters.

Table 1. Dataset information

Dataset Node-type # Nodes Edge-type # Edges

ACM Author 7167 Author-Paper
Paper-Subject

13407
4019

Paper 4019
Subject 60

IMDB Actors 4353 Actors-Movies
Movies-Directors

11028
3676

Movies 3676
Directors 1678

DBLP Author 2000 Author-Paper
Paper-Conference

18304
9556

Paper 9556
Conference 20

Comparison Methods. We selected several representative node-level graph
representation learning models as comparison methods. Specifically, these
include: two supervised homogeneous graph representation learning models:
Deepwalk [26] and Line [31]; six supervised heterogeneous graph representa-
tion learning models: DHNE [33], Metapath2vec [4], Hin2vec [5], HERec [29],
HeGAN [16] and ie-HGCN [45] (SOTA); DGI [35], BGRL [32], GRACE [49] and
MVGRL [14]. The SOTA of the heterogeneous GCL models: HDGI [27].

We chose HeteroGraphConv2 implemented in DGL [37] as the encoder of our
model and we chose the discriminator function as dot-product. We implemented
all methods on a Tesla V100-32 GPU. The relevant comparison methods mainly
refer to OpenHGNN [13] and PyGCL3. We optimize the hyper-parameters with
Optuna4.

1 https://github.com/Andy-Border/NSHE.
2 https://docs.dgl.ai/generated/dgl.nn.pytorch.HeteroGraphConv.html.
3 https://github.com/PyGCL/PyGCL.
4 https://github.com/optuna/optuna.

https://github.com/Andy-Border/NSHE
https://docs.dgl.ai/generated/dgl.nn.pytorch.HeteroGraphConv.html
https://github.com/PyGCL/PyGCL
https://github.com/optuna/optuna
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5.2 Results and Analysis (RQ1)

The results of the node classification experiment are shown in Table 2, where the
best result on each dataset is denoted with bolded text. From the results, the
performance of supervised and unsupervised learning models among comparison
methods is not much different. On the DBLP and IMDB datasets, unsupervised
models even have a certain lead, reflecting the potential of unsupervised models.
Within unsupervised GCL models, the overall performance of cross-scale models
DGI and HDGI is significantly behind other contrastive models. This indicates
that on heterogeneous graphs, directly contrasting the features of multiple types
of nodes to obtain global representations does not conform to the data charac-
teristics and degrades model performance.

Compared with the SOTA unsupervised comparison model, our model
shows a 4.5% performance improvement based on the performance across three
datasets. Compared with contrastive learning models DGI and HDGI, which also
hope to introduce global information, our model has obvious advantages in per-
formance. This shows that compared with global feature contrasting, strongly
correlated subgraph features with finer granularity can better reflect the neigh-
borhood characteristics of target nodes and achieve significant improvement.
Compared with supervised models, our model also outperforms all comparison
methods with at least a 2.6% performance improvement, except for slightly lower
than ie-HGCN on the ACM dataset.

Table 2. Overall result of node classification

Model IMDB ACM DBLP
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

SUPERVISED DeepWalk 56.52 55.24 82.17 81.82 89.44 88.48

LINE-1st 43.75 39.87 82.46 82.35 82.32 80.20

LINE-2nd 40.54 33.06 82.21 81.32 88.76 87.35

DHNE 38.99 30.53 65.27 62.31 73.30 67.61

Metapath2Vec 51.90 50.21 83.61 82.77 89.36 87.95

HIN2Vec 48.02 46.24 54.30 48.59 90.30 89.46

HERec 54.48 53.46 81.89 81.74 86.21 84.55

HeGAN 58.56 57.12 83.09 82.94 90.48 89.27

ie-HGCN 56.33 47.32 86.29 86.14 90.55 89.30

UNSUPERVISED DGI 36.46 33.69 49.03 27.31 89.95 88.78

GRACE 52.73 50.21 85.56 85.29 90.21 89.12

MVGRL 56.25 54.99 81.97 81.22 90.12 89.14

BGRL 54.28 53.04 82.76 82.33 89.22 87.90

HDGI 38.67 34.13 74.58 71.43 85.14 82.77

Our method 60.79 59.94 85.89 85.81 91.20 90.18
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5.3 Ablation Study (RQ2)

In this paper, we propose a heterogeneous GCL model that integrates strongly
correlated subgraph features based on topological similarity and hyperbolic fea-
ture similarity. After encoding the subgraph features, we perform feature shifting
on positive and negative samples during the contrasting process. In order to ver-
ify the impact of the above design on the model, we selected the following two
model variants for ablation experiments: (1) W/O HR: when selecting corre-
lated subgraphs, nodes are randomly selected without calculating node similar-
ity to form strongly correlated subgraphs. (2) W/O FS: During the contrasting
loss calculation, no feature shifting operation is performed. This variant can be
achieved by setting the parameter α in Eq. (18) to 0. The results of the two
variants against the complete model are shown in Table 3.

From Table 3, it can be seen that both the strongly correlated subgraph
selection strategy and the feature shifting operation have a certain improvement
effect on model performance. The results show that the subgraph set randomly
selected by W/O HR has low correlation, and the obtained subgraph features
cannot reflect the neighborhood information of the target node. The feature
shifting operation based on this feature will reduce the performance of the model.
The performance of W/O FS on all datasets is also lower than that of the
complete model, which reflects that the feature shifting can improve the effect
of the contrastive model on specific samples.

Table 3. Ablation study

Model IMDB ACM DBLP
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

W/O HR 57.31 56.22 84.47 83.61 88.93 88.84

W/O FS 58.05 57.01 84.72 84.13 89.96 89.83

Our complete model 60.79 59.94 85.89 85.81 91.20 90.18

6 Conclusions

In this paper, we propose a heterogeneous GCL model that integrates strongly
correlated subgraph features. This method aims to introduce high-order neigh-
borhood information into node-level contrastive tasks. To this end, the model
first selects a strongly correlated subgraph for each target node, which contains
nodes of different types with high topological similarity and feature similarity.
Afterwards, the model introduces a subgraph encoding module, which obtains
a unique overall feature for the strong subgraph of each target node through
node-type space mapping and readout operations. During the calculation of con-
trastive loss, we perform feature shifting operations on the positive and negative
sample features of the target node with the subgraph features, respectively. This
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operation enables the model to learn more discriminative representations for
similar contrasting samples. We tested the effectiveness of our model on multi-
ple public heterogeneous graph datasets, and the results proves that our model
is superior to the SOTA unsupervised contrastive model. Ablation experiments
also shows that both the strongly correlated subgraph selection strategy and
feature shifting operation can improve the performance of the model.
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Abstract. Oriented object detection has gained popularity in diverse fields. How-
ever, in the domain of two-stage detection algorithms, the generation of high-
quality proposals with a high recall rate remains a formidable challenge, especially
in the context of remote sensing images where sparse and dense scenes coexist. To
address this, we propose the DRPDDet method, which aims to improve the accu-
racy and recall of proposals for Oriented target detection. Our approach involves
generating high-quality horizontal proposals and dynamically decoding them into
rotated proposals to predict the final rotated bounding boxes. To achieve high-
quality horizontal proposals, we introduce the innovative HarmonyRPN module.
Thismodule integrates foreground information from theRPNclassification branch
into the original feature map, creating a fused feature map that incorporates multi-
scale foreground information. By doing so, the RPN generates horizontal propos-
als that focus more on foreground objects, which leads to improved regression
performance. Additionally, we design a dynamic rotated proposals decoder that
adaptively generates rotated proposals based on the constraints of the horizontal
proposals, enabling accurate detection in complex scenes. We evaluate our pro-
posed method on the DOTA and HRSC2016 remote sensing datasets, and the
experimental results demonstrate its effectiveness in complex scenes. Our method
improves the accuracy of proposals in various scenarios while maintaining a high
recall rate.

Keywords: Oriented object detection · Harmony RPN · Foreground
information · Dynamic rotated proposals decoder

1 Introduction

Remote sensing images, with their diverse applications inmilitary reconnaissance, urban
planning, disaster monitoring, and more, have become increasingly significant with the
advancement of remote sensing technology. Object detection plays a vital role as a
key technique in remote sensing image processing. Significant advancements have been
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made in deep learning-based object detection methods such as DETR [1], RetinaNet
[2], EfficientDet [3] and many others [4–6] in recent years. However, these methods are
designed to detect objects within horizontal rectangular boxes, which poses challenges
in accurately detecting rotated objects in remote sensing datasets with large aspect ratios
and dense arrangements. The limitations of these methods result in incomplete coverage
of rotated objects and their susceptibility to interference from surrounding elements. To
overcome this challenge, researchers have proposed various rotated bounding box object
detection methods [7–10]. These methods generate rotated prediction boxes to better fit
the rotated objects found in remote sensing imagery. The proposed approaches can be
generally categorized into single-stage and multi-stage methods.

In the realm of single-stage methods, several strategies build upon the fundamen-
tal principles of RetinaNet. For instance, S2ANet [11] creatively integrates a feature
alignment module for optimal feature alignment along with an active rotation filter.
This innovative structure enables the classification and regression branches to leverage
unique features to tackle the problem of rotational invariance. Simultaneously, R3Det
[12] employs deformable convolution and overlapping pooling techniques to create a
refinement stage, effectively handling changes in object orientation and scale. RSDet
[13] advances this approach further by introducing a residual rotation-sensitive unit.
This unit enables the model to directly extract rotational features from the input feature
maps, thereby improving the accuracy and robustness of detecting rotated objects.

On the other hand, multi-stage methods often adopt an anchor-free frame approach.
For instance, EARL [14] employs an adaptive rotation label assignment strategy using
an elliptical distribution. AOPG [15] improves the accuracy of oriented object detection
through a direction-aware candidate box generation strategy. In a similar vein, DCFL
[16] proposes a dynamic prior and a coarse-to-fine allocator to dynamically model prior
information, label allocation, and object representation. This approach effectively alle-
viates issues of misalignment. Nevertheless, anchor-free methods often face a reduction
in accuracy due to the lack of prior information typically provided by anchor boxes.

In multi-stage methods that utilize anchor boxes, the design of anchor boxes and
proposals boxes has emerged as a significant area of research for rotating object detection.
For instance, RRPN [17] introduces multiple anchor with varying angles, scales, and
aspect ratios during the generation of rotated proposals. However, using multiple rotated
anchor leads to an abundance of redundant candidate boxes, which in turn increases
the computational burden and complexity in subsequent processing. Moreover, these
methods heavily rely on carefully tuning the anchor settings and parameters, require
additional adjustments and adaptability analysis on different datasets and scenarios.

To address these challenges, GlidingVertex [18] proposes a solution that generates
horizontal proposals using a reduced number of horizontal anchor, effectively mitigating
the issue of redundancy among candidate boxes. Nevertheless, AOPG’s research reveals
that in dense object arrangement scenarios, horizontal proposals often encompass mul-
tiple objects, posing difficulties for accurate target localization and classification within
horizontal ROIs by RoIHead. Additionally, as horizontal proposals serve as the hori-
zontal bounding box for regression targets, their shapes and sizes differ significantly
from the actual regression targets. This mismatch compromises the model’s robustness.
To ensure the accuracy of proposals, some methods, such as AOPG, SCRDet [19],
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generate rotated proposals based on horizontal anchor. Conversely, research by R3Det
suggests that rotated anchor outperforms horizontal anchor in dense scenes, while the
latter achieve higher recall rates in sparse scenes. Notably, horizontal proposals are better
suited for targets with large aspect ratios, as they provide more comprehensive coverage
of the overall target position. As a result, approaches like R3Det and RoI Transformer
[20] adopt a multi-stage methodology. In the initial stage, horizontal proposals are gen-
erated, and in the subsequent stage, rotated proposals are derived based on the initial
horizontal proposals. However, the introduction of this two-stage process adds an extra
learning stage, resulting in increased model complexity and additional training time
costs.

In this study, we introduce a novel approach for Oriented object detection by propos-
ing a dynamic rotated proposals decoder that adaptively generates rotated proposals
based on the constraints of horizontal proposals. This approach effectively combines the
strengths of both horizontal and rotated proposals, enables adaptability in dense scenes,
and achieves high recall rates in sparse scenes. Our method has an important advantage
in that it does not require an additional learning stage, and this preserves the efficiency of
network training and inference. However, it is worth noting that this approach imposes
higher precision requirements on horizontal proposals. In order to address this challenge,
we introduce a dedicated module called HarmonyRPN, which is designed to meet the
precision needs of horizontal proposals. In HarmonyRPN, we integrate the multi-scale
foreground information predicted by the RPN classification branch with the original fea-
ture map generated by the FPN. Subsequently, the fused feature map is fed into the RPN
bounding box branch to generate proposals. Through this design, we leverage the fore-
ground information extracted by the RPN classification branch, leading to a significant
improvement in the accuracy of horizontal proposals.

Our research has made notable contributions in the following three aspects:

• We propose a novel dynamic rotated proposals decoder that intelligently generates
rotated proposals based on the constraints of horizontal proposals. By leveraging the
strengths of both horizontal and rotated proposals, our decoder significantly improves
the accuracy and recall rate of object detection across various scenarios.

• We have designed a novel module called HarmonyRPN, which enhances the perfor-
mance of the bounding box branch by integrating multi-scale foreground information
with the original feature map.

• We successfully integrate the proposals decoder and HarmonyRPN module into the
Faster R-CNN architecture, leading to significant performance improvements. Exper-
imental results demonstrate the effectiveness of our approach, achieving an impressive
mAP of 75.97% on the DOTA dataset and demonstrating robust performance on the
HRSC2016 dataset.

2 Proposed Method

2.1 The Overall Network Framework of DRPDDet

The workflow and submodules of our proposed method are outlined as follows. The
whole framework of DRPD Det is depicted in Fig. 1.(a). We employ ResNet [21] as
the backbone network to extract image features and utilize the FPN [22] to fuse multi-
scale feature maps. The Harmony RPN module is then employed to generate accurate
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horizontal proposals, which are dynamically decoded by DRPD Module into rotated
proposals. The feature maps corresponding to the rotated proposals are subsequently
inputted into the classification and regression branches of Rotated ROI (Rotated Region
of Interest) for multi-class probability prediction and rotation prediction box regression.

Fig. 1. The overall framework of DRPDDet.

The structure of Harmony RPN is illustrated in Fig. 1. (b). It performs hierarchical
fusion across scales by combining the feature maps which outputted by FPN with the
score matrix from the RPN classification branch. Subsequently, the fused feature maps
are inputted into the RPN bounding box branch to generate horizontal proposals. The
decoding process of the DRPD is illustrated in Fig. 1. (c). After obtaining the horizontal
proposals, a series of rotated proposals is dynamically generated based on the constraints
of the horizontal proposals.

2.2 Harmony RPN

When the RPN classification network predicts the foreground scores for anchor boxes of
different shapes at each feature point on the feature map, we can utilize the foreground
scores of anchor boxes at various positions and shapes to predict the potential locations
and shapes of the proposed boxes. This information can serve as prior knowledge for
the RPN bounding box network, guiding the generation of proposed box positions and
shapes.

As depicted in Fig. 2 when the RPN bounding box branch predicts the offset of
the black box, the left image illustrates that the foreground scores of the surrounding
anchor provide prior information about the center point (x, y) of the black box. The right
image demonstrates that the foreground scores of the surrounding anchor provide prior
information about the shape size (w, h) of the black box.

Additionally, we observed that there are variations in the score matrices of different
scales due to differences in receptive fields, scale, and resolution at each feature point
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Fig. 2. Utilizing Anchor Foreground Scores for RPN Bounding Box Prediction.

Fig. 3. Cross-Scale Hierarchical Fusion Strategy in Harmony RPN.

[23]. However, these score matrices of different scales still offer guidance for anchor at
other scales. For instance, on a large-scale feature map, the foreground scores from a
small-scale featuremap can provide crucial prior information about size when predicting
larger bounding boxes [24].

Therefore, we adopt a cross-scale hierarchical fusion strategy to merge the output
featuremaps from theFPNand the foreground scorematrices from theRPNclassification
branch. This strategy enables the integration ofmulti-scale foreground score information
for each feature map, which is used for the prediction of RPN bounding box branches.
As illustrated in Fig. 3 during the fusion process, we initially employ the FPN feature
fusion network to generate five feature maps of different scales. These feature maps have
dimensions of H × W × 256, H/2 × W/2 × 256, H/4 × W/4 × 256, H/8 × W/8 ×
256, and H/16 × W/16 × 256, respectively, and are denoted as C1, C2, C3, C4, and C5.
Here, H and W represent the height and width of the smallest-scale feature map, while
K denotes the number of anchor boxes generated per feature point.
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For C1, we first obtain a foreground score matrix of size H × W × K through a
3 × 3 convolutional layer of the RPN classification branch. Then, we concatenate this
foreground score matrix to the back of C1, resulting in a feature map of size H × W ×
(256 + K) denoted as C

′
1. Similarly, we perform the same operation on C2. We obtain a

foreground score matrix of size H/2 × W/2 × K through a 3 × 3 convolutional layer of
the RPN classification branch. Before concatenating this foreground score matrix with
C2, we downsample the foreground score matrix of C1 to obtain a size of H/2 × W/2
× K. Then, we add this foreground score matrix to the foreground score matrix of C2,
producing the fused foreground score matrix C

′
2. The same operation is applied to C3,

C4, and C5.
Specifically, the fusion process for each layer is as follows:

S(Ci) = RPN_cls(Ci) + Pool(RPN_cls(Ci−1)), i ∈ [2, 5] (1)

Ci′ = Ci ⊕ S(Ci) (2)

C1′ = C1 ⊕ RPN_cls(C1) (3)

Y = L(C1′,C2′,C3′,C4′,C5′) (4)

S(Ci) represents the foreground scorematrices beforemulti-scale fusion. RPN_cls(·)
denotes the score matrices generated by the RPN classification branch. Pool(·) denotes
the pooling operation. L(·) combines the feature maps into a multi-scale feature map.
C1′,C2′,C3′,C4′,C5′ represents the final fused feature map containing the multi-scale
foreground information. ⊕ represents concatenation.

Finally, the fusedmulti-scale foreground information featuremap is fed into the RPN
bounding box branch. In parallel, we adjust the input channel of the 3 × 3 convolutional
layer in the RPN bounding box branch to 256 + K and set the output channel to 15,
facilitating the prediction of bounding box parameters for horizontal proposals. This
completes the construction of Harmony RPN.

Fig. 4. Visualization of 2000 proposals Generated by RPN and Harmony RPN.

To assess the performance of Harmony RPN, we conducted a series of visualiza-
tion experiments to compare the generated proposals using different methods. Figure 4
shows the results, where the first row presents 2000 proposals generated by the conven-
tional RPN. It can be observed that these proposals are relatively scattered and have low
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accuracy in terms of position and size. In contrast, the proposals generated by Harmony
RPN (second row) concentrate strongly around the target objects, leading to a signifi-
cant improvement in proposals accuracy. This outcome substantiates the superiority of
Harmony RPN.

2.3 Dynamic Rotated Proposals Decoder (DRPD)

In this research module, our purpose is to maximize the utilization of information from
horizontal proposals to generate more accurate rotated proposals without introducing
additional learning stages. We have observed that the aspect ratio of the horizontal pro-
posals directly impacts the angle range of the rotated proposals. Specifically, as the aspect
ratio of the horizontal scheme increases, the angle range of the rotation schemedecreases,
and the amount of information provided by the horizontal scheme also increases accord-
ingly. This is because, during the training of the RPN bounding box network, we utilize
the horizontal bounding box of the rotated ground truth boxes as the labels. After the
RPN stage training, the final predicted rotated proposals can be considered as inscribed
rotated rectangles obtained from the horizontal proposals. Our calculations reveal that
the angle range of these inscribed rotating rectangles is constrained by the aspect ratio
of the horizontal proposals (as depicted in Fig. 5).

Fig. 5. Non-Inscribed Rotated Rectangle when the Rotation Angle Exceeds the Range.

During the generation of rotated proposals, our primary purpose is to exclude boxes
with angles that fall outside a specific range. Among the rotated proposals that meet the
angle range requirement, we design four inscribed rotated boxes with different angles
and aspect ratios to optimize the recall rate for various objects [25] while minimizing the
number of generated rotated proposals. By adopting this approach, we make the best use
of prior information derived from the aspect ratio of the horizontal proposals, leading
to the successful decoding of four rotated proposals. During the process of designing
the four vertices of the rotated proposals based on the four vertices of the horizontal
proposals, we adhere to the following three principles: 1. The four vertices of the rotated
proposals lie on the four edges of the horizontal proposals; 2. The rotated proposals are
in the form of rotated rectangles; 3. We strive to ensure the robustness of the rotated
proposals as much as possible.

Figure 6 illustrates the precise process of decoding four rotated proposals from a
given horizontal proposal. Initially, as depicted in Fig. 6. (a), we designate the longer
side of the horizontal proposals as ‘h’, the shorter side as ‘w’, and the center point as ‘x, y’.
If the longer side ‘h’ corresponds to the left and right sides of the horizontal proposals,
we select the top-left corner of the horizontal proposals as the first point, denoted as
A1. On the other hand, if the longer side corresponds to the top and bottom sides of
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Fig. 6. Illustration of the DRPD Decoding Process.

the horizontal proposals, we choose the top-right corner of the horizontal proposals as
the first point, also denoted as A1. Starting from point A1, we systematically assign
the remaining three points in a clockwise direction, resulting in the construction of the
rotated proposals, represented by the vertices A1, A2, A3, and A4, which form the
quadrilateral A1A2A3A4. We determine the first vertex A1′ of the rotated proposals on
the A1A4 side of the inscribed rotated rectangle. To ensure that the rotated proposals
has an angle of 90 degrees and that all four vertices lie on the edges of the horizontal
proposals, the distance L between A1′ and A1 must fall within a specific range known
as the constrained range. The computation of the constrained range is as follows:

By considering the center point O of the horizontal proposals A1A2A3A4 as the
center of a circle with a radius of h/2, we find the intersection point J between the
circle and the A1A4 side. In order to satisfy the conditions of the rotated proposals
having a 90 degree angle and all four vertices simultaneously lying on the edges of the
horizontal proposals, the first vertex A1′ can only exist on the line segment between A1,
J. Therefore, we can calculate the constrained range of the distance L. The constrained

range of L is given by: [0, ( h2 −
√(

h
2

)2 − (w
2

)2
)/h]∪[( h2 +

√(
h
2

)2 − (w
2

)2
)/h, 1]. From

the derived formula, it is evident that an increase in the aspect ratio of the horizontal
proposals leads to a decrease in the constrained range. Consequently, the range for the
existence of the first vertex of the rotated proposals becomes smaller, providing stronger
prior information. The detailed procedure for generating rotated proposals utilizing this
prior information is as follows:

In this paper, we set one vertex A1′ of the rotated proposals as the midpoint between
points A1 and J. Taking O as the center and h/2 as the radius, as depicted in Fig. 6. (b),
we find the points where the circle intersects with A1A2, A2A3, and A3A4, respectively.
The intersection points between the circle and A1A2, along the A1 → A2 direction, are
denoted as A2′ and A2′′, while the lower intersection point between the circle and A2A3
is denoted as A3′. The intersection points between the circle and A3A4, along the A3
→ A4 direction, are denoted as A4′ and A4′′.

With these points, we obtain two rotated proposals with vertex coordinates
(A1′,A2′,A3′,A4′) and (A1′,A2′′,A3′,A4′′). Next, as depicted in Fig. 6 (c), we hor-
izontally mirror flip the two obtained rotated proposals with the center O, resulting in
another two rotated proposals. Through these steps, we can directly convert one hori-
zontal proposals into four rotated proposals. In this way, based on the high recall rate of
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horizontal suggestion boxes, we use dynamic decoding to obtain more accurate rotated
proposals for final and accurate regression.

Once the four vertices of the rotated proposals are known, we calculate to obtain the
parameters of the rotated proposals in the long-edge representation form (x, y,wj, hj, θj),
where j = 1, 2, 3, 4 represents the four types of rotated proposals. Based on the label
(x∗, y∗,w∗, h∗, θ∗), we can calculate the true offset values for the four types of rotated
proposals:

L∗
x(j) = x∗ − x

wj
,L∗

y(j) = y∗ − y

hj
(5)

L∗
w(j) = log

(
w∗

wj

)
,L∗

h(j) = log

(
h∗

hj

)
(6)

L∗
θ (j) = θ∗ − θj

π
(7)

Based on the parameters predicted by the Rotated ROI bbox
headLx′(j),Ly′(j),Lw′(j),Lh′(j),Lθ ′(j), we can compute the loss function of theRotated
ROI bbox head:

Lreg
(
Ln′(j),L∗

n(j)
) = smoothL1

(
Ln′(j) − L∗

n(j)
)
, n ∈ [x, y,w, h, θ ] (8)

By augmenting the training with various angles, we can enhance the rotation sen-
sitivity of the Rotated ROI bounding box head [26]. Simultaneously, the class labels
assigned to the four types of rotated proposals remain consistent with those assigned to
the horizontal boxes, thereby increasing the rotation invariance of theRROI classification
head [27, 28].

3 Experiments

3.1 Datasets

This section introduces two datasets used in the experimental part: DOTA and
HRSC2016. These datasets are widely employed in the field of object detection to assess
the performance of algorithms on aerial remote sensing images.

DOTA Dataset: The DOTA (A Large-scale Dataset for Object Detection in Aerial
Images) is a comprehensive dataset for aerial object detection. It comprises 2806 aerial
images sourced from Google Earth satellite imagery. The dataset consists of a wide
range of object categories, such as airplanes, ships, vehicles, basketball courts, andmore.
The images cover a wide range of scenes, such as urban areas, rural areas, and ports.
DOTA provides meticulous bounding box annotations, rotated box coordinates, and
object category information, enabling the evaluation of detection algorithms’ accuracy
and robustness in complex remote sensing images.
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HRSC2016 Dataset: The HRSC2016 (High-Resolution Ship Dataset) is a specialized
dataset specifically tailored for ship detection in high-resolution aerial images. It encom-
passes 1061 aerial images acquired from Google Earth, featuring various types of ships
like cargo ships, cruise ships, and bulk carriers. Each image is accompanied by rotated
bounding box annotations and object category information for the ships. TheHRSC2016
dataset is characterized by its high resolution and complex object shapes, rendering it
suitable for evaluating the performance of aerial image object detection algorithms in
ship detection tasks.

3.2 Experimental Details

This section provides detailed information about the implementation. For the DOTA
dataset, In order to achieve simplicity and efficiency, we employed a pre-trained ResNet-
50 as the backbone network, which had been pre-trained on the ImageNet dataset. Unless
explicitly stated, FPN was utilized as the neck network. The hyper parameter settings
used were consistent with those of Rotated Faster R-CNN. Notably, the number of
rotated proposals (RCNN) was set to 2048. We employed stochastic gradient descent
(SGD) as the optimizer, with an initial learning rate of 0.0025, a momentum of 0.9,
and a weight decay coefficient of 0.0001. To mitigate the risk of gradient explosion, we
applied gradient clipping, which restricts the maximum norm of the gradients to 35.

For the HRSC2016 dataset, we resized the images to (800, 1333) while preserving
their aspect ratio. Themodel was trained for 36 epochs, and the learning rate was reduced
by a factor of 10 at the 24th and 33rd epochs. During both training and testing, the
experiments were conducted using computing devices equipped with Tesla V100 GPUs.
The batch size was set to 2. Mean average precision (mAP) with an IoU threshold of
0.5 was employed as the evaluation metric to measure the model’s performance in the
object detection task.

3.3 Ablation Study

In this section, we conducted a series of ablation experiments on the DOTA dataset to
demonstrate the advantages of each proposed component in DRPDDET.

Table 1 presents the detailed results of the ablation experiments conducted on the
DOTA1.0 dataset. The first row represents the performance of the baselineRotated Faster
R-CNN detector. By incorporating our Harmony RPN, as shown in the second row, the
mAP score improved to 75.1.

Table 1. Ablation experiments and evaluations of our proposed method on the DOTA dataset.

SMMF DRPD mAP(%)

baseline 73.4

Ours
√

75.1
√ √

75.5
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Fig. 7. Example detection result of our method on DOTA.

Furthermore, as demonstrated in the third row, the application of the dynamic rotation
proposals decoder (DRPD) strategy resulted in an additional increase of 1.8 in the mAP
score. Additionally, the combination of Harmony RPN and the DRPD strategy achieved
a 2.1 increase in mAP compared to the baseline model. Finally, when all strategies were
combined, the mAP score reached 75.5, as indicated in the last row of Table 1. These
experimental results provide substantial evidence of the effectiveness of our proposed
approach,which integrates foreground information featuremaps andutilizes the dynamic
rotation proposals decoder, thereby significantly improving the performance of the object
detection task. The visualization results are shown in Fig. 7.

To assess the generalizability and effectiveness of Harmony RPN, we evaluated its
performance when integrated into the RoI Transformer and Gliding Vertex networks,
as shown in Table 2. The inclusion of Harmony RPN in both networks leads to notable
enhancements in performance. These experimental findings provide compelling evi-
dence for the efficacy of Harmony RPN in improving proposals accuracy and recall
rates.

Table 2. Demonstration of the effects of applying HarmonyRPN to RoI Transformer and Gliding
Vertex Networks.

Method RPN HarmonyRPN mAP (%)

RoI Transformer
√

69.56√
71.82

Gliding Vertex
√

75.02√
75.84

3.4 Contrast Test

Results on theDOTAdataset: Table 3 presents the results of 14 oriented detectors, includ-
ing DRN [29], PIoU [30], G-Rep [31], Hou [32], CFA [33], SASM [34], AOPG [15], and
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EARL [14]. Our DRPDDet achieved a mAP of 75.46% based on ResNet50-FPN and
75.97% based on ResNet101-FPN without employing any additional techniques. These
performance scores surpass those of other state-of-the-art oriented detection methods.

Table 3. Comparison with state-of-the-art methods on the DOTA1.0 dataset.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Single-stage

DRN H104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

PIoU DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50

R3Det R-101 88.76 83.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94 73.79

RSDet R-101 89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00 72.20

S2ANet R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12

G-Rep R101 88.89 74.62 43.92 70.24 67.26 67.26 79.80 90.87 84.46 78.47 54.59 62.60 66.67 67.98 52.16 70.59

Hou R-101 89.32 76.05 50.33 70.25 76.44 79.45 86.02 90.84 82.80 82.50 58.17 62.46 67.38 71.93 45.52 72.63

Multi-stage

RoI Trans R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 37.67 69.56

SCRDet R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

G. Vertex R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

CFA R-101 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05

SASM R-50 86.42 78.97 52.47 69.84 77.30 75.99 86.72 90.89 82.63 85.66 60.13 68.25 73.98 72.22 62.37 74.92

AOPG R-101 89.14 82.74 51.87 69.28 77.65 82.42 88.08 90.89 86.26 85.13 60.60 66.30 74.05 66.76 58.77 75.39

EARL R-50 89.76 78.79 47.01 65.20 80.98 79.99 87.33 90.74 79.17 86.23 49.09 65.87 65.75 71.86 55.21 72.87

DRPDDet R-50 89.52 82.61 49.42 72.63 77.36 80.23 87.81 90.87 86.18 85.45 65.18 65.75 66.94 70.49 61.44 75.46

DRPDDet R-101 90.21 83.05 52.62 71.88 77.20 80.72 88.12 90.90 87.64 85.89 64.75 68.79 73.63 69.95 54.20 75.97

Our model exhibited excellent performance in detecting relatively sparse objects,
such as airplanes and bridges. Simultaneously, for denser objects like ships, our model
demonstrated optimal detection results. This fully demonstrates the strong adaptability
of our method in handling both sparse and dense scenarios.

Table 4. Performance comparison of different state-of-the-art methods on HRSC2016 dataset.

RRPN R2CNN RoI Trans G. Vertex EARL SASM DRPDDet

mAP (VOC 07) 79.08 73.07 86.2.0 88.2.0 89.00 88.91 90.23

mAP (VOC 12) 85.64 79.73 * * 93.00 * 95.41

Results on HRSC2016: The HRSC2016 dataset comprises ship targets with large
aspect ratios. The experimental results on this dataset confirm the superiority of our
method. As depicted in Table 4, our method outperforms other approaches in terms of
object detection. ThemAP ofDRPDDet reaches 90.23% and 95.41%whenwe evaluated
using VOC07 and VOC12 metrics, respectively.
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4 Conclusion

In this study, we conducted a thorough analysis of the key challenges associated with
remote sensing object detection, specifically focusing on the adaptability of horizontal
and rotated proposals in dense and sparse scenes. To effectively address these challenges,
we introduced an innovative two-stage strategy that intelligently combines the advan-
tages of both horizontal and rotated proposals. Firstly, we employed the generation of
horizontal proposals in the RPN stage to enhance recall, followed by the development of
a dynamic rotated proposals decoder that adaptively generates rotated proposals based on
the constraints of the horizontal proposals. Furthermore, we designed and implemented
the Harmony RPN module and integrate it into the two-stage object detection network.
The experimental results demonstrated that our approach significantly improves the pre-
cision and recall of proposals, leading to substantial enhancements in overall object
detection performance. HormonyRPN employs a cross-scale hierarchical fusion strat-
egy to seamlessly incorporate foreground scores into feature maps. While this approach
enhances the richness of data or features, it inevitably results in an expansion of model
parameters. In the ensuing phases, we have the capacity to encode foreground details into
the feature space, acquiring feature representations of greater dimensionality. Interac-
tively integrating these enhanced feature representations with feature maps can enhance
the model’s ability to distinguish and capture complex feature interactions.
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Abstract. The infrared and visible image fusion aims to fuse comple-
mentary information in different modalities to improve image quality
and resolution, and facilitate subsequent visual tasks. Most of the cur-
rent fusion methods suffer from incomplete feature extraction or redun-
dancy, resulting in indistinctive targets or lost texture details. Moreover,
the infrared and visible image fusion lacks ground truth, and the fusion
results obtained by using unsupervised network training models may also
cause the loss of important features. To solve these problems, we pro-
pose an infrared and visible image fusion method using self-supervised
learning, called MFSFFuse. To overcome these challenges, we introduce
a Multi-Receptive Field dilated convolution block that extracts multi-
scale features using dilated convolutions. Additionally, different atten-
tion modules are employed to enhance information extraction in differ-
ent branches. Furthermore, a specific loss function is devised to guide
the optimization of the model to obtain an ideal fusion result. Exten-
sive experiments show that, compared to the state-of-the-art methods,
our method has achieved competitive results in both quantitative and
qualitative experiments.

Keywords: Infrared and Visible Image · Image Fusion ·
Multi-receptive Field Feature Extraction · Self-supervised

1 Introduction

Image fusion aims to fuse images captured from different sensors or different
shooting settings into an informative image to enhance the understanding of
scene information [1,2]. In the field of image fusion, infrared and visible image
fusion is the most widely used. Infrared images are sensitive to thermal radiation
information and are not affected by the working environment, which can high-
light significant targets, but infrared images have low spatial resolution and lack
texture details. Compared with infrared images, visible images are easily affected
by the working environment but have higher spatial resolution and richer texture
details [3,4]. Fusing these two images with complementary properties can yield
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a fusion image that contains both rich texture details and salient targets, which
can be used for subsequent tasks such as image segmentation, target detection,
tracking tasks, and military actions.

In the past years, infrared and visible image fusion has been greatly devel-
oped, and many infrared and visible image fusion methods have been pro-
posed. The existing fusion methods mainly including traditional methods and
deep learning-based methods. The traditional methods can be classified into
five categories [5]: 1) multi-scale transform-based fusion methods, 2) sparse
representation-based fusion methods, 3) sub-space-based fusion methods, 4)
saliency-based fusion methods, and 5) hybrid methods. Although traditional
methods have achieved great fusion results, there are still some shortcomings,
such as 1) the fusion performance depends on the extraction of manual features
and the design of fusion rules; 2) for complex source images, the extraction of
manual features and the design of fusion rules tend to be complicated, which is
time-consuming and difficult to implement.

In recent years, deep learning has seen rapid development, and its powerful
feature extraction and data representation capabilities have drawn significant
attention from researchers. A growing number of researchers have applied deep
learning to image fusion. Due to the lack of ground truth for infrared and visible
image fusion, most deep learning-based fusion methods are based on unsuper-
vised learning to train the network to obtain the fusion image. According to the
adopted network framework, it can be divided into three categories: CNN-based
fusion methods [3,6–8], Auto-encoder based fusion methods [9,10], GAN-based
fusion methods [11,12].

Although the fusion performance of existing fusion methods based on deep
learning has been improved to some extent, there are still the following chal-
lenges:

a) Limited performance of some unsupervised fusion methods: Due to
the lack of ground truth for infrared and visible image fusion, most methods
constrain the fusion image and the source image by designing a loss function
to generate fusion results. However, such fusion results may approximate the
compromise of the source images, which can result in the loss of important
features.

b) Failure to fully leverage the correlation between features: Some exist-
ing fusion methods use a single convolution kernel to extract features, but this
will result in a relatively single extracted feature. Some use multiple different
convolution kernels at the same level to obtain multi-scale features. However,
each convolution kernel performs convolution operations independently, which
may lead to redundancy in the extracted information, making the model fails
to exploit the correlation between features effectively while simultaneously
increasing computational complexity.

c) Inadequate consideration of modality differences: Many deep learning-
based fusion algorithms do not adequately account for the inherent differences
between infrared and visible image modalities. They often employ the same
feature extraction strategy for both modalities, which may not effectively
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extract the most relevant features for optimal fusion. This limitation can lead
to suboptimal fusion performance.

To address the challenges mentioned, we propose a novel approach named
MFSFFuse, which utilizes self-supervised learning to fuse infrared and visible
images by extracting features with multiple receptive fields. The key contribu-
tions of this paper can be summarized as follows:

1) To address the limitations of certain unsupervised fusion methods,
we propose a self-supervised fusion network. Our approach utilizes
the multi-receptive field dilated convolution block to extract features from
both infrared and visible images. We then concatenate the features from
both branches along the channel dimension to generate a fusion image. Next,
we decompose the fusion image into infrared and visible images, and apply
constraints to these decomposed images and the source images to achieve
self-supervision.

2) To address the limitation that the correlation between features can-
not be fully exploited, we introduce a novel convolutional module
with multiple receptive fields. This module utilizes dilated convolutions
with varying dilation factors to construct a multi-receptive field convolution
module. It overcomes the problems of information redundancy and extensive
computations caused by traditional multi-receptive field convolution. More-
over, it provides a wider range of context information, enabling the model to
effectively capture long-range dependencies in the image, extract multi-scale
features better, and improve the fusion performance of the model.

3) Considering the modality difference of infrared and visible image,
in the branches of feature extraction for both infrared and visible,
we introduce two distinct attention modules to enhance the perfor-
mance of fusion. The first is an intensity attention module, which selectively
focuses on the most important features for the fusion results. The second is a
detail attention module, which further enhances the fusion results by attend-
ing to the most significant details in the extracted features. These attention
mechanisms allow us to selectively attend to the most relevant features in
each modality and produce fused images with superior quality.

2 Proposed Method

In this section, we will introduce MFSFFuse, a novel method for fusing infrared
and visible images. We will start by presenting the overall framework of our
proposed approach, followed by a detailed explanation of the network structure.
Finally, we will describe the loss function employed in our method.

2.1 Overall Framework

Since infrared and visible images belong to different modalities, we use ir−path
and vi−path to extract multi-scale features from the source images respectively
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Fig. 1. The overall network framework of the proposed method. d is the dilation fac-
tor in the dilated convolution. loss(x, y) represents the loss between x and y. ir-path
and vi-path represent infrared and visible image branches, respectively. ir and vi are
the infrared and visible images, respectively. f denotes the fusion image, ir1 and vi1
represent the reconstructed infrared and visible images after decomposition. The self-
supervised pattern formed between the decomposed and reconstructed images and their
corresponding source images.

to obtain more comprehensive features of the images in different modalities. We
are aware of the valuable capabilities of the infrared sensor in highlighting sig-
nificant targets, while visible sensor excels in capturing intricate texture details.
These distinctive characteristics provide fusion images with prominent target
information and detailed texture information, respectively. To maximize the uti-
lization of meaningful features from both image types during the fusion process,
we incorporate two attention modules into the two branches: an intensity atten-
tion module and a detail attention module. These modules allow us to focus on
the features that are most relevant for the fusion image. The features extracted
by the two branches are then concatenated along the channel dimension and
passed through a convolutional layer to obtain the fusion image.

We know that the fusion of infrared and visible image lacks ground truth,
and the fusion result obtained by designing the loss function to constrain the
fusion image and the source image is close to the compromise of the source
images, which easily leads to the loss of important features. To address this, we
reconstruct the source image in a self-supervised manner in the decomposition
module. This helps to ensure that the fusion image contains more important
features from the source images. The overall framework of our proposed method
is shown in Fig. 1.
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2.2 Feature Extraction and Fusion Module

To obtain comprehensive feature information from both infrared and visible
images, we use different paths for the source images to extract features. In
ir − path and vi − path, feature extraction involves four MRF-DCBs. Addi-
tionally, to fully preserve intensity and detail information in different layers, we
introduce four cascaded IAMs and DAMs in ir−path and vi−path, respectively.
Meanwhile, we use a residual connection structure to improve the feature reuse
rate (as shown in Fig. 1). The fusion component involves a convolution with a
kernel size of 1 × 1 and the Tanh activation function. The features extracted by
the two branches are concatenated and then fed into the fusion part to generate
a fusion image with comprehensive feature information from the infrared and
visible images.
MRF-DCB: Each MRF-DCB comprises three dilated convolutions (kernel size
3 × 3) with varying dilation factors (d = 1, 2, 3) to extract features at different
scales. Furthermore, a residual connection structure is utilized to improve feature
utilization.
IAM: Assuming we have an input feature F ∈ R

H×W×C and an output feature
X ∈ R

H×W×C , H and W are the height and width of the feature map, and C
is the number of channels. The calculation process of the IAM can be described
as follows:

Xir = Sigmoid(conv(GAP(F))) � F (1)

where GAP stands for global average pooling, conv refers to 1-D convolution
operation, Sigmoid is a sigmoid function, and � means Hadamard Product.
DAM: The calculation process of the DAM can be described as follows:

Xvi = Sigmoid(BN(conv 7(Re(BN(conv 7( F)))))) � F (2)

where BN represents Batch Normalization, conv7 represents a convolution oper-
ation with the kernel size of 7 × 7, and Re represents the Relu activation function.

2.3 Decomposition Module

Infrared and visible images are images of different modalities, and their features
have certain differences, and the fusion of the two lacks ground truth. Optimizing
the model to generate fusion images by constraining the relationship between
the fusion image and the source images may cause the loss of important fea-
tures. Therefore, we use a decomposition module to decompose and reconstruct
the fusion image into its corresponding source image, thereby achieving self-
supervision by constraining the decomposition image and the source image. This
module has two branches, one branch reconstructs the infrared image, and the
other branch reconstructs the visible image, each branch includes three MRF-
DCBs, and finally, the 1 × 1 convolution and tanh activation function are
applied to generate the reconstructed image.

In our approach, we consider the source image as the reference image, lever-
aging a loss function to enforce consistency between the decomposed image and
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the reference image. This process facilitates the reconstruction of the source
image, effectively achieving self-supervision, thus enabling the fusion image to
obtain more information from the source image.

2.4 Loss Function

To improve the visual quality of fusion image and preserve important features
such as texture details and salient objects, we design a loss function denoted as
Lloss to guide the optimization of the model, written as

Lloss = Lcontent + αLssim + Ls, (3)

where Lcontent represents the content loss, Lssim denotes the structural similarity
loss, Ls is the loss used to train the self-supervised network. By optimizing the
model using this loss function, we can produce high-quality fusion images that
accurately capture the most important features of the source images. α is the
trade-off parameter to control the balance between three terms.

The content loss Lcontent forces the fusion image to have richer texture details
and preserve salient target information, it is defined as:

Lcontent = Lint + βLdetail, (4)

where Lint denotes the intensity loss, Ldetail represents the detail loss, β is a
trade-off parameter. In the intensity loss we use mean squared error (MSE) as
the loss function, defined as follows:

Lint = γ1MSE (If , Ivi) + γ2MSE (If , Iir) , (5)

where If , Iir and Ivi stand for the fusion image, the infrared image, and the visi-
ble image, respectively. γ1 and γ2 are two weight parameters utilized to regulate
the balance of loss values.

In the detail loss function, we incorporate a maximum gradient operation.
We assume that the texture details present in the fused image are the maximum
combination of textures from the infrared and visible images. The detail loss
function is defined as follows:

Ldetail =
‖|∇If | − max (|∇Iir| , |∇Ivi|)‖1

HW
, (6)

where ∇ represents the Sobel gradient operator, ‖ · ‖1 is the l1-norm, If , Iir
and Ivi stand for the fusion image, the infrared image, and the visible image,
respectively. H and W denote the height and width of the image, respectively. |·|
denotes the absolute value. max(·) refers to the element-wise maximum selection.

To force the fusion image and the source image to have similar structures,
we add a modified structural similarity [13] loss Lssim to the loss function Lloss,
which is defined as

SSIM =

⎧
⎪⎪⎨

⎪⎪⎩

SSIM (Ivi, If )
if σ2(Ivi) > σ2(Iir)
SSIM (Iir, If )
if σ2(Iir) >= σ2(Ivi)

, (7)
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where LSSIM = 1 − SSIM. If denotes the fusion image, Ivi stands for the
visible image, Iir is the infrared image. σ2 represent variance. The SSIM aims to
calculate the structural similarity of two images. The larger the value of SSIM,
the more similar the two images. Therefore, we take (1−SSIM) when calculating
the loss.

For the training of self-supervised network, we adopt the standard mean
square error (MSE) as the loss function, defined as follows:

Ls = MSE (Ivi1, Ivi) + MSE (Iir1, Iir) , (8)

where Ivi1 and Iir1 are the results of fusion image decomposition and reconstruc-
tion.

3 Experiments

3.1 Datasets and Training Details

In this study, we randomly chose 32 image pairs from the TNO dataset1 for
training our model, while reserving the remaining images for testing. To ensure a
comprehensive assessment of the fusion performance and generalization capabili-
ties of our proposed method, we also added quantitative and qualitative analysis
on the LLVIP dataset [14], MSRS dataset2, and M3FD dataset [15]. The image
pairs used in our experiment have all been preregistered. During training, since
the ideal model cannot be obtained when the amount of data is too small, we
use a cropping strategy to expand the data to obtain more data. We crop the
source images into image patch pairs of size 120 × 120 for training, and the crop-
ping stride is set to 12. We use the Adam optimizer to update the parameters,
the batch size is set to 16, and the learning rate is set to 1e−4. According to
the extensive experiments, we set the weight parameters in the loss function as
α = 100, β = 50, γ1 = 10 and γ2 = 30. Our method is implemented on Pytorch
framework and trained on a computer with 3.10-GHz Intel Core i9-9900 CPU,
32GB RAM, and GPU NVIDIV RTX 2060.

3.2 Fusion Metrics

To further prove the performance of the proposed method, in addition to qual-
itative experiments, we also select several representative evaluation indicators
to quantitatively evaluate the fusion results [20], i.e., standard deviation (SD),
spatial frequency (SF), average gradient (AG), entropy (EN). Larger values of
these metrics stand for better fusion results. SD can reflect the distribution and
contrast of fusion image. SF can be used to measure the gradient distribution of
an image and evaluate image texture and details. AG is used to quantify the gra-
dient information of the fusion image, reflecting the details and textures in the
fusion image. EN can be used to measure the amount of information contained
in the fusion image.
1 https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029.
2 https://github.com/Linfeng-Tang/MSRS.

https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029
https://github.com/Linfeng-Tang/MSRS
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3.3 Comparative Experiment

To demonstrate the effectiveness of our proposed method, we conducted a com-
parison with several state-of-the-art image fusion methods, including two tra-
ditional methods (GTF [16] and LatLRR [17]) and ten deep learning methods
(FusionGAN [11], PMGI [7], U2Fusion [1], SDNet [8], RFN-Nest [10], Super-
Fusion [18], SwinFuse [19], SeAFusion [3], TarDAL [15], and AT-GAN [20]).
The parameters of the contrasting methods were set according to their original
reports.
1) Results on TNO dataset
Qualitative Comparison. We test the performance of MFSFFuse and twelve
other state-of-the-art fusion methods on the TNO dataset, and the results are
presented in Fig. 2(a). It is evident from the figure that most of the fusion meth-
ods were successful in completing the task of fusion. The results of GTF, Fusion-
GAN, PMGI, SwinFuse, SDNet, and SuperFusion are more inclined to infrared
images. The fusion results of LatLRR, U2Fusion, and RFN-Nest with rich texture
information, but the contrast is low, which impacts the visual quality. In con-
trast, SeAFusion, TarDAL, AT-GAN, and our method produced fusion images
that had prominent targets and rich texture details, which aligned well with the
human visual perception. As can be seen from the leaves in the red box in the
figure, our fusion results are the most visually effective and the most informative
of all methods.

Quantitative Comparison. Qualitative evaluation of image fusion results can
be subjective, especially when the differences between images are subtle. To
overcome this, we also conducted a quantitative analysis of our proposed fusion
methods. As shown in Table 1(a), our method achieves the highest values in
terms of SD, AG, and EN metrics, and the second-best value in SF. A larger SD
value indicates a higher contrast in our fusion result, while a larger AG value
indicates that our fusion result contains rich texture and detail information.
The EN value reflects the amount of information contained in our fusion result.
Overall, our fusion method effectively preserves important information from the
source images.
2) Results on LLVIP dataset
Qualitative Comparison. The LLVIP dataset comprises a large number of
nighttime scene image pairs. A well-performing fusion algorithm should generate
fusion images with rich texture details and salient objects, even under low-light
conditions. Given the limited information provided by both infrared and visi-
ble images in nighttime scenes, it is crucial to integrate their complementary
features to enhance the visual quality of fusion images. To demonstrate the effi-
cacy of our proposed method in improving the visual quality of fusion images
and integrating the complementary features of infrared and visible images, we
evaluated it on the LLVIP dataset and compared its performance with state-
of-the-art fusion algorithms, as shown in Fig. 2(b). All algorithms complete the
fusion task to some extent, but the quality of the fusion results varies. Apart
from our method, other methods introduce irrelevant information in the fusion
process, resulting in the loss of texture details and a significant reduction in
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Fig. 2. The qualitative fusion results of different methods from different datasets. (a)
TNO dataset, (b) LLVIP dataset, (c) MSRS dataset, (d) M3FD dataset.
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object contrast. In contrast, our method extracts multi-scale features and uses
the synergistic effects of intensity attention and detail attention modules, result-
ing in fusion images with rich texture details and salient objects. These results
demonstrate the superiority of our approach in fusing low-light infrared and vis-
ible images and highlight its potential applications (such as image enhancement,
target detection, wilderness rescue, intelligent transportation, etc.) in various
fields.

Table 1. The average quantitative results on the different datasets. The best and
second-best fusion results for each evaluation metric are highlighted in bold and italic.

(a) TNO dataset (b) LLLVIP dataset
Methods SD ↑ SF ↑ AG ↑ EN ↑ Methods SD ↑ SF ↑ AG ↑ EN ↑
GTF 9.4559 0.0315 3.2319 6.7854 GTF 9.6182 0.0530 3.7378 7.3782
LatLRR 8.6825 0.0297 3.1506 6.5109 LatLRR 9.1372 0.0425 2.9960 7.0506
FusionGAN 8.7266 0.0240 2.4364 6.5691 FusionGAN 8.6127 0.0299 2.1484 6.5675
PMGI 9.6512 0.0333 3.6963 7.0228 PMGI 9.5219 0.0339 2.7424 7.0431
U2Fusion 9.4991 0.0455 5.1333 7.0189 U2Fusion 8.8186 0.0499 3.9600 6.8095
SDNet 9.1310 0.0444 4.6136 6.7019 SDNet 9.0090 0.0555 4.0928 6.9491
STDFusionNet9.2626 0.0462 4.4936 6.9977 STDFusionNet 7.5675 0.0550 3.6277 5.9250
SuperFusion 9.1478 0.0329 3.3971 6.7996 SuperFusion 9.4570 0.0462 3.0551 7.2985
SwinFuse 9.3388 0.0497 4.6344 7.0279 SwinFuse 8.0158 0.0553 3.5657 6.4294
SeAFusion 9.6354 0.0465 4.9622 7.1300 SeAFusion 9.5177 0.0593 4.3825 7.4603
TarDAL 9.5234 0.0462 4.3277 7.1418 TarDAL 9.5219 0.0541 3.6567 7.3903
AT-GAN 9.3015 0.0722 6.9538 7.1659 AT-GAN 8.6333 0.0652 4.7407 6.9863
RFNNest 9.4242 0.0222 2.7181 6.9977 RFNNest 9.3305 0.0274 2.4266 7.1356
Ours 10.1428 0.0573 6.9847 7.1854 Ours 10.1600 0.0715 6.1103 7.5873
(c) MSRS dataset (d) M3FD dataset
Methods SD ↑ SF ↑ AG ↑ EN ↑ Methods SD ↑ SF ↑ AG ↑ EN ↑
GTF 6.2803 0.0311 2.4389 5.4009 GTF 9.6401 0.0633 5.7226 7.2623
LatLRR 7.9810 0.0311 2.7031 6.3026 LatLRR 8.4141 0.0424 3.9724 6.6165
FusionGAN 5.7659 0.0169 1.4342 5.3356 FusionGAN 9.3450 0.0404 3.7267 6.8787
PMGI 8.0309 0.0330 3.0396 6.2800 PMGI 8.8045 0.0463 4.4801 6.9000
U2Fusion 7.2116 0.0380 3.1761 5.7681 U2Fusion 9.2830 0.0706 7.0247 6.9991
SDNet 5.9641 0.0350 2.8178 5.3023 SDNet 9.0745 0.0716 6.7906 6.9704
STDFusionNet7.5460 0.0424 3.1407 5.7876 STDFusionNet 9.8151 0.0717 6.4913 6.9519
SuperFusion 8.8779 0.0438 3.6098 6.7303 SuperFusion 9.3339 0.0556 5.1721 6.8633
SwinFuse 5.3636 0.0389 2.1488 4.5381 SwinFuse 9.7908 0.0785 7.3444 7.5165
SeAFusion 8.9295 0.0450 3.9098 6.7882 SeAFusion 10.1821 0.0737 6.8173 7.0007
TarDAL 8.4195 0.0415 3.4116 6.5950 TarDAL 9.8938 0.0596 5.5534 7.2459
AT-GAN 6.2844 0.0339 2.5816 5.3576 AT-GAN 9.0916 0.1016 9.7448 7.2955
RFNNest 8.1426 0.0246 2.2309 6.2605 RFNNest 8.8753 0.0399 4.0053 6.9086
Ours 9.3541 0.0631 6.3545 7.1927 Ours 10.8800 0.1024 9.7097 7.3753

Quantitative Comparison. We select 96 pairs of images from the LLVIP
dataset for quantitative analysis. Table 1(b) presents the corresponding quanti-
tative indicators. As shown in the table, our method achieved the best results
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on SD, SF, AG and EN. These metrics also reflect that our method has certain
advantages in preserving texture information as well as salient objects. Overall,
our method is effective in preserving source images information.
3) Results on MSRS dataset
Qualitative Comparison. To ensure the credibility of our results, we conduct
generalization experiments on the MSRS dataset. Figure 2(c) shows qualitative
results of different methods on the MSRS dataset. The figures reveal that meth-
ods such as GTF, LatLRR, FusionGAN, PMGI, and SDNet retain the essential
target information, but fail to capture texture details. On the other hand, RFN-
Nest, U2Fusion, SwinFuse, SuperFusion, SeAFusion, TarDAL and AT-GAN not
only preserve critical target information but also reserve some texture details in
the fusion result. However, these results have low contrast, leading to a less visu-
ally appealing image. Overall, our method achieve a balance between retaining
rich information and producing visually pleasing results.

Quantitative Comparison. Table 1(c) presents the quantitative results of the
MSRS dataset, and it shows that our method achieve the optimal values in
SF, AG, SF and EN. This reflects the effectiveness of our method in retaining
features.
4) Results on M3FD dataset
Qualitative Comparison. The application scenarios of infrared and visible
image fusion are complex and diverse. For this reason, we choose to verify on
the M3FD dataset. Figure 2(d) is the qualitative results of different methods
on the M3FD dataset. However, some fusion methods such as GTF, LatLRR,
FusionGAN, PMGI, SDNet, RFN-Nest, and SuperFusion have failed to preserve
the texture information of trees, leading to suboptimal fusion results. In contrast,
our method and a few others, such as TarDAL and AT-GAN, have successfully
maintained rich texture details while avoiding over-reduction in contrast. As
can be seen from the leaves in the red boxes, our method preserves rich tex-
ture details. Overall, our experimental results demonstrate the effectiveness and
superiority of our method on the M3FD dataset.

Quantitative Comparison. We select 76 pairs of images from the M3FD
dataset for quantitative experimental analysis, and the results are presented in
Table 1(d). Our method outperforms all other methods in terms of SD and SF,
and ranks second in AG and EN. From the results, it can be seen that our
method achieves the overall best performance.

3.4 Ablation Study

To verify the rationality of different components in the proposed method, we
conduct ablation experiments. We design different structures for experiments:
1) w/o MRF-DCB: Use single convolutions instead of MRF-DCB; 2) w/o D:
without decomposition module; 3) w/o DAM: without detail attention module;
4) w/o IAM: without intensity attention module; 5) w/o DAM+IAM: without
detail attention module and intensity attention module; 6) Ours: the proposed
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method. We conducted qualitative and quantitative experiments to validate the
effectiveness of different modules. The role of structure 1) is to prove the effec-
tiveness of the proposed multi-receptive field convolution module; structure 2) is
to prove that the self-supervised network can promote the fusion results; struc-
ture 3), structure 4) and structure 5) are to illustrate the effectiveness of the
intensity attention and the detail attention module. The qualitative results are
shown in Fig. 3, and the quantitative results are shown in Table 2.

Fig. 3. Fusion images with different structures.

Qualitative Analysis: In our method, the cascaded DAM and IAM play a
crucial role in preserving rich texture details and salient object information in
the fusion image. Qualitative experiments have demonstrated the efficacy of
these two modules in optimizing the model. In the absence of DAM, the fusion
result tends to lose certain information and exhibit reduced contrast. Similarly,
without the IAM, the overall brightness of the fused image decreases. If these
two modules are not available, the fusion result may suffer from artifacts and
exhibit an overall reduction in visual quality. The decomposition module in this
paper is actually a module related to self-supervision and is designed to promote
the optimization of the model through the interaction between the decomposed
and reconstructed image and the source image. In the ablation experiment, we
further validated the efficacy of this module, which demonstrated a significant
promotion effect on the model’s performance. To evaluate the effectiveness of
MRF-DCB, we design a single convolution structure for comparison. The exper-
imental results demonstrate that our proposed method outperforms the single
convolution structure in terms of detail preservation and visual quality.

Quantitative Analysis: From the quantitative results shown in Table 2, it
can be seen that the proposed method achieves the optimal value on SD, SF,
and AG, and obtains the third best value on EN. These outcomes demonstrate
that each module in the proposed method has contributed positively towards
enhancing the overall performance of the model.
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3.5 Execution Time

In addition to the generalization performance, the efficiency of fusion algorithms
is also an important evaluation index, especially when fusing infrared and visible
images in advanced vision tasks, where real-time performance is crucial. Table 3
presents the average fusion time of different fusion methods on TNO dataset. As
shown in the table, our method demonstrates high processing efficiency, which
is only second to AT-GAN. In summary, our method not only achieves supe-
rior fusion performance and generalization ability but also demonstrates high
efficiency in image fusion. This high efficiency provides the possibility for the
algorithm to be applied to a wide range of advanced vision tasks in the future.

Table 2. The quantitative results of different structures. The best and second-best
results for each evaluation metric are highlighted in bold and italic.

Methods w/o MRF-DCB w/o D w/o DAM w/o IAM w/o DAM+IAM Ours
SD ↑ 9.8270 10.0524 9.4767 10.0584 9.6089 10.1428
SF ↑ 0.0456 0.0385 0.0498 0.0483 0.0563 0.0573
AG ↑ 5.0309 4.2922 5.3681 5.1951 5.8155 6.9847
EN ↑ 7.1223 7.2276 7.1735 7.2758 7.0244 7.1854

Table 3. The average runtime for different methods.

Methods GTF LatLRR FusionGAN PMGI U2Fusion SDNet RFN-Nest
time (s) 2.850 51.718 0.478 0.237 3.425 0.181 1.771
Methods AT-GAN SuperFusion SwinFuse SeAFusion TarDAL Ours
time (s) 0.028 0.220 0.727 0.100 0.780 0.056

4 Conclusion

In this paper, we propose a novel method, MFSFFuse, for fusing infrared and
visible images. Firstly, we introduce MRF-DCB, which comprehensively captures
multi-scale features from the source images. Secondly, considering the disparities
between infrared and visible image modalities and characteristics, we design two
branches for feature extraction. In ir −path, we incorporate an IAM to preserve
the crucial target information, while in vi − path, a DAM is employed to retain
texture details. These modules ensure that the fusion result contains the most
meaningful information from both modalities. To tackle the issue of important
feature loss in unsupervised fusion methods, we adopt a self-supervised approach
by treating the source image as the ground truth, and utilize constrained decom-
position reconstructed images and corresponding source images to optimize the
model. Experimental results on diverse datasets demonstrate that our fusion
results surpass the performance of state-of-the-art methods in terms of qualita-
tive, quantitative, and generalization experiments. In our future work, we will
continue refining the network and explore its integration with high-level vision
tasks, such as object detection and image segmentation, to further enhance its
practical applicability.
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Abstract. Visual relocalization is a crucial technique used in visual
odometry and SLAM to predict the 6-DoF camera pose of a query
image. Existing works mainly focus on ground view in indoor or out-
door scenes. However, camera relocalization on unmanned aerial vehi-
cles is less focused. Also, frequent view changes and a large depth of
view make it more challenging. In this work, we establish a Bird’s-Eye-
View (BEV) dataset for camera relocalization, a large dataset contains
four distinct scenes (roof, farmland, bare ground, and urban area) with
such challenging problems as frequent view changing, repetitive or weak
textures and large depths of fields. All images in the dataset are associ-
ated with a ground-truth camera pose. The BEV dataset contains 177242
images, a challenging large-scale dataset for camera relocalization. We
also propose a Progressive Temporal transFormer (dubbed as PTFormer)
as the baseline model. PTFormer is a sequence-based transformer with a
designed progressive temporal aggregation module for temporal correla-
tion exploitation and a parallel absolute and relative prediction head for
implicitly modeling the temporal constraint. Thorough experiments are
exhibited on both the BEV dataset and widely used handheld datasets
of 7Scenes and Cambridge Landmarks to prove the robustness of our
proposed method.

Keywords: Camera Pose Estimation · Birds-Eye-View · Transformer

1 Introduction

Camera relocalization aims to regress the 6-DoF pose of a given image relative to
a scene, which is a crucial technique widely applied in such fields as robot naviga-
tion, augmented reality, and autonomous driving. Recently some learning-based
research [19,26] have shown impressive performance in visual relocalization on
several widely used datasets such as Cambridge Landmarks [17], Oxford Robot-
car [21], 7Scenes [27]. However, these datasets are mostly recorded by handheld
devices or ground robots with limited perspective changes and a small depth of
field. Also, they concentrate less on weak or repetitive textures, which boosts the
need for building a more challenging dataset. The drone has recently improved
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, LNCS 14452, pp. 133–147, 2024.
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efficiency in mining, sea ports, oil, and other industrial facilities because of its
limitless aerial perspective. Practically view changes for the aerial images are
more remarkable, and the immense depth of field makes it more sensitive to
texture changes. As such aerial images collected by drones are suitable for the
mentioned challenges. Consequently, we build a bird’s eye view dataset for cam-
era pose estimation to stimulate future research on BEV camera relocalization.
The dataset contains four scenes, i.e., roof, farmland, bare ground, and urban
area. Roof and urban area are two scenes collected in a city, while farmland
and bare ground are collected in a rural district. The whole dataset constitutes
177242 images in total.

Methods for camera relocalization can be divided into structure-based and
regression ones. Structure-based methods [23,24,31] predict the camera pose
hierarchically. Given a query image, any image retrieval algorithm is applied
to find similar images, followed by a feature extraction and matching to get
numerous 2D-2D matches. Combined with the information on depth and camera
intrinsic, 2D image features are mapped to their 3D counterpart coordinates.
Camera pose is obtained via Perspective-n-Point (PnP) [14] and RANSAC [12].
Although geometry-based methods achieve state-of-the-art performance, they
are relatively time-consuming because of the iterative optimization process and
also need to store dense keyframes. Recent years have witnessed the vigorous
development of deep learning, and studies on deep learning solve the problem of
camera relocalization through the absolute pose regression network (APRs) [17].
Training on multiple collected images with 6-DoF pose, the network can infer
the query image with one forward pass. Although the performance of APRs is
less accurate than structure-based methods, they have irreplaceable advantages
in terms of faster speed and robustness on repetitive or weak textures.

However, no tailored method is proposed for BEV camera relocalization.
Because small movements may cause a significant change in the visual field, we
rely on sequence-based methods to introduce temporal constraints. In addition,
we design the temporal aggregation module (TAM) to exploit the temporal cor-
relation and a parallel APR and RPR prediction head to draw into the relative
pose restraint in feature representation. Our contribution can be summarized
below:

– We build a BEV dataset collected by 6-rotor drones with ground truth poses
for camera relocalization. The dataset with 177242 images in total is challeng-
ing regarding movements in 3D space, frequent view changing, and variability
of textures in different scenes.

– We propose Progressive Temporal Transformer (PTFormer) with three tech-
niques: a progressive temporal aggregation module (TAM), a parallel absolute
prediction regression (APR) and relative prediction regression (RPR) head
to exploit temporal correlation, and inner attention integrated in the original
multi-head attention.

– We give thorough experiments on the built BEV dataset and two pub-
lic datasets 7Scenes, and Cambridge Landmarks. PTFormer achieves the
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best performance on the BEV dataset and a comparable result with SOTA
approaches on two public datasets.

2 Related Work

2.1 Dataset for Camera Relocalization

Existing datasets for camera pose estimation are usually obtained via a
Structure-from-motion (Sfm) reconstruction or differential GPS. 7Scenes [27]
is an indoor dataset with all scenes recorded from a handheld Kinect RGB-
D camera. Cambridge Landmarks dataset is an outdoor dataset [17] which is
collected by pedestrians holding a Google LG Nexus 5 smartphone containing
different lighting and weather conditions. Also, numerous datasets are recorded
by car-mounted cameras like Oxford Robotcar [21]. DAG [33] and VPAIR [25]
are most related to our dataset. However, DAG targets visual place recognition
and localization by retrieving the closest database aerial image given a street-
level query image, while ours focuses on localization only given BEV images.
VPAIR is a low frame-rate dataset collected by a single flight route, while ours
is a high frame-rate one with dozens of flight routes in each scene.

2.2 Camera Relocalization

Camera relocalization can be categorized into structure-based methods and
regression-based methods. Structure-based methods [6,20,24,30] solve the prob-
lem of camera relocalization by matching features descriptors of the query image
to descriptors of 3D points of an Sfm model. Due to the weak representation of
handcrafted descriptors, recently, many methods rely on the convolutional net-
work [9,10] or transformer [29] for the sake of extracting features more robust to
view changes. Besides matching feature descriptors, scene coordinate regression
methods [2–4,27] predict matching from the coordinate of the query image to 3D
scene space, which performs decently in the small-scale environments while less
accurately in large-scale ones. Although structure-based methods usually have
more accurate predictions, facts like computation-heavy in large-scale environ-
ments and the need for known camera intrinsic or depth sensors restrict its
development.

The regression-based methods train a deep model to predict the pose from
a given image. PoseNet [17] is one of the earliest works which attaches an
MLP after a GooLeNet. Compared with structured-based methods, PoseNet
has shown the advantages of the regression-based methods in terms of robust-
ness towards view changes and free of matching. A sequence of works is modified
on top of PoseNet. [15] proposes the Bayesian PoseNet to estimate the uncer-
tainty of the predicted pose. [35] introduces an LSTM after the FC layers to
relieve the overfitting problem. [16] designs geometrically inspired pose losses
to improve orientation accuracy. Some works focus on refining the architecture.
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[22] proposes Hourglass, which replaces the original GooLeNet with an encoder-
decoder architecture implemented with a ResNet34. BranchNet [37] designs a
dual branch to regress the pose and orientation separately.

Besides, a group of works predicts camera poses via consecutive sequences.
VidLoc [8] predicts camera poses recurrently and also estimates the trajectories,
which can reduce localization error. MapNet [5] introduces geometric constraints
by using additional inputs of visual odometry and GPS to provide extra supervi-
sion for model training. LsG [38] use conLSTM to regress relative poses between
consecutive frames, trying to exploit the temporal correlation to boost the perfor-
mance. Sequence-based methods usually outperform image-based ones because
of additional temporal information. Such temporal correlation can give model
auxiliary information to restrain performance flicker caused by view changes. So
in this work, we focus on the sequence-based method.

Recently, Transformer [34] has been widely used in diverse vision tasks. A
recent work [26] proposes MS-Transformer and achieves SOTA performance on
camera relocalization. MS-Transformer is a work inspired by DETR [7]. It learns
scene-specific queries with the Transformer decoder to regress the camera poses
in different scenes. Compared with MS-Transformer, with fewer parameters, our
method is tailored for BEV localization with sequence input, also the proposed
temporal aggregation module and a parallel APR, RPR prediction head intro-
duce temporal restriction while learning high dimensional features.

3 Method

In this section, we give details of our proposed PTFormer as shown in Fig. 1.
Given a consecutive sequence of frames {Ft+i}i=−L:L, PTFormer regress the
camera pose p =< x,q > of the intermediate frame Ft, where Ft ∈ R

H×W×C ,
x ∈ R3 is the position of the camera in the world and q ∈ R4 is the corre-
sponding 3D orientation in quaternion form. First, a pre-trained CNN extracts
visual features from given images. Then a transformer encoder is followed to
augment spatial features. Afterward, PTFromer applies a progressive temporal
aggregation module to make feature interaction to better model the temporal
correspondence. Finally, besides the APR module regressing the camera pose of
each frame, the RPR module is aimed to predict the relative camera pose of all
frame pairs, trying to impose a temporal restriction on augmented features in
latent space.

3.1 Network Architecture

Convolutional Backbone. Following [26], we use a pre-trained CNN backbone
to extract visual features. However, we use the same activation map to regress
both position and orientation.

Sequential Representation. In order to make the extracted visual features
compatible with Transformer, the activation map Mt ∈ R

Hm×Wm×Cm is con-
verted to a sequential representation M̃t through a 1×1 convolution and flatten-
ing. As mentioned in [26], two one-dimensional encodings are separately learned
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for the X and Y axes for the sake of reducing the parameters of learned param-
eters. Specifically, for a certain position (i, j), i = 1, ...,Hm, j = 1, ...,Wm, the
positional embedding is defined as Eij

pos = [Ej
u,Ei

v] where Eu ∈ R
Wm×Cm/2 and

Ev ∈ R
Hm × Cm/2. So the input for Transformer is given by:

ht = M̃t + E. (1)

This process is applied for each frame.

Fig. 1. Overview of our proposed PTFormer. Given a sequence of frames Fi, i ∈
{1, ..., n}, a pre-trained CNN extracts the visual features from each image. Then a
weight-shared Transformer is used to augment visual representation. Two layers of
TAM are followed to exploit all groups of temporal correlation (C1

n) among features of
a certain frame with the other ones. Finally, given augmented features, the APR head
predicts the camera pose of each frame, while the RPR head predicts the relative pose
of all frame pairs. Note that the RPR head only exists in the training phase.

Attention with Inner Attention. Transformer Encoder is composed of m
identical layers, with each comprising multi-head attention (MHA) and multi-
layer perception (MLP) layers, where each part is followed with LayerNorm and
residual connection. Different from the standard Transformer encoder in [7], the
architecture of the Transformer encoder in our work is integrated with attention
in attention module (AiA) as mentioned in [13]. Given a set of queries, keys, and
values as Q,K,V ∈ R

HmWm×Cm , the vanilla multi-head attention (VaniMHA)
is formulated as:

VaniMHA(Q,K,V) = (Softmax(
Q̂K̂

�
√

Cm

)V̂)Wo, (2)
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where Q̂ = QWq, K̂ = KWk and V̂ = VWv are linear transformations while
Wq, Wk, Wv and Wo are learnable weights.

One can observe that the correlation among query-key pairs is ignored in con-
ventional attention. Intuitively introducing interaction among query-key pairs
can relieve the side effect caused by imperfect representation of attention score,
i.e., imposing second-order attention on one-order attention score can restrain
the noise and help relevant query-key pairs augment each other. Denote the
attention map as A = (Softmax( Q̂K̂

�
√
Cm

)V̂). The inner multi-attention (Inner-
MHA) is formulated as follows:

InnerMHA(Q′,K′,V′) = (Softmax(
Q′K′ �

√
D

)V′)(1 + W′
o), (3)

where Q′ = AW′
q, K

′ = AW′
k and V′ = AW′

v is the linear transformation
from attention score A.

Finally, the second-order multi-head attention mechanism is given by:

SecOrdMHA(Q,K,V) = ÂV̂Wo, (4)

Â = Softmax(A + InnerMHA(A) (5)

It should be noticed that second-order attention is applied in both self-attention
and cross-attention in our architecture.

Temporal Aggregation Module. Previous work [28,38] prove that temporal
aggregation among sequence benefits the accuracy of pose estimation. Hence we
propose the temporal aggregation module (TAM) to learn the temporal correla-
tion. Considering a sequence of feature {h′

t+i}i=−L:L obtained after Transformer
encoders, the coarse temporal aggregation between current feature h′

t and the
concatenation of other features h′ c

t is formulated as:

h′′
t = TAM1(h′

t,h
′ c
t ) = SecOrdMHA(Q̂, K̂, V̂), (6)

where Q̂ = h′
tŴq, K̂ = h′ c

t Ŵk and V̂ = h′ c
t Ŵv. Further, the fine aggregation

is the same procedure:

ho
t = TAM2(h′′

t ,h′′ c
t ). (7)

Absolute Pose Regression Head. The APR head is one hidden layer MLP
followed by a gelu activation function to regress the camera pose. Concretely,
features of corresponding frames obtained after the temporal aggregation module
are followed by an APR head to predict the camera pose of each frame.

Relative Pose Regression Head. As mentioned in [11,18], learning rela-
tive camera poses and absolute ones simultaneously help the model to learn
better representations for features and improve the accuracy of absolute pose
estimation. In this work, we design a parallel regression head for the afore-
mentioned reasons. Following [11], the relative pose is given in the reference
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system of the second camera. Given a pair of frames (F1,F2), their correspond-
ing rotation matrix and translations from world coordinates to camera ones are
(R1,x1,R2,x2). Denotes the rotation quaternions as (q1,q2), the relative cam-
era pose (q1,2,x1,2) is formulated as:

q1,2 = q2 × q∗
1, (8)

x1,2 = R2(−R�
1 x1) + x2, (9)

Fig. 2. Trace and a sample of our proposed BEV dataset. (a) is bare ground, (b) is
farmland, (c) is roof, (d) is urban area. For visually pleasant, in each scene, we select
only one trace for visualization. The red boxes are samples of collected data in each
scene. (Color figure online)

where q∗
1 is the conjugate of q1 and × is the multiplication of quaternions. Then

we will give the details about how to predict pairwise relative camera pose.
Suppose Q1,K1,V1 and Q2,K2,V2 is the linear mapping from feature ho

1 and
ho
2 respectively, the relative pose is obtained via the MLP on the concatenation

of features [Softmax(Q1K
�
2 )V2,Softmax(Q2K

�
1 )V1]. Given n frames, all A2

n

feature permutation pairs are sent to the RPR head to predict relative camera
poses.

3.2 Loss Function

PTFormer is trained in an end-to-end fashion, guided by a joint loss function to
supervise both absolute poses and relative poses:
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L =
∑

i

(||xi − xi|| exp−sx +sx

+ ||qi − qi

||qi||
|| exp−sq +sq)

+
∑

ij

(||xij − xij || exp−srx +srx

+ ||qij − qij

||qij ||
|| exp−srq +srq), (10)

where (xi,qi) and (xi,qi) is the prediction and ground-truth absolute camera
pose, (xij ,qij) and (xij ,qij) is the prediction and ground-truth relative camera
pose. sx, sq, srx, srq are learned parameters to balance different parts in the loss
function as suggested in [16] (Fig. 3).

Fig. 3. Sketch of our 6-rotor drone and sensors location. BEV images are captured by
a down-view camera. GPS antennas are on both sides of the drone.

3.3 Implementation Details

Our model is implemented in PyTorch with a single NVIDIA Tesla A100 GPU.
Adam optimizer is used to optimize parameters with β1 = 0.9, β2 = 0.999, ε =
10−10. The batch size is 8, and the initial learning rate is set as 1 × 10−4 with
a weight decay of 1 × 10−4 every 200 epochs out of 600 epochs. A pre-trained
EfficientNet [32] is integrated to extract visual features. In order to make the
model capable of regressing poses in different orientations, we supply an angle
augmentation. During training, all images are rescaled to 256× 256 pixels and a
center crop with 224 × 224. The dimension of the feature in the Transformer is
set as Cm = 256. The hidden dimension in transformer blocks is set as 256 with
a dropout of p = 0.1. The head number of MHA is 4, followed by 2-layer MLP
layers.

4 Aerial Visual Localization Dataset

4.1 Sensor Setup

The data is collected by a Meituan-developed 6-rotor fixed-wing drone with a
nominal cruise speed of 10 km/h. The drone is equipped with a binocular camera
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with a resolution of 1280× 800 at 10 Hz. For convenience, our BEV dataset is
constructed only with the left camera. The 6-DoF poses are provided by the self-
developed navigation system with an expected uncertainty of 0.05◦ in rotation
and less than 80 cm in position.

4.2 BEV Dataset

BEV dataset contains 4 scenes. The roof sequences consist of 16 sequences col-
lected on the roof of a building. The farmland sequences comprise 12 sequences
recorded on top of farmland. The bare ground sequences are composed of 9
sequences collected in a sub-urban area with bare ground and trees. Sequences
in these scenes cover the area of 3.6 × 104, 1 × 104, and 8.2 × 104 m2, respec-
tively. The urban area sequences are 6 sequences from an urban area. Due to
aerial regulations, drones can only fly in a fixed route, and we select a 3 km
one. The BEV dataset contains 177242 images in total with diverse scenes. All
images have a ground-truth camera pose with a pose error of less than 80 cm.
Figure 2 gives the sample of our dataset.

Table 1. Comparative analysis on the Cambridge Landmarks dataset (outdoor local-
ization). We report the median position/orientation error in meters/degrees for each
method. Bold highlighting indicates better performance.

Scene Roof Farmland Bare ground Urban area Avg

Scene scale 3.6 × 104 m2 1 × 104 m2 8.2 × 104 m2 3 × 103 m

AtLoc [36] 4.159 m, 6.002◦ 7.611 m, 9.810◦ 7.499 m, 6.417◦ 24.731 m, 7.166◦ 11.000m, 7.349◦

MS-Transformer [26] 2.417 m, 4.259◦ 4.950 m, 10.981◦ 3.368 m, 8.636◦ 7.718 m, 1.353◦ 4.613 m, 6.307◦

PTFormer (ours) 0.869 m, 1.710◦ 1.706 m, 3.018◦ 2.100 m, 1.931◦ 5.041 m, 1.132◦ 2.429 m, 1.948◦

Table 2. Ablation study of model config-
uration on roof

Model config Avg

baseline 1.361m, 2.272◦

+TAF × 1 1.193m, 2.041◦

+TAF × 2 1.178m, 1.850◦

+aia 1.107m, 1.763◦

+RPR head 0.869m, 1.710◦

Table 3. Ablation study of dimension on
roof

Dimension Avg

64 0.940m, 2.217◦

128 0.907m, 1.787◦

256 0.869m, 1.710◦

512 0.876m, 1.773◦
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Table 4. Ablation study of encoder layers
on roof

layers Avg

2 0.986m, 1.860◦

4 0.900m, 1.736◦

6 0.869m, 1.710◦

Table 5. Ablation study of CNN back-
bone on roof

backbone Avg

ResNet18 1.100m, 2.556◦

ResNet50 0.962m, 1.978◦

Efficient-net 0.869m, 1.710◦

5 Experiments

Besides evaluate on our dataset, we also evaluate our method on the 7Scenes
[27], and the Cambridge Landmarks Dataset [17] to verify PTFormer is robust
on diverse views and scenes. The evaluation matrices are the median error of
camera rotation (◦) and translation (m).

BEV Dataset. Farmland and Bare ground are scenes with weak and repetitive
textures. Roof and Urban area are both in the city scene, while the urban area
are more sophisticated sequences containing moving underground objects and
scene changes. Due to limited open-source methods and reproduction difficulties,
in this part, we select AtLoc [36] and MS-Transformer [26] for comparison, as
shown in Table 1. When facing weak or repetitive scenes, i.e., farmland and
bare ground, our method shows a more robust capability to capture the global
feature. Our method significantly outperforms the other two methods in urban
scenes, especially in urban area.

Ablation Study. In this section, we give step-by-step experiments to demon-
strate the effectiveness of our designed module, shown in Table 2. The baseline
model is the one only with a feature extractor, a Transformer encoder, and an
APR head. First, we validate the efficiency of the two-step temporal aggregation
module. The experiments show that the two-step fusion makes a 0.183 m and
0.422◦ decrease of pose error. Then the experiments of the aia module replac-
ing original multi-head attention show that inner attention can better exploit
the correlation of query-key pairs. Finally, the additional RPR head can further
improve the accuracy of APR, with a decrease of 0.238 m and 0.053◦.

Table 3 discusses the impact of hidden dimensions in Transformer. We choose
the dimension of 256 as a compromise result. Table 4 analyses the effect of
encoder layers. Considering the memory cost, we set the encoder layers to 6.
Table 5 shows the influence of different pre-trained CNN backbones, and we
select efficient-net as our pre-trained model.

7Scenes. 7Scenes is collected by a handheld Kinect camera, covering indoor
scenes composed of RGB-D sequences with a spatial extent of 1 ∼ 10m2. Many
scenes have repetitive or weak textures, making it challenging for camera pose
estimation. The comparison between our method and the recent state-of-the-art
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Table 6. Experiment results on the 7Scenes Dataset [27]. Results are cited directly,
the best results are highlighted.

Scene Chess Fire Heads Office Pumpkin Kitchen Stairs Avg.

Scene scale 3 × 2m2 2.5 × 1 m2 2 × 0.5 m2 2.5 × 2 m2 2.5 × 2 m2 4 × 3 m2 2.5 × 2m2

PoseNet15 [17] 0.32 m, 8.12◦ 0.47 m, 14.4◦ 0.29 m, 12.0◦ 0.48 m, 7.68◦ 0.47 m, 8.42◦ 0.59 m, 8.64◦ 0.47 m, 13.8◦ 0.44 m, 10.4◦

PoseNet16 [15] 0.37 m, 7.24◦ 0.43 m, 13.7◦ 0.31 m, 12.0◦ 0.48 m, 8.04◦ 0.61 m, 7.08◦ 0.58 m, 7.54◦ 0.48 m, 13.1◦ 0.47 m, 9.81◦

PoseNet17 [16] 0.14 m, 4.50◦ 0.27 m, 11.80◦ 0.18 m, 12.10◦ 0.20 m, 5.77◦ 0.25 m, 4.82◦ 0.24 m, 5.52◦ 0.37 m, 10.60◦ 0.24 m, 7.87◦

LSTM+Pose [35] 0.24 m, 5.77◦ 0.34 m, 11.9◦ 0.21 m, 13.7◦ 0.30 m, 8.08◦ 0.33 m, 7.00◦ 0.37 m, 8.83◦ 0.40 m, 13.7◦ 0.31 m, 9.85◦

RelocNet [1] 0.12 m, 4.14◦ 0.26 m, 10.4◦ 0.14 m, 10.5◦ 0.18 m, 5.32◦ 0.26 m, 4.17◦ 0.23 m, 5.08◦ 0.28 m, 7.53◦ 0.21 m, 6.73◦

Hourglass [22] 0.15 m, 6.17◦ 0.27 m, 10.84◦ 0.19 m, 11.63◦ 0.21 m, 8.48◦ 0.25 m, 7.01◦ 0.27 m, 10.15◦ 0.29 m, 12.46◦ 0.23 m, 9.53◦

BranchNet [37] 0.18 m, 5.17◦ 0.34 m, 8.99◦ 0.20 m, 14.15◦ 0.30 m, 7.05◦ 0.27 m, 5.10◦ 0.33 m, 7.40◦ 0.38 m, 10.26◦ 0.29 m, 8.30◦

VMLoc [40] 0.10 m, 3.70◦ 0.25 m, 10.5◦ 0.15 m, 10.80◦ 0.16 m, 5.08◦ 0.20 m, 4.01◦ 0.21 m, 5.01◦ 0.24 m, 10.00◦ 0.19 m, 7.01◦

VidLoc [8] 0.18 m, – 0.26 m, – 0.14 m, – 0.26 m, – 0.36 m, – 0.31 m, – 0.26 m, – 0.25 m, –

LsG [38] 0.09 m, 3.28◦ 0.26 m, 10.92◦ 0.17 m, 12.70◦ 0.18 m, 5.45◦ 0.20 m, 3.69◦ 0.23 m, 4.92◦ 0.23 m, 11.3◦ 0.19 m, 7.47◦

MapNet [5] 0.08 m, 3.25◦ 0.27 m, 11.69◦ 0.18 m, 13.25◦ 0.17 m, 5.15◦ 0.22 m, 4.02◦ 0.23 m, 4.93◦ 0.30 m, 12.08◦ 0.21 m, 7.77◦

GL-Net [39] 0.08 m, 2.82◦ 0.26 m, 8.94◦ 0.17 m, 11.41◦ 0.18 m, 5.08◦ 0.15 m, 2.77◦ 0.25 m, 4.48◦ 0.23 m, 8.78◦ 0.19 m, 6.33◦

MS-Transformer [26] 0.11 m, 4.66◦ 0.24 m, 9.6◦ 0.14 m, 12.19◦ 0.17 m, 5.66◦ 0.18 m, 4.44◦ 0.17 m, 5.94◦ 0.26 m, 8.45◦ 0.18 m, 7.28◦

PTFormer (Ours) 0.10 m, 3.12◦ 0.26 m, 9.27◦ 0.13 m, 12.10◦ 0.18 m, 5.46◦ 0.19 m, 4.10◦ 0.20 m, 4.41◦ 0.24 m, 8.87◦ 0.19 m, 6.76◦

ones is listed in Table 6. Existing methods can be roughly categorized into three
types: i) image-based APRs, ii) sequence-based APRs, and iii) Transformer-
based APRs. Our method can be served as a combination of sequence-based and
Transformer-based approaches. Basically, the sequenced-based methods perform
better than image-based ones because of temporal correlation. Our method shows
comparable performance with SOTA methods, which indicated that our method
is robust on indoor scenes (Table 7).

Cambridge Landmarks. The Cambridge Landmarks dataset is collected by
mobile phone camera at Cambridge University, containing six outdoor scenes
with moving pedestrians and weather changes. Following [26], we use four scenes
that are commonly benchmarked by APRs. The categories of existing methods

Table 7. Experiment results on the Cambridge Dataset [17]. Evaluations are cited
directly. The average is taken on the first four datasets. The best results are high-
lighted.

Scene College Shop Church Hospital Avg.

Scene scale 5.6 × 103 m2 8.8 × 103 m2 4.8 × 103 m2 2.0 × 103 m2

PoseNet15 [17] 1.66 m, 4.86◦ 1.41 m, 7.18◦ 2.45 m, 7.96◦ 2.62 m, 4.90◦ 2.04 m, 6.23◦

PoseNet16 [15] 1.74 m, 4.06◦ 1.25 m, 7.54◦ 2.11 m, 8.38◦ 2.57 m, 5.14◦ 1.92 m, 6.28◦

LSTM+Pose [35] 0.99 m, 3.65◦ 1.18 m, 7.44◦ 1.52 m, 6.68◦ 1.51 m, 4.29◦ 1.30 m, 5.52◦

PoseNet17 [16] 0.99 m, 1.06◦ 1.05 m, 3.97◦ 1.49 m, 3.43◦ 2.17 m, 2.94◦ 1.43 m, 2.85◦

PoseNet17+ [16] 0.88 m, 1.04◦ 0.88 m, 3.78◦ 1.57 m, 3.32◦ 3.20 m, 3.29◦ 1.63 m, 2.86◦

GL-Net [39] 0.59 m 0.65◦ 0.50 m, 2.87◦ 1.90 m, 3.29◦ 1.88 m, 2.78◦ 1.12 m, 2.40◦

MapNet [5] 1.07 m, 1.89◦ 1.49 m, 4.22◦ 2.00 m, 4.53◦ 1.94 m, 3.91◦ 1.63 m, 3.64◦

MS-Transformer [26] 0.83 m, 1.47◦ 0.86 m, 3.07◦ 1.62 m, 3.99◦ 1.81 m, 2.39◦ 1.28 m, 2.73◦

PTFormer (Ours) 0.71 m, 1.32◦ 0.66 m, 2.80◦ 1.17 m, 3.31◦ 1.60 m, 2.69◦ 1.04 m, 2.53◦
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keep the same with Sect. 5. Our methods have a minor improvement compared
with MS-Transformer and GL-Net, which proves that PTFormer can also per-
form well on car-mounted data.

6 Conclusion

In this work, we build a novel challenging BEV dataset for camera relocalization,
which includes diverse scenes with large translation and rotation changes. We
hope to provide a drone-specific benchmark for further research. At the same
time, we provide a baseline method named PTFormer, a sequence-based trans-
former for camera pose estimation with inner attention, temporal progressive
aggregation module, and parallel absolute and relative pose regression head.
Experiments show the effectiveness of our designed modules. PTFormer per-
forms best on the BEV dataset and achieves comparable performance both on
the indoor 7Scenes dataset and the outdoor Cambridge Landmarks dataset com-
pared with SOTA methods. In future work, we will continually expand the BEV
dataset to contain more abundant cases such as data with illumination change,
the same scene collected every several months, more expansive flying areas, and
so on. Also, altitude change is a challenging problem, and we aim to synthesize
images from different altitudes to make the model robust to altitude.
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Abstract. The quantitative analysis of cells is crucial for clinical diag-
nosis, and effective analysis requires accurate detection and classification.
Using point annotations for weakly supervised learning is a common
approach for cell recognition, which significantly reduces the labeling
workload. Cell recognition methods based on point annotations primar-
ily rely on manually crafted smooth pseudo labels. However, the diversity
of cell shapes can render the fixed encodings ineffective. In this paper, we
propose a multi-task cell recognition framework. The framework utilizes
a regression task to adaptively generate smooth pseudo labels with cell
morphological features to guide the robust learning of probability branch
and utilizes an additional branch for classification. Meanwhile, in order to
address the issue of multiple high-response points in one cell, we intro-
duce Non-Maximum Suppression (NMS) to avoid duplicate detection.
On a bone marrow cell recognition dataset, our method is compared
with five representative methods. Compared with the best performing
method, our method achieves improvements of 2.0 F1 score and 3.6 F1
score in detection and classification, respectively.

Keywords: Cell recognition · Point annotation · Distance transform ·
Multi-task learning · Proposal matching

1 Introduce

Diffuse large B-cell lymphoma (DLBCL) is a major form of human blood can-
cer. The proportion of DLBCL cells in bone marrow cells is an important basis
for cancer clinical diagnosis. However, microscopic imaging often involves a large
number of cells, and manual cell counting using the naked eye can be burdensome
task for doctors. With the increasing quality of microscopic imaging, utilizing
computer-aided techniques to analyze digital cytology images for cancer screen-
ing [14] can significantly alleviate the workload of doctors and improve the accu-
racy of diagnosis. However, both object detection and semantic segmentation
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rely on strong labels, which require a significant amount of labeling workload.
Moreover, due to the high density of cells, strong labels may introduce additional
interference information. Therefore, in the field of cell recognition, utilizing point
annotations is a more common and practical approach.

The most common method based on point annotations is to generate inter-
mediate density maps to simulate the probability density of cells. Although this
approach can significantly enhance the robustness of model, cells often exhibit
diverse morphological features, and using the fixed encodings may regress cells
into approximate circular shapes. Some studies [21–23] have indicated that these
density map-based methods have limitations. Moreover, traditional density map-
based methods can only count the number of objects and cannot precisely locate
their positions.

Some methods treat point detection as a set prediction problem [9–11], where
a bipartite graph algorithm is used to match point proposals with optimal learn-
ing targets. However, these methods essentially involve non-smooth regression
of the point proposals. Although they can achieve good results when the object
features are prominent, in case the input images are high resolution and exhibit
numerous morphological and textural features, if the labels are not smooth, they
may face challenges in robust learning.

Fig. 1. Regression demonstration in P2PNet. The proposal points near the cell center
tend to converge towards the cell center after extracting meaningful features.

The FIDT map [13] demonstrated excellent performance of crowd counting in
dense scenes. While it addressed the issue of object localization, the FIDT map
assigns probability values to each pixel based solely on the Euclidean distance
from the ground truth labels. In essence, it is a pseudo label that contains a
significant amount of noise and regresses the objects into approximate circular
shapes without incorporating the information from the image. If we can find
a method to correct the coordinate of each pixel, the generated intermediate
map would be more accurate. P2PNet [9] performs open set prediction based on
preset reference points on the original image. We observed that P2PNet regresses
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the coordinate offsets between the reference points and the ground truth points
(see Fig. 1), as a result, if a proposal point extracts the features of cells, it tends
to instinctively shift towards the nearest ground truth point, and the Euclidean
distance from the point proposals to the ground truth points can be used to
measure the similarity between them.

In this paper, based on the above considerations, we extend the set prediction
framework by introducing a probability branch for cell detection and a classifica-
tion branch for cell classification. Specifically, our research makes the following
contributions:

– We propose a multi-task cell recognition framework that achieves both cell
localization and cell classification. The framework is based on set prediction
and utilizes a regression task to adaptively generate AFIDT map with cell
morphological features to guide the robust learning of probability branch,
thereby achieving robust cell detection.

– We redesign the process of local maximum detection. Specifically, we apply
non-maximum suppression (NMS) to the set of predicted points based on
probability scores. This approach avoids duplicate detection of one cell and
improves the accuracy of cell detection.

– To validate the effectiveness of our method, we construct a bone marrow
cell recognition dataset. On this dataset, our method is compared with five
representative methods and achieves the best performance.

2 Related Work

In general, deep learning-based cell recognition methods are primarily catego-
rized into three types: segmentation-based methods, intermediate map-based
methods, and detection-based methods.

Segmentation-Based Methods. Cell segmentation methods based on tradi-
tional image techniques include threshold-based methods [28] and watershed-
based methods [29], however, these non-data-driven methods lack robustness.
Deep leaning-based methods utilize masks that contain category information
to perform cell segmentation and classification. With the rapid development
of convolutional neural networks (CNN), using CNN for cell segmentation has
become a hot research topic [2,15]. Recently, some studies aimed to design bet-
ter feature extraction networks using self-attention structure [18]. Chen et al.
[25] integrated the self-attention structure into the U-Net architecture. Ji et
al. [24] used the self-attention structure to fuse multi-scale features. However,
segmentation-based methods require complex manual annotations. Furthermore,
due to the density and similarity of cells, the boundaries of cell segmentation are
often ambiguous. Therefore, segmentation-based methods cannot directly help
us accurately count the number of different types of cells.
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Intermediate Map-Based Methods. Density map is a type of intermedi-
ate map that simulate the probability density of objects. Lempitsky et al. [12]
first introduced the density map method into the task of object counting. Some
researchers aimed to design better network architectures to improve the usability
of density map. Li et al. [16] designed a network architecture based on dilated
convolution to understand highly congested scenes and generate high quality
density map. Wan et al. [1] proposed a density estimation network with an adap-
tive density map generator. However, density map-based methods still cannot
precisely locate the positions of objects. Some studies attempted to use inter-
mediate maps for precise localization of objects. Liang et al. [4] proposed the
repel encoding method to differentiate adjacent cells in crowded regions. Liang
et al. [13] proposed the inverse distance transform maps method that exhibits
excellent robustness in extremely dense scenes. Sugimoto et al. [17] designed an
interactive network architecture for cell recognition. Zhang et al. [5] adopted
a multi-task strategy to generate intermediate probability maps as additional
supervision signals.

Detection-Based Methods. Cell detection methods based on traditional
image techniques include hand-designed feature-based methods [26] and tradi-
tional machine learning-based methods [19]. In recent years, the most common
approach in deep learning based object detection algorithms is to regress bound-
ing boxes [6–8]. But in cell recognition task, it is not necessary to outline the
entire cells. Instead, the focus is on locating the cells and classifying them. Some
end-to-end detection methods directly perform cell recognition on point annota-
tions. Zhou et al. [3] adopted a multi-task interactive framework to optimize both
the detection and classification tasks. Some methods treat point localization and
classification as set prediction problems. In contrast to traditional object detec-
tion, these methods only regress the coordinates of objects without regressing
the entire bounding box. Song et al. [9] first proposed the set prediction frame-
work based on point annotations. Liang et al. [10] used the extracted features
and trainable embedding as inputs to the transformer decoder for set predic-
tion. Shui et al. [11] introduced this framework into the field of cell recognition
and proposed a pyramid feature aggregation strategy to aggregate multi-level
features.

3 Methods

In this chapter, we provide a detailed description of our method. In Sect. 3.1,
we explain how our framework works during the training and inference stages.
In Sects. 3.2–3.4, we explain the internal implementations of three modules. In
Sect. 3.5, we explain how we construct loss functions.

3.1 Overall Framework

From the Fig. 2, during training, in match module, to assign the optimal learning
target for each point proposal, we adopt detection task and regression task for
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Fig. 2. The whole framework based on multi-task learning. The cell image first passes
through a deep feature extraction network, then we adopt four tasks to make pre-
dictions for the reference points. For all point proposals, the detection task predicts
detection score set, the regression task predicts offset set, the classification task predicts
category set, and the probability task predicts probability set.

proposal matching. Then, the Ldet, Lreg, Lcls are calculated based on the match-
ing results. Meanwhile, in AFIDT module, the regression task is used to regress
the coordinates of all point proposals, and the predicted coordinates are used to
generate the AFIDT map, then, the Lprob is calculated using the probability set
and the reshaped AFIDT map.

During inference, the detection branch is inactive. The probability set is
reshaped into a 2-dimension probability map, then, a local maximum detection
algorithm [13] is applied on the probability map to obtain the predicted set of
point proposals. Finally, in NMS module, the NMS algorithm is used to suppress
point proposals with lower probability scores, resulting in the final output.

3.2 AFIDT Module

Our method does not require restoring the feature map to the original image size.
Instead, it generates the AFIDT map based on the coordinates of all predicted
point proposals. Specifically, we add the regression values to the preset reference
points to get the predicted coordinates of all point proposals, then the AFIDT
map is generated using the coordinates (Fig. 3). p̂i is the i-th probability pseudo
label in the AFIDT map, which is defined as follow:

x̂i = xi + kΔxi , ŷi = yi + kΔyi (1)

p̂i =
1

D(x̂i , ŷi)(αD(x̂i ,ŷi )+β) + C
(2)
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Where (xi , yi) is the i-th original coordinate of the i-th reference point,
(Δxi ,Δyi) is the predicted regression value for the i-th reference point, (x̂i , ŷi) is
the coordinate of the i-th point proposal, k is a balance coefficient, and D(x̂i, ŷi)
is the Euclidean distance between the i-th point proposal and its nearest ground
truth point.

Fig. 3. The differences between AFIDT map and FIDT map. Compared with the FIDT
map, our AFIDT map incorporates morphological features of cells such as shape and
size. Moreover, the boundaries of cells in the AFIDT map are more precise and realistic.

3.3 Match Module

The purpose of proposal matching is to assign the optimal learning target to each
point proposal, enabling more effective learning and improving the accuracy of
the classification and regression tasks. In our matching method, we consider the
detection score of each point proposal and the Euclidean distance between each
proposal point and each ground truth point to construct the cost matrix for
one-to-one matching. The cost matrix D is defined as follows:

loci = (xi + Δxi , yi + Δyi) (3)

D = (μ||loci − loc∗
j ||1 − pdet

i )i∈M,j∈N (4)

Where loci and loc∗
j are the coordinates of the i-th point proposal and the

j-th ground truth point, respectively. pdet
i is the predicted detection score for

the i-th point proposal, μ is a balancing coefficient, M is the total number of
point proposals, and N is the total number of ground truth points, which is also
equal to the number of positive proposals.

3.4 NMS Module

Although our method can generate AFIDT maps adaptively, the process of gen-
eration does not strictly adhere to the principle of maximizing the center proba-
bility. As a result, there may be more than one high-response points in one cell.
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when local maximum detection radius is small, all the high-response points may
be detected, meaning that a cell may be detected multiple times. To address
this problem, we use Non-Maximum Suppression (NMS) algorithm at the end of
our framework. Specifically, we perform NMS on the set of all predicted effective
points based on the probability values, and the suppression distance is set to 12
pixels.

3.5 Loss Function

Probability Loss. The AFIDT map generated by the coordinates of point
proposals is reshaped to supervise the probability branch. We adopt the mean
squared error (MSE) loss for probability training:

Lprob =
1
M

M∑

i=1

||p̂i − pi||2 (5)

Where pi is the predicted probability value for the i-th point proposal, and p̂i is
the probability pseudo label for the i-th point proposal.

Regression Loss. To calculate the regression loss between the predicted coor-
dinates and the ground truth coordinates, we adopt the MSE loss for regression
training:

loci = (xi + λΔxi , yi + λΔyi) (6)

Lreg =
1
N

N∑

i=1

||loci − loc∗
i ||2 (7)

Where loci is the coordinate of the i-th positive proposal, and loc∗
i is the coordi-

nate of the i-th corresponding ground truth point. It is important to note that
the coefficients in formulas 1, 3 and 6 may not necessarily be the same.

Detection Loss. In bone marrow smear images, stained cells are often not
distributed too densely, resulting in a significant number of negative proposals.
In order to enhance detection of cells, we reduce the proportion of negative
proposals in loss computation. For the detection loss, we adopt weighted cross-
entropy (CE) loss for training:

Ldet = − 1
M

(
N∑

i=1

log(pobj
i ) + ω

M∑

i=N

log(pnone
i )) (8)

Where ω is a balance coefficient, pobj
i is the foreground score of the i-th positive

proposal, and pnone
i is the background score of the (i-N)-th negative proposal.
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Classification Loss. Due to the relatively balanced number of two cell types
in these experiments, we adopt CE loss for classification training:

Lcls = − 1
N

N∑

i=1

log(pcls
i ) (9)

Where pcls
i is the classification score of the i-th positive proposal.

Total Loss. The overall loss function is constructed as follows:

Ltotal = Lprob + ρcLcls + ρrLreg + ρdLdet (10)

Where ρc, ρr, ρd are the balance coefficients.

4 Experiments

4.1 Dataset

The diagnosis of DLBCL requires the exclusion of other cells that are patholog-
ically similar to DLBCL cells [20]. We performed experiments on bone marrow
smear stained images, which were collected using the most advanced equipment
under different conditions. First, we used a sliding window of size 1800 × 1600
to extract 704 patches from the regions of interest (ROI) in high resolution
images. Subsequently, the images were downsampled to a resolution of 896 ×
800 for training. The training set and test set were divided into a ratio of 8:2. To
determine the proportion of DLBCL cells in bone marrow cells, we invited two
pathology experts to label all stained cells. The stained cells are labeled as either
DLBCL or non-DLBCL types, and the annotations were repeatedly checked to
ensure their accuracy. A total of 12,164 DLBCL cells and 20,083 non-DLBCL
cells were labeled in this dataset.

4.2 Implementation Details

In these experiments, We compared our method with five representative meth-
ods. Except for CSRNet [16], all five networks utilized VGG-16 bn [27] for feature
extraction. Adam optimizer was employed with a momentum of 0.9, learning rate
of 1e−4, and the batch size is set to 4. The hyper-parameters are set as follows,
μ = 0.05, ρc = 1, ρr = 0.01, ρd = 1, α = 0.02, β = 0.02, C = 1, ω = 0.5, k = 0.5,
λ = 1. All algorithms used random flipping and cropping as data augmentation
during training and our training was performed using a single NVIDIA 2080TI
GPU.

Due to the high resolution of bone marrow cell images, after an upsampling
path, all tasks are performed on the feature map that is 1/8 the size of the
original image. Additionally, reference points are placed every 8 pixels on the
original image. For calculating metrics, the effective matching range was defined
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as the radius of 12 pixels around the ground truth points. The intermediate
map-based methods used local maximum detection to locate positions of cells,
with detection radius set to 2 points. In terms of evaluation metrics, we adopted
precision(P), recall(R), and F1 scores.

4.3 Experimental Results

Comparative Experiments. Our method was compared with five representa-
tive methods in the fields of crowd counting and cell recognition, including three
set prediction-based methods [9–11] and two intermediate map-based methods
[13,16].

Table 1. Comparison of cell recognition with different methods

Method Detection Classification

P R F1 P R F1

P2PNet [9] 87.2 89.7 88.4 78.8 81.0 79.9

Method in [11] 87.0 87.3 87.1 78.3 78.5 78.4

CLTR [10] 85.6 84.1 84.8 77.6 78.4 78.0

CSRNet [16] 87.9 90.2 89.1 76.5 78.6 77.5

FIDT [13] 89.8 90.2 90.0 79.5 79.9 79.7

Ours 92.2 91.9 92.0 83.7 82.3 83.5

From the Table 1, On the bone marrow cell recognition dataset, our method
demonstrates significantly better performance in both detection and classifica-
tion compared with the other five methods. Specifically, compared with FIDT,
our method improved the F1 score for detection and classification by 2.0 and
3.8, respectively. We can see that the intermediate map-based methods have an
advantage in terms of detection performance. This is because they utilize smooth
pseudo labels, which enhances the robustness of the model for detection. How-
ever, set prediction-based methods can even achieve a reverse advantage in terms
of classification performance. This is because the proposal matching can assign
the optimal learning targets for each point proposal, thereby they can achieve
better classification performance. Our multi-task framework retains the classifi-
cation advantage of proposal matching and benefits from the superior detection
robustness of AFIDT maps, resulting in optimal performance.

Ablation Experiments. To verify the role of NMS in post-processing, we
compared the effects of using NMS with different local maximum detection radii
on the F1 score for classification.

From the Table 2, NMS can effectively improve the F1 score, and when the
detection radius is smaller, the improvement becomes more obvious. When the
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Table 2. Results of ablation experiments

Method R = 3 R = 3 & NMS R = 1 R = 1 & NMS R = 2 R = 2 & NMS

F1 83.2 83.2 80.9 83.3 83.4 83.5

detection radius is 1, using NMS can significantly increase the F1 score by 2.4.
When the detection radius is 2, using NMS can achieves the best F1 score. When
the detection radius is 3, NMS does not work, but it also does not decrease the
F1 score. This result can be explained as the detection radius increases, there
will be fewer instances of duplicate detection, and when the detection radius is
large enough, there will be no duplicate detection.

Fig. 4. Visualization results of probability maps generated by three intermediate map-
based methods.

4.4 Visualization Analysis

From the Fig. 4, both FIDT [13] and CSRNet [16] regress all cells into approxi-
mate circular shapes, while our method can reflect the size and shape of cells on
the probability map. When faced dense cells with irregular shapes, both FIDT
and CSRNet perform poorly. They fail to correctly identify individual cells or
mistakenly merge multiple cells into one. But our method accurately recognizes
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dense cells with irregular shapes, and the boundaries between cells are more
defined (Fig. 5).

Fig. 5. Detection visualization results of three representative methods. We mark
DLBCL cells and non-DLBCL cells in yellow and blue, respectively. (Color figure
online)

5 Conclusion

In this paper, we propose a multi-task cell recognition framework that achieves
both cell localization and cell classification. Specifically, our framework adopts a
multi-task learning approach, utilizing the extracted morphological features from
the regression branch to construct AFIDT map, then, we utilize the generated
AFIDT map to supervise the probability branch. Unlike traditional intermediate
map-based methods, our method allows the probability map to reflect various
morphological features of cells and utilizes an additional branch for cell classifi-
cation, which effectively improves the detection and classification performance.
Additionally, we redesigned the post-processing method by introducing NMS to
avoid duplicate detection of one cell. Our method achieves the best performance
on the bone marrow cell recognition dataset. Finally, we visualized and analyzed
the output of the different networks, validating the effectiveness of our method.
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Abstract. The Visual Mesh is an input transform for deep learning that
allows depth independent object detection at very high frame rates. The
present study introduces a Visual Mesh based stereo vision method for
sparse stereo semantic segmentation. A dataset of simulated 3D scenes
was generated and used for training to show that the method is capa-
ble of processing high resolution stereo inputs to generate both left and
right sparse semantic maps. The new stereo method demonstrated better
classification accuracy than the corresponding monocular approach. The
high frame rates and high accuracy may make the proposed approach
attractive to fast-paced on-board robot or IoT applications.

Keywords: Deep Learning · Stereo Vision · Semantic Segmentation

1 Introduction

For the task of detecting objects of interest in highly structured environments,
such as autonomous driving [6,32], robotic soccer [7,34], or navigation in marine
environments [5,24], dense depth and semantic predictions are not required. If
the sizes of the objects of interest are known and their boundaries can be accu-
rately determined then there exist simple and efficient algorithms to calculate
the distances between the camera and the objects. For example, the formula
D = r/ sin δ provides the distance to a spherical object, like a soccer ball, that
has an angular radius, δ, and an actual radius, r. The present study focuses on
high-speed semantic classification and leaves the determination of distances as
a separate task.

The Visual Mesh input transform [12] achieves object detection at exception-
ally high frame rates by warping the input space in a way that allows sampling
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of the target object using a fixed number of pixels, independently of the object’s
distance to the camera. The convolutional neural network (CNN) with Visual
Mesh proposed in [12] was only trained to detect a single class of objects from a
single view of the scene, leaving open the question of whether multi-class clas-
sifications, both from a single view and from multiple views, would be possible
with this type of input transformation.

The main contributions of the present paper are:

1. Training the Visual Mesh to show that it is capable of detecting multiple
classes.

2. Expanding the concept of the Visual Mesh to include sparse stereo semantic
segmentation, receiving a stereo image pair as input and simultaneously pro-
ducing a sparse stereo semantic segmentation map (SSM) for both the left
and right views.

3. Show that the proposed Stereo Visual Mesh can achieve better classification
accuracy than the mono version at comparable computational expense.

2 Related Work

There are very few works which deal with stereo semantic segmentation. In the
context of the present work a “stereo semantic segmentation system” is defined
as a system which directly computes a SSM, or a pair of SSMs, from an input
pair of stereo images. While there are many works which compute a SSM in
a stereo context, these works typically only compute a SSM on a single input
image, and then either use this SSM to refine a disparity map, as is done by
[22,38], or use a disparity map to refine the SSM, as is done by [2,26] who use
multiple U-Net [31] models to compute 12 SSMs. The SSM are then refined with
the aid of a disparity map obtained from PSMNet [3].

A disparity map is used by [4] to refine a SSM. Visible and near-infrared
(VNIR) stereo images are used to compute the disparity map. Single RGB and
multi-spectral images are used to compute semantic features which are then
fused together with the output of a disparity fusion segmentation network which
fuses disparity features with stereo semantic features. The fused SSMs are post-
processed with the computed disparity map.

A 3D bounding box detection methods is proposed by [17]. A ResNet38 [11]
encoder is used to extract image features which are then used to compute a SSM
and bounding box detection and regression. A disparity map is computed and
used to convert the 2D bounding box proposals into 3D bounding boxes.

Fan et al. [9] use a depth image to compute surface normals which are then
fed into a DenseNet [15] and ResNet [11] inspired network to reinforce semantic
features for the purposes of estimating free space in the scene.

The following works have been identified as performing stereo semantic seg-
mentation, where either a single SSM or a pair of SSMs are generated as output:

– [25,36] use Graph-Cut and energy minimisation techniques to perform fore-
ground/background segmentation with the aid of disparity maps and user
input.
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– [4,8,40] use stereo image features combined with depth features to compute
a single SSM.

– Finally, [23] use the encoder portion of the ResNet50 [11] network to com-
pute features on both the left and right input images, and a custom decoder
network to compute a single SSM.
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Fig. 1. Left: Depicted is the location of the observation point, C = (0, 0, 0), and its
height, h, above the horizontal observation plane at the bottom. I is the vertical pro-
jection of C. The relationship between φn and φn+1 is also shown that determine
concentric “φ-rings” around I in the observation plane via their intersection points A
and B. Right: A top-down view of the observation plane shows how Δθ is measured
and provides a radial subdivision into pizza slice style sections.

3 The Visual Mesh

The Visual Mesh [12,13] method calculates a graph that overlays the input image
and serves as a preprocessing stage for CNNs. Initially designed as a single-object
detector, the Visual Mesh aims to ensure a constant pixel-sampling density over
an input image in such a way that no matter where the object of interest appears
in the image, provided the object is below the horizon and closer than a pre-
defined maximum distance, d, it will always intersect the Visual Mesh at a fixed
predefined number of k points. Figure 1 shows the construction of the Visual
Mesh in lateral view (left) and top view (right) where a sphere of radius r is
used as the target object. A number of rays are sent out, from the camera’s
observation point, C, to the observation plane where the intersections A and
B draw φ rings around I that are subdivided by radial θ sections. The final
construction takes a number of parameters into account, including the distance
of the φ rings from the origin, the number of intersections with the target, k,
the maximum projected distance, d, and the size of the target, as explained in
more detail in [12,13].

For example, for the task of detecting a soccer ball on a soccer field, a sphere
with the same radius as the ball, r, can be used as the geometric model and the
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soccer field can be used as the observation plane. From there simple trigonometry,
as depicted in Fig. 1, can be used to solve for the coordinates of camera rays,
expressed as unit vectors, that will result in the specified number of intersections,
k, with the sphere. These rays are then joined to their nearest neighbours in
order to create the Visual Mesh graph. The original Visual Mesh [12] used a
6-neighbour ring graph structure and this same graph structure is adopted in
this work to facilitate a more direct comparison with the original work.

While the Visual Mesh itself is lens-agnostic, in order to project the 3D unit
vectors into the image plane to obtain 2D pixel coordinates, it requires knowledge
of the camera’s lens parameters; focal length, field of view, optical centre offset,
projection type, distortion parameters, and image resolution.

The Visual Mesh has been shown [12] to allow for much smaller CNNs to
be used, resulting in much fewer parameters and much higher inference speeds
than other state-of-the-art object detectors, in the order of 450 fps on an Nvidia
GTX1080Ti on 1280× 1024 RGB images. Furthermore, due to the constant sam-
pling density of the Visual Mesh graph, scale invariance is achieved for objects
conforming to the geometric model, resulting in consistent detections over a large
range of distances, something that other state-of-the-art networks, such as YOLO
[28–30] and MobileNet [14], failed to achieve, see [12, Fig. 5(c)]. Finally, sampling
pixels via the graph structure of the Visual Mesh results in convolution-like oper-
ations, with the underlying structure of the graph allowing for non-square, in
our case hexagonal, filter shapes.

4 The Stereo Visual Mesh

The Visual Mesh should be able to improve its classification performance by
incorporating data from a different viewpoint. In this way, objects that appear
partially occluded in one viewpoint may appear less occluded in the other view-
point allowing the Visual Mesh to still see and classify these objects.

Given two Visual Meshes, each one centred underneath a camera of a stereo
system, the question of how to link these two meshes together and how much
information to share between the two views of the scene arises.

Regarding linking the two Visual Meshes together, two options are immedi-
ately apparent. Every node in the Visual Mesh graph has a unique index. If we
are using the same graph structure for both Visual Meshes we could simply link
the same index in both Visual Meshes. Unfortunately, if the relative position or
orientation of the two cameras with respect to the observation plane differ too
much it is possible for a large portion of the indices that are on-screen in one
view to be entirely off-screen in the other view, resulting in a lot of dead links. As
a result, this linking scheme will preclude the possibility of a multi-view setup,
and will also preclude the option of using different graph structures for each cam-
era. However, if these constraints are not too restrictive, this linking scheme is
very simple to implement, although sampling the same pixel coordinate in both
images may not necessarily result in useful information being shared between
the views.
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Alternatively, linking the Visual Mesh nodes in the left and right mesh that
appear visually closest to each other will resolve most of the issues that are
present in the first option, but with extra computational overhead. Different
Visual Mesh graph structures, different camera positioning, and more than two
cameras are possible with this linking scheme, provided there is a large enough
overlap in the visual fields of all cameras. The steps in the implementation of
this linking scheme are as follows

1. Given a ray corresponding to a node in the left Visual Mesh, project it into
the view of the right camera
(a) Find the intersection between the Visual Mesh ray and the observation

plane
(b) Shift by the translation between the two cameras
(c) Re-normalise the ray with respect to the right camera

2. Search the right Visual Mesh to find the node that is closest to the projected
ray

3. Repeat steps 1 and 2 for every node in the left Visual Mesh

Steps 1–3 describe how to find a matching node in the right Visual Mesh
for every node in the left Visual Mesh. To allow for different mesh geometries
for each camera and arbitrary camera baselines, to find a matching node in the
left Visual Mesh for every node in the right Visual Mesh steps 1–3 need to be
repeated for the right camera. Sections 4.1 to 4.3 detail the algorithms involved
in performing step 2.

Regarding how much information to share between the two views at least
two options present themselves. Figure 2 provides a graphical depiction of the
options. Given nodes L0 · · · L6 from the left Visual Mesh, we can share only the
node from the right Visual Mesh that is visually closest to L0, R0 in this case.
Alternatively, we can share the visually closest node, R0, along with that node’s
immediate neighbours, R1 · · · R6. In this paper we only consider sharing R0, as
it is anticipated that the extra overhead in including R1 · · · R6 will outweigh any
performance benefits that may be gained.

L0

L1 L2

L3 L4

L5 L6

R0

R1 R2

R3 R4

R5 R6

Fig. 2. Given a 6-neighbour graph structure on both the left and right either the nearest
link, R0 (in red), can be shared between views, or the nearest link and its neighbours,
R0 · · · R6 (the red link plus the blue links) can be shared. (Color figure online)
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Figure 3 depicts the relationship between the ground truth labels in the
dataset, Sect. 6. Given a pair of left and right images from the dataset and
their ground truth labels a Visual Mesh was projected on to both images and
the stereo links were computed. For every L0 in the dataset, Fig. 2, the relation-
ship between the labels for L0 and R0 was determined and is shown in Fig. 3.
The figure shows, e.g., that when L0 had the label of “Ball”, 85.1% of the time
R0 also had the “Ball” label and 8.8% of the time R0 had the “Field” label.

Fig. 3. Dataset-specific quantitative relationships between stereo link ground truth
labels. How frequently L0 (y-axis) has the same ground truth label as R0 (x-axis). See
Fig. 2 for definitions of L0 and R0.

4.1 Linking Two Visual Meshes

Given a Visual Mesh for each camera, finding the visually closest node in the
right Visual Mesh for a given node in the left Visual Mesh can take a number of
forms. The naive option would involve a brute force search of every node in the
right Visual Mesh. However, depending on the exact parameters of the Visual
Meshes, each could contain over 100,000 nodes. This search would be very slow
and ignores the connected structure of the Visual Mesh graph.

By leveraging the connected structure of the Visual Mesh we can select a
random starting node and then move to the neighbouring node which has the
shortest distance to the query ray and repeat this until the search arrives at the
node that is closest to the query ray. This method is listed as “Graph” in Table 1.

By employing a binary space partition (BSP) to partition the Visual Mesh
the search for the visually closest Visual Mesh node can start from a randomly
selected Visual Mesh node from the BSP leaf node that encloses the query ray.
From this starting node the search algorithm proceeds as was described for the
“Graph” method. We call the just described third method “BSP+Graph”.

Table 1 provides an overview of the search times for the three different search
methods discussed. The table shows that the overhead associated with setting
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up and maintaining the BSP provides an almost 4000-fold decrease in search
time when finding the visually closest node.

Table 1. Search algorithm run times. Tests were performed with a pair of Visual
Meshes, each containing 98,900 nodes and using the 6-neighbour graph structure. Total
time is the time taken to find the visually closest node in the right Visual Mesh for
each node in the left Visual Mesh. The average search time is how long, on average, it
would take to find the visually closest node for a single node in the left Visual Mesh.

Method Avg. Time (µs) Total Time (ms)

BSP+Graph 6.24 617
Graph 207.89 20,560
Brute Force 23,692.66 2,343,204

4.2 Binary Space Partition

The BSP is created during construction of the Visual Mesh. Each node in the
BSP tree stores the φ and θ ranges that enclose the Visual Mesh rays spanned
by the current tree node. Figure 1 depicts these quantities. Each BSP node also
stores a minimum bounding cone that contains all the Visual Mesh rays spanned
by the current tree node.

The root node of the BSP tree has a cone axis of (0, 0,−1) and the internal
angle is set to the largest z-component of all Visual Mesh rays, since Visual
Mesh rays are also unit vectors this corresponds to the angle between the z-axis
and the ray. The Visual Mesh rays are then partitioned into two sets based on
the sign of the y-component of the rays. These two sets form the two children
of the BSP root node. This partitioning scheme simplifies the calculation and
comparison of φ and θ later on.

For each child node in the BSP tree a cone, with vertex at the observation
point, is created with an internal angle just large enough to ensure all Visual
Mesh rays spanned by the current tree node are encompassed by the cone. The
range of φ and θ values for the current set of Visual Mesh rays is determined,
and the largest range is found. Finally, the current set of rays are partitioned
using the average value of the largest range as the partition point. The average
is used as it is simpler to calculate than the median as the average does not
require the data to be sorted.

By representing each ray in the Visual Mesh by a unit vector, we can cal-
culate φ as the z-component of the ray. To avoid using trigonometric functions,
θ is calculated as the normalised x-component of the ray, θ = �vx/

√
1−�vz2. This

introduces the possibility of θ becoming infinite when �v = (0, 0,−1). Since this
calculation is only used for partitioning the Visual Mesh rays this has the effect
of always forcing the origin point into the second half of the partition.
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Traversing the BSP tree is implemented as a recursive algorithm, terminating
when a leaf node of the BSP tree is reached. As with the creation of the BSP tree
the first decision point is treated specially, where the sign of the y-component
of the target ray is used to determine which child node to traverse. For every
subsequent decision point, we calculate the φ and θ values of the target ray. If
both φ and θ are contained within the φ and θ ranges of the first child node then
we traverse down that branch, otherwise, down the other branch.

4.3 Visual Mesh Graph Traversal

To traverse the Visual Mesh graph, we measure the distance between each neigh-
bour of the current Visual Mesh node and our target ray. We then move to the
neighbour that has the shortest distance to the target, and then repeat. To pre-
vent the possibility of infinite searches, a distance threshold is introduced. If
the distance to all the neighbours of the current node does not decrease the dis-
tance to the target node by more than this threshold then the search terminates.
Empirically, we found that k−1, where k is the number of intersections used at
Visual Mesh construction, works well.

Fig. 4. The relationship between h and h′, φ0 and φ′
0, and φ1 and φ′

1. C represents the
observation position, O0 and O1 represent the two objects that we wish to measure the
distance between, and �v0p and �v1p represent the vectors pointing from the observation
point to the centres of the objects.

While a Euclidean distance metric could be used for calculating the distance
between Visual Mesh nodes, a graph-based distance metric is more appropriate.
Given the observation height, h, angle from the z-axis, φ, and the height of the
object’s centre above the observation plane, r, it is possible to calculate how
many objects, n (h, φ, r), can fit between the object that would be pointed to by
our target ray and the origin using Eq. (1).

n (h, φ, r) def=
arcsinh (tan (−φ))

ln
(
1 − 2r

h

) (1)

However, in order to use Eq. (1) to calculate the object distance between
two different objects a consistent observation height, h′, for both objects is
required. If �v0 and �v1 are unit vectors pointing to centre of each object, we
obtain their projection to a plane that is mutually orthogonal to both objects,
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�v0p and �v1p. The consistent observation height, h′, can then be calculated using
h′ = ‖�v0p×�v1p‖/‖�v0p−�v1p‖. From the projected vectors, �v0p and �v1p, and consistent
observation height, h′, we can calculate the new angles

φ′
0 = arccos

(
h′

‖�v0p‖
)

and φ′
1 = arccos

(
h′

‖�v1p‖
)

. (2)

Figure 4 depicts the relationship between these computed quantities.
Finally, Eq. (3) is used to obtain a count, do, of the number of objects that

would fit between �v0 and �v1 when observed from a height of h′.

do = |n (h′, φ′
0, r) − n (h′, φ′

1, r)| . (3)

5 CNN Architecture

To reduce the variability in training, a standard CNN architecture was chosen
for all Visual Mesh networks. The chosen architecture is large enough to produce
satisfactory classification results on the chosen dataset without being overly large
to maintain the fast inference speed of the Visual Mesh [12].

Table 2 provides the layer details. Each layer is preceded by a Visual Mesh
gathering step which samples the pixels corresponding to the Visual Mesh graph
structure. For the first layer, the gathering step samples the raw pixel values from
the input image, while all succeeding layers sample the outputs of the previous
layer. All layers, except for the last layer, use a SELU [16] activation function,
while the last layer uses a softmax [10, Chapter 6.2.2.3] activation function. All

layer weights are initialised using a truncated normal distribution, N
(
0,

√
1
n

)
,

where n is the number of inputs to the layer and any weights that are further
than two standard deviations from the mean are discarded and redrawn [16,18].

Table 2. Network architecture for all trained networks. Dotted rows indicate a row
that is identical to the previous non-dotted row.

Layer Width Parameters
Mono Stereo

1 (input) 16 352 400
2 16 1808 2064
· · · · · · · · · · · ·
7 16 1808 2064
8 8 904 1032
9 8 456 520
· · · · · · · · · · · ·
12 8 456 520
13 (output) 6 342 390

Total Parameters 14,270 16,286
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The parameter count for each layer is computed as P = NiNgNo + No,
where Ni and No are the number of inputs and outputs to/from the layer,
respectively, and Ng is the number of nodes in the graph structure. For the
mono network Ng = 7, comprising L0, · · · , L6 shown in Fig. 2, and for the stereo
network Ng = 8, comprising L0, · · · , L6 and the stereo link, R0, discussed in
Sect. 4. The Linked Mono network, discussed in Sect. 7, has the same number of
parameters as the Stereo network.

To further reduce the variability in training, a standard set of training hyper-
parameters was chosen for all Visual Mesh networks. Table 3 shows the settings
used for all experiments in this paper. During training the height and orienta-
tion of the camera with respect to the observation plane are augmented. A small
perturbation is added to the height. For the orientation, a rotation matrix is
formed by rotating a small amount around a randomly constructed unit vector.
This rotation matrix is then applied to the orientation of the camera.

Table 3. Visual Mesh parameters for all trained networks. Maximum distance is the
furthest distance that the Visual Mesh is projected from the camera in all directions.

Hyperparameter Setting

Graph Structure 6-neighbour graph
Maximum Distance 20 m
Intersections 6
Geometric Model Sphere - Radius 0.095 m
Data Augmentations Height ∼ N (0, 0.05)

Rotation ∼ N (0, 0.08727)

6 Dataset

To the knowledge of the authors there are no publicly available stereo datasets
that provide semantic segmentation ground truth labels for both the left and
right views while also providing the camera lens parameters and extrinsics that
the Visual Mesh requires, facilitating the need to create a custom dataset. The
created dataset consists of stereo images taken from a humanoid robot model
with a stereo camera setup in various poses in a robotic soccer simulation using
the Webots simulation environment [21].

The segmentation masks identify 9 classes (Table 4). In actuality, the 9 classes
are reduced to 6 classes by taking the multiple classes for goals and robots and
combining them each to a single class for goals and a single class for robots.

All images have a resolution of 640× 480 and are taken with a rectilinear
camera lens with a 90◦ field of view and a 1.98mm focal length. Input images are
stored as 3-channel JPEGs while the ground truth segmentation masks are stored
as 4-channel RGBA PNGs. The alpha channel in the mask images allows the
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Table 4. The classes of objects in the dataset and the labels assigned to them.

Index Class Colour

0 Ball red
1 Goal (large) yellow
1 Goal (small) olive
2 Field line white
3 Field green
4 Robot (self) gray
4 Robot (red team) magenta
4 Robot (blue team) cyan
4 Robot (other) charcoal
5 Environment black

Visual Mesh to ignore those pixel labels, effectively making any pixel with a zero
alpha channel unlabelled. However, this dataset does not have any unlabelled
pixels. Figure 5 gives an example of the images in the dataset.

Fig. 5. Sample left input image with corresponding ground truth segmentation mask.

In total, the dataset contains 65,138 stereo image pairs and this is split
45%/10%/45% for training/validation/testing. This results in 29,132 stereo
image pairs in each of the training and testing sets and 6514 stereo image pairs
in the validation set.

7 Linked Mono Network

Table 2 shows that the stereo network has 2012 extra trainable parameters over
the mono network. The source of these extra parameters is due to the stereo
link effectively causing a widening of the layers in the network. Due to this, it is
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possible that any increase in performance over the mono network could be the
result of these extra parameters and not because of the extra stereo data. To
account for this, a mono network with an equivalent number of parameters was
trained. This was achieved by feeding the centre node, L0 in Fig. 2, a second time
in lieu of the stereo link, R0. In this way, the network had the extra parameters
available for learning without any new data being presented to the network.

8 Training

Training was performed in TensorFlow [1] on a number of different GPUs. All
training was performed over 500 epochs with 1000 batches per epoch. A vali-
dation epoch was performed at the end of every training epoch. Batch size and
learning rate parameters are summarised in Table 5.

Table 5. Summary of batch size and learning rate parameters across the different
GPUs used for training. Only training batch size is shown, validation batch size is
twice as large as the training batch size, and the testing batch size is twice as large as
the validation batch size. Batch accumulation was used when necessary, see column 3.

GPU RAM Batch Size LR

Nvidia GTX1070 8 GB 15 (×4) 8e−4

Nvidia GTX1080Ti 11 GB 30 (×2) 5e−4

Nvidia V100 32 GB 60 (×1) 2e−04

A batch size of 60 was empirically determined to provide good training
results. Batch accumulation was implemented to allow the batches of 60 to fit
into the available RAM of the GPUs. Results from sub-batches were summed to
give the result on the complete batch. Learning rates for each GPU are depen-
dent on the batch size and the number of sub-batches needed. To accommodate
this a learning rate finding algorithm was used to find a good learning rate. The
learning rate finder [35] is a variation on the algorithm presented by [33].

The learning rate finder increases the learning rate per-batch from some
predefined minimum, lrmin, to a predefined maximum, lrmax, over n batches,
with the i-th batch having learning rate

lri = lrmin
n

√(
lrmax

lrmin

)i

. (4)

Figure 6 shows a plot of loss against learning rate, and the learning rate, 2.6158×
10−3, that resulted in the lowest loss. It is suggested [33,35] that a good learning
rate is an order of magnitude lower than the learning rate that resulted in the
lowest loss as this is where the loss is still decreasing. However, in practice, the
loss may not be decreasing at the chosen learning rate, in this case a learning
rate from the negative loss slope just before the lowest loss should be chosen.
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Fig. 6. Results of the learning rate finder algorithm on the Nvidia GTX1070.

Network weights were optimised using the Ranger algorithm [37]. The looka-
head mechanism in Ranger was set to have a synchronisation period of 6 and a
step size for the slow weights of 0.5. Focal loss [19] was used for the loss function.

When training the mono and linked mono networks only the left image from
each stereo pair was used.

9 Results

Table 6 gives an overview of the training results. The Matthews correlation coef-
ficient (MCC) [20] is used as the metric for comparison as it takes into account
the sizes of the classes as well as all four confusion matrix categories. Further-
more, unlike most confusion matrix metrics, the MCC has been generalised to
the multi-class case, allowing a single metric to be calculated that will give an
overall view of how well the trained network has performed across all classes.
Valid values for the MCC lie in the range [−1, 1] with a value of 1 corresponding
to perfect predictions, a value of −1 corresponding to total disagreement, and a
value of 0 indicates that the classifier is indistinguishable from random guessing.

As can be seen in Table 6, the Stereo Visual Mesh has a higher MCC than the
mono Visual Mesh indicating that the Stereo Visual Mesh has learnt to classify
elements in the dataset better than the mono Visual Mesh. Furthermore, we
see that the Stereo Visual Mesh also has a higher MCC than the Linked Mono
Visual Mesh indicating that the increase in classifier performance is the result
of more than the increased number of parameters available for learning.

To ascertain the robustness of the Stereo Visual Mesh MCC result the
order of the test set was randomised and divided into 10 chunks of 2913 ele-
ments and tested the Stereo Visual Mesh on each of these chunks. The result-
ing MCC from each chunk was recorded, and the mean was found to be
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Table 6. Summary of Visual Mesh training results. Training and validation loss are
the minimum losses achieved during training and validation, respectively. MCC is the
multi-class Matthews correlation coefficient obtained from the multi-class confusion
matrix for each network.

Network Train Loss Valid Loss MCC

Mono 0.1001 0.1653 0.9919
Linked Mono 0.0667 0.1267 0.9925
Stereo 0.0877 0.1045 0.9930

0.992964 (SD = 0.0001276) showing that random selection of test data had min-
imal impact on the classification outcome.

Table 7. Difference between true positive, true negative, false positive, and false neg-
ative rates for the mono and Stereo Visual Meshes. Calculated as Xstereo − Xmono,
where X is one of TPR, TNR, FPR, or FNR. All values are relative to 1 × 10−5.

Class TPR TNR FPR FNR

Ball −5.15 3.61 −3.60 5.15
Goal 187.04 20.43 −20.50 −187.04
Line 0.32 12.97 −12.98 −0.32
Field 26.62 −40.31 40.31 −26.62
Robot 114.89 34.51 −34.50 −114.89
Environ 44.12 42.31 −42.30 −44.12

With respect to the mono Visual Mesh, the Stereo Visual Mesh shows an
improvement to true positive, TN, FP, and FN rates across all classes apart from
the ball and field classes, Table 7. The ball class experiences a slight decrease in
true positive rate and a corresponding increase in false negative rate. Similarly,
for the TN and FP rates for the field class. This is due to a Visual Mesh node
that should be classified as a ball being linked, via the stereo link, to a Visual
Mesh node that should be classified as field. This can be seen in Fig. 3 where
there is an 8.8% chance of this type of link occurring. Although Fig. 3 shows
high chances of confusing links occurring between the robot class and all other
classes, and with the goal and environment classes, the network has learnt to
adequately deal with the potential source of confusion, likely because the size
of the objects in these classes is helping the network to stay on track. Overall,
however, the Stereo Visual Mesh outperforms the mono Visual Mesh.

One of the most remarkable properties of the Visual Mesh is its extremely
short inference time. In a benchmarking experiment we recorded inference times
of approximately 610 fps for the mono Visual Mesh on an Nvidia GTX1080Ti
and approximately 275 fps for the Stereo Visual Mesh. This results in an approx-
imately 2.2-fold increase in inference time over the mono Visual Mesh. This
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increase in inference time can be explained by the more than 2-fold increase in
the amount of data that needs to be processed on the GPU.

Finally, a ResNet-18 [11] variant of StreoScenNet [23] was trained on the
dataset in Sect. 6. StreoScenNet achieved a MCC of 0.9990 and an inference speed
of 32.49 fps. This increase in classification performance, and decrease in inference
speed, compared to the Stereo Visual Mesh is due to the 3500-fold increase
in the parameter count of StreoScenNet, with StreoScenNet having 56,205,462
parameters compared to the Stereo Visual Mesh’s 16,286.

10 Limitations

The Visual Mesh requires knowledge of the position and orientation of the cam-
era with respect to an observation plane. Training is typically performed with
data augmentation performed on the camera’s position and orientation to allow
for some inaccuracies in the measurement of these quantities, however, this is
not foolproof. The Visual Mesh also requires camera calibration to be performed.
This also means that any dataset that is used for training must have camera
intrinsics and extrinsics available. The position of the camera relative to some
origin is not needed, merely the height above, and orientation with respect to,
an observation plane is needed. The observation plane might be the road surface
in a driving scenario, the ground in a soccer scenario, or the surface of the ocean
in a marine navigation task.

The algorithm for finding the visually closest Visual Mesh node is dependent
upon the translation between the two cameras. If a custom stereo camera setup
is being employed and there is the potential for the two cameras to move relative
to each other, this will introduce a source of error in the classifications.

11 Conclusion

In this paper we have presented a new method for sparse stereo semantic seg-
mentation that simultaneously generates a sparse SSM for both the left and right
views. Although the proposed method is approximately two times slower than
the corresponding mono method, 275 fps is still an exceptionally fast inference
speed for processing high resolution stereo images. Furthermore, the proposed
method provides an increase in classification accuracy over its mono counterpart.

Further work based on the Stereo Visual Mesh could investigate two direc-
tions of study. First, the feasibility of the Visual Mesh input transformation
for stereo disparity estimation, both independently of and in conjunction with
semantic segmentation could be investigated, to achieve sparse disparity maps at
similar inference speeds. Second, the Stereo Visual Mesh could be adapted to a
MultiView Visual Mesh where there are potentially more than two cameras and
where the cameras are not necessarily on the same baseline. The WoodScape
dataset [27,39] could be a good dataset for this branch of work.
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Abstract. Micro-expressions (MEs) have the characteristics of small
motion amplitude and short duration. How to learn discriminative ME
features is a key issue in ME recognition. Motivated by the success of
PCB model in person retrieval, this paper proposes a ME recognition
method called PCB-PCANet+. Considering that the important infor-
mation of MEs is mainly concentrated in a few key facial areas like
eyebrows and eyes, based on the output of shallow PCANet+, we use
a multiple branch LSTM networks to separately learn the local spatio-
temporal features for each facial ROI region. In addition, in the stage of
multiple branch fusion, we design a feature weighting strategy according
to the significances of different facial regions to further improve the per-
formances of ME recognition. The experimental results on the SMIC and
CASME II datasets validate the effectiveness of the proposed method.

Keywords: Micro-expression recognition · PCANet+ · PCB

1 Introduction

Micro-expressions (MEs) can reflect people’s true emotions due to its spontaneity
and irrepressibility. So, ME recognition has a wide range of applications in many
fields such as psychotherapy, criminal interrogation and business negotiation. In
recent years, the study of automatic ME spotting and recognition has attracted
increasing attentions in the field of computer vision.

Early ME recognition methods used manually designed descriptors to encode
the features of ME image sequences, and many of which were based on Local
Binary Patterns (LBP). In 2011, Pfister et al. [1] utilized LBP-TOP [2] to extract
dynamic features of MEs on the Spontaneous Micro-expression Database (SMIC)
[3] and proposed a benchmark framework for automatic ME recognition. In order
to solve the problem of duplicate encoding in LBP-TOP, Wang et al. [4] proposed
LBP-SIP, which reduces computational complexity and redundant features by
removing six intersections of duplicate encoding. Zong et al. [5] extended the
granularity of the LBP operator through layered STLBP-IP features and used
sparse learning to reduce the feature dimension.

Due to the promising performances of deep learning methods achieved in
macro-expression recognition, researchers try to apply deep learning to ME
recognition tasks in recent years. In the ME recognition framework proposed by
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, LNCS 14452, pp. 179–190, 2024.
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Verma et al. [6], the dynamic image synthesis method [7] is first used to encode
a ME image sequence into a single image instance, and then a 2D LEARNet
model is used to learn the specific features of MEs. Thuseethan et al. [8] pro-
posed a ME recognition framework called Deep3DCANN. In which, a 3D CNN
was first used to learn spatio-temporal features from facial image sequences. At
the same time, a deep network was used to track the visual associations between
different sub-regions of the faces, and the learned facial features were combined
with the semantic relationships between regions to recognize MEs. Xu et al.
[9] proposed a feature disentanglement learning method based on asymmetric
adversarial properties, which uses residual network to learn the emotional and
domain features of MEs from two branches, and exhibits excellent performance
in cross dataset ME recognition.

Deep learning methods rely heavily on a large amount of available training
data, however, the sizes of existing ME datasets are almost all small, which
limits the performances of deep learning methods in ME recognition. By applying
transfer learning to ME recognition, the impact of insufficient training data on
performances can be reduced to some extent. Mayya et al. [10] used a CNN
model pre-trained on ImageNet [11] to extract features, and then used Support
Vector Machine (SVM) in ME classification. Xia et al. [12] proposed a knowledge
transfer framework from macro-expressions to MEs. In which, MiNet and MaNet
were trained using ME datasets and macro-expression datasets, respectively.
Then, MaNet was used to guide MiNet from the spatio-temporal domain for
fine-tuning, enabling the model to better complete ME recognition tasks.

The Part based Convolutional Baseline (PCB) model [13] was initially pro-
posed for the task of person retrieval. PCB provides more fine-grained informa-
tion for pedestrian image description by learning part-informed features, and
therefore can effectively boost the performances of person retrieval. Motivated
by the idea of PCB model, in this paper we propose a ME recognition algorithm
called PCB-PCANet+. Which uses PCANet+ as the backbone network for fea-
ture extraction, then divides the output feature tensor into multiple parts based
on facial ROI region segmentation, and uses a separate LSTM network for each
part to learn local spatiotemporal features, and finally fuses the features of all
parts for ME recognition. The experimental results demonstrate the effectiveness
of the algorithm.

The rest of this paper is organized as follows. In Sect. 2, we provide a detailed
introduction to our PCB-PCANet+ model. Section 3 presents the experimental
results and discussions, and the conclusion will be given in Sect. 4.

2 Proposed Method

In this section, we provide a detailed description of the proposed ME recognition
method. PCB takes existing CNNs as the backbone networks, divides the fea-
ture tensor output into several parts after convolution layer and pooling layer,
and uses each part to train a separate classifier, so as to achieve more effective
feature learning. The framework of our proposed PCB-PCANet+ model for ME
recognition is shown in Fig. 1.
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Fig. 1. Framework of proposed PCB-PCANet+ model for ME recognition

2.1 PCANet+ Feature Extraction

For a ME video clip, data preprocessing is required before feature extraction.
First, 68 facial landmarks are detected using the Active Shape Model (ASM),
and then the face area is aligned and cropped to remove the background in the
image and also reduce the influence of head offset on ME recognition. Then we
use TIM algorithm to normalize the frame number of ME video clip.

We perform optical flow calculation on the preprocessed video clip to obtain
the horizontal and vertical optical flow sequence U,V ∈ R

N×M×(L−1), where N
and M are the height and width of the image, and L is the number of frames.
We use a sliding window (length T , step size s) to sample U and V simultane-
ously and stack these sampled horizontal and vertical optical flow components
to obtain a multi-channel image set I = {I1, I2, . . . , IK} with the number of
channels of 2T , and input them into PCANet+ for feature extraction.

In our algorithm, we use a two-layer PCANet+ network, where the number
of filters in the first layer is F1 and the filter size is K1 × K1, the number of
filters in the second layer is F2, and the filter size is K2×K2. For a multi-channel
image Ii, after passing through the two-layer PCANet+, a tensor Q consisting
of F2 feature maps {O1,O2, . . . ,OF2} will be obtained.

In the original PCANet+, histogram features will be calculated with hash
coding for each feature map in Q. In order to further model the temporal infor-
mation of MEs on the basis of PCANet+ features, this paper directly uses the
feature map output from the second layer of PCANet+ network as the input for
the subsequent LSTM networks.

2.2 Multi Branch LSTMs Based on Facial ROIs

According to the learning process in PCANet+, the filters in the second layer cor-
responds to the eigenvectors computed in that layer, and generally the larger the
corresponding eigenvalue of the filter, the more important information contained
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in the produced feature map. Therefore, based on the eigenvalues of the filters,
the weighted average is applied to the feature maps, as shown in Formula 1, to
obtain a two-dimensional feature map Oi. By this processing we make the input
to subsequent LSTM more compact.

Oi =
F2∑

j=1

exp (λj)∑F2
k=1 exp (λk)

Oj (1)

where Oj represents the feature map output by the j-th filter in the second
PCANet+ layer, and λj represents the corresponding eigenvalue of the j-th
filter.

The original PCB model used for person retrieval uniformly divided feature
tensors into multiple blocks, and then trained the corresponding classifier based
on each block. In this paper, for the task of ME recognition, we divide the
feature map based on facial ROI regions. The illustration of facial ROI region
segmentation is shown in Fig. 2.

Fig. 2. Illustration of facial ROI region segmentation

Then, the features of each region are transformed into a feature vector gi,
which serves as input for subsequent part based classifiers. In order to better
incorporate PCB model into ME recognition task, the local classifier we designed
consists of a two-layer LSTM, a fully connected layer, and a Softmax function.

2.3 Multi-branch Fusion and Classification

To further enhance the ME recognition performance, we use a feature weighting
strategy to take into account of significances of different ROI regions. The weight
of each branch is calculated according to the accuracy of the classifier or the
prediction score. The two methods of feature weighting are given in Formula 2
and Formula 3 respectively.

wi =
exp (accuracy(i))∑p
j=1 exp (accuracy(j))

(2)
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w′
i =

n∑

j=1

exp (scoreij(yj))∑c
k=1 exp(score

i
j(k))

(3)

where wi and w′
i represent the weights calculated based on accuracy and pre-

diction score for the i-th branch, p represents the number of branches, and
accuracy(i) represents the accuracy of the validation set in the i-th branch. n
represents the number of samples in the validation set, c represents the number
of ME classes in the dataset, scoreij(k) represents the score of the k-th class
predicted by the i-th classifier for the j-th sample, and yj represents the real
class corresponding to the j-th sample.

Finally, the features learned from each branch are weighted and concatenated,
and then are input to a global classifier composed of two full connection layers
and a Softmax function to complete ME classification. So the model can ensemble
part-informed features to improve ME recognition performance.

3 Experimental Results and Analysis

To evaluate the proposed ME recognition method and also to analyze the impact
of model settings and model parameters on performance, we conducted extensive
experiments on SMIC and CASME II datasets.

3.1 Dataset

SMIC. The SMIC [3] dataset is the first spontaneous ME dataset and con-
tains three subsets, namely SMIC-HS, SMIC-NIR, and SMIC-VIS. Among them,
SMIC-NIR and SMIC-VIS subsets were captured by cameras with 25 fps. Due
to the rapid and brief facial movements of MEs, cameras with low frame rates
can not capture the dynamic information of MEs. Therefore, SMIC-HS will be
used to evaluate our approach, which was captured by a high-speed camera with
a frame rate of 100 fps and included 164 ME samples from 16 volunteers. The
samples were divided into three ME categories: Positive, Negative and Surprise.

CASME II. The samples in CASME II [14] dataset were captured by a high-
speed camera with frame rate of 200 fps, involving the MEs of 26 volunteers,
including 255 video clips. The CASME II dataset contains seven ME categories:
Happiness, Surprise, Sadness, Fear, Disgust, Repression, and Others. However,
since there are only nine samples of sadness and fear in the data set, which is
not conducive to network training, only 246 samples of the other five categories
were used in our experiments.

3.2 Performance Metric

In ME recognition experiments, we use Accuracy, Macro-F1, and Macro-recall
as performance metrics.

Accuracy =
∑C

i=1 TPi∑C
i=1 TPi +

∑C
i=1 FPi

(4)



184 S. Wang et al.

Pi =
TPi

TPi + FPi
(5)

Ri =
TPi

TPi + FNi
(6)

Macro − F1 =
1
C

C∑

i=1

2 × Pi × Ri

Pi + Ri
(7)

Macro − recall =
1
C

C∑

i=1

TPi

TPi + FPi
(8)

where C represents the number of classes of MEs. TPi, FPi and FNi represents
the number of true positive samples, false positive samples and false negative
samples of class i respectively.

3.3 Different Methods of Feature Tensor Segmentation

In the proposed ME recognition method, the output of PCANet+ is divided into
several parts by key facial regions. To verify the validity of this segmentation
method, in this section we compare it with the other two methods of segmenta-
tion. The first method, as shown in Fig. 3, evenly divides the feature tensor into
four parts along the horizontal direction, which is consistent with the method
proposed in [13].

Fig. 3. Horizontal segmentation of tensors

The second method of segmentation is shown in Fig. 4. The feature tensor is
divided into four parts along both horizontal and vertical directions. As shown
in Fig. 5, our method divides the feature tensor into several parts based on ROI
regions like eyebrows, eyes, nasal wings and mouth.

This section compares three segmentation methods on SMIC dataset and
CASME II dataset, and the experimental results are shown in Table 1 and
Table 2. From the experimental results, it can be seen that the recognition per-
formances of the feature segmentation method based on facial ROI regions are
superior to the other two simple segmentation methods. Which indicates that
the motion information contained in key facial regions is more important to ME
recognition.
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Fig. 4. Horizontal and vertical segmentation of tensor

Fig. 5. Tensor segmentation based on facial key regions

Table 1. Comparison of different tensor segmentation methods on SMIC

Tensor segmentation methods Accuracy Macro-F1 Macro-recall

Horizontal 0.6524 0.6535 0.6557
Horizontal+Vertical 0.6463 0.6479 0.6505
Key facial regions 0.6768 0.6797 0.6875

Table 2. Comparison of different tensor segmentation methods on CASME II

Tensor segmentation methods Accuracy Macro-F1 Macro-recall

Horizontal 0.5528 0.5563 0.5420
Horizontal+Vertical 0.5447 0.5342 0.5103
Key facial regions 0.5691 0.5754 0.5636

3.4 The Influence of Feature Weight

In order to verify the effectiveness of feature weighting for multiple branches,
this section compares recognition performances of models with and without this
feature weighting process. The experimental results are shown in Fig. 6.

It can be observed from Fig. 6 that the recognition accuracies without feature
weighting are inferior to that using feature weighting. Which indicates that fea-
ture weighting for multiple branches we used can boost performances by taking
into account the contributions of different facial regions to ME recognition. At
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Fig. 6. Influence of feature weighting on model recognition accuracy

the same time, we observe that the weights calculated according to accuracy
works slightly better than the weights calculated based on prediction score.

3.5 Model Parameter Optimization

In this section, we carry out experiments on SMIC dataset to analyze the impacts
of model parameters on recognition performances, such as the size of feature
tensor, and the number of partitions by tensor segmentation.

The Size of Feature Tensor. In the experiment, the spatial size of input video
was normalized to 139 × 170. The spatial size of feature tensor can be changed
by using the different step size in pooling in the second layer of PCANet+.
Table 3 shows the relationships between the pooling stride and the spatial size
of feature tensor. Figure 7 shows the model performances with different spatial
sizes of feature tensor, and it can be seen that the best recognition results are
achieved when the size is 46 × 56.

Table 3. Relationships between pooling stride and the spatial size of feature tensor

Pooling stride Spatial size of feature tensor

1 139× 170

2 69× 85

3 46× 56

4 34× 42
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Fig. 7. Model performances with different tensor sizes

Number of Tensor Partitions. The number of tensor partitions can be
changed by different ways of combinations of key facial regions, and their corre-
sponding relationships are shown in Table 4. In the left column, the numbers 1, 2,
3, and 4 represent facial regions such as eyebrows, eyes, nasal wings and mouth,
respectively. [1, 2] represents the combination of eyebrows and eye regions. [3, 4]
represents the combination of nasal wings and eye mouth.

Table 4. Relationships between the different combinations of facial regions and the
number of tensor partitions

Ways of facial region combinations Number of tensor partitions

[1, 2][3, 4] 2
[1, 2][3][4] 3
[1][2][3][4] 4

Figure 8 shows the model performances with different number of tensor par-
titions. It can be seen that model performances increase with more fine granular-
ity of facial region segmentations. Which indicates that the fine-grained features
learned from local facial regions are benificial to ME recognition.

3.6 Comparison with Other Methods

In order to verify the effectiveness of our proposed method, we compare it with
some existing methods including both of hand-crafted features and deep learning
methods. In comparison, our method uses the optimal parameter configuration
obtained from the above experiments. In addition, for better comparison, we
re-implement LBP-TOP and STLBP-IP based on the same data pre-processing
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Fig. 8. Model performances with different number of tensor partitions

Table 5. Comparison of different methods on SMIC

Method Accuracy Macro-F1 Macro-recall

LBP-TOP [14] 0.4207 0.4266 0.4429
STLBP-IP [15] 0.4329 0.4270 0.4241
Selective [16] 0.5366 N/A N/A
3D-FCNN [17] 0.5549 N/A N/A
FR [18] 0.5790 N/A N/A
OF-PCANet+ [19] 0.6280 0.6309 0.6369
Ours(PCB-PCANet+) 0.6463 0.6467 0.6514

Table 6. Comparison of different methods on CASME II

Method Accuracy Macro-F1 Macro-recall

LBP-TOP [14] 0.4390 0.4297 0.4259
STLBP-IP [15] 0.4173 0.4026 0.4282
Selective [16] 0.4575 N/A N/A
ELRCN [20] 0.5244 0.5000 0.4396
3D-FCNN [17] 0.5911 N/A N/A
OF-PCANet+ [19] 0.5325 0.5493 0.5241
Ours(PCB-PCANet+) 0.5569 0.5574 0.5543
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and evaluation indicators, and their parameters are consistent with the optimal
settings in the original paper [14,15]. For deep learning based algorithms, we
directly use the results from the original papers. Table 5 and Table 6 respec-
tively provide the comparison results of Accuracy, Macro-F1 and Macro-recall
for different methods on the SMIC and CASME II, where N/A indicates that
the corresponding performance metrics were not provided in the original paper.

From Table 5 and Table 6, it can be seen that deep learning based methods
perform significantly better than traditional hand-crafted methods on the SMIC
and CASME II. Meanwhile, our method produces competitive results compared
to other deep learning based algorithms. The experimental results indicate that
the proposed PCB-PCANet+ method can improve ME recognition performance
effectively by learning part-informed features from facial ROI regions.

4 Conclusion

In this paper we propose a ME recognition method called PCB-PCANet+. By
dividing the output of PCANet+ into several parts based on facial ROI regions,
we use a multiple branch LSTM networks to learn part-informed spatio-temporal
features from different parts. To further enhance the performance, we present a
feature weighting strategy to fuse the features of different facial regions before
ME classification. The experimental results on the SMIC and CASME II datasets
indicate that PCB-PCANet+ can effectively improve ME recognition perfor-
mances by ensembling part-level features of key facial regions.
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Abstract. Industrial defect detection is designed to detect quality
defects in industrial products. However, the surface defects of differ-
ent industrial products vary greatly-for example, the variety of texture
shapes and the complexity of background information. A lightweight
Focus Encoder-Decoder Network (FEDNet) is presented to solve these
problems. Specifically, the novelty of FEDNet is as follows: First, the
feature focusing module (FFM) is designed to focus the attention on
defect features in complex backgrounds. Secondly, a lightweight texture
extraction module (LTEM) is proposed to lightly extract the texture and
relative location information of shallow network defect features. Finally,
the AZIoU, an adaptive adjustment loss function, is reexamined in the
prediction box’s specific circumference and length-width bits. Experi-
ments on two industrial defect datasets show that FEDNet achieves the
accuracy of Steel at 42.86% and DeepPCB at 72.19% using only 15.3
GFLOPs.

Keywords: Industrial Quality Detection · Feature Focusing ·
Adaptive Adjustment Loss · Lightweight Texture Extraction

1 Introduction

In order to promote the urgent need for deep integration of information technol-
ogy and industrialization, industrial surface defect detection is one of the essen-
tial technologies to ensure product quality and improve production efficiency.
Recently, defect detection methods based on computer vision have been widely
used in industrial fields. Among them, product quality testing in the industrial
field is critical.

Industrialdefectdetectionmethodsaredividedintotraditionalmethodsanddeep
learning-based methods. Traditional methods can be divided into three categories.
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Forexample,aclusteringalgorithmbasedonimagefusion[1],amethodbasedonHoff
transformation [2] Fourier Image Reconstruction Method [3]. Most of these meth-
odsdependonpriorknowledgeandhandcrafteddefectdescriptions.Recently,dueto
theriseofConvolutionalNeuralNetwork(CNN),surfacedetectionalgorithmsbased
onCNNhavedeveloped rapidly.By the invariance of translation of convolution and
strong correlation of local features, the accuracy and robustness of model detection
are enhanced.Newmethods suchasdynamic label assignment [4], attentionmecha-
nism,andedgefeaturethinninghaveemerged, focusingmoreonsolvingthecoupling
relationshipbetweenfeatures,achievingfeaturethinningandfocusextraction.How-
ever, images in the industrialworlddiffer fromthose in thenatural scenedataset.As
shown inFig. 1, shape textures arediverse, background information is complex, and
smallsamplesarefuzzy.Theabovemethodsareoftentestedforconventionaldefects,
and they cannot be well promoted to industrial defect detection in complex scenar-
ios. Especially for the small defect objects in the industrial scene, the texture shape
is changeable, etc., and the generalization of the detection is poor. When deployed,
industrial surfacedefectdetectionrequireshigh-precisiondetectionandensures low
computational complexity, aiming to achieve leak-free and real-timedetection.

For the above challenges, we design a novel FENDet network. Specifically,
the defective objects are considered to be tiny. We design the FFM module,
which can focus on the tiny defective features in the complex background and
learn the semantic information of the tiny defective features in a more targeted
way. Considering that the shape texture is diverse and the background informa-
tion is complex. We design LTEM module, which aims to extract texture and
relative position information of shallow network defect features in a lightweight
way, while using depth-separable convolution to build lightweight modules. In
this paper, the perimeter factor of the prediction box is reviewed again, and
an adaptive adjustment loss calculation paradigm is designed to accelerate the
convergence of the model.

Fig. 1. The first row is the Steel dataset, where shape and texture are diverse, and
background information is complex. The second row is the DeepPCB dataset, where
you can see that the defect is minor and the regression task is difficult.
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The core contributions of this methodology are as follows:

1. This paper presents a FFM module to focus attention on defect features in
complex backgrounds, to learn more specifically the semantic information of
defect features in complex backgrounds, and to improve the detection accu-
racy of the network.

2. This paper presents an LTEM module and introduces a deep detachable con-
volution to build a lightweight module. At the same time, extract and fuse
features from multiple channels, aiming at lightly extracting texture and rel-
ative location information of shallow network defect features.

3. In this paper, an adaptive adjustment loss function, AZIoU, is designed to
reexamine the validity of the prediction box under specific circumference and
length-width bits and to accelerate the convergence of the model. The problem
of complex regression for small objects is solved.

The other section in this paper are as follows: The second section reviews
the previous work and contributions of object detection tasks. The third section
describes the core modules and architecture of this model. The fourth section
makes an experimental demonstration and analysis of the model. The fifth
section comprehensively summarizes this article and its prospects for future
work.

2 Related Work

2.1 Universal Object Detection

In recent years, with the rise of convolution neural network, object detection
algorithm based on deep learning has also achieved rapid development. Cur-
rently, the main algorithms are divided into one-stage and two-stage object
detection. One-stage object detection predicts the class and location of objects
directly by the features extracted from the network. The mainstream algorithms
include YOLO [4–8], YOLOX [9], and YOLOP [10]. The two-stage object detec-
tion algorithm first creates a suggestion box that is more likely to contain the
object to be detected and then classify and locate it. The mainstream algo-
rithms include SPP-Net [11] and Faster-RCNN [12]. Researchers have introduced
attention mechanisms in response to problems, such as complex defect back-
grounds and difficult defect detection. Attention is a mechanism for focusing
on global or local information. The models of soft attention mainly include CA
[13], ResNeXt [14], GAM [14], and DANet [15]; Models involving self-attention
include the multi-headed self-attention MSA proposed in Transformer [16], the
multi-headed attention SW-MSA based on sliding windows proposed in Swing
Transformer [17]. There are also several excellent algorithms in the field: Xu et
al. [18] proposed the PP YOLOE algorithm for anchor-free detection, introduc-
ing advanced technologies such as the dynamic label allocation algorithm TAL.
Yu et al. [19] used a two-stage FCN based algorithm, Li et al. [20] adopted a
lightweight backbone network MobileNet and a single stage continuous detec-
tor SSD, Song et al. [21] proposed a significance detection method based on
Encoder-Decoder residual network structure.
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2.2 Regression Loss Function for Object Detection

The regression loss function plays a critical role in object detection. The GIoU
proposed by [22] and others solves the problem where the prediction box and
label box do not intersect with an IoU value of 0; Zheng et al. [23] added the con-
cepts of center point distances and minimum circumscribed rectangles between
prediction boxes and label boxes on this basis, and subsequently discovered the
aspect ratio factor of the two boxes, making positional regression more accurate.
Zhora et al. [24] again considered the factor of vector angle in the regression
process, once again improving the speed of model training and the accuracy of
reasoning.

However, regression is difficult for data sets with minor industrial defects and
drastic scale changes. When the center points of the prediction box and the label
box coincide, the penalty terms in most regression losses will fail.

3 Method

3.1 Overview

This paper proposes an end-to-end focused Encoder-Decoder network. Figure 2
shows that the feature map is first processed by a data enhancement method
and sent to Encoder for feature code extraction. Secondly, this article uses the
Encoder’s P1, P2, and P3 feature layers as input to the Decoder and performs
serial decoding and fusion for multi-level feature information. Finally, the fully
decoded and fused P4, P5, and P6 feature information in the Decoder network is
transmitted to the detector for classification, regression, and confidence detection
of defective objects.

Fig. 2. The overall architecture of the FEDNet model proposed in this paper, the
surface defect images are firstly enhanced by the data; then they are decoded and
fused by the Encoder module for feature encoding extraction and the Decoder module
for multi-layer feature information; finally the prediction results are output by the
detection head.
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3.2 Encoder

In this paper, we stack LETM and FFM convolution modules to continuously
expand the receptive image field and extract rich multi-level feature information.
Finally, the robustness of the feature is guaranteed through the SimSPPF [7]
module.

In industrial defect images, most defects are relatively small, resulting in an
imbalance in the number of defective and non-defective samples. For this rea-
son, the FFM module focuses on the features of defective objects and highlights
the semantic information of defects. As shown in Fig. 3, in the feature layer
FF = Xc(i, j) ∈ RH×W×C , the FFM module captures channel information and
spatial location awareness information through two branches. It divides the fea-
ture map evenly into two branches F1, F2 and on the channel as C/2 ×H×W.
The normalized weight factor of the sample features in the LayerNorm [25] regu-
larization function is used in the channel branch to generate focus weights. First,
F1 undergoes the convolution of 5 × 5 to obtain a large receptive field. Then it
adjusts the feature to H ×W×C/2 and inputs it into LayerNorm by calculating
the mean and standard deviation within the sample feature channel by channel.
After linear mapping g(α), the normalized features are mapped to the new fea-
ture distribution Fe through learnable parameters α and β. Finally, use the focus
weight regeneration function g(α) to calculate the score of each channel sample
and multiply by Fe to obtain the channel focus weight Gc; The spatial branch
first undergoes the convolution of 3 × 3 to obtain the characteristic information
of the receptive field different from the channel branch. After encoding the spa-
tial position information in the spatial H and W directions through the pooling
layer, the dimensions are changed to C ×H× 1 and C ×W× 1, and the feature
information Fs in these two directions is obtained. The two feature information
is fused through the convolution layer of 1 × 1 and decomposed into two separate
feature layers along the spatial dimensions H and W. Use the Sigmoid [26] acti-
vation function to obtain the branch ultimately focus weights Gh

s (i) and Gw
s (j)

for rows and columns. Multiply the three weights to obtain the focus weight,
then multiply them by the input feature to obtain FF the focus feature map F ′.
The formula involved in FFM:

f(F1) =
F1 − mean√

std + ε
× α + β (1)

g(αi) = ln
αi∑n

i
αi+ε (2)

Gc = σ
(
Fe ⊗ g(αi)

) ⊗ F1 (3)

where mean represents the average value of each sample in the channel; std
represents the variance of each sample in the channel, and ε represents the coding
channel in the horizontal coordinate direction; α is a normalized weight factor
parameter that represents learnable; β is a learnable paranoid parameter, ⊗ is
multiplied element by element, and σ represents the sigmoid activation function,
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i represents the encoding channel in the horizontal direction of the coordinate; j
is the encoding channel representing the vertical direction of coordinates.

Fs = Add
(
MaxPooling(FF ), AvgPooling(FF )

)
(4)

Gh
s (i), G

w
s (j) = σ (Conv (Split (BN(Conv(Fs))))) (5)

F ′ = (Gc ⊗ Gh
s (i) ⊗ Gw

s (j)) ⊗ FF (6)

where σ represents the sigmoid activation function; Conv is the convolution of
1× 1. Such as Eq. (5), j represents the coding channel in the horizontal direction
of coordinates; i is a coding channel representing the vertical direction of coor-
dinates; FF is the initial input feature, and ⊗ is multiplied element by element.

Fig. 3. FFM module, mainly through the fusion of channel focus branch and spatial
focus branch, can assist the model to better focus on the shallow texture shape infor-
mation and the deep important feature information.

LETM is designed to encode and extract the characteristics of external net-
works and decode and fuse the characteristics of deep networks. As shown in
Fig. 4, the cascade convolution module LETM continuously adjusts the size
of the receptive field and the number of lightweight convolutions N for dif-
ferent branches as the model width w and depth d increase. Define input
FL ∈ RH×W×C , and each time a feature passes through a layer, the definition
feature layer {fd, d = 1, 2, 3} will contain two branches. Contains a lightweight
branch definition {fo

d × Nd, N = 1, 3} and different receptive field branches
{f i

d = DaConv ∈ H × W × c
r di, r = 1, 2, 3, i = 1, 2, 3}. The feature layer under-

goes different amounts of deep separable convolution processing, committed to
filtering non important information in the original image to reduce noise in the
image, and reducing the amount of parameters; At the same time, common con-
volutions of different receptive fields are used to obtain complex and variable
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edge texture features. Finally, the feature information from multiple branches is
spliced and fused along the channel direction, with the purpose of assisting the
feature extraction network to better focus on the spatial location information of
the target. The validity of the LETM module is demonstrated in Table 3.

Fig. 4. The LETM module structure, adjusting the number of depth-separable convo-
lutions and branching structure in different widths and depths, is dedicated to filtering
the non-important information in the original image to reduce the noise in the image,
while reducing the number of model parameters to ensure light-weight extraction of
features.

3.3 Decoder

In Decoder Network, we perform serial decoding and fusion of multi-level fea-
ture information, sequentially using LTEM and FFM modules to recover features
while using the idea of BiFPN [27] to efficiently fuse shallow texture edge infor-
mation and deep semantic information. Different weights are assigned to different
feature layers for fusion through ωi learnable weight a, thereby improving the
model detection head for regression and classification.

The BiFPNConcat fusion formula mentioned in this article is as follows:

Out =
∑

i
ωi

ε+Σjωj
· Ii (7)

where ωi is a learnable weight parameter, which is normalized to ensure stable;
ε is a non zero random parameter, and the weights from different feature layers
are adjusted to be the same or zero; Ii represents the feature information of
different feature layers to be fused.

3.4 Loss Function

Although current regression loss functions for target detection consider a variety
of factors, they mainly focus on the centroid distance and edge aspect ratio
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consistency between the prediction frame and the true frame. As in Fig. 5-(a)
when the centroid of the prediction frame does not coincide with the centroid
of the true frame, gradient optimization proceeds efficiently regardless of which
loss function (GIoU [22] or CIoU [23]) is used. However, as in Fig. 5-(b), when
the centroids of the prediction frame coincide exactly with the centroids of the
real frame and have the same aspect ratio, the distance loss and aspect ratio
consistency loss as well as IoU fail.

Many small and defect targets have large-scale changes in industrial defect
data sets. The accuracy and convergence rate of model regression is affected.
When the center points of the two boxes coincide, the Euclidean distance between
the two points and the diagonal ratio of the outer rectangle will be 0. When
both boxes have the same aspect ratio, only the IoU loss is valid. Therefore, this
paper rethinks the validity of the two boxes under specific perimeter and aspect
ratio factors conditions. Specifically, the new perimeter factor is considered a
supplement, and the arctan function is used to measure the perimeters of the
two boxes. For tiny target defective objects, the perimeter factor is considered to
compute a larger IoU value, which can produce a minor loss to regress the small
defective objects. As shown in Fig. 5-(c), we found that when the centroids of
the two boxes overlap there will be a variety of cases of the prediction box does
not accurately return to the labeled box. But at this time the distance between
the perimeter of the two boxes is present, and at this time the distance and the
diagonal distance with the outside rectangle there is a gap, you can continue
to guide the model to continue to converge to this part of the distance than
the direction of loss reduction, to ensure more accurate so that the prediction
box wirelessly close to the real box. At the same time, in order to accelerate
the magnitude of gradient update between different factors, a balance function
is designed as the new weight calculation paradigm. Finally, AZIoU segmented
adaptive loss function formula is as follows:

Fig. 5. Example diagrams of real and predicted boxes in different cases. Where red
represents the real box, green represents the target box, the blue line segment represents
the minimum outer rectangle diagonal distance, and the black line segment represents
the distance between the center points of the two boxes. (Color figure online)
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Lossre.g. = 1 − ω1IoU(B,Bgt) + AZIoU (8)

ωi =
ea/eb/ec

ea + eb + ec + epsilon
∗ a/b/c

a + b + c
(9)

AZIoU =

⎧
⎨

⎩
ω2 ∗ ρ2(B,Bgt)

c2 + ω3 ∗ α 4
π2

(
tan−1 wgt

hgt − tan−1 wp

hp

)2

ω2 ∗ ρ2(B,Bgt)
c2 + ω3 ∗ α 4

π2

(
2 tan−1 (hgt + wgt) − 2 tan−1 (hp + wp)

)2

(10)
where B is the center point of the target frame; Bgt is the center point of the true
box; ρ is the Euclidean distance; c represents the minimum outer rectangular
diagonal length; α is the balance factor; hgt, wgt,wp, hp are the height and width
of the real box and the prediction box, respectively; a, b and c are learnable
parameters.

4 Experiments and Analysis

4.1 Parameter Settings and Experimental Environment

The IDE used in this experiment is Pycharm2021 Professional Edition. The
PyTorch version is 1.9.1; The CUDA version is 11.6. Model training and reason-
ing are performed on NVIDIA A100-SMX with 40GB GPU memory and 16GB
CPU memory.

During training, the size of the input image is adjusted to 640 × 640, epoch
300, initial learning rate 0.001, weight decay 0.0001, Momentum 0.9. At the same
time, the Adam optimization algorithm is used, and the learning rate is adjusted
by cosine annealing. In addition, IoU, mAP, GFLOPs, Recall, Precision, and F1
Score were selected for the evaluation index.

4.2 Experimental Datasets

Steel is a dataset published by Northeast University that contains six typical
surface defects of hot rolled steel strips: pitted surface, crazing, rolled-in scale,
patches, inclusion, and scratches. The shape and texture in the defect image
change dramatically. In addition, the brightness and background complexity of
the defect image is highly different. Before the experiment started, the data set
was preprocessed: Firstly, photometric distortion was added to the data set, and
the brightness of some pictures was adjusted; Next, the processed image was
processed by panning and flipping horizontally. We selected 1400 more complex
pictures of defect types as training sets. Finally, the images are divided into the
training, test, and verification sets according to the 6:2:2 ratio.

The DeepPCB dataset is a semiconductor chip manufactured using linear
scanning microelectronics technology with 1500 images. Image contains six defect
categories: open, short, mouse bite, spur, pinhole, and spurious copper. Accord-
ing to the ratio of 7:1:2, the set is divided into the training, test, and validation
sets.
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4.3 Comparative Experiment

This paper selects the traditional model, new industrial detection model, and
two-stage model with higher accuracy for comparison on two datasets. As shown
in Table 1, traditional industrial defect detection models do not perform well
on both datasets. We also compared the new model of YOLO series, FED-
Net’s mAP@.5-.95 And F1 scores are higher than models such as YOLOv7 and
YOLOR. To verify the robustness of the model, we compared the new industrial
detection model to see the FEDNet on the Steel dataset. mAP@.5 4% higher
than PPYOLOE and AirDet, F1 up to 0.78; Both recall, and precision indices
on DeepPCB datasets were higher than AirDet 3%. It is worth noting that when
the experimental results of FEDNet on two datasets are similar to the two-stage
model Faster-Rcnn, the GFLOPs are 10 times more petite. Finally, we show the
detection results for the two datasets, as shown in Fig. 6.

4.4 Ablation Experiment

As shown in Table 2, this paper chooses YOLOv5s as the baseline to verify the
ability of FFM modules to focus on defect features. The second line included the
CA attention module in the C3 module of the baseline model, and F1 was 1%
higher than the baseline. Add the NAM attention module, mAP@.5 1% increase
and 1% increase in recall rate; Choose GAM attention regardless of cost. You
can see mAP@.5 And F1 indicators increased by 2%. Finally, the FFM Focus
module was added, the precision was increased by 3%, and the other indicators
reached the best.

Figure 7 shows a visual thermogram of the FFM module, which can be visu-
ally observed to have a higher focus on defective objects.

LETM ablation experiment: As shown in Table 3, this article continues to
conduct ablation experiments on the LETM module using the YOLOv5s model

Table 1. Comparison tests on two representative datasets of industrial surface defects.

Approach GFLOPs Steel DeepPCB
– – mAP@.5 mAP@.5-.95 precision recall F1 mAP@.5 mAP@.5-.95 recall F1

Faster-Rcnn 201.3 76.3% 40.91% 54.14% 82.25% 0.64 97.95% 72.91% 97.86% 0.98
YOLOv3 154.9 68.92% 37.41% 72.25% 65.94% 0.69 95.86% 66.78 % 92.68% 0.92
YOLOv4 120.2 68.73% 39.62% 85.61% 62.54% 0.72 95.38% 65.18% 94.53% 0.93
YOLOv5s 15.8 74.92% 40.29% 70.97% 76.03% 0.73 97.21% 67.72% 95.89% 0.95
YOLOv7 103.2 74.52% 39.21% 80.31% 67.46% 0.72 97.53% 72.23% 97.11% 0.97
Efficientdet-d3 24.9 65.65% 37.11% 84.76% 48.44% 0.61 85.78% 63.91% 78.44% 0.84
Centernet 109.8 67.24% 36.51% 81.51% 51.33% 0.63 82.54% 61.57% 78.33% 0.76
Retinanet 191.6 64.24% 31.93% 76.73% 49.62% 0.64 86.49% 65.85% 72.22% 0.78
YOLOR-P6 57 76.52% 41.32% 65.56% 83.37% 0.74 98.14% 72.12% 97.42% 0.97
PPYOLOE-s 17.4 75.42% 40.89% 73.75% 76.74% 0.75 97.34% 70.23% 94.36% 0.95
AirDet-s 28 74.52% 40.38% 74.62% 73.58% 0.74 96.32% 69.81% 94.78% 0.94
FEDNet 15.3 78.68% 42.86% 76.23% 80.52% 0.78 98.42% 72.19% 97.55% 0.97
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Fig. 6. Detection results of Steel and DeepPCB surface defects.

Table 2. Ablation experiment of FFM module on Steel dataset.

Approach and improvement mAP@.5 mAP@.5-.95 precision recall F1

YOLOv5s(+C3) 74.92% 40.29% 70.97% 76.03% 0.73
YOLOv5s(+C3+CA) 75.38% 40.62% 71.43% 76.72% 0.74
YOLOv5s(+C3+NAM) 75.85% 40.86% 72.21% 77.42% 0.74
YOLOv5s(+C3+GAM) 76.18% 41.06% 72.83% 77.92% 0.75
YOLOv5s(+FFM) 76.54% 41.25% 73.12% 78.21% 0.75

Fig. 7. (a) Original image; (b) Thermal diagram of C3 module; (c) Thermal diagram
of CA attention; (d) A thermal map of NAM attention; (e) Thermal diagram of GAM;
(f) Thermal diagram of FFM module; (g) Test result diagram.
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as a baseline. This article uses lightweight backbone networks such as MobileNet
v3, ShuffleNet v2 ect. It can be seen that all indicators are similar to the C3 of the
baseline model. The fifth line shows the LETM module, using only 11.5 GFLOPs
to make mAP@.5 Increased by 2%, F1 increased by 2%. Therefore, LETM can
effectively extract complex edge texture features while ensuring lightweight.

Table 3. Ablation experiment of LETM on Steel dataset.

Approach and improvement mAP@.5 mAP@.5-.95 precision recall F1 GFLOPs

YOLOv5s(+C3) 74.92% 40.29% 70.97% 76.03% 0.73 15.8
YOLOv5s(+MobileNet-v3) 74.12% 39.32% 71.21% 75.21% 0.73 10.4
YOLOv5s(+ShuffleNet-v2) 74.43% 38.72% 72.16% 74.36% 0.73 11.5
YOLOv5s(+CSPDarkNet53) 74.92% 40.29% 70.97% 76.03% 0.73 13.8
YOLOv5s(+LETM) 76.45% 41.31% 74.23% 77.34% 0.75 11.5

AZIoU ablation experiment: The FEDNet model was chosen as the baseline
for the experiment. The first five rows of data were the experimental results of
DIoU, CIoU, EIoU, and SIoU loss functions, respectively. The result of the SIoU
loss function is the best. mAP@.5-.95 and F1 were 41.29% and 0.77, respectively.
The sixth row of data is the AZIoU proposed in this article. You can see that
recall is 1% higher than SIoU. mAP@.5 Increase by 1%. It is worth noting that,
as shown in Fig. 8, AZIoU converges the fastest on steel datasets (Table 4).

Fig. 8. Detection results of Steel and DeepPCB surface defects.
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Table 4. Ablation experiment of Loss on Steel dataset.

Approach and improvement mAP@.5 mAP@.5-.95 precision recall F1

FEDNet (DIoU) 76.35% 40.08% 71.19% 76.25% 0.74
FEDNet (CIoU) 77.42% 40.41% 74.25% 78.94% 0.76
FEDNet (EIoU) 76.73% 39.62% 72.61% 78.54% 0.75
FEDNet (SIoU) 77.92% 41.29% 75.17% 79.03% 0.77
FEDNet(AZIoU) 78.68% 42.86% 76.23% 80.52% 0.78

5 Conclusions

This paper presents a lightweight focused Encoder-Decoder network for defect
detection in the industry. Specifically, the FFM structure can focus on defect fea-
tures in a complex background to distinguish the different features of the defect.
LTEM module dedicated to lightly extracting texture and relative location infor-
mation of shallow network defect features. Finally, an adaptive adjustment loss
function AZIoU for perimeter and aspect ratio factors is designed, accelerating
the model’s convergence speed. In the future, our network will be optimized to
meet the robustness of different industrial defect detection.
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Abstract. Multi-task learning has become a powerful solution in which
multiple tasks are trained together to leverage the knowledge learned
from one task to improve the performance of the other tasks. However,
the tasks are not always constructive on each other in the multi-task
formulation and might play negatively during the training process lead-
ing to poor results. Thus, this study focuses on finding the optimal
group of tasks that should be trained together for multi-task learning
in an automotive context. We proposed a multi-task learning approach
to model multiple vehicle long-term behaviors using low-resolution data
and utilized gradient descent to efficiently discover the optimal group of
tasks/vehicle behaviors that can increase the performance of the predic-
tive models in a single training process. In this study, we also quantified
the contribution of individual tasks in their groups and to the other
groups’ performance. The experimental evaluation of the data collected
from thousands of heavy-duty trucks shows that the proposed approach
is promising.

Keywords: Machine Learning · Vehicle Usage Behavior · Multitask
learning

1 Introduction

Today’s automotive manufacturers are becoming more motivated to investigate
how vehicles behave during their operations. This is because understanding the
long-term behavior of the vehicle support manufacturers’ maintenance strategy
to lower the costs and increase the performance of their fleets based on their
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capabilities, needs, and customers’ demands. Although using high-resolution
time-series data such as GPS position or other sensory data can be potentially
employed to extract vehicle behavior patterns, such data is costly to transfer
from connected assets and, most importantly, has privacy issues. In our previous
study [10], we demonstrated and acknowledged that modeling vehicle behavior
with low-resolution data can be made by building a complex ensemble multi-
task deep neural network. The finding could indeed support overcoming the
concern highlighted above. In this study (a continuation of our previous work),
we investigate how different vehicle behavior chosen from high-resolution can
be optimally trained together in a multi-task formulation using low-resolution
data to enhance the predictive model’s performance. We aim to find out–in one
training process–multiple groups of tasks that outperform the multi-task model
when all tasks are trained together.

Analysis of truck operation is critical to understand customers’ real require-
ments to improve future truck design and developments. Vehicle long term-
behaviors such as night stop behavior, whether the vehicle usually stops at a
single home base, several distant bases, or is irregular, or driver class, whether
only one driver or multiple drivers drove a vehicle, can be utilized to inform the
design of future trucks and their infrastructure.

We could observe multiple studies in the automotive sector that have inves-
tigated short-term vehicle behavior and attempt to correlate the behaviors such
as driver’s lane changing patterns [16], fatigue [4], aggressiveness [21] to energy
consumption, breakdowns [1,11], and CO2 emission [17,19,25] to decrease safety
issues and enhance the performance of the vehicle. Many of these studies for-
mulated the practice as a single-task problem and employed machine learning
and deep neural networks to map such patterns to the particular performance
factor. For example, [11] built a deep neural network model by feeding multiple
sensor data such as engine speed, vehicle speed, and engine load to predict safe
and unsafe driving behaviors. In [20], researchers focused on a single driving
behavior–aggressive driving– and tried to measure and correlate Nox emission
to different levels of aggressive driving. A similar investigation has been done by
Cohi et al. in [5] to understand how aggressive driving impacts fuel consumption.
Various environmental factors such as weather, time, and road conditions have
been used to model vehicle behavior and correlate to vehicle performance [3].

Although the studies briefly reviewed vary widely in terms of what kinds
of vehicle demeanor are evaluated and what approaches are built and utilized
to handle the problem, AI and machine learning have proved to be successful
in modeling vehicle behavior in the automotive sector [1,11]. However, studies
are lacking in modeling multiple long-term vehicle behaviors. In this context,
multiple patterns of operations can occur in a particular time window. Thus,
we believe such modeling operations can be improved by incorporating AI and
advanced multi-task deep neural network approaches.

Motivated by the above, in this study, we propose a deep neural network
approach to map vehicle usage to multiple vehicle behaviors and focus on find-
ing the optimal group of tasks that should be trained together to enhance the
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predictive model performance. Two main phases construct the proposed method;
the first phase is Data pre-processing, concerning the extraction of hidden infor-
mation from low-frequency data, where this information is later combined with
vehicle behaviors obtained from high-resolution data (also serves as prediction
variables)–here there are four different behaviors/tasks for each vehicle; In the
second phase, we developed a multi-task deep neural network by constructing
a specific head layer for each individual task that enables the network to train
and add more behaviors with a low amount of data without training the whole
network. In this phase, we utilized the gradient descent of each task to find the
optimal group of tasks that should be trained together to boost the predictive
model’s performance to forecast different vehicle behaviors. We computed the
gradient descent of each task giving the shared layer to assess how the models
make similar mistakes to predict different tasks. In this way, we could quan-
tify the transferred knowledge between each task leading to finding the optimal
groups. In addition, we quantify the contribution of each task in group training
to understand how individual tasks can behave when coupled with other tasks
in group training.

Considering our previous study [10] in this context, this work is the first
one to investigate the optimization of task grouping in modeling and predicting
multiple vehicle long-term behaviors through one single training process. This
allows us to quantify the positive and negative contributions of each task. The
following research questions (RQs) further elaborate the investigative objectives
of our proposed approach:

– RQ1- Vehicle Task Grouping: To what extent could the task of vehicle
behaviors be grouped optimally?

– RQ2- Vehicle Behavior Transference Quantification: To what extent
could the vehicle behavior transference be quantified?

• SbQ2.1-Quantifying the contribution of each task in its group?
• SbQ2.2-Quantifying the contribution of each task onto different groups?

Taken together, with these research questions, our work aims to counter the
practice noted above by utilizing the vehicle’s low-resolution operational usage
to find the optimal group of tasks (long-term behaviors) to be trained together
wherein; First, we concentrate on modeling and predicting multiple behaviors
simultaneously via a multi-task learning fashion as the baseline. Then, to answer
RQ1 we develop a predictive multi-task model where gradient descent is used
from the shared layers to extract which tasks might have similar errors over the
training process. A dot-product function was designed to acknowledge which of
those gradients descend points to a similar direction over the training process.
The reported figures revealed how this approach could find the optimal clusters
of tasks leading to enhanced performance without training all combinations. To
answer RQ2, we employed a pairwise comparison between the inner join value
of multiple groups and explored each individual task contribution. The result
of RQ2 allows us to understand which tasks have positive and negative contri-
butions in its cluster and on other groups of tasks, and most importantly, we
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could find out the task that plays an important role in the multi-task predictive
model.

The development of this multi-task and gradient approach in the automotive
sector – particularly – vehicle long-term behavior modeling our research outlines
and constitutes this paper’s main contribution. The contributions in this study
are underlined below:

– We developed a multi-task network and utilized a gradient descent algorithm
to efficiently find the optimal tasks that should be trained together.

– We could quantify an inter-task transference associated with our multi-task
network to extract and reveal the contribution and transference of the tasks
in task grouping.

– We could quantify each task’s positive and negative contribution in each
cluster that shows tasks behave differently when trained in different groups.

The remainder of the paper is organized as follows; Section 2 presents the
related studies in this context. In Sect. 3, we describe the data used in this
study. Section 4 formulates the problem; The proposed approach is described
in Sect. 5.2. Section 6 covers the experimental evaluation and results. Section 7
gives a discussion and summary of the work.

2 Related Work

This study introduces an efficient approach to finding the optimal clusters of
tasks that should be trained together in a multi-task learning problem. The
approach is applied to the automotive context where long-term vehicle behavior
modeling was concerned with multi-task deep neural networks based on trans-
ferring knowledge from high-resolution to low-resolution data. Therefore, before
we dive into the details of our proposed approach, we review some relevant solu-
tions in multi-task learning, vehicle behavior modeling, and position our own
work concerning those areas.

Driving behavior modeling has become an essential field of study among auto-
motive sector researchers seeking to handle different challenges. Earlier studies
concentrated on developing machine learning models to build a self-driving sys-
tem [2,18], and later we could observe investigations focused more on modeling
drivers’ maneuver patterns [13,14,28]. For example, in [9], an ensemble unsu-
pervised machine learning approach is used to extract vehicle usage patterns
in different seasons and assess their performances by focusing on vehicle break-
downs and fuel consumption.

Yet, many studies have concentrated on signal processing and utilized single
or few sensors data to estimate immediate behaviors such as driver frustration
or lane changing [16] to forecasting fuel consumption [26] or build up ADAS
systems [15,22]. This differs from our unique study, which presents vehicles’
long-term behavior modeling approach based on transferring knowledge from
high-resolution to low-resolution data and using gradient descent to find the
optimal cluster of tasks.
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Multi-task learning approaches are used to gain the knowledge shared
between related tasks. The aim of multi-task learning is that the shared rep-
resentation has more generalization power since it needs to learn a more general
representation useful for multiple tasks. Multi-task learning has gained much
attention from the automotive sector, where researchers used them in various
domains, such as predictive maintenance, autonomous driving, drivers’ behav-
ior reasoning [6,23,24,27]. For instance, Chowdhuri et al. in [6] introduced a
multi-task learning approach for drivers’ behavior recognition. They developed
a CNN-based model as the encoder and utilized multiple decoders, including
fully connected and LSTM layers heads to different tasks. In a similar context
of driving behavior detection, we could observe a study in [27], where multi-task
learning is used for three related tasks: illegal driver detection, legal driver iden-
tification, and driving behavior evaluation. In this study, sequential modeling–
LSTM–is first used to extract the common representation of data, then injected
into an SVDD model to detect illegal driver behavior and two feed-forward neu-
ral networks for legal driver identification and behavior evaluation.

In the autonomous driving domain, in [7], a multi-task network is designed
to model and predict three short-term behavioral modes: Direct mode, follow
mode, and furtive mode, where they used self-driving model cars for driving
in unstructured environments such as sidewalks and unpaved roads to evaluate
the proposed approach. In [12], a graph-based multi-task network is developed
to predict trajectories of traffic actors with interactive behaviors. This study
considered Trajectory predictions, 3-D bounding box prediction, and interactive
events recognition as related tasks in building the MLT network.

We found the closest study to our works in [8], where they tried to efficiently
find the task grouping using inter-task-affinity. They attempted to quantify the
effect of one task on another by calculating the loss value of each task before
and after updating the shared layers in the multi-task network. Although the
approach can find the optimal groups in one training process, the network should
be trained once more in each epoch to quantify the impact of one task on another,
which computationally is expensive. This can be intensified when the number of
tasks gets more.

All in all, three main limitations can be observed in earlier studies: 1) in
terms of vehicle behavior modeling, most are limited to using only a few input
parameters to model short-term vehicle behavior; 2) they suffer from the lack of
available real-life data and high prediction accuracy; 3) in terms of application
and multi-task learning, we have not seen any work in this domain to find the
optimal clusters of tasks using gradient descent.

3 Data Representation

This section describes the two data sets used for the proposed vehicle behavior
modeling approach: Logged Vehicle Data (LVD), which is low-resolution (infre-
quent) but high-dimensional (many features) data that is aggregated in a cumu-
lative fashion; and Dynafleet data, consisting of high-resolution (frequent) but
more low-dimensional (fewer features) data.
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Fig. 1. Part of the data mining pipeline to determine the night stop class. First, the
stops are extracted from the GPS trajectories. Then, the stop with the longest duration
per day is selected. These stops are then clustered geographically. The class is then
determined based on the number of clusters and how often they are visited.

Low Resolution Data – Logged Vehicle Data (LVD). The logged vehicle
data (LVD) were collected from commercial trucks over 2019. The LVD holds
the aggregated sensor information for a fleet of heavy-duty trucks operating
worldwide. The values of the features are collected using telematics and through
manual inspection when a vehicle visits an authorized workshop for repairs and
service. In general, two types of features are logged in this dataset. The first type
of feature shows the operational sensor values for the vehicle in the form of scalars
and histograms during its operation. This data is continuously aggregated and
includes several features such as oil temperature, fuel consumption, compressor
usage, gears used, cargo load, etc. The scalars are commonly “life of vehicle”
values, meaning they represent the cumulative value so far in the vehicle’s life,
such as the total mileage, fuel consumption or engine time. The histograms
represent the total time spent in a certain bin defined by the histogram axes.
For instance, the histogram describing the engine speed and engine torque has
bins that contain the total time spent in a certain interval in engine speed and
engine torque. The readout frequency of these parameters will vary depending
on importance, from everyday to occasional workshop visits (Fig. 1).

High Resolution Data-Dynafleet Data. The Dynafleet database contains
fleet management data related to the services provided by Dynafleet (Volvo
Trucks) and Optifleet (Renault trucks). Depending on the services provided, the
vehicles have tracking events logged with intervals of 1 to 10 min, and in con-
nection with certain events such as turning the engine on or off. The tracking
events include information such as GPS position, speed, odometer, and accumu-
lated fuel consumption. Using this data, it is possible to estimate the average
vehicle behaviors described below. The labels rely on positional data and can
not be directly computed from the aggregated data in the LVD dataset.
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– Geopattern: Classification according to the approximate size of the area
traveled during the desired year. The extent of the geographical cloud of
positional data during a year is used to determine the classes.

– Longest stop: Classification according to the duration of the daily longest
stop (typically the night stop). The classes are determined by segmenting the
trucks into classes according to the yearly median of their daily longest stops.

– Night stop class: Classification according to if the vehicle has a common
home base or an irregular night stop pattern. The night stop locations are
found by clustering the night stops. The number of resulting clusters needed
to account for the majority of the stops determines the class.

– Driver class: Classification according to the number of regular drivers of the
vehicle (one main driver or several different ones), based on the total number
of unique drivers and the distance driven by each driver.

All of these labels are calculated by an internal Volvo Group framework used for
vehicle utilization analysis from Dynafleet data. The labels have been used, and
their precision has been verified in several projects. The framework can output
labels for different time frames but only the yearly labels are used in this study.

4 Problem Formulation

This section presents the formulations determined to tackle vehicle behav-
ior modeling. Our approach considers low-resolution data (LVD), which are
labeled (Geopattern, Longest stop, Night stop class, and Driver class) with high-
resolution data as the system’s input, and employs multi-task deep neural net-
works. The conceptual view of the proposed approach is illustrated in Fig. 2. The
intention of this vehicle behavior modeling and prediction investigation can be
formulated as follows:

– The design of a deep neural multi-task learning approach is studied, formulat-
ing the task as a supervised learning problem in a multi-task fashion, to model
and predict vehicle usage. Given the tasks representing vehicle behavior, the
approach tries to find the optimal group of tasks to be trained together for
increasing the predictive performance.

5 Proposed Methodology

5.1 Data Preparation

Data preparation is an integral part of any machine learning problem, and our
multi-task learning practice in the automotive sector is not an exception. Clean-
ing and transferring histograms to the right format have been done in this phase.
However, the most essential step in this phase was to merge the LVD and the
labels calculated from the Dynafleet data to create an integrated dossier with
the usage and behavior designations. These two data sources are combined based
on the vehicles’ “Chassis id” and “Date of readout”. The labels from dynafleet
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data are estimated yearly, and the LVD data are therefore also labeled yearly.
The LVD readouts can be available weekly, which means that every vehicle has
a maximum of 52 weeks of LVD data assigned with the same labels.
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Fig. 2. The conceptual view of the proposed task/vehicle behavior grouping for multi-
task learning in the automotive sector.

5.2 Multitask Network

Multi-task Learning (MTL) refers to the idea of learning several related tasks at
the same time with the same algorithm to learn representations that are more
general, lead to improved generalization, and possibly also faster learning [29].
In our specific case of modeling vehicle behaviors, the different behaviors/tasks
are denoted τi and τ = {τ1, τ2, . . . , τm} is the set of all task. The total loss
vector is:

minθL(θ) = (Lτ1(θ), Lτ2(θ), . . . , Lτm
(θ)) (1)

where Lτi
(θ) is the loss function of the ith task (each task refers to a particular

behavior mentioned in Sect. 1). A multi-task learning aims to perform joint learn-
ing at the same time and optimize all the tasks by utilizing D = {xi

j , y
i
j}ni

j=1 The
models learn from the data points D, and takes advantage of θs as the shared
layers to calculate a loss for each task L(τi|θs, θi). Let’s assume a multitask loss
function parameterized by {θs} ∪ {θi|τi ∈ τ }, where “θs” indicates the shared
parameters in the shared layers and τi is the task i. Thus, given a batch of
samples X, the total loss function of the MTL for vehicle behavior prediction is
calculated by Eq. 2.

Lall(X, θs, θi=1,..,m) =
m∑

i=1

L(τ i; θs, θi) (2)
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5.3 Training Multi-task Network

Given the shared parameters θs and set of tasks defined in τ , we aim to find the
cluster of tasks that are more optimal to be trained together. Indeed, we aim
to train the network in a way that gradients of similar tasks—tasks in the same
cluster—point in similar direction.

‖vt
τi

‖ ← ∇θt
sL

Lτi
(Xt, θt

s, θ
t
τi

), ∀τi ∈ τ (3)

In Eq. 3, Lτi
(Xt, θt

s, θ
t
τi

) indicates the loss function of individual task given
Xt as input and shared parameters θt

s at the macro level t. ∇Lτi
(.) is the gradient

descent of task τi with respect to the last layer of the shared layer (θt
sL

) and
‖vt

τi
‖ refers to the vector of gradient holding at each epoch. Since the magnitude

of the gradient of each task might differ over the training process, Eq. 4 is used
to find a unit to normalize the gradient of each task.

uτi
= max(‖v1

τi
‖, . . . , (‖vT

τi
‖) i = 1, 2, . . . ,m (4)

‖vnt
τi

‖ ← ‖vt
τi

‖
uτi

i = 1, 2, . . . ,m (5)

In order to calculate the similarity between the normalized gradients of two
tasks i and j—(gsi,j)—, Eq. 6 is used.

gsi,j =
k=1∑

i,j∈τ
(‖vnt

τi
‖.‖vnt

τj
‖. cos(θ)) · Wc (6)

Wc =
t

T
t = 1, 2, . . . , T (7)

In Eq. 6, θ is the angle between the two gradient vectors. Wc is used as an
important weight over the training process to inject more weight into the inner
value of the later epochs. In fact, InnerV al illustrates whether the two or more
vectors point to the same direction when they inner join together.

5.4 Individual Task Transference Quantification into Group

To gain insights into the impact of the tasks on each other as well as on a group
of tasks during the training process, we adapt the inter-task affinity to vehicle
behavior impact, introduced in our previous study [10]. We define the quantity
θt+1

s|i to indicate the model with the updated shared parameters towards the task
τi.

θt+1
s|i = θt

s − ζΔθt
s
Lτi

(Xt, θt
s, θ

t
τi

) (8)

Using θt+1
s|i in Eq. 8, we could measure the impact of task τi on the perfor-

mance of the other tasks defined in τ = {τ1, τ2, . . . , τm}. Thus, given the input
Xt ∈ D we can measure the loss for each task by taking the updated shared



Optimal Task Grouping Approach in Multitask Learning 215

parameter θs as well as the specific task parameters θi. Indeed, we assess the
impact IM of the gradient update of task τi on a given set of tasks (Sτ ) which
in our case are chosen to be tuple, and triple. Then we can compare the ratio
between the average loss value of tasks in a given set (Sτ ) before and after
conducting the gradient update from task τi towards the shared parameters as
follows:

IMτi→LSτ
= 1 −

LSτ
(Xt, θt+1

s|i , (θSτ
))

LSτ
(Xt, θt

s, (θSτ
)

· Wc (9)

Wc =
t

T
t = 1, 2, . . . , T (10)

where θSτ
represent parameters of the tasks in a given set. Thus, we translate

IMτi→LSτ
as a measure of transference from meta-train task τi to tasks in Sτ .

A positive value of IMτi→LSτ
shows the update on the shard parameters θs led

to a lower loss value on the set of tasks with respect to the original parameters.
This basically expresses the positive effect of task i to generalize the predictive
model on the set of tasks (Sτ ), while the negative value of IMτi→LSτ

describes
the destructive impact of task i on that set over the training process. We adapted
the overall inter-task affinity measure onto the group of tasks by incrementally
adding certain weights, defined in Eq. 10 on each iteration over the training
process. t refers to the current epoch number, and T is the maximum number of
epochs that the multi-task network should be iterated. This is due to the fact
that at the beginning of the training, the weights are randomly generated, so it
is not expected the earlier loss have the same impact w.r.t to the parameters at
the end of the training.

Thus, in Eq. 11 we calculate the transference over all epochs from task i to
the group of tasks:

ˆIMτi→LSτ
=

1
T

T∑

e=1

IMe
τi→LSτ

(11)

IMτi→LSτ
can be employed in different levels of granularity, such as per-

epoch level or even micro-level/batch level. In this study, we measure the trans-
ference at the epoch level, where T refers to the number of epochs. Given Eq. 9,
we calculate the effect of each task on a group of tasks to quantify the behavior
of each individual task in a group. This basically reflects the hypothesis that
each task might have different contributions when they are coupled with other
tasks.

6 Experimental Evaluation and Results

To facilitate the implementation of the approach, we recall the two research
questions, introduced in Sect. 1, on which we based the evaluation of the proposed
approach as follows: RQ1) To what extent could the task of vehicle behaviors
be grouped optimally? and RQ2) To what extent could the vehicle behavior
transference be quantified to find the contribution of each task in different groups
and on different groups?
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Fig. 3. The individual tasks loss values when they are trained all together with a shared
and specific layer.

6.1 RQ1: Vehicle Task Grouping Results

Before directly answering the research questions, we formulate the prediction
task as a multi-task learning problem wherein, in one single training process, we
simultaneously trained all the tasks, having the shared and their specific param-
eters using Eq. 2. This implementation has been done to understand to what
extent–as a baseline–a multi-task deep neural network can handle the complex
problem of mapping low-resolution data to vehicle behavior obtained from high-
resolution data.

Figure 3 shows the results of conducting Eq. 2 when all four tasks are consid-
ered and trained together. To get a reliable result, we have iterated the training
phase 5 times and reported the overall average.

Within the reported values, we could observe Task 3 performed very well with
a loss value close to zero 0.0027. Concerning the complex problem of modeling
vehicle long-term behavior with low-resolution data, we obtained relatively poor
results with Task1 = 0.153, Task2 = 0.189, and Task4 = 0.210. By taking into
account all tasks together, we reached the average loss value=0.139, which leads
us to the point that there is a need to improve the predictive model to lower the
errors. Thus, we consider these numbers as a baseline for the rest of our study
and attempt to increase the performance–reduce the loss value– by finding the
optimal cluster (by extracting gradient descent in the shared layer) of tasks that
should be trained together.

To answer the RQ1, we considered only the shared layers and used Eq. 3 to
calculate the gradient descent of each task over the training process. Since we
might face the gradient with a highly different magnitude, Eq. 4 is used to find
a unit that we could inject into Eq. 5 to normalize the gradient vectors for all
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Fig. 4. Gradient and cross product of all combinations.
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tasks. Indeed, to find the unit, we extracted all the gradient vectors, then Eq. 4
is exploited to calculate the unit.

Given the four tasks m = 4, we could reach 2m − 1 − (m) = 11 various
combinations/groups or clusters of tasks (Note: the second m refers to the groups
containing only one task; therefore, we remove them from the cluster of the
tasks). Once the normalization is done, we used vector addition (Va) defined in
Eq. 12 to intuitively show the gradient direction for each combination at macro
level t.

V a =
m∑

i=1

∇(Lτi
)t t = 1, 2, . . . , T (12)

Figure 4 shows all eleven combinations’ at one epoch. It is clear from some
combinations that the vector addition of tasks points to the same or similar
directions, and some combinations point to different directions. However, these
plots are constructed from one epoch, which might differ in the later epochs due
to the training process. The green arrows in all plots demonstrate the vector
addition of two or more gradient vectors. For example, the gradient of Task2
and Task3 point to the same direction, and the V a of the vectors also head in
the same direction. This means training these two tasks will probably lead to
a lower loss value with respect to the Task2 and Task4 when trained together
(see Fig. 4j). Considering the gradient descent in each epoch, the most critical
and challenging situation is when two or more task gradients point in different
directions. For instance, the gradient of Task1 and Task2 illustrated in Fig. 4d
are opposite, and their Va is inclined towards the direction of Task2. This might
be due to the higher magnitude of Task2.

To better understand how different combinations might perform better over
the whole training process, we utilized Eq. 6 to calculate the dot product of the
gradients. Table 1 shows the dot-product (inner join) values of those productions
in 11 groups. The positive values express the combination of the gradient of the
tasks pointing more-less to similar directions by considering all the epochs over
the training process. The negative values demonstrate that training those tasks
in the same group is not optimal when the overall loss value is concerned. The
figures reported in Table 1 show G1-G7 are the optimal groups by providing the
positive values in theirs. While the dot products of the gradient of groups G8 to
G11 describe, the groups are not optimal when trained together.

To assess this hypothesis and evaluate the optimal cluster obtained based
on the gradient, we employed the network constructed by Eq. 2 with multiple
combinations covering all clusters of tasks. Table 2 shows the results of the above
formulation, where we came up with 11 varieties or groups of tasks. We trained
only those tasks in each group and froze the other tasks. Each multi-task combi-
nation has been trained 5-times to get the overall average, and in all experiments
were 60% of the LVD data used to train the networks and 30% was used as a val-
idation set, and finally, 10% was held out for testing the multitask network. The
loss is used to evaluate the network performance, and then the combinations are
sorted ascendingly based on their average loss values. For example, G1 (T1&T3)



Optimal Task Grouping Approach in Multitask Learning 219

and G2 (T2&T3) have the lowest loss values by 0.0008 and 0.01, respectively.
Concerning the computational time reported in the table, it is clear that the
clusters with more tasks took relatively more time than those with fewer tasks.

Taking into account the numbers reported in Table 1, where the groups are
sorted based on dot product value (from positive to negative), and figures illus-
trated in Table 2, where the groups are sorted based on the overall loss values, we
could notice that most of the groups are located in the similar order with minor
differences showing the proposed approach is promising. However, it is fair to
remark G2, which is placed in the second order in terms of the dot product; it
is located in the 9th place when the loss value was considered (see Table 2).

Table 1. The dot product of the gradient of the tasks calculated at the shared layers.
Here, the more positive value shows that the more similar the gradient and negative
represents the vectors are different.

Groups Tasks Combinations Inner join Score

G1 T2&T3 0.005606

G2 T2&T4 0.003383

G3 T1&T3 0.003016

G4 T1&T2&T3 0.00145

G5 T1&T3&T4 0.00063

G6 T1&T4 0.000168

G7 T2&T3&T4 0.00014

G8 T1&T2&T3&T4 9.25568e−05

G9 T1&T2 −0.000587

G10 T1&T2&T4 −0.00081

G11 T3&T4 −0.00153

Concerning individual task improvement in different group training, num-
bers obtained and reported in Table 2 shows how dramatically the loss values
decreased when they were trained in different groups. In Fig. 5, we illustrated an
A/B test comparison between individual task loss values obtained in different
groups and the baseline loss values in G10. For instance, the loss value of T2 in
G10 has dropped by 13.2% from 0.189 to 0.025 in G2. A similar improvement
was achieved for T3 in G2 and T1 and T4 in G7.
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Table 2. All combinations of the task with their individual and average loss values.
* means the particular task was not included in the group and consequently in the
training process.

Groups # Task Combinations Trained Together T1 T2 T3 T4 AVG Tasks Loss Time Spent

G1 T1&T3 0.016± 0.002 * 0.0008± 3.01e−5 * 0.00862 40.006

G2 T2&T3 * 0.0255± 0.0031 0.0007± 7.63e−5 * 0.01315 41.38

G3 T3&T4 * * 0.00138± 0.0001 0.0251± 0.0029 0.0132 39.84

G4 T1&T2&T3 0.0548± 0.019 0.0617± 0.0157 0.0009± 0.0002 * 0.039 45.99

G5 T1&T3&T4 0.0671± 0.014 * 0.0019± 2.196e−05 0.081± 0.013 0.050 44.57

G6 T2&T3&T4 * 0.079± 0.008 0.001± 0.0002 0.078± 0.012 0.053 45.33

G7 T1&T4 0.060± 0.007 * * 0.058± 0.01 0.059 39.90

G8 T1&T2 0.085± 0.005 0.086± 0.014 * * 0.085 39.98

G9 T2&T4 * 0.111± 0.005 * 0.093± 0.019 0.10 41.85

G10 T1&T2&T3 &T4 0.153± 0.029 0.189± 0.028 0.0027± 0.0005 0.210± 0.036 0.139 45.62

G11 T1&T2&T4 0.192± 0.008 0.284± 0.0132 * 0.373± 0.020 0.283 41.67

Fig. 5. The individual tasks improvement in different groups. The loss value of indi-
vidual tasks in different groups is compared vs. the loss value of individual tasks in
Group 10 as a baseline, where all tasks are trained together.

6.2 RQ2: Vehicle Behavior Transference Quantification Results

To answer RQ2, we defined two sub-research questions and carried out two
sorts of implementations. SbQ2.1) Given the multi-task network, first, we aim
to quantify the individual task behavior in its group by utilizing the gradient
descent of each task using Eq. 6. This is because the behavior or effect of each
task might differ in different groups, and one task could positively or negatively
contribute to its group performance or multi-task training. To quantify the con-
tribution, we took G4, G5, G7, G8, and G10 from all combinations (Table 1)
since their groups hold more than two tasks. Considering G4, we employed three
analyses where every time we took one task out, e.g., (T3), and measured the
inner join value, and compared it with the value of the inner join when it was
only two tasks (T1 and T2). We iterated the same analysis for the other tasks in
the same group and other groups as well. Table 3 illustrated the figures obtained
for the task contribution analysis. We observed that different tasks contribute
differently when they are in various groups. For instance, Task1 in G4 has a
negative contribution with −0.0041 in G4 (highlighted by orange), while it has
a positive impact in G5 with +0.0021 (highlighted by green). It can be seen
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from the table the contributions of the tasks in G10 are all negative, and that
is the reason G10 performed worst compared to the other groups, both in dot
product values shown in Table 1 and in loss evaluation represented in Table 2.
We could also observe that Task3 plays a positive role in most groups, such as
G4, G5, and G8. However, the negative contribution of Taks3 is obtained in G7,
which highlights that even if one task performed well in most cases, there is a
possibility to play negatively in one group. This case shows the importance of
obtaining the optimal group of tasks to be trained together. It needs to be noted
such a negative contribution in one group does not mean that the performance
of that group is considerably poor. Still, it suggests we could perform better by
finding an optimal combination.

Table 3. The contribution of each task in group training.

Groups
Tasks

Combinations (TC)
T1 T2 T3 T4

G4

T1&T2&T3 * * +0.002 -

T1&T2&T3 * -0.0015 * -

T1&T2&T3 -0.0041 * * -

G5

T1&T3&T4 +0.0021 - * *

T1&T3&T4 * - +0.0004 *

T1&T3&T4 * - * -0.0023

G7

T2&T3&T4 - +0.001

T2&T3&T4 - * -0.001 *

T2&T3&T4 - * * -0.004

G8

T1&T2&T3&T4 -0.00013 * * *

T1&T2&T3&T4 * -0.0006 * *

T1&T2&T3&T4 * * +0.00081 *

T1&T2&T3&T4 * * * -0.001

G10

T1&T2&T4 -0.004 * - *

T1&T2&T4 * -0.0009 - *

T1&T2&T4 * * - -0.001

In the second evaluation SbQ2.2), we aim to understand the individual task
transfer or contribution onto the group of tasks over the training process by
utilizing the shared and specific layers. To acknowledge this, we utilized Eq. 9,
which we introduced in [10] and adapted to the below equation.
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=
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where, Xt
val and Xt

tr are the independent vehicles usage predictors for training
and validating, respectively. avg(LSτ
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t
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)
points to the average loss value before the update. This intuitively reveals to what
extent one task can transfer positive or negative knowledge onto the performance
of the other group of tasks. Note: here, the main question of transferability is
on the modeling aspect and not the effect of different data representations. This
means different forms of data representation could have various consequences on
the multi-task learning results.

Fig. 6. The overall individual tasks inter-task transference onto a group of tasks. In
these two plots, we could observe the impact of each task into a group obtained by
Eq. 9.

Figure 6 shows how the individual task can impact the performance of the
group of tasks. In this experiment, we evaluate the impact of individual tasks on
10 different groups (we ignore G10 since this group contains all the tasks so we
could not quantify the impact of one task on this group). The figures illustrate
that overall, all tasks positively impact the groups of tasks with Task1 = 0.63.5,
Task2 = 0.65, Task3 = 0.58, and Task4 = 0.62. In contrast with the previous
analysis, in this experiment, we obtained a less contribution of Task3 on the
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performance of the other groups w.r.t to the other tasks. The negative contribu-
tion of Task1 and Task2 in their groups (G4, G8, and G10) changed to positive
when quantifying the impact of other groups’ performance. The numbers show
Task2 transfered more positive knowledge (> 2%) to the other group compared
to the other tasks. This suggests one task may negatively contribute to its group
and positively to other groups.

7 Discussion and Conclusion

This study presents a multi-task deep neural network approach for finding the
optimal group of tasks and ultimately quantifying vehicle behavior transference
in multitask settings. The experimental evaluation of thousands of heavy-duty
Volvo trucks’ logged real data show that the proposed approach can sufficiently
find the optimal group of tasks that should be trained together, leading to better
performance. In addition, we could quantify knowledge transferred within and
onto the groups of tasks.

Considering the first objective (RQ1), figures obtained in task grouping show
a significant difference between the performance of the groups found by the pro-
posed gradient descent approach and the baseline (when all tasks were trained
together). The figures obtained in the individual tasks comparison show the
potential of finding the optimal group and building a general multi-task fore-
casting model for this complex behavioral problem. It described how the opti-
mal groups could reduce the overall loss values of multi-task training. Taking the
figures obtained in this experiment into account, we, therefore, can state that
the proposed gradient decent approach could provide an equal and, in most cases,
optimal group of tasks leading to better predictive models than when all the tasks
are trained together for the multi-task formulations.

Considering the second objective (RQ2), the inter-task transference evalua-
tions explained how the individual tasks contributed to the performance of their
group over the training process. Assessing the overall impact and the results on
each group of tasks shown in the bar plots and the table, it is clear that given the
shared model, the individual tasks have different positive and negative contribu-
tions in the tasks grouping, and given the specific layer, tasks have a constructive
impact on all groups performance in the multi-task formulation.

The findings of this work furthermore indicate limitations of the proposed
approach, which present new directions for future investigation. In this study, we
only focused on the individual impact of one task on the group task performance.
To understand which group of tasks can lead to behaving the other tasks in
vehicle behavior modeling, we need to investigate quantifying the impact of a
cluster of tasks on each task.

The second limitation pertains to the generality assessment. In this study,
we applied the approach in the automotive domain to find the optimal cluster
of tasks that should be trained together for vehicle behavior modeling. Further
investigation is needed to employ the approach on the datasets with multiple
target values to evaluate how the approach can perform in other contexts. An
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interesting example would be computer vision. In particular, the scene under-
standing over time, where multiple objects in the scene need to be recognized,
and more importantly, the impact of a group of objects can be quantified to
understand the scene better.
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Abstract. In a multilingual neural machine translation model that fully
shares parameters across all languages, a popular approach is to use an
artificial language token to guide translation into the desired target lan-
guage. However, recent studies have shown that language-specific signals
in prepended language tokens are not adequate to guide the MNMT mod-
els to translate into right directions, especially on zero-shot translation
(i.e., off-target translation issue). We argue that the representations of
prepended language tokens are overly affected by its context information,
resulting in potential information loss of language tokens and insufficient
indicative ability. To address this issue, we introduce multiple language
prototypes to guide translation into the desired target language. Specifi-
cally, we categorize sparse contextualized language representations into a
few representative prototypes over training set, and inject their represen-
tations into each individual token to guide the models. Experiments on
several multilingual datasets show that our method significantly allevi-
ates the off-target translation issue and improves the translation quality
on both zero-shot and supervised directions.

Keywords: Zero-Shot Multilingual Machine Translation · Off-Target
Issue · Language Tag Strategy

1 Introduction

Unlike traditional neural machine translation (NMT) models that focus on spe-
cific language pairs, the many-to-many multilingual neural machine translation
(MNMT) models aim to translate between multiple source and target languages
using a single model [1,4,7,10,12]. Parameter sharing across different languages
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Table 1. Illustration of the analysis of the off-target translation issue with Ger-
man → Chinese zero-shot translations using a multilingual NMT model with prepended
tokens in the source sentences. The baseline multilingual NMT model fails to main-
tain the Chinese translation when introducing lexical variations to the source sentence,
resulting in English.

Source __zh__ Das ist ein ernstzunehmendes, klinisches Prob-
lem.

Reference 这可是个严重的临床问题。

Hypothesis 这是个严肃的临床问题。

Source __zh__ Es handelt sich um ein ernstzunehmendes, klin-
isches Problem.

Reference 这是一个严重的临床问题。

Hypothesis It’s about a 重大、临床问题。

in the MNMT model makes it benefit from the transferring ability of intermedi-
ate representations among languages, thereby achieving better translation qual-
ity between low-resource and even zero-resource language directions [2,3,8,19]
than bilingual models.

Since it can greatly reduce the MT system’s deployment cost and bene-
fit low-resource languages, MNMT has been gaining increasing attention. One
line of research on MNMT focuses on partial parameter sharing models with
language-specific components such as separate encoders, separate decoders or
separate cross-attention networks [7,13,22]. However, partial sharing faces the
challenge of a rapid increase in the number of parameters as the number of
languages grows. Johnson et al. [12] propose to train full sharing models for
MNMT with a prepended token to guide the translation direction. Despite its
deployment efficiency and the transferring ability of multilingual modeling, the
full sharing models still suffer from the off-target translation issue [8,27] where
a model translates into a wrong language. Specifically, Zhang et al. [27] identify
this issue as the major source of the inferior zero-shot performance. Since then,
numerous researchers have been paying attention to solve the off-target prob-
lem from different perspectives. Some of them [8,27] attribute this issue to the
lack of zero-shot directional data, Jin and Xiong [11] suggest that the efficacy of
the language tag diminishes as the translation information propagates through
deeper layers, while Chen et al. [6] tackle the problem by considering the aspect
of dictionary sharing.

In this work, we conduct a comprehensive analysis of the off-target issue
from a new perspective. A consensus is that the prepended language tokens help
models distinguish the target language that should be translated to, playing a
significant role in language-specific knowledge learning. However, we argue that
the prepended tokens in sentence pairs in full-sharing models are influenced



228 Y. Zheng et al.

by their context information (the content of the sentence pairs), potentially
hindering their ability to guide the MNMT models in translating to the right
languages.

We illustrate this issue with a specific example, as shown in Table 1, where the
initial German source sentence “Das ist ein ernstzunehmendes, klinishes Prob-
lem.” (“It is a serious clinical problem.” in English) and its corresponding Chinese
reference result is taken from the TED-59 zero-shot test sets [11]. In our exper-
iment, we introduce slight lexical variations to the sentence while preserving
its underlying semantic. However, when employing the baseline model, which is
trained with a prepending special token (__zh__) at the source sentence, instead
of producing the expected generation in Chinese, the model outputs several unex-
pected English words. The same phenomenon occurs when the prepended token
is added to the target sentence.

We hypothesize that this phenomenon is due to the entanglement of the
indicative information (prepended language tokens) and translation informa-
tion (content of sentence pairs) after encoding. As a result, the representations
of prepended language tokens are overly affected by their context information,
which hinders the indicative function of the prepended tokens, leading to the
off-target problem. Building upon this, an intuitive way to solve it is to alleviate
the excessive reliance of language representations on context information and
enhance their indicative function by injecting the indicative representations into
each individual token in the sentence. Given the fact that the representations of
language tags encode typological properties of languages, we categorize sparse
contextualized language representations into a few representative prototypes over
training instances, and make use of them to enrich indicative representations to
guide the models.

To be specific, we propose a two-stage approach. In the first stage, we initial-
ize a Transformer model, which is trained with prepended tokens added to the
source sentences or target sentences. This initialization enables the model to gen-
erate reasonable language-indicative representations, serving as a foundation for
subsequent stages. In the second stage, we utilize the pre-initialized model to cat-
egorize contextualized representations of the prepended tokens from the training
corpus for each language. Specifically, we perform clustering techniques, such as
K-Means, to obtain Target Language Prototypes (TLP) that capture the essen-
tial characteristics of each language to guide the translation direction. Then,
we propose an extension by integrating the TLP into the encoder or decoder
using a Lang-Attention module. The extended model is trained iteratively until
convergence.

Our empirical experiments prove that our method improves the language
accuracy from 70.54% to 93.72% and increases the BLEU score of zero-shot
translation directions by 5.28 points on IWLST17. In the large-scale setting, such
as the TED-59 dataset, our method demonstrates a significant enhancement of
the BLEU score of zero-shot translation directions by 3.74 points on the average
of 3306 translation directions and improves the language accuracy from 60.67%
to 76.21%. Extensive analyses demonstrate that fusing TLP appropriately leads
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to better language accuracy and improves the translation quality of zero-shot
directions while preserving the performance of the supervised directions.

2 Background and Motivation

Early studies on multilingual Neural Machine Translation mainly focused on
extending the standard bilingual model to MNMT by incorporating language-
specific components [7,13,22]. However, these approaches encounter a rapid
growth in the number of parameters as the number of languages increases. In
contrast, Johnson et al. [12] successfully trained a single NMT model for multi-
lingual translation with prepending an artificial target language token to source
sentences without modifying the model architecture, which is parameter effi-
cient and beneficial for zero-shot translation directions. Therefore, it becomes
the dominant approach to many-to-many MNMT [1,3,24]. However, it usually
suffers from off-target translation issue [27] on zero-shot translation directions.
This issue indicates that the MNMT model tends to translate input sentences
to the wrong languages, which leads to low translation quality. To alleviate it,
pioneering studies propose approaches such as generating pseudo sentence pairs
for zero-shot directions [27], increasing the model cardinality [25], exploring the
language tag strategies [24], adding the language tag embedding to the model
during training [11], modifying the vocabulary sharing [6] and so on.

In our practical investigation, we have discovered a novel perspective for
exploring the underlying factors that contribute to the off-target issue. For
instance, as demonstrated in Table 1, when introducing multiple lexical vari-
ations to sentence pairs while maintaining the fundamental semantic structure,
the off-target problem arises. This demonstrates that the representations of
prepended language tokens are overly affected by its context information. There-
fore, the indicative information of language tokens potentially loses during train-
ing and inference, leading to insufficient indicative ability of language tags. In
other words, the contextual representation of the prepended tokens significantly
diminishes the indicative function of the prepended tokens, which is detrimental
to both supervised and zero-shot translation. Drawing inspiration from this, we
propose a method to introduce multiple language prototypes to guide translation
into the desired target language. To be specific, we design a two-stage method
to first obtain the multiple language prototypes and then integrate them into
the multilingual neural machine translation models through a Lang-Attention
modules.

3 Method

In this section, we provide a detailed explanation of our two-stage method.
First, we briefly introduce the baseline strategies, which are also employed in
our method in the first stage, aiming to enable the model to generate reasonable
indicative representations. Then, we describe the second stage in two separate
sections. The first section discusses how we leverage the basic MNMT model
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to obtain TLP (target language prototypes). In the second section, we explain
how these TLP are utilized to train MNMT models expanding with additional
Lang-Attention modules.

3.1 Baseline Strategies

Previous studies [10,12,24] demonstrated that placing the target language tags
(TLT) on the source side or target side can alleviate the off-target issue and
improve the quality of zero-shot translation, which have become one of the funda-
mental strategies for MNMT. The specific examples of two strategies are shown
in Table 2.

Table 2. Examples of modified input data by different language tag strategies. The
bold tokens is the target language tag (__zh__). T-ENC means adding the target
language tag (TLT) to the encoder side. T-DEC means placing the TLT on the decoder
side of model.

Strategy Source sentence Target sentence

Original Hello World! 你好，世界！

T-ENC __zh__ Hello World! 你好，世界！
T-DEC Hello World! __zh__ 你好，世界！

In the first stage, we train a base Transformer model for N epochs with
the basic T-ENC or T-DEC strategy until it is able to generate reasonable
representations of language tags to guide the translation. Given the training
corpus D = {(X,Y )}, where X and Y denote a source sentence and target
sentence respectively, the model is optimized by minimizing cross-entropy loss.
After training for N epochs we obtain a pre-initialized model θ(N).

3.2 Language Representative Prototypes

In the second stage, we first utilize the pre-initialized model to obtain target
language prototypes (TLP). Building upon insights from previous studies, we
introduce two types of TLP for the subsequent training procedure.

Language Token Representation (LTR). Prior studies reveal that the
embedding of the prepended tokens encode typological properties of lan-
guages [15–17], which can serve as guiding information for translation direction.
However, this feature is susceptible to contextual influence from the input sen-
tence pair based on our observation. As demonstrated in Fig. 1, the language
representation in the encoder output may appear disorderly. However, it still
exhibits a detectable distribution that can be categorized into distinct clusters.
Inspired by this observation, we categorize sparse contextualized language rep-
resentations into several representative prototypes over training set.
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To be specific, using the pre-initialized model θ(N), we build an language rep-
resentative prototypes lookup table C. We iterate through the training corpus
and aggregate contextualized representations {H langi

1 , ...,H langi
M(langi)

} of each lan-
guage langi, where M(langi) is the number of contextualized representations of
the language tag for langi. Next, for each language langi, we use K-Means [14] to
cluster the contextualized representations due to its efficiency for large number
of samples in high dimensions:

Clangi = K-Means(H langi
1 , ...,H langi

M(langi)
) (1)

Fig. 1. The language representation, obtained through encoder visualization using t-
SNE over a randomly selected set of 1000 sentences from the training corpus, is gener-
ated from the Baseline models trained on IWSLT17.

Mean-Pooling Sentence Representation (MPSR). Inspired by the appli-
cation in the classification task of pre-trained language models [21], we further
consider the sentence embeddings in the training corpus of each language to be
the indicative representations. For simplicity and efficiency, we utilize the mean-
pooling technique to generate the sentence embedding, which involves computing
the average representation across all tokens in the sentence. Then, we use the
clustering approach described above to gain k target language prototypes.

3.3 Integration of Multiple TLP

For each language langi, we gain the TLP and packed as a matrix Clangi ∈ R
d×k,

where d is the dimension of the pre-initialized model and k is the number of TLP.
Then, we extend the model θ(N) with a Lang-Attention module on the top of the
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self-attention module in each encoder layer or on the top of the cross-attention
module in each decoder layer, which is inspired by Yin et al. [26]. The Lang-
Attention aggregates the language representative prototypes and refines each
token by the Multi-Head Attention (MHA) mechanism [23]:

H l
pa = MHA(H l

sa, C, C) (2)

H l
pa = MHA(H l

ca, C, C) (3)

where C is the TLP of the target language, H l
sa denotes the output of the self-

attention in the corresponding encoder layer and H l
ca denotes the output of the

cross-attention in the corresponding decoder layer. The output H l
pa is fed into the

feed-forward network. The overall process of enhancing the decoder is depicted
in Fig. 2, and it shares a similar process of enhancement with the encoder. In
our experimentation, we set k = 3 for default.

Pre-initialized Model

__en__ Hello

H

World !

H HH

Language Tag Embeddings

Sentence Embeddings

......

LTR Lookup Table

......

MPSR Lookup Table

Feed Forward

Masked

Multi-Head Attention

Add & Norm

Embedding

Multi-Head Attention

Add & Norm

Lang-Attention

Add & Norm

Add & Norm

Decoder Layer

Language
Prototype

Q

K

V

softmax

Stage 1 Stage 2

Semantic Space

Semantic Space

Aggregate

Fig. 2. The overall process of enhancing the decoder with the T-DEC strategy. The
small circles denote the representation of tokens which is outputted by the last layer
of the decoder.

4 Experiments and Analysis

4.1 Experimental Settings

Dataset. We conduct experiments on the following three multilingual datasets:
IWSLT17 [5], OPUS-7 [9] and TED-59 [11]. We choose four different languages
for IWSLT17, seven languages from OPUS-100 [27] for its zero-shot translation
test sets and all languages for TED-59. All the training data are English-centric
parallel data, which means either the source-side or target-side of the sentence
pairs is English. Table 3 shows the detail statistics of the three datasets.
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Evaluation. All the results are generated with beam search= 5. The transla-
tion quality is evaluated using the case-sensitive detokenized sacreBLEU1 [20].
BLEU scores were averaged over test sets. Following Zhang et al. [27], we used
LangAcc as a complementary evaluation metric for the off-target issue, which
calculates the proportion of the translations in the desired target language2.
Additionally, we use Win Rate (WR) to denote the proportion of translation
directions that outperform the ref system in terms of BLEU.

Model and Training. We implement our MNMT models based on
Fairseq [18]. We set the dimension of word embeddings and FFN layer to
512/2048. Embeddings were shared for the encoder, decoder and the output
projection. As IWSLT17 is smaller, we use a 5-layer encoder and 5-layer decoder
variation of Transformer-based model and train the models for 35 epochs [23]
for IWSLT17. For OPUS-7 and TED-59, we follow the detail experiment set-
tings in [11]. We train the models for 30 epochs, and use the last 5 epochs to be
averaged for testing [11]. For all experiments, we set the default value of k to
three.

Table 3. The detail statistics of the datasets.

Dataset Type #Language #Supervised #Zero-shot #Training sentences

IWSLT17 English-centric 4 6 6 0.87M
OPUS-7 English-centric 7 12 30 12M
TED-59 English-centric 59 116 3306 5M

4.2 Overall Performance

We mainly carried out experiments on the IWSLT17 and OPUS-7 datasets
to examine the effectiveness of our methods. Table 4 shows the experimental
results on the two datasets. It demonstrates that our methods can significantly
improve the translation performance, especially on zero-shot translation direc-
tions. While for both T-ENC and T-DEC strategies, our methods can gain consis-
tently improvement. It proves that the integration of target language prototypes
can eliminate the off-target phenomenon.

We further evaluated T-ENC+LTR and T-ENC+MPSR (the relative best
systems in terms of average BLEU on all zero-shot translation directions on
the IWSLT17 dataset) on the TED-59 dataset in order to compare our methods
with Jin and Xiong [11] in the massively multilingual neural machine translation
1 For all datasets, the signature is: BLEU+case.mixed+nrefs.1+smooth.exp+tok.{13a,

zh,ja-mecab-0.996}+version.2.3.1, tok.zh and tok.ja-mecab-0.996 are only for Chi-
nese and Japanese respectively.

2 We employed langid.id toolkit for language identification.
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scenario as shown in Table 5. Our main comparisons are made against LAAenc.self
and Adapterenc, which also incorporate additional parameters in the encoder.
Furthermore, we consider the best-performing experiments for the LEE methods.
The experimental results strongly demonstrate the effectiveness of our proposed
methods.

4.3 Ablation Study

Effect of Multiple Target Language Prototypes. Previous studies gener-
ally use only one indicative representation to guide the models. Based on the
visualization of language tokens’ representations obtained by baseline model,
as shown in Fig. 1, we use three as the default number of the target language
representative prototypes. In this part, we consider the effectiveness of multiple
indicative representations.

We conduct the experiment on IWSLT17 and OPUS-7 by average the three
TLP value obtained through clustering technique as the sole TLP to guide the
model for efficiency, while maintaining the entire framework for comparison.
Table 6 reveals that the method using the average representation consistently
yields inferior results compared to the corresponding methods utilizing three
representations, particularly in zero-shot translation directions. It demonstration
substantiates the effectiveness of incorporating multiple indicative features.

Effect of Lang-Attention Modules. As our methods introduce Lang-
Attention modules into the baseline models to incorporate multiple target

Table 4. Experiment results on IWSLT17 and OPUS-7. T-DEC and T-ENC denote the
addition of the target language tags to the decoder side and the encoder side, respec-
tively. LTR and MPSR denote the use of language tag representation and the mean-
pooling sentence representation for clustering to gain TLP, as explained in Sect. 3.2.

Dataset Method En → XX XX → EN Supervised Zero-shot
BLEU BLEU BLEU WR BLEU LangAcc WR

IWSLT17 T-DEC 27.75 30.30 29.03 ref 10.78 70.54% ref
+LTR 28.18 30.63 29.41 50.00% 15.69 92.81% 100.00%
+MPSR 27.74 30.30 29.02 33.33% 16.06 93.72% 100.00%
T-ENC 28.18 30.63 29.41 83.33% 15.69 91.61% 100.00%
+LTR 27.81 30.65 29.23 66.67% 16.60 94.12% 100.00%
+MPSR 27.92 30.82 29.37 83.33% 16.39 93.77% 100.00%

OPUS-7 T-DEC 28.16 31.89 30.03 ref 13.03 84.78% ref
+LTR 28.37 32.15 30.26 100.00% 15.16 87.65% 100.00%
+MPSR 28.23 31.97 30.10 58.33% 15.12 87.34% 93.33%
T-ENC 28.11 31.77 29.94 33.33% 13.47 79.49% 53.33%
+LTR 28.21 32.12 30.16 75.00% 15.11 86.99% 76.67%
+MPSR 28.39 31.90 30.15 75.00% 14.88 86.33% 80.00%
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Table 5. Experiment results on TED-59. The results for LEE2,5, LAAenc.self and
Adapterenc are taken from the experiments conducted by Jin and Xiong [11].

Dataset Method #Param En → XX XX → EN Supervised Zero-shot
BLEU BLEU BLEU BLEU LangAcc

TED-59 LEE2,5 77M 21.26 23.79 22.53 9.82 74.44%
LAAenc.self 92M 20.11 21.13 20.62 6.30 71.92%
Adapterenc 92M 21.04 22.91 21.97 8.20 74.44%
T-ENC 77M 21.28 23.34 22.21 8.00 60.67%
+LTR 83M 21.78 23.75 22.77 11.74 76.21%
+MPSR 83M 21.82 23.87 22.85 11.36 75.96%

Table 6. Experimental results on the exploration about effect of multiple target lan-
guage prototypes. “+AVG” means the TLP gained by average the corresponding three
target language prototypes obtained by the clustering techniques.

Dataset Method En → XX XX → EN Supervised Zero-shot
BLEU BLEU BLEU BLEU LangAcc

IWSLT17 T-DEC 27.75 30.30 29.03 10.78 70.54%
+LTR 28.18 30.63 29.41 15.69 92.81%

+AVG 27.80 30.43 29.11 14.87 89.92%
+MPSR 27.74 30.30 29.02 16.06 93.72%

+AVG 27.83 30.64 29.23 15.03 89.11%
T-ENC 28.18 30.63 29.41 15.69 91.61%
+LTR 27.81 30.65 29.23 16.60 94.12%

+AVG 27.91 30.54 29.23 16.40 93.03%
+MPSR 27.92 30.82 29.37 16.39 93.77%

+AVG 28.11 30.82 29.47 16.27 93.40%
OPUS-7 T-DEC 28.16 31.89 30.03 13.03 84.78%

+LTR 28.37 32.15 30.26 15.16 87.65%
+AVG 27.76 31.52 29.64 14.39 87.25%

+MPSR 28.23 31.97 30.10 15.12 87.34%
+AVG 27.77 31.54 29.66 14.58 87.05%

T-ENC 28.11 31.77 29.94 13.47 79.49%
+LTR 28.21 32.12 30.16 15.11 86.99%

+AVG 28.39 31.99 30.19 14.72 84.26%
+MPSR 28.39 31.90 30.15 14.88 86.33%

+AVG 28.22 31.93 30.07 14.38 83.45%

language prototypes, we conduct experiments on IWSLT17 to further analyse
the effect of additional Lang-Attention modules. First, we consider the perfor-
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Table 7. Experimental results on the effect of additional attention modules. “DECi”
and “ENCi” means only adding the Lang-Attention (LA) module in the i-th Decoder
Layer and the i-th Encoder Layer, respectively. “ALL” means adding the Lang-
Attention modules in all decoder layers or all encoder layers. “Decoder Layer” means
extend the baseline architecture with an additional decoder layer. “Encoder Layer”
means extend the baseline architecture with an additional encoder layer.

Dataset Method #Param En → XX XX → EN Supervised Zero-shot
BLEU BLEU BLEU BLEU LangAcc

IWSLT17 T-DEC 46M 27.75 30.30 29.03 10.78 70.54%
+ Decoder Layer 51M 28.06 30.31 29.19 12.08 74.93%
+ LA in DEC1 47M 27.88 30.15 29.01 13.62 84.93%
+ LA in DEC2 47M 27.83 30.43 29.13 14.05 87.87%
+ LA in DEC3 47M 27.72 30.37 29.04 14.65 89.20%
+ LA in DEC4 47M 27.98 30.24 29.11 15.26 90.46%
+ LA in DEC5 47M 27.83 30.51 29.17 15.10 90.04%
+ LA in ALL 52M 28.18 30.63 29.41 15.69 92.81%
T-ENC 46M 28.18 30.63 29.41 15.69 91.61%
+ Encoder Layer 54M 26.97 28.69 27.82 15.37 95.16%
+ LA in ENC1 47M 27.89 30.36 29.12 16.22 93.76%
+ LA in ENC2 47M 27.92 30.55 29.24 16.29 93.76%
+ LA in ENC3 47M 28.05 30.57 29.31 16.29 93.74%
+ LA in ENC4 47M 27.95 30.32 29.14 16.29 94.22%
+ LA in ENC5 47M 27.97 30.50 29.23 16.08 94.05%
+ LA in ALL 52M 27.81 30.65 29.23 16.60 94.12%

mance is effected by the increasing amount of parameters. Thus, we compare
the deeper Transformer with 6 encoder layers or 6 decoder layers (the Baseline
models on IWSLT17 only contain 5 encoder layers and 5 decoder layers). Sec-
ond, we further analyses the additional attention modules of different locations
contribute to the performance. Therefore, we introduce the module to different
encoder or decoder layers. The experimental results shown in Table 7. It demon-
strates that with only one additional Lang-Attention module, our methods can
perform better than the Baseline model and the deeper one, while maintaining
less parameters. Another conclusion is that the Lang-Attention adding to the
top layer (e.g. in fourth or fifth layer) contributes more to alleviate the off-target
phenomenon.

5 Conclusion

In this work, we focus on enhancing the language accuracy of fully shared mul-
tilingual neural machine translation models to improve their zero-shot trans-
lation performance. Based on our practice, we argue that the representations
of prepended language tokens are overly affected by their context information,
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resulting in potential information loss of language tokens and leading to insuf-
ficient indicative ability. Therefore, the language-specific signals in prepended
language tokens are not adequate to guide the MNMT models to translate into
right directions. Start from this inspiration, we further propose a two-stage app-
roach to introduce multiple target language prototypes into the baseline models
to guide the translation direction. The experimental results demonstrate that
our method consistently improves translation quality across diverse multilingual
datasets. Further analyses show the effectiveness of our method in alleviating
the off-target translation issue and improving the translation quality in both
zero-shot and supervised directions.
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Abstract. Traditional Hidden Markov Models (HMM) allow us to dis-
cover the latent structure of the observed data (both discrete and contin-
uous). Recently proposed DenseHMM provides hidden states embedding
and uses the co-occurrence-based learning schema. However, it is limited
to discrete emissions, which does not meet many real-world problems.
We address this shortcoming by discretizing observations and using a
region-based co-occurrence matrix in the training procedure. It allows
embedding hidden states for continuous emission problems and reducing
the training time for large sequences. An application of the proposed app-
roach concerns recommender systems, where we try to explain how the
current interest of a given user in a given group of products (current state
of the user) influences the saturation of the list of recommended products
with the group of products. Computational experiments confirmed that
the proposed approach outperformed regular HMMs in several bench-
mark problems. Although the emissions are estimated roughly, we can
accurately infer the states.

Keywords: HMM · embedding · co-occurrence · emission
discretization

1 Introduction

Hidden Markov Models (HMMs) continue to appeal to scientists, although their
history dates back to the 20th century. They are appreciated for their simplicity,
solid theoretical understanding, reliability, and ease of interpretation, especially
in terms of explainable artificial intelligence. Recently reported applications con-
cern motion recognition [10], finance [11], medical engineering [1], and others.

Such a wide range of applications also exposes the limitations of the tradi-
tional model, such as unacceptably long learning time for large datasets (caused
by the quadratic complexity of the Baum-Welch learning procedure) and the
assumption of emission distribution coming from a known parametrized family.
A number of extensions and enhancements of the standard model have been pro-
posed to address those issues [5,8]. One of the recent is DenseHMM [9], which
introduces continuous dense representations (embeddings) of discrete observa-
tions and states, and applies an efficient learning algorithm based on direct
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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co-occurrence optimization. Embedding provides a dense representation of the
discrete hidden states and values which might be interpreted geometrically. How-
ever, this novelty limits to discrete emission, which is not suitable for many appli-
cations. Our work focused mainly on extending the idea of dense representations
of hidden states on continuous observations.

In this paper, we extend DenseHMMs for continuous observations with Gaus-
sian distributions and propose a suitable learning algorithm that, first, endeavors
to cluster observations, and next, evaluates a region-based co-occurrence matrix
in a similar way to DenseHMMs. One of the interesting applications (which is
not feasible for the original DenseHMMs because of its limitation to discrete
emission) of the proposed approach may concern recommender systems, where
we try to explain how the current state of the interests of a given user in a given
group of products influences the saturation of recomendations, i.e. saturation of
the list of recommended products with the group of products.

This paper is structured in the following manner: Sect. 2 introduces the Gaus-
sian Dense Hidden Markov Model. Sections 3 and 4 propose two learning algo-
rithms: one based on a regular EM algorithm and one using on a region-based
co-occurrence matrix, along with the computational experiments. Section 5 con-
cludes our research.

2 Gaussian Dense Hidden Markov Model

A Hidden Markov Model (HMM) is defined by two stochastic processes: discrete
hidden states {Xt}t∈N and observations {Yt}t∈N.

The Markov process {Xt}t∈N is a discrete stochastic process of n hid-
den states (q1, q2, . . . , qn). The first hidden state has the starting distribution
X1 ∼ π. At each next timestamp, the random variable depends only on the
one in the previous timestamp: P(Xt|Xt−1,Xt−2, . . . , X1) = P(Xt|Xt−1) (the
process follows the Markov assumption). The probabilities of transiting from qi

to qj are gathered in a transition matrix A(i,j) = P(Xt = qj |Xt−1 = qi) for each
i, j ∈ {1, 2, . . . , n}.

Fig. 1. Schema of Gaussian-
DenseHMM

The distribution of observed random
variables {Yt}t∈N depends on current state:
P(Yt|Yt−1, Yt−2, . . . , Y1;Xt,Xt−1, . . . , X1) =
P(Yt|Xt); this property is called output inde-
pendence assumption. In a basic HMM,
observations are discrete. We will consider
GaussianHMM, a model with emission com-
ing from the (multivariate) normal distribu-
tion Yt|Xt = qi ∼ N (μi, Σi) with proba-
bility distribution function P(Yt = y|Xt =
qi) = φi(y). The standard learning algo-
rithm for HMMs is the commonly used
Baum-Welch (also called Foward-Backward)
algorithm, a special case of Expectation-
Maximization [4].
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Recently, Sicking et al. [9] came up with embedding basic HMM and defined
DenseHMM. They enriched a basic HMM with dense representations of discrete
states and observations. Each possible value was represented by two vectors (one
incoming and one outgoing). They adopted two learning schemas for the pur-
pose of training the model: the Expectation-Maximization algorithm (with a
gradient-based part in the M-step) and the co-occurrence-based learning algo-
rithm (unconstrained and faster).

In this paper, we propose to combine the continuous emission of Gaus-
sianHMMs with the dense representation of hidden states in DenseHMMs. Our
model, called Gaussian Dense Hidden Markov Model, has continuous emis-
sion and embedded hidden states. We will use in-coming embedding vectors ui

and outgoing embedding vectors zi of each hidden state xi and starting vector
zstart, as presented at the schema in Fig. 1, to obtain transitions probabilities
via softmax kernelization:

πi := P(X1 = qi) =
exp〈zstart, ui〉∑n

k=1 exp〈zstart, uk〉 , (1a)

A(i,j) := P(Xt = qj |Xt−1 = qi) =
exp〈zi, uj〉∑n

k=1 exp〈zi, uk〉 . (1b)

We adopt both mentioned learning algorithms to our model. The modified
Forward-Backward algorithm is presented in Sect. 3. The benefit of embedding
GaussianHMM is using continuous representation in a fast, unconstrained, co-
occurrence-based learning algorithm. In Sect. 4, we propose to use discretization
and adapt the co-occurrence-based learning algorithm to our model by defining
the region-based co-occurrence.

3 Basic Learning Algorithm

One of the basic but also very powerful concepts of parameter estimation is
maximizing the likelihood function. In GaussianDenseHMMs we assume the dis-
tribution of the process. However, we do not know the values of the hidden states.
For the case of missing values, the Expectation-Maximization (EM) algorithm
was provided [2]. The idea behind it is to iteratively: provide expectations of
the missing values using the current parameter estimation (E) and find new
parameters maximizing the likelihood function (fed with the expectations from
the previous step). EM adapted to the case of HMMs is called the Baum-Welch
algorithm.

Loss. For simplicity of the notation we will denote the whole paramater set as
Θ =

(
A, π, (φi)ni=1

)
. The loss function maximized in the Baum-Welch algorithm

is not directly the likelihood, but the Evidence Lower BOund (ELBO) of the
logarithm of the likelihood function. We present it in the form of three summands
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L(Y,Θ) = L1(Y,Θ) + L2(Y,Θ) + L3(Y,Θ):

L1(Y,Θ) =
n∑

i=1

n∑

j=1

T∑

t=2

P(Xt = i,Xt−1 = j) · log
( exp〈zj , ui〉∑n

k=1 exp〈zj , uk〉
)

(2a)

L2(Y,Θ) =
n∑

i=1

T∑

t=1

P(Xt = i) · log
(
φi(Yt)

)
(2b)

L3(Y,Θ) =
n∑

i=1

P(X1 = i) · log
( exp〈zstart, ui〉∑n

k=1 exp〈zstart, uk〉
)

(2c)

Please note that P(Xt = i,Xt−1 = j) and P(Xt = i) are unknown, as we do not
observe (Xt)t∈N.

Step E. In the first step of each iteration, we calculate how probable each
state and transition is, assuming the current parameter value. To run those
calculations, first, we need to introduce two recursive formulas to calculate the
likelihood of a sentence:

– forward probability:

α1(i) =
exp〈zstart, ui〉∑n

k=1 exp〈zstart, uk〉 · φi(Y1) (3a)

αt(i) =
n∑

j=1

αt−1(j) · exp〈zj , ui〉∑n
k=1 exp〈zj , uk〉 · φi(Yt) (3b)

P(Y ) =
n∑

i=1

αT (i) (3c)

– backward probability:
βT (i) = 1 (4a)

βt(i) =
n∑

j=1

exp〈zi, uj〉∑n
k=1 exp〈zi, uk〉 · φj(Yt+1) · βt+1(j) (4b)

P(Y ) =
n∑

j=1

exp〈zstart, uj〉∑n
k=1 exp〈zstart, uk〉 · φj(Y1) · β1(j) (4c)

To estimate the current expectations, we will use the probabilities:

γ
(k)
t (i) = P(Xt = i|Θ(k−1)) =

αt(i)βt(i)∑n
j=1 αt(j)βt(j)

(5a)

ξ
(k)
t (i, j) = P(Xt = j,Xt−1 = i|Θ(k−1)) =

αt−1(i) · exp〈zi,uj〉∑n
k=1 exp〈zi,uk〉 · φj(Yt) · βt(j)
∑n

j=1 αt(j)βt(j)
(5b)
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Step M. In the M step, we inject the calculated expectations into
the ELBO (Eq. 2) and find parameters maximizing the modified function:
z(k), u(k), μ(k), Σ(k) = argmaxz,u,μ,Σ L∗

1(Y,Θ(k)) + L∗
2(Y,Θ(k)) + L∗

3(Y,Θ(k))
New emission distribution parameters can be calculated analytically. Embed-

ding vectors are updated through a gradient-based procedure like SGD [7] (used
in the implementation) or Adam [6].

Algorithm 1. EM

Initialize μ(0), Σ(0), u(0), z(0)

k = 1
while not converged do

for t = 1 → T , i = 1 → n do
calculate α

(k)
t (i) using Eq. 3

end for
for t = T → 1, i = 1 → n do

calculate β
(k)
t (i) using Eq. 4

end for
for t = 1 → T , i = 1 → n do

calculate γ
(k)
t (i) using Eq. 5a

for j = 1 → n do
calculate ξ

(k)
t (i, j) using Eq. 5b

end for
end for
Update μ(k), Σ(k) analytically, z(k), u(k) using SGD (in max_iter steps)
k += 1

end while

Algorithm. First, we initialize μ(0), Σ(0) (usually using k-means like in the
standard implementation of HMMs1) and u(0), z(0) (randomly, for example using
standard normal distribution). Then we can start the iterative learning process.
In each iteration, we do the E step consisting of calculating forward probabilities
α
(k)
t (i), backward probabilities β

(k)
t (i), and current state and transition probabil-

ities estimate γ
(k)
t (i) and ξ

(k)
t (i, j), respectively. Then, we can update the model

parameters estimates in the M step. We update μ(k) and Σ(k) using the ana-
lytical formulas and run an iterative, gradient-based procedure to update the
embedding vectors z(k) and u(k). We repeat the E and M steps until we meet
the convergence criterion, which can be the maximum number of iterations or a
small improvement in likelihood.

4 Region-Based Co-occurrence Learning Algorithm

In this section, we propose a learning algorithm based on region-based CO-
OCcurrence (rCOOC). A major drawback of the EM algorithm is that it goes
1 https://hmmlearn.readthedocs.io/en/latest/, Last accessed 31 Mar 2023.

https://hmmlearn.readthedocs.io/en/latest/
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through all the observations at each iteration. Thus, its complexity grows with
the data size. We address this issue with the rCOOC-based learning algorithm.
The main idea is to provide a summary of the data (the co-occurrence matrix)
and look for consistent parameters. It has been shown to work well for HMMs
and DenseHMMs which are both models with discrete emissions. Now, we use
the discretization of continuous emission to adopt it for our model.

Fig. 2. Regions obtained in
the discretization procedure
and from the true model.

Region-Based Co-occurrence Matrix. First,
we need to provide the initial values of the
parameters similar to the EM algorithm (emis-
sion parameters from the k-means algorithm
and randomly selected embedding). Calculating
the co-occurrences of observations may be seen
as part of the initialization process. To specify
the co-occurrences for GaussianDenseHMM we
need to establish the space division into regions
r1, . . . , rm. Then, we can provide region-based
emission probability matrix Br

i,j =
∫

rj
φi(y)dy

(Fig. 2).
The regions can be selected ambiguous. On the one hand, we want to estimate

the parameters as accurately as possible. On the other hand, fine-grained divi-
sion makes the task unnecessarily complicated by distinguishing many separate
regions within the same distribution. We decided to keep the division simple and
make it maximally informative. First, we divide only the minimal hyper cuboid
containing all observations (with some small predefined margin). We reuse the
k-means model from initializing the emission parameters and build a simple deci-
sion tree classifier on the labels obtained. We use the division rules from nodes
to divide the observation space.

Estimating the precise emission parameters is part of the further learning
procedure, so we are satisfied with this inaccurate but reasonable space division.
However, for specific data, one could propose a custom, more optimal discretizing
technique.

Now, we are able to provide the definition of the rCOOC matrix. It is a
matrix describing probabilities of co-occurring observations from given regions.
For a collection r1, . . . , rm ⊂ R

p such that for each Yt exists only ri containing
Yt, we define the region-based co-occurrence matrix (rCOOC matrix) as a
probability matrix Ωi,j = P(Yt ∈ ri, Yt+1 ∈ rj) for i, j = 1, . . . ,m.

Loss. We will consider the ground truth (empirical) rCOOC matrix ΩGT sum-
marising the training sequences:

ΩGT
i,j = #{t : Yt ∈ ri, Yt+1 ∈ rj}/(T − 1) (6)

and one calculated based on current parameter estimation Ω(k), where the upper
index (k) denotes the current iteration. The aim of the algorithm is to find
parameters resulting in a rCOOC matrix possibly close to the empirical one.
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To provide a formula to derive the rCOOC matrix from model parameters,
we need to first define the state-co-occurrence matrix T , which is a stochastic
matrix Tk,l = P(Xt = qk,Xt+1 = ql). Using the above definition we can present
the matrix Ω = (Br)T TBr. If we assume that starting probability is the sta-
tionary distribution of the transition matrix (πi =

∑
j Ajiπj), we can provide

an analytical formula Tk,l = Aklπk. From now on, we do not parametrize the
starting probability. Inserting the formula for T in the definition of Ω, we obtain
the following result:

Ωi,j =
n∑

k=1

n∑

l=1

πkb′
i,kak,lb

′
l,j (7)

Using the model parameter estimates from k-th iteration we get the matrix Ω(k).
To learn the distribution we minimize the difference between the empirical and
estimated the rCOOC matrix:

LrCOOC(Y,Θ(k)) = ‖ΩGT − Ω(k)‖2 (8)

using a gradient-descent procedure like SGD [7] or Adam [6].

Algorithm 2. Co-occurrence based learning
model = k-means trained on Y
Initialize μ(0), Σ(0), u(0), z(0), k = 0
labels = Y clustering from k-means
tree = Decision Tree trained on labels
nodes = partition rules from tree
Ydisc = regions of observations splitted on nodes
Ωgt = the rCOOC matrix obtained using Eq. 6
while convergence do

Calculate Ω(k), LrCOOC(Y, Θ(k)) according to Eq. 7, 8
Calculate the derivatives of LrCOOC(Y, Θ(k)) with respect to Θ(k)

Update parameters Θ(k) following a gradient-based procedure; k += 1
end while
Calculate matrix A and vector π from embedding according to Eq. 1b, 1a

Algorithm. First, we cluster the observations using k-means. We use the model
not only for μ(0), and Σ(0) initialization, but also for building a decision tree. The
classifier rules are then propagated as observation region boundaries. Stating the
partition, we can transform the training data into discrete vector Ydisc and calcu-
late the region co-occurrence matrix ΩGT . We also need to initialize the embed-
ding vectors u(0), z(0). After this extensive preprocessing, we learn the parame-
ters straight-forward by iteratively updating the parameters in a gradient-based
procedure. The convergence criterion is met after a specified number of iterations
or when the loss improvement is small.
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We investigate our model in its properties and its application in recommen-
dation saturation. In the first experiment, we intend to show the results quality
of the proposed approach with respect to the time consumption for different
numbers of hidden states. The goal is to check whether we speed up the learn-
ing while getting sufficiently good results. After that, we confront our approach
with real-world-related task. We will model genre saturation in recommenda-
tions. We refer to regular GaussianHMM, implemented in the hmmlearn library,
as the baseline solution.

4.1 Properties Study

To study the capabilities of GaussianDenseHMM, we used synthetic data, as
shown in Fig. 3, and compare the model to regular GaussianHMM. We repeated
the run 10 times and compare the results obtained in likelihood, accuracy, co-
occurrence, and time consumption. The goal is to check whether we can speed
the learning up for big datasets while getting good results.

Fig. 3. Data sampled from GaussianHMM with n = 5 hidden states. The color marks
the hidden states.

Fig. 4. Results (loglikelihood, region-co-occurrence loss, accuracy, time consumption)
for n = 10 and T = 10 × 10000, 10 × 100000, 10 × 1500000, 10 × 2500000 for standard
GaussianHMM and GaussianDenseHMM.

The time consumed by the rCOOC-based learning algorithm clearly depends
on the hyper-parameters set. In this experiment, we used a non-optimized param-
eter set (learning rate = 0.003, number of iterations = n · 10000, where n is the
number of hidden states). Also, the HMM implementation requires specifying
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Table 1. Results of synthetic experiment for n = 5, 7, 10, 20 and T = 10× 10000, 10×
10000, 10 × 100000, 10 × 100000, respectively

n Standard GaussianHMM GaussianDenseHMM
5 loglikelihood (−3.02± 0.13) ×104 (−3.24± 0.16) ×104

region-co-occur. (1.26± 0.10) ×10−2 (6.31± 0.07) ×10−2

accuracy (10.00± 0.00) ×10−1 (9.90± 0.01) ×10−1

time (5.00± 0.60) ×10−1 (3.91± 0.11) ×101

7 loglikelihood (−3.42± 0.15) ×104 (−3.90± 0.53) ×104

region-co-occur. 0.10± 0.10 (1.70± 0.03) ×10−2

accuracy (9.39± 0.64) ×10−1 (9.84± 3.10) ×10−1

time 1.91 ± 0.80 (5.60± 0.23) ×101

10 loglikelihood (−3.95± 0.12) ×106 (−5.08± 0.76) ×106

region-co-occur. (2.29± 0.78) ×10−1 (1.22± 0.45) ×10−1

accuracy (8.60± 0.06) ×10−1 (9.32± 0.39) ×10−1

time (3.674± 0.053) ×103 (2.449± 0.063) ×102

20 loglikelihood (−4.73± 0.44) ×106 (−6.10± 0.80) ×106

region-co-occur. (3.00± 0.30) ×10−1 (8.67± 0.05) ×10−2

accuracy (7.70± 4.10) ×10−1 (9.08± 0.65) ×10−1

time (1.59± 0.77) ×104 (1.45± 0.15) ×103

the number of iterations parameter. However, the learning can be exited earlier
if the convergence condition is met (we used 2000 · n iterations and tolerance
= 0.01). Data size was denoted as T = s× t, where s is the number of sequences
and t is the length of each sequence.

Figure 4 shows the differences between the models for a fixed number of states
and a different size of training data for 10 replications of the experiment. Table 1
presents the exact results for a different number of states. Each of the models
beats one another in its loss function. For small data sizes, our implementation is
relatively slow. However, when the complexity of the task grows (greater number
of states or bigger data), the regular GaussianHMM using the EM algorithm
becomes very time-consuming.

4.2 Recommendation Saturation Simulation

The practical importance of GaussianDenseHMM was studied in the context of
recommender systems (RS). RS tries to suggest to a given user the most accurate
products from a given set of available products. In some sense, an RS is a type
of black box, because it is usually unclear how different types of user activities
affect the results of the RS. Particularly: how the RS reflects the real (unknown,
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hidden) user interests. In order to study such a research question, we consider a
dataset prepared on the basis of the MovieLens20M dataset [3].

We focus on a selected group of users and their interests in a particular group
of products (we consider a group of users/products only in order to avoid over-
fitting issues and/or insufficient data problems, so our studies may also consider
single user/product if a sufficient amount of data is available). In some periods,
these products may be additionally advertised, which increases interest in them.
In some periods, these products may be unpopular, e.g. due to seasonality or
weather reasons, which decreases interest in them.

Fig. 5. Ground truth states with unprocessed data and results obtained from the base-
line model and GaussianDenseHMM with preprocessed data for different lengths of the
period considered in the experiment ΔT = 3, 5, 7. The similarity to the unprocessed
data is blurred with the growth of ΔT , which results in worse consistency to baseline
states (80.88–84.02, 69.00–74.60, 60.35–60.60 percent accuracy, respectively).

In each time t, the users may be active in the e-commerce system and strongly
interested in the products, e.g. due to some advertising of the products (state
xt = 2); active and regularly interested (state xt = 1) or inactive/weakly inter-
ested (state xt = 0). Let yt denote the number of positive interactions with the
products by the users at time t (e.g. the number of product page clicks, the
number of product buys, or the number of product positive ratings).

In order to measure how the RS reflects the number of positive interactions
in the list of recommended products, we transform yt by the Hill saturation
curve h(y) = yp

k+yp into the saturation of the list of recommended products by
the particular group of products.

In our experiments, the number yt of positive interactions came from a 3-
state HMM, and the Hill saturation curve was estimated on the Movielens20M
dataset: after selecting randomly 10 users, we have provided recommendations
for them 1000 times while injecting high ratings for items from the specified genre
(simultaneously avoiding the mean converging to 5). Using the recommendations
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Fig. 6. True states in comparison to states obtained from regular GaussianHMM and
GaussianDenseHMM, omitting the sequence order, for ΔT = 7. The picture shows the
overall state consistency. As the data is blurred, the trained models seem to distinguish
low and high interest while mixing the medium state with one of the extreme states.
Differences between models results occur due to convergence to local optima of both
learning algorithms.

obtained from FunkSVD2, we calculated the saturation of recommendations and
fitted the Hills equation to the average saturation sequence. In order to denoise
the user interest data, we preprocessed yt with a moving average of length ΔT =
3, 5, or 7 days.

Our approach was used to discover the hidden states xt of the users’ inter-
ests in the particular group of products. Figure 5 and 6 as well as Table 2 and
3 present the results of comparison GaussianDenseHMMs with regular Gaus-
sianHMMs for 3 different lengths ΔT of moving average in the preprocess-
ing. GaussianDenseHMMs outperformed regular GaussianHMMs in all cases,
in terms of accuracy as well as computing time.

Table 2. Detailed results of recommendation saturation modeling experiment for ΔT =
3: confusion matrix (true states in rows, predicted states in columns), sensitivity and
specificity (for state indicators), accuracy, loglikelihood, and model training time

state Standard Gaussian HMM GaussianDenseHMM
0 1 2 0 1 2

confusion matrix 0 597086 597086 0 458191 365425 112565
1 139716 1423215 0 0 1342466 220465
2 1633 475022 2021233 0 100243 2397645

sensitivity 63.78% 91.06% 80.92% 48.94% 85.89% 95.99%
specificity 96.52% 76.29% 100.0% 100.0% 86.44% 86.67%
accuracy 80.88% 84.02%
loglikelihood −9553362.99 −47334974.89
time [s] 300.24 147.45

2 https://sifter.org/simon/journal/20061211.html. Last accessed 2 Dec 2022.

https://sifter.org/simon/journal/20061211.html
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Table 3. Summary of recommendation saturation modeling experiment

ΔT accuracy loglikelihood time [s]
3 regular GaussianHMM 80.88% −9553362.99 300.24

GaussianDenseHMM 84.02% −47334974.89 147.45
5 regular GaussianHMM 69.00% −10089991.59 313.05

GaussianDenseHMM 74.60% −57123400.16 122.54
7 regular GaussianHMM 60.60% −10352963.04 246.09

GaussianDenseHMM 60.35% −57771627.53 163.75

5 Conclusions

In response to the discussion in the paper proposing DenseHMMs, we came
up with a generalization of this model to continuous emissions and adopted
both proposed learning schemas. The idea of embedding hidden states gives
an improvement by providing an additional, dense representation of the hidden
states. Incorporating discretization and region-based co-occurrence allowed us
to adopt the fast, unconstrained learning algorithm to a continuous problem.

We have evaluated our model to present its theoretical properties and capa-
bilities to work in a real-world-related scenario. GaussianDenseHMM tended to
be less time-consuming for big benchmarks. It also worked well with smaller
amounts of data in terms of state decoding accuracy. In the scenario set in con-
text or recommender systems, our model tended to work comparably well in a
shorter time.

In future work, we suggest exploring the model’s abilities for very large num-
bers of states as well as speeding it up for small data and studying other dis-
cretization techniques.
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Abstract. Ship detection has gained considerable attentions from
industry and academia. However, due to the diverse range of ship types
and complex marine environments, multi-scale ship detection suffers from
great challenges such as low detection accuracy and so on. To solve
the above issues, we propose an efficient enhanced-YOLOv5 algorithm
for multi-scale ship detection. Specifically, to dynamically extract two-
dimensional features, we design a MetaAconC-inspired adaptive spatial-
channel attention module for reducing the impact of complex marine
environments on large-scale ships. In addition, we construct a gradient-
refined bounding box regression module to enhance the sensitivity of loss
function gradient and strengthen the feature learning ability, which can
relieve the issue of uneven horizontal and vertical features in small-scale
ships. Finally, a Taylor expansion-based classification module is estab-
lished which increases the feedback contribution of gradient by adjust-
ing the first polynomial coefficient vertically, and improves the detection
performance of the model on few sample ship objects. Extensive experi-
mental results confirm the effectiveness of the proposed method.

Keywords: Multi-scale Ship Detection · Improved YOLOv5
Network · Attention Module

1 Introduction

Ship detection is a critical aspect of maritime supervision and plays an essen-
tial role in intelligent maritime applications such as sea area monitoring, port
management, and safe navigation [24]. In recent years, various methods such
as foreground segmentation [4,16,25], background subtraction [3,22], and hori-
zon detection [12,24] have been widely explored and have made considerable
progress. However, traditional ship detection methods often lack robustness and
may have limited applicability in the presence of complex noise interference.
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Meanwhile, owing to the development of deep learning in object detection,
deep learning-based object detectors have achieved significant advancements. For
example, Faster r-cnn [17] is a classic two-stage detection method that employs a
region proposal network to generate detection boxes directly. SSD [10] enhances
the detection accuracy of multi-scale objects by conducting object detection
on multiple feature layers. CenterNet [5] is a detection method that detects the
center point and size of an object without anchor. The YOLO [1,13–15,23] series
are classic single-stage object detection methods that extract multi-scale features
via a backbone network and a feature pyramid network, while introducing an
anchor frame mechanism to enhance the model’s robustness.

Inspired by these deep learning-based detection methods above, there is a
growing research efforts towards deep learning-based ship detection. Region pro-
posal network-based methods [7,9] and regression-based methods [2,19] have
made certain progress. However, various issues, such as false detection and missed
detection, persist in ship detection due to factors like the influence of background
noise on the sea surface, the uneven distribution of horizontal and vertical fea-
tures of ships, and the different sizes of ships.

To relieve the issues above, we propose a novel efficient enhanced-YOLOv5
algorithm for multi-scale ship detection. Specifically, in order to mitigate the
issue that complex marine environments disrupting large-scale ships, we propose
a MetaAconC-inspired dynamic spatial-channel attention module that extracts
two-dimensional features, mitigating the environmental impact on large-scale
ships. Aiming at the problem of uneven horizontal and vertical features of small-
scale ships, we design a gradient-refined bounding box regression module to
increase the gradient sensitivity, enhancing the learning ability of the algorithm
on small-scale ship features. In order to relieve the challenge that sensitivity of
the cross entropy function to class imbalance, we establish a Taylor expansion-
based classification module, by adjusting the first polynomial coefficient verti-
cally to increase the contribution feedback of the gradient, improving the detec-
tion performance of the model on few sample ship objects. To summarize, our
main contributions are as follows:

– We propose a novel efficient enhanced-YOLOv5 algorithm for multi-scale ship
detection, where a MetaAconC-inspired dynamic spatial-channel attention
module is designed to mitigate the influence of complex marine environments
on large-scale ships.

– To mitigate the problem of uneven horizontal and vertical features of small-
scale ships, we design an effective gradient-refined bounding box regression
module to enhance the learning ability of the algorithm on small-scale ship
features.

– To further relieve the challenge that sensitivity to class imbalance, we also
construct a Taylor expansion-based classification module to increase feedback
contribution and improve the detection performanceon few sample ships.
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2 Method

2.1 Overall Framework

The structure of an efficient enhanced-YOLOv5 algorithm is shown in Fig. 1.
The algorithm comprises several components: a backbone network that extracts
features from three different scales. The MetaAconC-inspired dynamic spatial-
channel attention module which located in the three feature processing channels
behind the backbone network to focus on the feature refinement of multi-scale
ships, and a feature pyramid network for feature enhancement. Finally, the detec-
tion heads generate the final predictions, and our proposed modules, namely
the gradient-refined bounding box regression module and the Taylor expansion-
based classification module improve accuracy through gradient calculations and
backpropagation during training.

Fig. 1. The pipeline of an efficient enhanced-YOLOv5 algorithm framwork.

2.2 MetaAconC-Inspired Dynamic Spatial-Channel Attention
Module

Due to the large span of large-scale ships in the image, its learned feature dis-
tribution tends to be largely split, which may potentially confuse the object
semantics, thereby presenting limited detection accuracy. Especially in the com-
plex marine environments, the semantic information of ships is easily polluted
by background noise, which makes it difficult to learn. To mitigate the influence
of complex marine environments on large-scale ships, we propose a MetaAconC-
inspired dynamic spatial-channel attention module as shown in Fig. 2. In detail,
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Fig. 2. The overview of the MetaAconC-inspired dynamic spatial-channel attention
module. APSA denotes the average pooling-based spatial attention module. MACDCA
denotes the MetaAconC-inspired dynamic channel attention module.

the average pooling-based spatial attention module obtains the intra-channel
relationship of input features. Secondly, the MetaAconC-inspired dynamic chan-
nel attention module dynamically summarize the spatial relationships of features.
As such, our module effectively learns the multi-dimensional features informa-
tion of ships and the impact of complex marine environments on the noise of
large ships is mitigated.

Average Pooling-Based Spatial Attention Module. The module integrates
ship characteristic information between different channels, and further eliminates
the negative impact of complex marine environment on large-scale ships through
the similar semantic characteristics of background noise in channel dimensions.
After obtaining the feature F ∈ RH×W×C through the CSPDarkNet53 back-
bone network from the input image, we input F into the average pooling-based
spatial attention module to obtain global information by utilizing global aver-
aging pooling of channel dimensions, followed by sigmoid function to produce
spatial-refined attention weight ∈ RH×W×1, which is then multiplied with the
input feature F to obtain spatial-refined feature F ′, which is fed into the next
module.

MetaAconC-Inspired Dynamic Channel Attention Module. Since back-
ground noise is not invariable in spatial dimension, and a variety of unnecessary
noise will be formed in complex marine environment, we designed the module to
dynamically adjust attention mode, better learn ship characteristics, and effec-
tively reduce the interference of dynamic background noise. This module con-
ducts global average pooling and maximum pooling of spatial dimensions to F ′,
and add the results through a two-layer neural network based on the MetaACON
function [11] and sigmoid activation function to obtain channel-refined attention
weight ∈ R1×1×C . Finally, we multiply this weight with feature F ′ to obtain
refined feature. The smooth maximum function has been utilized to expand the
Maxout function, resulting in the Acon series activation functions. The MetaA-
con function allows the adaptive activation of neurons through the modification
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of a parameter, denoted by γ, which is defined as follows:

f(x) = (p1 − p2)x · σ (γ (p1 − p2)x) + p2x, (1)

where x represents the input, and σ is the sigmoid function. p1 and p2 are two
channel-wise learnable parameters. The channel-wise parameter γ dynamically
adjusts the activation of neurons through convolution operations, controlling
whether they should be activated or not. The formula for γ is given by:

γ = σW1W2

H∑

h=1

W∑

w=1

xc,h,w, (2)

where W1 and W2 represent two 1 × 1 convolution layers.

2.3 Gradient-Refined Bounding Box Regeression Module

The CIOU loss [27] is a widely used bounding box regression loss, which plays a
crucial role in the YOLOv5 algorithm. However, CIOU loss has two main draw-
backs in correspondence learning. (i) First, the current approach only takes into
account the aspect ratio of the bounding box, without considering the actual
height and width of the object. Ships are not all regular rectangles, and the
aspect ratio of different ship types varies greatly. For example, the shape of the
fishing boat is very slender, small in height but large in width. However, In
order to better accommodate tourists, ships such as passenger ships and cruise
ships are very tall compared to their width. As a consequence, the differences in
aspect ratios of ships can hinder the accurate fitting of ships with varying shapes
especially small-scale ships, leading to misidentification and missed detections.
(ii) Second, the loss function gradient remains constant, which renders the model
insensitive to fitting multi-scale objects, making small-scale ship detection more
challenging.

To mitigate the issue (i), we divide the aspect ratio into height and width,
and calculate them respectively [26]. In this way, the fitting direction of the
regression module is closer to the shape of the ship. The width-height loss directly
minimizes the width-height difference between the target box and the bounding
box so that the model can better fit the ships with different shapes, which is
defined as follows:

LSeaIOUv1 = 1 − (SeaIOUv1), (3)

where SeaIOUv1 is defined as:

SeaIOUv1 = IOU − ρ2 (b, bgt)
c2

− ρ2 (w,wgt)
C2

w

− ρ2 (h, hgt)
C2

h

, (4)

where b and bgt represent the center points of the bounding box and target box,
respectively. ρ(·) represents the Euclidean distance. c represents the area of the
smallest enclosing box that covers both boxes. Cw and Ch are the width and
height of the minimum circumscribed frame that covers both boxes.
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To mitigate the issue (ii), we establish a gradient-refined bounding box regres-
sion module that increases the gradient sensitivity of the loss function. Specifi-
cally, we modify the invariance of the gradient by applying a logarithmic func-
tion. The absolute gradient value decreases with the increase of the overlap,
which is more favorable for bounding box regression. As such, when the distance
between the boxes is far away, its gradient absolute value is larger, which is
more conducive to the detection of small-scale ships. This approach enhances
the contribution of small-scale ships to the feature learning ability of the model.
The formula for the modified loss function is defined as:

LSeaIOUv2 = α · lnα − α · ln(β + (SeaIOUv1)), (5)

where α and β represent parameters that control the gradient sensitivity of the
loss function.

2.4 Taylor Expansion-Based Classification Module

The cross entropy loss is a popular classification loss, which plays a crucial role
in the YOLOv5 algorithm, which is defined as:

LCE = − log (Pt) =
∞∑

j=1

1/j (1 − Pt)
j = (1 − Pt) + 1/2 (1 − Pt)

2
. . . , (6)

where Pt is the model’s prediction probability of the ground-truth class.
However, it is sensitive to class imbalance. The cross-entropy loss assumes

that the classes are balanced, which may result in the model becoming biased
towards the majority class and failing to capture the features of the minority
class. Specifically, In the training process, it back-propagates each type of ship
according to the same contribution, making the model more inclined to learn the
ship object with a large number of samples. However, the learning efficiency of
the ship object with a few sample is very low, which greatly limits the detection
performance of ships with few samples. In the application of ship detection,
the sample number of ships is very uneven. Some ship types are very common,
during training, more samples can be provided for the model to learn features
and improve the detection performance. However, some ship types are not as
common as the above ships, and the number of their samples is very small. It
is difficult for the ship detection model to get enough learning samples in the
training stage, so it is difficult to learn the characteristics of ships with few
samples. Expanding datasets is a feasible approach, but it costs a lot. Therefore,
it is necessary to optimize the training strategy.

To mitigate the issue, we establish a Taylor expansion-based classification
module which presents the loss function as a linear combination of polynomial
function. We get its gradient formula based on the cross entropy loss function,
which is shown as:

− dLCE

dPt
=

∞∑

j=1

(1 − Pt)
j−1 = 1 + (1 − Pt) + (1 − Pt)

2
. . . (7)
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From the above formula, it can be seen that the first term of the cross entropy
loss function is the largest, which is 1. The subsequent terms are smaller and
smaller, which means that the first term contributes the most to the gradient
gain. By adjusting the first polynomial coefficient vertically [8], we increase the
feedback contribution of cross-entropy gradient. This module further strength-
ens the fitting ability and alleviates the sensitivity to class imbalance, which is
defined as:

LT−CE = (1 + ε1) (1 − Pt) + 1/2 (1 − Pt)
2 + . . . = − log (Pt) + ε1 (1 − Pt) , (8)

where ε1 represents the parameter we adjusted in the first polynomial coefficient.
In this way, the sensitivity of the classification module to the number of

samples is improved, the problem of low gradient gain of few sample ships is
alleviated, and the detection performance of the model for few sample ship tem-
plates is enhanced

3 Experiments

3.1 Experimental Settings

Dataset. In this paper, we evaluate the performance of the proposed method
on the SeaShips dataset [20], a well-known large-scale and precisely annotated
maritime surveillance dataset released by Wuhan University in 2018. The dataset
collected by the coastal land-based camera in Hengqin, Zhuhai, including 6 types
of ships with different sizes, contains 31,455 images, 7,000 of which are publicly
available. We divide the pictures according to the official scale. The training
set and the validation set are 1750, and the remaining 3500 are used as the
test set. The detection difficulties include ship size change, complex background
interference and so on. In this dataset, the size of the fishing boat object is small,
the sample size of the passenger ship is small, thus the detection accuracy of the
algorithm for them is one of the main indicators to verify the performance of the
model to small-scale ship object and few sample ship object.

Evaluation Indicators. We adopt evaluation indicators of COCO dataset,
including mAP0.5, AP0.5, mAP0.75, and AP0.75. AP (Average Precision) is the
area enclosed by the X-axis and Y-axis plots using Recall and Precision respec-
tively. AP0.5 and AP0.75 are AP s at IoU threshold of 0.5 and 0.75, respectively.
For multi-object detection, each object would have an AP value first, and then
take the weighted average to obtain mAP (Mean Average Precision).

Implementation Details. For our experiments, one GeForce RTX 2080ti GPU
card is used, and the CUDA version is 10.0. The cuDNN version is 7.5.1, and
the PyTorch version is 1.2.0. All models are trained for 300 epochs with batch
size of 4, an initial learning rate of 1e-2, which is then reduced to a minimum
of 1e-4 using a cosine annealing algorithm. We utilize the sgd optimizer with



An Efficient Enhanced-YOLOv5 Algorithm for Multi-scale Ship Detection 259

momentum 0.937 and weight decay 5e-4. All models are deployed according to
the above Settings. YOLOv5 network is the original network of our method.
We set α = 5, β = 4 and ε1 = 1. In order to demonstrate the efficacy of
the proposed method, we conduct an experimental comparison with the other
conventional object detection methods on the Seaships dataset.

Table 1. Detection results on the Seaships dataset. It shows mAP0.5 and AP0.5 in
each class. The bold number has the highest score in each column.

Model mAP0.5 Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship
Faster r-cnn1 0.949 0.958 0.994 0.906 0.966 0.950 0.917
Faster r-cnn2 0.946 0.927 0.990 0.917 0.969 0.938 0.933
SSD3002 0.935 0.949 0.987 0.888 0.962 0.930 0.893
SSD3003 0.891 0.918 0.967 0.809 0.925 0.898 0.831
YOLOv3 0.941 0.952 0.983 0.923 0.968 0.943 0.878
YOLOv4 0.921 0.901 0.975 0.901 0.937 0.918 0.894
Shao 0.874 0.876 0.903 0.783 0.917 0.881 0.886
YOLOv5 0.952 0.953 0.988 0.940 0.974 0.935 0.922
Ours 0.966 0.961 0.991 0.956 0.982 0.951 0.952
[1] ResNet50 [6] is selected as the backbone network.
[2] VGG16 [21] is selected as the backbone network.
[3] MobileNetv2 [18] is selected as the backbone network.

Table 2. Detection results on the Seaships dataset. It shows mAP0.75 and AP0.75 in
each class. The bold number has the highest score in each column.

Model mAP0.75 Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship
Faster r-cnn1 0.658 0.608 0.806 0.553 0.767 0.576 0.636
Faster r-cnn2 0.650 0.537 0.852 0.582 0.731 0.569 0.629
SSD3002 0.673 0.704 0.903 0.509 0.789 0.609 0.525
SSD3003 0.491 0.499 0.745 0.286 0.594 0.445 0.373
YOLOv3 0.631 0.612 0.860 0.474 0.727 0.647 0.470
YOLOv4 0.506 0.487 0.673 0.360 0.579 0.472 0.467
YOLOv5 0.762 0.769 0.920 0.669 0.850 0.721 0.646
Ours 0.785 0.788 0.940 0.660 0.848 0.706 0.767
[1] ResNet50 [6] is selected as the backbone network.
[2] VGG16 [21] is selected as the backbone network.
[3] MobileNetv2 [18] is selected as the backbone network.

3.2 Quantitative Analysis

As shown in Table 1, we conduct an experimental comparison of mAP0.5 and
AP0.5 with the other eight classical object detection methods on the Seaships
dataset. The proposed method achieves a high mAP0.5 of 96.6%, with the 3
ship classes having the highest AP values. In particular, for passenger ship with
a smaller sample, AP0.5 reaches 95.2%, an improvement of 3% over the origi-
nal network. In addition, For small-scale fishing boat, AP0.5 reaches 95.6%, an
increase of 1.6% over the original network. Compared to Faster r-cnn [17] with
various backbone networks, our proposed method alleviates the interference of
complex environment by adding the proposed attention module, with mAP0.5
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increasing by 1.7% and 1.9%. Compared to SSD [10] with various backbone net-
works, our proposed method further enhance multi-scale features, with mAP0.5

increasing by 3.1% and 7.5%. Specifically, for fishing boat, AP0.5 increases by
6.8% and 14.7%. Compared to the YOLO series networks [1,15], our proposed
method improves the feature description power of the model for multi-scale ships
and achieves higher detection accuracy. Compared to Shao [19], our proposed
method increases mAP0.5 by 9.2% by reducing the complex environment interfer-
ence and sample imbalance sensitivity with the proposed regeression and classi-
fication module. Particularly for fishing boat and container ship, AP0.5 increases
by 17.3% and 8.8%.

In order to further verify the performance of our proposed model more
strictly, we experimentally compare mAP0.75 and AP0.75 with five other classical
object detection methods on the Seaships dataset. Table 2 presents the perfor-
mance of different methods on Seaships, our proposed method also achieves the
highest detection performance of 78.5%, an improvement of 2.3% over the orig-
inal network. It’s worth noting that passenger ship with fewer samples, AP0.75

reaches 76.7%, an improvement of 12.1% over the original network. In conclu-
sion, our proposed method is more effective than other classical methods for
improving the accuracy of multi-scale ship detection.

Table 3. Ablation experimental results of module on seaships Dataset.

Model mAP0.5 Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship
YOLOv5 0.952 0.953 0.988 0.940 0.974 0.935 0.922
+b 0.954 0.944 0.988 0.948 0.977 0.943 0.921
+b + c 0.963 0.958 0.993 0.956 0.976 0.948 0.950
+a + b + c (ours) 0.966 0.961 0.991 0.956 0.982 0.951 0.952

3.3 Ablation Studies

Table 3 displays the effect of the three proposed modules on the performance of
the method. To ensure fair comparison, we use the same experimental setup for
all the methods. a represents the MetaAconC-inspired dynamic spatial-channel
attention module, b represents the gradient-refined bounding box regression mod-
ule and c represents the Taylor expansion-based classification module.

The original network YOLOv5 achieves the mAP0.5 of 95.2%. After b is
added, The method improves small-scale ship detection performance by increas-
ing gradient sensitivity, resulting in an AP0.5 increase of 0.8% for fishing boat.
Then the method enhances accuracy further by adding c to reduce class imbal-
ance sensitivity, yielding an overall mAP0.5 improvement of 0.9%, and AP0.5

improved by 2.9% for passenger ships with fewer samples. After adding a, by
focusing on the extraction of ship characteristics, the influence of complex Marine
environment is weakened. Our method combined with the proposed attention
module raises the mAP0.5 to 96.6%, 1.4% higher than the original network
YOLOv5. Experimental results show that our modules significantly improve ship
detection performance across different sizes and ship types.
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Fig. 3. Qualitative comparison of different methods on Seaships.

3.4 Qualitative Analysis

Figure 3 illustrates the ship detection performance of our proposed method and
the other classical methods under various complex conditions. From the first line,
it can be seen that in the occlusion case, Faste r-cnn gets a duplicate bounding
boxes due to the region proposal network. SSD300, YOLOv4 and YOLOv5 all
miss the bulk cargo carrier that is hiding from each other. And from the fourth
line, except our method, the other object detectors do not detect the obscured
passenger ship. As can be seen from the second and third lines, when multi-scale
ships exist at the same time, Faste r-cnn also produces redundant detection
boxes. SSD and YOLOv4 fail to detect small fishing ships. Our original network
YOLOv5 can not handle the detection of multi-scale ships well, resulting in the
detection of small ships, while missing the detection of large ships across the
whole map. By adding the proposed attention module, our proposed method
alleviates the problem of semantic information fragmentation of large ships and
detects these ships well. As can be seen from the fifth line, for the small ship
object scenario, the position of the detection box of Faste r-cnn is offset and
SSD failes to detect the small-scale fishing ship. It can be concluded that our
proposed method effortlessly handles these situations with ease.

4 Conclusion

In this paper, we have proposed an efficient enhanced-YOLOv5 algorithm for
multi-scale ship detection. Our approach consists of three components, specifi-
cally a metaAconC-inspired dynamic spatial-channel attention module has been
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designed to reduce the impact of complex marine environments on large-scale
ships. Also, We have mitigated the issue of uneven horizontal and vertical fea-
tures of small-scale ships by constructing a gradient-refined bounding box regres-
sion module. Moreover, we have proposed a Taylor expansion-based classification
module to alleviate the sensitivity to class imbalance and improve the detec-
tion performance to few sample ships. The experimental results demonstrate the
effectiveness of our proposed method. In future work, our model should further
improve its ability to detect small-scale ships in complex marine environments.

Acknowledgement. This work is supported by the National Science Fund of China
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Abstract. With the development of blockchain technology, issues like
storage, throughput, and latency emerge. Multi-chain solutions are
devised to enable data sharing across blockchains, but in complex cross-
chain scenarios, data integrity faces risks. Due to the decentralized nature
of blockchain, centralized verification schemes are not feasible, making
decentralized cross-chain data integrity verification a critical and chal-
lenging problem. In this paper, based on the ideas of “governing the
chain by chain” and “double layer blockchain”, we propose a double-
layer blockchain-based decentralized integrity verification scheme. We
construct a supervision-chain by selecting representative nodes from mul-
tiple blockchains, which is responsible for cross-chain data integrity veri-
fication and recording results. Specifically, our scheme relies on two con-
sensus phases: integrity consensus for verification and block consensus for
result recording. We also integrate a reputation system and an election
algorithm within the supervision-chain. Through security analysis and
performance evaluation, we demonstrate the security and effectiveness
of our proposed scheme.

Keywords: Data integrity · Double-Layer blockchain · Cross chain ·
Decentralized verification · Multi-chain architecture

1 Introduction

Blockchain technology has gained significant attention across industries in recent
years. Initially introduced as the underlying technology for cryptocurrency,
blockchain has evolved into a disruptive innovation with the potential to revolu-
tionize numerous sectors, including finance, supply chain management, health-
care, and more [14,18]. However, the widespread adoption of blockchain faces the
scalability issue, which arises from the inherent design of traditional blockchain
networks. As the number of participants and transactions increases, the single-
chain architecture encounters limitations in terms of throughput, latency, and
storage requirements.

To solve these problems, some researchers have introduced innovative solu-
tions such as multi-chain architecture and cross-chain technology [6]. For exam-
ple, Kang et al. propose a multi-chain federated learning (FL) framework, in
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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which multiple blockchains are customized for specific FL tasks and individually
perform learning tasks for privacy protection [7]. Multiple blockchains interact
and collaborate with each other through cross-chain techniques, enabling a scal-
able, flexible, and communication-efficient decentralized FL system.

These multi-chain architectures all require data sharing among multiple
block-chains. Existing researches [4,16,17] focus only on how to achieve cross-
chain interaction and collaboration, without solving the problem of data integrity
in multi-chain data sharing. Only when the integrity of the cross-chain data is
confirmed can cross-chain applications effectively engage in data exchange and
collaboration, thus achieving the objectives and advantages of a multi-chain
architecture. Therefore, research is needed to ensure cross-chain data integrity
among multiple chains.

The data integrity problem in the cloud storage environment has been exten-
sively studied. The provable data possession (PDP) scheme, along with its vari-
ous iterations [1,10,19], is widely used to address the data integrity problem in
the cloud. However, the integrity of data sharing in a multi-chain environment
is fundamentally different as: 1) In a multi-chain architecture, it is necessary
to verify the integrity of cross-chain data distributed among multiple receiving
blockchains for a specific piece of data. In contrast, in cloud storage scenario,
the integrity verification focuses on data within a single cloud. 2) A multi-chain
architecture consists of multiple decentralized blockchains, lacking the central-
ized control found in cloud storage scenario.

Additionally, to alleviate the heavy computational burden on users, various
research studies employ third-party auditors (TPA) to check the data integrity
on the untrusted cloud [5,11]. However, the centralized TPA, which can never
be fully trusted, will weaken the decentralized nature of the blockchain.

In this paper, we propose a decentralized scheme based on the idea of
double-layer blockchain [2] to ensure cross-chain data integrity across multi-
ple blockchains. We utilize representative nodes from each blockchain in the
multi-chain architecture to construct a supervision-chain, which is responsible
for cross-chain data integrity verification. Additionally, based on the lightweight
sampling method and the Boneh-Lynn-Shacham (BLS) signature, we provide a
probabilistic integrity guarantee. Furthermore, we also provide detailed descrip-
tions of the reputation system, node election algorithm, and block consensus
process for the proposed supervision-chain. The main contributions of this paper
are summarized as follows:

– This paper is the first to apply the idea of a double-layer blockchain to the field
of cross-chain data integrity verification. Representative nodes are extracted
from a multi-chain architecture to construct a supervision-chain, which is
responsible for verifying the integrity of cross-chain data and recording the
verification results.

– A cross-chain data integrity verification process is designed within the
supervision-chain, where nodes collaborate with each other for decentral-
ized verification. Additionally, leveraging lightweight sampling algorithms and
BLS signature, we achieve an efficient verification process.
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– To improve the efficiency of the block consensus process, this paper intro-
duces a block consensus committee. Moreover, the reputation system of the
supervision-chain and election algorithm for the block consensus committee
are meticulously designed.

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction to the preliminaries covered in this paper. Section 3 defines the
system model, threat models, and design goals. Section 4 presents the proposed
scheme. Section 5 conducts the security analysis. Section 6 evaluates the perfor-
mance of the proposed cross-chain data integrity verification scheme. Section 7
concludes this paper and points out the future work.

2 Preliminaries

2.1 Bilinear Pairing

Bilinear pairing [12] is based on cryptography, which relies on a difficult hypoth-
esis similar to the elliptic curve discrete logarithm problem, which can often be
used to reduce the problem in one group to an easier problem in another group.
Let G and GT be two multiplicative cyclic groups of large prime order q. A
map function e : G × G → GT is a bilinear pairing only when it satisfies three
properties below:

– Bilinear: For u, v ∈ G and a, b ∈ Z∗
q , e

(
ua, vb

)
= e(u, v)ab;

– Non-Degeneracy: e(g, g) is a generator of GT ;
– Computability: For ∀u, v ∈ G, there exists efficient algorithms to compute

e(u, v).

2.2 BLS Signature

The Boneh-Lynn-Shacham (BLS) signature [9] is a cryptographic scheme widely
used to help senders certificate their messages. It works on top of elliptic curves
and employs bilinear pairing to perform verification. Assume that a sender is
equipped with a public/private key pair (pk, sk)

(
sk ∈ Z

∗
q and pk = gsk

)
. To

generate a signature sig for a given message mes, the sender maps mes to the
elliptic curve with a secure hash function hash(). Then, it generates signature
sig from its private key, i.e., sig = hash(mes)sk. A receiver can verify mes with
the bilinear mapping function e() mentioned in Sect. 2.1 based on the sender’s
public key pk and message signature sig. If Eq. (1) holds, the received message
mes is correct.

e(pk, hash(mes)) ?= e(g, sig) (1)

BLS signature’s security is ensured by the hardness of solving the Com-
putational Diffie-Hellman (CDH) problem. In our scheme, each node in the
supervision-chain has a randomly chosen unique sk as its private key. Then,
its corresponding public key pk is generated by gsk.



DBDIV for Multi-chain Cross-Chain Data 267

2.3 Verifiable Random Function

Verifiable random function (VRF) is a cryptographic function that provides
pseudo-random and publicly verifiable values, e.g., the one introduced in [3]
based on bilinear pairing. Specifically, given a random seed x, a user u equipped
with a public/private key pair (pk, sk) can generate a random value fsk(x) by
Eq. (2) and a tag πsk(x) by Eq. (3).

fsk(x) = e(g, g)1/(x+sk) (2)

πsk(x) = g1/(x+sk) (3)

Tag πsk(x) is used to prove the correctness of fsk(x). With both fsk(x) and
πsk(x), a receiver can verify the correctness of fsk(x) based on u’s public key pk.
If both Eq. (4) and Eq. (5) hold, the random value fsk(x) is correctly generated
by u.

e (gx × pk, πsk(x)) ?= e(g, g) (4)

e (g, πsk(x)) ?= fsk(x) (5)

3 Problem Statement

3.1 System Model

In a multi-chain architecture with n consortium blockchains, the problem is that
the blockchain which possesses the original data d intends to verify the integrity
of the cross-chain data stored in the receiving blockchains. These representative
nodes are selected from each blockchain to form a supervision-chain, which also is
a consortium blockchain. We refer to the original blockchains in the multi-chain
architecture as the sub-layer and the supervision-chain as the main layer, forming
a double-layer framework [2]. In the supervision-chain, each node can read data
from the blockchain within the sub-layer it belongs to. Therefore, cross-chain
data integrity verification from each blockchain in the sub-layer can be done
within the supervision-chain. There are n nodes in supervision-chain, denoted
as Node = {nodei|1 ≤ i ≤ n}. Each node nodei ∈ Node has a public/private key
pair (pknodei

, sknodei
) and is identified by its public key pknodei

. Here, sknodei
=

xi ∈ Z∗
p , pknodei

= gxi ∈ G.
Assume that a blockchain in the sub-layer has sent data d by cross-chain

method to each of k(k < n) received blockchains, and the corresponding nodes
in the supervision-chain denoted as Noded ⊆ Node. The system model consists
of four parts, including the sending-chain, receiving-chains, supervision-chain
and other blockchains in multi-chain architecture. The system model is shown
in Fig. 1.
Sending-Chain: The original data owner, who sends the data d to the receiving-
chains using cross-chain methods, intends to verify the integrity of the cross-chain
data d.
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Receiving-Chain: Receiving-chain is the recipient of the cross-chain data, and
it is subject to data integrity verification conducted by the supervision-chain.
Other Blockchain: The other blockchain in the multi-chain architecture act
as participant in the construction of the supervision-chain.
Supervision-Chain: The supervision-chain is constructed by representative
nodes from the blockchains in the multi-chain architecture and is responsible
for verifying the integrity of cross-chain data in receiving-chains.

Fig. 1. System model

3.2 Threat Models

Assume that the representative node of the blockchain sending the data d is
nodes ∈ Noded, and the representative node of the blockchain receiving the
data d is noder ∈ Noded. During the process of data integrity verification in the
supervision-chain, the following threats exist:

– Unexpected Failures. Faults such as hardware failures, software exceptions
and cyber attacks may cause cross-chain data to be corrupted.

– Modification Attack. The cross-chain data may be modified by the
receiving-chain before being stored on the chain.

– Freeriding Attack. A noder may reuse an integrity proof message from
another honest node′

r to pass the integrity verification.
– Prediction Attack. If these nodes participating in the block consensus in

the supervision-chain are easily predictable in advance, external adversaries
can easily attack the block consensus process.

3.3 Design Goals

Under the above system model and threat model, our scheme should meet the
following three goals.
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– Decentralized Verification. In the context of cross-chain scenario, using
centralized entities for data integrity verification will weaken the decentral-
ization of blockchain systems. By distributing the verification process across
multiple nodes, the overall system becomes more resilient and resistant to
attacks or manipulations.

– Correctness. The proposed scheme should ensure that the supervision-chain
can correctly verify the integrity of cross-chain data by integrity verification
process.

– Security. The proposed scheme should prevent from modification attacks,
freeriding attacks, and prediction attacks.

4 Double-Layer Blockchain-Based Decentralized Integrity
Verification Scheme

4.1 Overview

In our scheme, we use the supervision-chain to verify cross-chain data integrity
in blockchains of sub-layer and record the results. In order to achieve these goals,
we employ two consensus protocols, one for integrity consensus and the other for
block consensus [9]. The integrity consensus aims to achieve consensus on the
verification result of a given cross-chain data d. The block consensus is utilized
within the system to achieve consensus on the blocks that will be recorded on the
blockchain. We assume that in the sub-layer, a blockchain possessing the original
data d aims to verify the integrity of cross-chain data stored on the receiving
blockchains. We refer to the representative node of the blockchain which sent the
original data d as nodes and refer to the representative nodes of the blockchains
which received cross-chain data as noder ∈ Noded.

In summary, a complete scheme consists of two phases: integrity consensus
and block consensus. In the first phase, the system reaches a consensus on the
verification result. If enough results has generated in the first phase, the sec-
ond phase starts. In the second phase, the system reaches a consensus on the
transaction information to record it on the blockchain.

Next, we provide a detailed explanation of the integrity consensus process and
the block consensus process. For simplicity, we give some notations in Table 1.

4.2 Integrity Consensus

Firstly, we describe the sampling algorithm used in the integrity verification
process. Then we give the detailed integrity consensus process.

4.2.1 Sampling Algorithm Inspired by the sampling algorithm proposed
in [15], nodes generate sampling parameters spr for each node noder ∈ Noded

by the following steps. Assume that the number of Noded is k + 1. Per(x, y) is
a pseudo-random permutation function, where x is a random number and y is
the total number of data blocks to be permuted.
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Table 1. The notations in our scheme.

Notation Description

d The cross-chain data

n The total number of nodes in the supervision-chain

Noded The corresponding nodes which possess data d

nodes The representative node of the sending-chain in the supervision-chain

noder The representative node of the receiving-chain in the supervision-chain

nodeb The block consensus committee

k The total number of representative nodes of the receiving-chains

m The number of nodes in the block consensus committee

Per(x, y) A pseudo-random permutation function

hash() A hash function

f The number of malicious nodes that the blockchain system can tolerate

Step 1. For data d, which is divided into n data blocks, nodes uses Per(x, y)
to process the index array {1, 2, ..., n} and get a randomly sorted index array
SIA = {index1, index2, ..., indexn}.

Step 2. nodes divide SIA into k subsets, i.e. SIA = {C1, C2, ..., Ck}, satis-
fying the intersection of k subsets is empty and the union is {1, 2, ..., n}. These k
subsets are used as the challenged index sets for Noded. Generally, each subset
has about �n/k� elements, where �n/k� represents the integer part of n/k. In
particular, the last subset has n − (k − 1) �n/k� elements.

4.2.2 Integrity Consensus Process Assume that nodes would like to verify
the integrity of cross-chain data d in noder ∈ Noded. The integrity consensus
process goes through four steps, as shown in Fig. 2.

Fig. 2. Integrity consensus process

Step 1 Verification Request. nodes use the sampling algorithm (see
Sect. 4.2.1 Sampling Algorithm) to generate sampling parameters sp =
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{C1, C2, ..., Ck}. Then it samples data blocks from d according to the sampling
parameter Ci ∈ sp. Then it generates a Merkle Hash Tree(MHT) with a hash
function hash() based on the sampled data blocks. Next, nodes calculate the
BLS signature of the root node of MHT as the reference integrity proof for
noder, denoted as sigr.

sigr = hash(root)sknodes (6)

Finally, nodes send verification request verification request vr =<
pks, spr, did, sigr > to each noder ∈ Noded.

Here, pks represents the unique identifier of nodes, spr denotes the sampling
parameters for noder, did is the the unique identifier of cross-chain data d and
sigr signifies the reference integrity proof for noder.

Step 2 Integrity Proof Generation. Upon the receipt of a verification
request, noder generates a MHT from its own cross-chain data d based on the
specified sampling parameters spr and use the root of MHT to calculate its own
integrity proof sig′

r.

sig′
r = hash(root′)sknoder (7)

Then noder broadcasts the integrity proof message ipm =< pks, pkr,
sigr, sig

′
r > in the supervision-chain. Here, pkr represents the unique identifier

of noder.

Step 3 Verification Response. Upon the receipt of an integrity proof message
ipm from noder, a node nodei checks if Eq. (8) holds.

e(pks, sig
′
r)

?= e(pkr, sigr) (8)

If Eq. (8) holds, the ipm is valid and the cross-chain data in the blockchain
of sub-layer is intact. Otherwise, the integrity of cross-chain data is corrupted.
After validating all received ipm, nodei broadcasts the verification response vo =
<d.id, result, list>, where result is the summary of the verification results and
list is a set of pk belonging to the nodes for which the integrity proof is invalid.
Specially, if all equations holds, result is true and list is empty.

Step 4 Agreement. When a node nodei receives 	2n/3
 same verification
response vo, the final verification conclusion is made. In detail, if nodei receives
	2n/3
 result = true, it thinks all nodes in Noded possess intact cross-chain
data. Otherwise, nodei thinks these nodes appearing 	2n/3
 times in list do
not possess intact cross-chain data. After confirming the final result, nodei

broadcasts a integrity consensus commit in the supervision-chain. When a node
receives 	2n/3
 integrity consensus commits, it ends the integrity consensus pro-
cess.
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4.3 Block Consensus

In this subsection, we describe the whole block consensus process. Firstly, the
reputation system and the election algorithm used in the block consensus process
will be introduced. Then the detailed block consensus process will be given.

4.3.1 Reputation System In the supervision-chain, there are two types of
rewards as incentives to motivate node to participate in integrity verification
process.

Transaction Reward. A transaction reward is provided by the nodes and
allocated to those nodes that honestly verify integrity proof message ipm.

Block Reward. This reward is produced by the system to encourage nodes
to participate in the maintenance of the supervision-chain, similar to most
blockchain systems. For a node to gain block reward, it needs to satisfy the
following two conditions: First, it is within the block consensus committee. Sec-
ond, it actively and honestly participates in the block consensus process. The
rewards gained by each node in the past are recorded on the blockchain, and the
reputation of each node is calculated based on its historical rewards. In the elec-
tion process of the consensus committee, nodes with a higher reputation score
will be given prioritization.

In the reputation system, a node’s reputation is determined by three factors:
1) The reputation score is higher when the node actively engages in a substantial
number of integrity verification. Merely being honest without significant partic-
ipation will not yield a high reputation score. 2) The reputation decreases when
there are more occurrences of concealing inappropriate behavior. Each instance
of such behavior results in a deduction of rewards, thereby lowering the repu-
tation. 3) Recent behavior holds considerable weight in shaping the reputation
score.

To meet the mentioned factors, we use an exponential moving average algo-
rithm with bias correction to calculate the reputation of a node.

rt
nodei

=

{
0 t = 0

ρ×pt
nodei

+(1−ρ)×rt−1
nodei

1−ρt t > 0
(9)

Here, pt
nodei

is the total amount of rewards from the recent transactions that
have not been packed in block, ρ ∈ (0, 1) is a weighting factor, and a larger ρ
indicates a higher weight on the impact of recent transactions on reputation.
1−ρt is a bias correction factor that ensures the stability of the reputation score
over time.

4.3.2 Election Algorithm During the block consensus process, we first elect
a block consensus committee. The block consensus is then carried out within this
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committee, and the consensus-reaching block is subsequently synchronized to
other nodes. Using a block consensus committee to achieve block consensus has
the advantage of improving the efficiency of block consensus. A drawback is that
it reduces the number of malicious nodes (denoted as f) that the supervision-
chain system can tolerate. Given that these nodes in the supervision-chain are
diligently chosen as representatives from the sub-layer consortium blockchain,
the incidence of malicious nodes within the supervision-chain is notably low.
Thus, this drawback is acceptable. If the block consensus committee (m nodes)
can be predicted based on information available on the blockchain, adversaries
can disrupt the consensus process by attacking 	2m/3
 nodes in the consensus
committee. Therefore, it is unsafe to always select the top m nodes with the
highest reputation scores to form the block consensus committee. Based on the
reputation system(see Sect. 4.3.1 Reputation System), we use VRF (Verifiable
Random Function) [9,13] to elect the consensus committee, ensuring that only
nodes with reputation score surpassing a certain threshold have the chance to
be selected for the block consensus committee. The block consensus committee
election goes through two steps, as follows:

Step 1 Candidate preparation. Only nodes with reputation score exceeding
a certain threshold are qualified to become candidates. By referring to their
own reputation records stored on the blockchain, a node can easily determine
whether it meets the criteria necessary to become a candidate. If eligible, nodei

generates a competition request cri =< pknodei
, fsknodei

(x), πsknodei
(x) > based

on a random seed x and its private key sknodei
. Here, fsknodei

(x) and πsknodei
(x)

are calculated as follows:

fsknodei
(x) = e(g, g)1/(x+sknodei

) (10)

πsknodei
(x) = g1/(x+sknodei

) (11)

Then it broadcasts competition request cri in the supervision-chain.

Step 2 Leader and Member Determination. Upon receiving a competition
request cri from node nodei, each node nodej ∈ Node performs the necessary
checks: 1) It checks that if node nodei has sufficient reputation to qualify as
a candidate. 2) It validates the correctness of the competition request cr by
verifying the following two equations:

e(gx · pk, πsk(x)) = e(g, g) (12)

e(g, πsk(x)) = fsk(x) (13)

If multiple candidates simultaneously possess valid competition requests, the
node with the highest value of fsknode

(x) is selected as the leader. Next, select
3f nodes with higher values of fsknode

(x) from the candidates who were not
successful in the election to become members of the block consensus committee.
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4.3.3 Block Consensus Process When multiple integrity consensus pro-
cesses are completed and there is enough transaction information to be pack-
aged into a block, the block consensus process starts. A block consensus process
consists of three steps, as shown in Fig. 3.

Fig. 3. Block consensus process

Step 1 Election. A block consensus committee Nodeb is elected (see Sect. 4.3.2
Election Algorithm).

Step 2 Consensus. The leader packs the transactions(several final consensus
information reached during the integrity consensus phase) into a new block.
Specifically, based on the messages received, it allocates the transaction rewards
provided by nodes to these nodes that verify the integrity proof message ipm
honestly. Next, it allocates negative transaction rewards to these representative
nodes of the sub-layer blockchain that do not honestly store cross-chain data
d. Next, it updates the reputations of all nodes in the supervision-chain with
Eq. (9). Specifically, the related rewards and reputations are also packed into the
block. The leader then broadcasts the block in the block consensus committee
Nodeb for validation. Upon receiving the block, the node nodei ∈ Nodeb checks
correctness of current round information. If passed, nodei broadcasts a prepare
message to claim its ready state. Once nodei obtains more than 	2m/3
 prepares
message, it begins to verify the content of the block based on the information
obtained during the integrity consensus phase. If passed, nodei broadcasts the
commit message to other nodes in Nodeb. Finally, if nodei receives more than
	2m/3
 commit messages, it will accept the new block and append it to the
ledger.

Step 3 Synchronization. All nodes in the block consensus committee Nodeb

respond to other nodes in the supervision-chain. A node will accept the new
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block if more than f + 1 same blocks are received, where f is the maximum
number of malicious nodes that the blockchain system can tolerate. At the end,
the leader receives the block reward, while the other nodes in Nodeb receive a
block reward that is less than the leader’s.

5 Security Analysis

In this section, we provide a brief evaluation of the correctness and security of
the proposed scheme.

Theorem 1. If a blockchain honestly stores cross-chain data d, its representa-
tive node can pass the integrity verification during the integrity consensus phase.

Proof. The correctness of the Eq. (8) can be proved as follow:

e(pks, sig
′
r) = e(gsks , hash(root′)skr ) = e(gskr , hash(root)sks) = e(pkr, sigr)

If a node noder have the intact data, it can generate a valid sig′
r. Therefore,

it can pass other nodes’ verification(Step 3 in 4.2.2 Integrity Consensus Process).

Theorem 2. A node nodei ∈ Noded cannot reuse an integrity proof message
from an honest node noder to attack the integrity consensus.

Proof. For a integrity proof message ipm =< pks, pkr, sigr, sig
′
r >, it contains

only signatures sigr and sig′
r but not the original hash tags. It is impossible for

nodei to forge a signature due to the hardness of solving the CDH problem [8].
Moreover, nodei may reuse the existing signatures but change the identity of
noder from pkr to pki in ipm to forge an integrity proof message ipm′ =<
pks, pki, sigr, sig

′
r >. But this behavior can be easily detected by Eq. (8).

Theorem 3. If the cross-chain data, denoted as d, is divided into n blocks, the
probability that the supervision-chain successfully detects a dishonest blockchain
that does not store d accurately is at least Pr = 1 − (n−c

n )t. In this equation,
c represents the number of altered data blocks within d, and t stands for the
number of challenged blocks.

Proof. Based on the sampling algorithm, the challenged blocks on k nodes in
Noded are completely unrepeatable and their union is exactly all the data blocks
of d. For a node noder ∈ Noded, the probability of finding d modified is equal to
the probability of at least challenging one modified data block. In other words,
we can calculate the probability that at least one modified block is challenged
on noder during the integrity consensus phase as follows:

Pr = 1 −
(

n − c

n

)(
n − c − 1

n − 1

) (
n − c − 2

n − 2

)
· · ·

(
n − c − t + 1

n − t + 1

)
.

Given an arbitrary integer i ≤ n, there is n−c−i
n−i � n−c−i−1

n−i−1 . Hence, the
following inequality holds:

Pr > 1 − (
n − c

n
)t.
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Theorem 4. During the election process of the block consensus committee, any
node can verify the correctness of a competition request cr.

Proof. For a competition request cr =< pk, fsk(x), πsk(x) >, the correctness of
it can be verified as follows:

e(gx · pk, πsk(x)) = e(gx · gsk, g1/(x+sk)) = e(g, g)

e(g, πsk(x)) = e(g, g1/(x+sk)) = e(g, g)1/(x+sk) = fsk(x)

If both of the above two equations hold true, then cr is generated by the
node with the public key pk.

6 Performance Evaluation

In this section, we conduct a series of experiments to evaluate the performance
of our scheme.

6.1 Experimental Settings

We implement the integrity verification process based on the Java Pairing-Based
Cryptography Library (JPBC) version 2.0.0, which performs the mathemati-
cal operations underlying pairing-based cryptosystems. In our experiments, we
choose the type A pairing parameters in JPBC library, which the group order is
160 bits and the base field order is 512 bits. And our experiments are conducted
on a PC laptop which runs Windows 10 on an Intel Core i5 CPU at 2.50 GHz and
8 GB DDR4 RAM. To get more precise results, each experiment is conducted
100 trials.

6.2 Experimental Results and Analysis

We focus on the evaluation related to computation cost, communication cost and
detection precision in the integrity verification process. The detailed analysis is
as follows.

Computation Cost. We set the number of nodes required for data integrity
verification from 2 to 22. For the same block size of 8 KB, we set the data size of d
to 4 MB and 8 MB, respectively, and measure the time required for the integrity
verification process. As Fig. 4, the larger the file, the longer it takes to complete
the integrity verification process. This is due to the increase in the number of data
blocks, which leads to a higher number of samples being taken from each node.
Consequently, a larger number of MHT nodes need to be computed during the
verification process, resulting in increased time consumption. Furthermore, we
can also observe from Fig. 4 that as the number of nodes to be verified increases,
the time consumption also increases, which aligns with our expectations and
falls within an acceptable range.
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Communication Cost. We set the total number of nodes in the system from 5
to 25, with 4 nodes required for data integrity verification. For the same block size
of 8 KB, we set the data size of d to 4 MB and 8 MB, respectively, and measure
the communication cost for the integrity verification process. From Fig. 5, it can
be observed that as the data size increases, the communication overhead remains
relatively constant. This is because the increase in data size results in a larger
number of data blocks, but it only leads to an increase in the number of blocks
sampled within the data d of each node. Given that the number of integrity
consensus nodes remains unchanged, the number of integrity proofs that need
to be sent (i.e., the MHT root of BLS signatures) also remains constant. As
a result, the communication overhead during the integrity verification process
remains approximately unchanged. Furthermore, as shown in Fig. 5, for the same
data size, the communication overhead increases with the number of nodes in the
system. This is attributed to the fact that a larger number of nodes necessitates
increased communication to achieve integrity consensus.

Detection Precision. We set the number of data blocks to 45,000 and inves-
tigate the relationship between detection accuracy and the number of sampled
blocks under different corruption rates. As shown in Fig. 6, for each different
data corruption rate, our scheme achieves close to 100% detection accuracy with
only a small number of sampled data blocks.

Fig. 4. The computation
cost in the integrity verifi-
cation process.

Fig. 5. The communica-
tion cost in the integrity
verification process.

Fig. 6. The detection rate
for data corruption.

7 Conclusion

To solve the problem of cross-chain data integrity in the multi-chain architecture,
we propose a double-layer blockchain-based decentralized integrity verification
scheme based on the ideas of ”governing the chain by chain” and ”double-layer
blockchain”. In detail, We construct a supervision-chain by selecting representa-
tive nodes from multiple blockchains. And the supervision-chain is responsible for
integrity verification and recording the corresponding results. To achieve decen-
tralized data integrity verification, we propose an integrity consensus protocol.
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To record the verification results, we propose the block consensus protocol. And
we utilize a block consensus committee to enhance the efficiency of the block con-
sensus process. The security analysis and performance evaluation demonstrate
the security and effectiveness of our proposed scheme.

In the future, we aim to investigate the verification scheme for ensuring the
integrity of cross-chain data processing results in multi-chain architectures.
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Abstract. The continued ferment of fake news on the network threat-
ens the stability and security of society, prompting researchers to focus
on fake news detection. The development of social media has made it
challenging to detect fake news by only using uni-modal information.
Existing studies tend to integrate multi-modal information to pursue
completeness for information mining. How to eliminate modality differ-
ences effectively while capturing structure information well from multi-
modal data remains a challenging issue. To solve this problem, we pro-
pose an Inter-modal Fusion network with Graph Structure Preserving
(IF-GSP) approach for fake news detection. An inter-modal cross-layer
fusion module is designed to bridge the modality differences by inte-
grating features in different layers between modalities. Intra-modal and
cross-modal contrastive losses are designed to enhance the inter-modal
semantic similarity while focusing on modal-specific discriminative rep-
resentation learning. A graph structure preserving module is designed to
make the learned features fully perceive the graph structure information
based on a graph convolutional network (GCN). A multi-modal fusion
module utilizes an attention mechanism to adaptively integrate cross-
modal feature representations. Experiments on two widely used datasets
show that IF-GSP outperforms related multi-modal fake news detection
methods.

Keywords: Contrastive Learning · Fake News Detection · Graph
Convolutional Network · Multi-modal Fusion

1 Introduction

Although social media provides us easier access to information, we are inevitably
caught in the dilemma of widespread dissemination of fake news. The spread of
fake news may lead to innocent readers being deceived, exploited, and even
result in incalculable consequences. It is extremely costly and time-consuming
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to identify fake news manually. Automated fake news detection technology is in
urgent need of attention.

Earlier, fake news detection technology focused on using text messages to
detect fake news. Ma et al. [14] employed recurrent neural networks (RNNs) to
capture useful information for fake news detection. Yu et al. [24] adopted convo-
lutional neural networks (CNNs) to extract features and model high-level interac-
tion among features to realize fake news detection. With the rapid advancement
of social media, researchers begin to leverage image information to identify fake
news. Jin et al. [9] believed that images can be valuable in exposing fake news and
explored visual and statistical features of images for fake news detection. Making
up indistinguishable fake news tends to rely on using both textual and visual
information. Although uni-modal methods can provide discriminative informa-
tion about fake news, they still suffer from the issue of insufficient information.
In contrast, multiple modalities can provide the correlation and complementar-
ity information for fake news detection task more comprehensively. MVAE [11]
introduces a multi-modal variational auto-encoder (VAE) to learn a unified rep-
resentation of visual and textual information to conduct fake news detection.
Moreover, increasing fake news detection methods [5] tend to take multi-modal
data into account at the same time.

How to effectively reduce the inter-modal heterogeneity and preserve the
modal-specific semantic integrity as much as possible is the key to the multi-
modal fake news detection task. Although many multi-modal fake news detec-
tion models have been proposed, how to eliminate modality differences effec-
tively with capturing structure information well has not been well studied. To
address this issue, in this paper, we propose a novel fake news detection app-
roach named inter-modal fusion network with graph structure preserving, which
adequately explores and utilizes information in image and text modalities. To
reduce the modality differences, inter-modal cross-layer fusion (ICF) module per-
forms interaction between modalities and adopts contrastive learning technology
to make cross-modal and intra-modal semantically similar features more com-
pact. The graph structure preserving (GSP) module reconstructs multi-modal
features and integrates structure information to ensure the integrity of informa-
tion mining in order to facilitate the sufficiency of information utilization. The
multi-modal fusion (MMF) module aims to adaptively assign weights to text
and image modalities to obtain discriminative features.

The contributions of this paper are as follows:

• Focusing on jointly inter-modal differences reduction issue and structure infor-
mation capture for fake news detection task, we propose an Inter-modal
Fusion network with Graph Structure Preserving (IF-GSP) for fake news
detection.

• IF-GSP eliminates the differences between modalities via inter-modal cross-
layer fusion module. The graph structure preserving module makes the struc-
ture information of each modality embed the learned features to enhance
the discriminative ability. Finally, the multi-modal feature representations
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are aggregated by adaptively learning optimal weights for image and text
modalities.

• The experimental results on Twitter [2] and Weibo [8] demonstrate that our
model outperforms previous works and achieves state-of-the-art performance
on both datasets.

2 Related Works

2.1 Fake News Detection

Uni-modal Fake News Detection. Based on deep attention, CAR [4] utilizes
RNN to capture textual features to detect fake news. Qian et al. [16] used CNN to
extract textual features at the sentence and word levels and analyzed responses
of users to generate responses to new articles to assist fake news detection.
MVNN [15] utilizes multi-domain visual information by dynamically merging
the information of frequency and pixel domains for fake news detection.

Multi-modal Fake News Detection. Jin et al. [8] proposed att-RNN which
utilizes long short term memory network (LSTM) to learn the joint represen-
tation of social contexts and texts to detect fake news. Wang et al. [21] argued
that event-invariant features are beneficial for fake news detection and pro-
posed a model that focuses on exploring transferable features with removing
non-transferable event-specific features. MCAN [22] stacks multiple co-attention
layers to learn inter-dependencies between textual and visual features to fuse
multi-modal features. Chen et al. [5] proposed CAFE which aligns features
between image and text modalities, and then learns the cross-modal ambigu-
ity by calculating the Kullback-Leibler (KL) divergence between the distribu-
tional divergence of uni-modal features, and aggregates multi-modal features to
conduct multi-modal fake news detection finally. MKEMN [25] focuses on multi-
modal information and utilizes conceptual knowledge as supplement to enhance
fake news detection effect. Zhou et al. [26] designed SAFE which transforms
the image into text via a pre-trained model, and then measures the similarity
between them to detect fake news. MCNN [23] concentrates on the consistency
of multi-modal data and captures the similarity of multi-modal information for
fake news detection.

However, this kind of methods fail to jointly take the issue of inter-modal
differences reduction and structure information exploration into account ade-
quately. In this paper, we fuse multi-modal features by modeling the inter-modal
interaction with the constraint of structure information embedding.

2.2 Graph Neural Networks

With the popularity of graph neural networks (GNNs) [17], more and more
GNN methods have been proposed. For example, the graph convolutional net-
work (GCN) [13] automatically captures node features by aggregating informa-
tion from neighboring nodes. The graph sample and aggregate (GraphSAGE) [6]
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predicts the labels of unlabeled nodes by sampling and aggregating information
from neighboring nodes. The graph attention network (GAT) [19] specifies vary-
ing weights for different nodes in a neighborhood by stacking graph attentional
layers, allowing nodes to take neighbor information into account. In recent years,
GNN has been successfully introduced into fake news detection task. Based on
GNN, Vaibhav et al. [18] modeled the relationship between sentences in the news
to perform fake news detection. Bian et al. [1] leveraged bi-directional GCN to
process propagation and dispersion of rumors.

In this paper, we focus on utilizing the strong representation ability of GCN
to make features learn structure information of text and image modalities which
is regarded as a supplement to the semantic information.

2.3 Contrastive Learning

Contrastive learning technology constraints feature learning process by maximiz-
ing the similarity between anchor and positive samples and minimizing the simi-
larity between anchor and negative samples. Many contrastive learning methods
have achieved significant success. MOCO [7] regards contrastive learning as a
dictionary query task. SimCLR [3] uses contrastive loss to learn representation
after a composition of data augmentation. Khosla et al. [12] designed supervised
contrastive loss with effectively utilizing label information. Recently, contrastive
learning has been used to the fake news detection task. Wang et al. [20] aimed
to achieve more accurate image-text alignment by using contrastive learning
technology for fake news detection.

In this paper, we jointly perform intra-modal and cross-modal contrastive
losses to improve the semantically similarity for each modality and across modal-
ities and disperse semantically dissimilar features within and between modalities,
respectively.

3 Our Approach

In this paper, a news post contains information of text and image modalities.
We utilize N news as the training set, where the image modality is denoted as
I = {I1, . . . , IN}, and the text modality is denoted as T = {T1, . . . , TN}. Y =
{y1, . . . , yN} is the label matrix corresponding to D = {I, T}, where yi ∈ (0, 1).
Specifically, 0 represents real news and 1 represents fake news.

We propose an end-to-end learning approach IF-GSP, which aims to learn
feature representations with strong discriminability for fake news detection. IF-
GSP consists of three main components: (1) to mitigate modality differences, an
inter-modal cross-layer fusion module is designed to integrate cross-modal fea-
tures and perform contrastive learning within and between modalities to enhance
discriminative ability of features; (2) to ensure the integrity of multi-modal infor-
mation utilization, a graph structure preserving module is designed to make
modal-specific features preserve the graph structure information that acts as a
supplement information with respect to discriminative information of features;
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(3) a multi-modal fusion module is designed to learn the optimal weight for each
modality to integrate cross-modal features. The overall architecture of IF-GSP
is shown in Fig. 1.

Fig. 1. The framework structure of IF-GSP.

For texts, we use BERT [10], which is a popular pre-trained language model
built on Transformer that is trained using unsupervised learning on a large cor-
pus, to encode text features T to obtain XT . For images, we utilize ViT-B/32
to encode image features I into XI .

3.1 Inter-modal Cross-Layer Fusion (ICF) Module

In order to deal with modality differences, we specially design an inter-modal
cross-layer fusion module which consists of a two-layer image encoder and a two-
layer text encoder to perform feature interaction. Inter-modal heterogeneity issue
can be alleviated by promoting information exchange between different modali-
ties across layers with interaction. Specifically, we fuse the output of the second
layer of image encoder with the output of the first layer of text encoder to obtain
FI with the cat operation, and take the similar operation to obtain FT . Then, we
adopt fully-connected networks to further extract features to obtain more dis-
criminative feature representations ZI =

{
z1I , . . . , z

N
I

}
and ZT =

{
z1T , . . . , zNT

}
,

respectively.
Although the inter-modal cross-layer fusion part is employed to ease the

modality differences issue, the inter-modal differences problem still exist. For this
reason, we further design cross-modal and intra-modal contrastive learning part
to supervise the learning of features for image and text modalities. Cross-modal
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contrastive loss is implemented to focus on the consistency between modalities,
which minimizes the distance of semantically similar features and maximizes
the distance of those that are dissimilar across modalities. Intra-modal con-
trastive loss is designed to consider intra-modal similarity in each modality, so
that the within-calss features have larger similarity, while the different-calss fea-
tures have less similarity. Utilizing contrastive loss from both intra-modal and
inter-modal perspectives can improve the discriminative ability of feature rep-
resentations, and explore the consistency of cross-modal information, thereby
helping to reduce the semantic gap between modalities.

The cross-modal contrastive loss is defined as follows:

LCCL =
∑

k∈K

−1
|P (k)|

∑

p∈P (k)

log
exp

(
zkC · zpC/τ

)

∑

a∈A(k)

exp
(
zkC · zaC/τ

) (1)

where k ∈ K ≡ {1, . . . , 2N} denotes the index of a feature representation within
ZC = {ZI , ZT } =

{
z1C , . . . , z

(2N)
C

}
, A(k) ≡ K/{k}. S = {s1, . . . , s2N} is the

label of ZC , and P (k) ≡ {p ∈ A(k) : sp = sk} is the set of indices of all positive
feature representations for the anchor zkC .

Taking image modality as an example, the intra-modal contrastive loss is
defined as follows.

LICLI
=

∑

j∈J

−1
|P (j)|

∑

p∈P (j)

log
exp

(
zjI · zpI /τ

)

∑

a∈A(j)

exp
(
zjI · zaI /τ

) (2)

where j ∈ J ≡ {1, . . . , N} denotes the index of a feature representation within
ZI =

{
z1I , . . . , z

N
I

}
, A(j) ≡ J/{j}. Y = {y1, . . . , yN} is the label of ZI , and

P (j) ≡ {p ∈ A(j) : yp = yj} is the set of indices of all positive feature repre-
sentations for the anchor zjI . The intra-modal contrastive loss of text modality
LICLT

can be obtained similarly.

3.2 Graph Structure Preserving (GSP) Module

To preserve as much complete semantic information as possible, we utilize GNN
with shared parameters to perform feature learning for each modality with con-
sidering multi-modal correlation. To achieve unified dimension of features across
modalities, we firstly map XI and XT to a common latent space via auto-
encoders. The corresponding output of the image and text encoder QI and QT

will be utilized to perform further discriminative feature learning. We constrain
the auto-encoders by reconstruction loss, which encourages the auto-encoder
to preserve the semantic information of the feature vector as much as possible
when performing latent space projection. The reconstruction loss based on mean
squared error (MSE) loss is defined as follows:

LR = MSE(XI , RI) + MSE(XT , RT ) (3)
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where RI and RT are the outputs of corresponding decoders.
Taking image modality as an example, given a graph GI(νI , εI), it denotes

the graph of size N with nodes Qi
I ∈ νI and edges (Qi

I , Q
j
I) ∈ εI . Based on label

information, we define the adjacency matrix as follows:

Gij
I =

{
0, yi �= yj
1, yi = yj

(4)

The graph convolution process for each layer is defined as follows:

O(l) = ReLu
(
D−1/2GID

−1/2O(l−1)W(l)

)
(5)

where Dii =
∑

j Gij
I and W(l) is the convolution filter of the lth layer. O(l−1) and

O(l) indicate the corresponding input and output of GCN, respectively. QI is the
input of the first layer of GCN, and the output of the last layer is formulated as
HI . For text modality, we obtain HT .

We design the graph structure preserving loss to help GCN guide the feature
to remember structure information which can be viewed as a supplement to the
semantic information. By compelling ZI and HI (ZT and HT ) closer together,
the graph structure information can be preserved for the level of ZI and ZT ,
which is helpful to represent and utilize features more comprehensively.

The graph structure preserving loss is defined as follows:

LG = MSE(ZI ,HI) + MSE(ZT ,HT ) (6)

3.3 Multi-modal Fusion (MMF) Module

Considering different modalities play different roles in the decision-making pro-
cess, we design attention-based fusion network to adaptively fuse ZI and ZT . To
be more detailed, attention-based fusion network is designed to utilize an atten-
tion function FC

(·; θC)
, i.e., a fully-connected layer activated by the Sigmoid

function and parameterized by θC , to obtain the attention coefficients of ZI and
ZT with Eq. 7, which are denoted as AI and AT .

{
AI = FC

(
ZI ; θC

)

AT = FC
(
ZT ; θC

) (7)

After that, we use the softmax function to further normalize these coefficients.
And then, we obtain the fused cross-modal representation, which is denoted as
RC =

{
r1C , . . . , rNC

}
.

RC = AIZI + ATZT (8)

We design a label classifier which consists of a fully-connected network, to
detect fake news and design cross-entropy based classification loss to improve
feature discrimination. The classification loss is defined as follows:

LC = − 1
N

N∑

i=1

(
yi logP

(
riC

)
+ (1 − yi) log

(
1 − P

(
riC

)))
(9)
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where P
(
riC

)
is the predicted label probability of riC .

According to the Eqs. (1), (2), (3), (6) and (9), the total loss is defined as
follows:

LTOTAL = LCCL + LICLI
+ LICLT

+ LG + LC + LR (10)

4 Experiment

4.1 Datasets

We use two widely used datasets which are described in detail as follows. For
the Twitter dataset which was released for MediaEval Verifying Multimedia Use
task, we follow [5] to process the Twitter dataset. For the Weibo dataset which
has been widely used in prior multimodal fake news detection works, the real
samples were collected from Xinhua News Agency, an authoritative news source
of China. The fake samples were gathered by crawling the official fake news
debunking system of Weibo over a time span from May 2012 to January 2016.
The details of both datasets are presented in Table 1.

Table 1. The detailed information of dataset.

Statistics Twitter Weibo

Fake news in training set 5,007 3,749
Real news in training set 6,840 3,783
News in test set 1,406 1,996

4.2 Baseline

To evaluate the effectiveness of IF-GSP, we compare the performance of IF-GSP
with following baselines, i.e., att-RNN [8], EANN [21], MVAE [11], MKEMN
[25], SAFE [26], MVNN [23] and CAFE [5]. To perform a fair comparison, for
att-RNN, we remove social information, and for EANN, we remove the event
discriminator component.

4.3 Implementation Details

The evaluation metrics include Accuracy (ACC), Precision, Recall, and F1-score
(F1). We use the batch size of 128 and train the model using SGD with an initial
learning rate of 0.001 for 100 epochs. Following [12], we set the temperature
factor τ in Eqs. (1) and (2) as 0.07. All codes are implemented with PyTorch
and run on a computer with NVIDIA GeForce GTX 1080Ti GPU card. Our
IF-GSP requires training time about 3 s per epoch on Twitter, and around 2 s
per epoch on Weibo.
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Table 2. The result comparison between IF-GSP and other baseline methods.

Method ACC Fake news Real News
P R F1 P R F1

Twitter att-RNN 0.664 0.749 0.615 0.676 0.589 0.728 0.651
EANN 0.648 0.810 0.498 0.617 0.584 0.759 0.660
MVAE 0.745 0.801 0.719 0.758 0.689 0.777 0.730
MKEMN 0.715 0.814 0.756 0.708 0.634 0.774 0.660
SAFE 0.762 0.831 0.724 0.774 0.695 0.811 0.748
MCNN 0.784 0.778 0.781 0.779 0.790 0.787 0.788
CAFE 0.806 0.807 0.799 0.803 0.805 0.813 0.809
IF-GSP 0.899 0.998 0.803 0.890 0.830 0.999 0.906

Weibo att-RNN 0.772 0.854 0.656 0.742 0.720 0.889 0.795
EANN 0.795 0.806 0.795 0.800 0.752 0.793 0.804
MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837
MKEMN 0.814 0.823 0.799 0.812 0.723 0.819 0.798
SAFE 0.816 0.818 0.815 0.817 0.816 0.818 0.817
MCNN 0.823 0.858 0.801 0.828 0.787 0.848 0.816
CAFE 0.840 0.855 0.830 0.842 0.825 0.851 0.837
IF-GSP 0.905 0.895 0.929 0.912 0.918 0.879 0.898

4.4 Results

Table 2 presents the experimental results of IF-GSP compared to the baselines.
The best values are marked in bold. In terms of ACC and F1, IF-GSP outper-
forms all compared methods on each dataset. Specifically, IF-GSP achieves the
highest accuracy of 0.899 and 0.905 on Twitter and Weibo, respectively. And
for fake news, it achieves the highest F1 of 0.890 and 0.912 on Twitter and
Weibo, respectively. IF-GSP outperforms compared state-of-the-art methods on
Twitter and Weibo by a large margin. It is because we can fully utilize the
complementarity and diversity among text and image modalities and design an
interactive manner to bridge the inter-modal semantic gap. ICF module performs
feature interaction by integrating different-layer features in different modalities
and uses contrastive learning to enhance the similarity of information within
modality and the correlation between modalities. Moreover, we believe the graph
structure information can provide another perspective as supplement to explore
information. The GSP module utilizes GCN to make features learn the struc-
ture information, which is conducive to ensure semantic integrity of multi-modal
feature.
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4.5 Ablation Experiments

To verify the effectiveness of important components of IF-GSP, we perform an
ablation study and the results are summarized in Table 3. We divide IF-GSP
into four variants to demonstrate the importance of each module.
• IF-GSP-1: The version of IF-GSP that removes the inter-layer cross-layer

fusion part in the ICF module.
• IF-GSP-2: The version of IF-GSP that removes cross-modal and intra-modal

contrastive learning part in the ICF module.
• IF-GSP-3: The version of IF-GSP that removes the GSP module.
• IF-GSP-4: The version of IF-GSP that replaces the MMF module by using

direct fusion manner with the cat operation.

Table 3. The result of ablation experiments.

Method ACC Fake news Real News
P R F1 P R F1

Twitter IF-GSP-1 0.858 0.867 0.852 0.859 0.849 0.864 0.856
IF-GSP-2 0.895 1.00 0.794 0.885 0.823 1.00 0.903
IF-GSP-3 0.890 0.981 0.799 0.881 0.825 0.984 0.897
IF-GSP-4 0.888 0.983 0.794 0.878 0.821 0.985 0.896
IF-GSP 0.899 0.998 0.803 0.890 0.830 0.999 0.906

Weibo IF-GSP-1 0.883 0.890 0.887 0.888 0.875 0.879 0.877
IF-GSP-2 0.850 0.841 0.882 0.861 0.862 0.814 0.837
IF-GSP-3 0.897 0.894 0.911 0.903 0.900 0.880 0.890
IF-GSP-4 0.895 0.919 0.878 0.898 0.871 0.914 0.892
IF-GSP 0.905 0.895 0.929 0.912 0.918 0.879 0.898

From the results in Table 3 where the best values of evaluation metrics
are marked in bold, we can obtain the following conclusions: (1) inter-modal
cross-layer fusion module performs feature interaction between modalities by
integrating different-layer features between text and image modalities to effec-
tively reduce modality differences. (2) Cross-modal contrastive loss and intra-
modal contrastive loss are beneficial to enhance discrimination ability of features.
Intra-modal contrastive learning emphasizes the similarity within modality, while
cross-modal contrastive learning models the correlation between image and text
modalities, increasing the similarity of multi-modal within-class features and
distinguishing dissimilar features from different modalities. (3) The graph struc-
ture preserving module leverages the representation learning capability of the
graph network and makes neighbor information as an auxiliary information with
respect to semantic information, which can fully explore and utilize the use-
ful information in the multiple modalities. (4) The multi-modal fusion module
takes the importance of different modalities into account with leveraging atten-
tion mechanism to assign optimal weights to each modality.
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5 Conclusion

In this paper, we have proposed a novel fake news detection approach named
inter-modal fusion network with graph structure preserving. IF-GSP reduces
modality differences by performing inter-modal cross-layer fusion. With the
graph structure information preserving being taken into consideration, it per-
forms feature reconstruction and graph learning, such that the graph structure
information is embedded to make features have strong discriminative ability. The
multi-modal fusion module provides an effective scheme for feature fusion, which
makes the complementarity between image and text modalities fully explored.
Experimental studies on two widely used datasets, i.e., Twitter and Weibo, show
that IF-GSP is effective and outperforms the state-of-the-art models. Ablation
experiments also show that each module of IF-GSP has its own significance.
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Abstract. Finding reliable and robust correspondences across images
is a fundamental and crucial step for many computer vision tasks, such
as 3D-reconstruction and virtual reality. However, previous studies still
struggle in challenging cases, including large view changes, repetitive
pattern and textureless regions, due to the neglect of geometric con-
straint in the process of feature encoding. Accordingly, we propose a
novel GPMatcher, which is designed to introduce geometric constraints
and guidance in the feature encoding process. To achieve this goal, we
compute camera poses with the corresponding features in each attention
layer and adopt a geometry-aware pooling to reduce the redundant infor-
mation in the next layer. By these means, an iterative geometry-aware
pooing and pose estimation pipeline is constructed, which avoids the
updating of redundant features and reduces the impact of noise. Experi-
ments conducted on a range of evaluation benchmarks demonstrate that
our method improves the matching accuracy and achieves the state-of-
the-art performance.

Keywords: Image matching · Pose estimation · Transformer

1 Introduction

Accurate and robost correspondences for local features between image pairs are
essential and crucial for many geometric computer vision tasks, including struc-
ture from motion (SfM) [1,2], simultaneous localization and mapping (SLAM)
[3,4], and visual localization [5].

Traditional methods usually involve a classical pipeline, where correspon-
dences are established by matching detected and described keypoints, and then
outlier estimators, e.g. RANSAC [6,7], are employed to find the final matches.
However, these methods tend to struggle in challenging cases such as large view-
point variations, changing appearances and textureless regions, due to the lack
of enough repetitive keypoints and context information.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, LNCS 14452, pp. 292–302, 2024.
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To mitigate this problem, the advanced matchers such as SuperGlue [8] pro-
pose to use an attention-based graph neural network, which utilizes global infor-
mation from all keypoints, to implement contextual descriptor augmentation.
Yet, their excellent matching performance lies on the quadratic time complexity
of the attention computation, which reduces the efficiency in real applications.
While some following works introduce more efficient variations [9,10], they suffer
from less accurate and robust performance.

Some other studies, including LoFTR [11], ASpanFormer [12], etc., focus on
the detector-free image matching pipeline with transformers, as the performance
of previous matching methods extremely depend on the stage of keypoint detec-
tion and description, which struggles in challenging cases. These methods have
obtained remarkable performance, especially in the textureless regions. However,
the operations of flatten in transformer destroy the inherent 2D-structure of the
images. The consistence of corresponding features and geometric constraints are
not considered, causing the failure in cases with large-scale viewpoint changes, as
they sink into local similarities and fail to find the most crucial correspondences.

In this paper, we introduce a geometry-aware matching framework based on
transformers, which aims to find the dominant features which are able to give
accurate matches and exclude the uninformative noise based on the geometric
constraints. Inspired by the previous method LoFTR [11], we use self and cross
attention to collect global information and update the feature maps. Based on
the observation that the attention scores in each layer represent the magnitude of
correlation with other features, we can easily distinguish features which include
key messages. The central challenge of our framework is to combine the geometric
constraints with the attention-based module, while we solve this problem by
computing the pose layer by layer, which aims to guide the pool operation.

We summarize our contributions in three aspects: 1) We propose a frame-
work that combines the pose estimation and feature augmentation for feature
matching, which enable geometric consistence in the process of feature encoding.
2) A novel geometry-aware pooling operation is proposed, which avoid unnec-
essary feature updation and reduce the noise interference. 3) State-of-the-arts
results on extensive set of benchmarks are achieved. Our method outperforms
the current matching pipeline in the benchmark of homography estimation, out-
door and indoor relative pose estimation. Evaluation on the challenging visual
localization also prove the competitiveness of our method.

2 Related Works

Local Feature Matching. The traditional matching pipeline usually involves
detecting [13–16], describing and matching a set of keypoints. The heuristic match-
ing methods, such as NN matching and its variants [17,18], are widely used to
find the correspondences for a long time. Despite their fast performance, these
approaches usually suffer from large appearance changes. To address this issue,
SuperGlue [8] introduces transformers with self and cross attention to utilize con-
textual information and achieve impressive performance. However, the quadratic
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complexity of attention operation reduces the efficiency. Some variants [9,10]
attempt to improve the efficiency by optimizing the structure, but they sacrifice
the accuracy to a certain extent. Another shortage of these detector-based meth-
ods is that the performance hardly depends on the features of the detector, which
cannot guarantee robust and reliable performance in challenging cases.

To capture richer contexts in extreme conditions, such as low texture areas
and repetitive patterns, the detector-free methods [11,12,19,20] reduce the
detection stage and conduct the matching task end-to-end. Due to the strong
ability of feature encoding and interaction with transformers, this series of meth-
ods hardly outperform the detector-based methods above. However, due to the
lack of geometric constraints, they still fail to handle the cases with large view-
point changes.

Efficient Attention. Numerous approaches have been proposed to address the
quadratic time complexity of the attention mechanism [21]. These methods aim
to reduce the complexity by incorporating various techniques such as learning
a linear projection function [22,23], employing a token selection classifier [24,
25], or utilizing shared attention [26], among others. While these methods are
usually designed for special downstream tasks, transferring them into the feature
correspondence task directly is not feasible. In contrast, our approach is proposed
to combine the geometric constrains and the efficient attention, and adjusts the
pool operation adaptively.

3 The Proposed Method

The pipeline of our network structure is shown in Fig. 1. Our framework processes
in a coarse-to-fine manner. Taking an image pair IA, IB as input, the network
first uses a CNN backbone to extract initial coarse features F 0

A, F 0
B ∈ R

H
8 ×W

8 and
fine feature maps F̂ 0

A, F̂ 0
B ∈ R

H
2 ×W

2 . The coarse maps are passed through our
geometry-aware attention model to establish coarse matches, while the fine fea-
tures are used to refine the final result.

3.1 Feature Encoder

CNN is widely used for local features extraction due to the inductive bias of
translation equivariance [13–16]. We use a convolutional neural network as the
feature encoder, which extract both coarse features and fine features for each
image separately. Specifically, we extract 1/8 of the original image dimension
as coarse features and 1/2 of the original image dimension as fine features [11].
Compared to using the raw images directly, this design reduces the number of
features to be processed.

3.2 Geometry-Aware Attention Module

Positional Encoding. As the previous methods, we first use a multi-layer per-
ception (MLP) denoted as fenc, where the features become position-dependent.
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Fig. 1. Pipeline of our method. As features become more discriminative, more
correct matches can be found, leading to more precise poses. The pose is utilized to
provide geometric guidance to find more matches and discard redundant keypoints
with geometry-aware pooling.

Specifically, for each feature fi in the feature map, the output f
′
i = fenc(fi,pi),

where pi denotes the position coordinate of fi. For simplicity, we denote the
position-encoded coarse feature maps as F 0

A, F 0
B backwards, corresponding to

image pairs IA, IB respectively.

Feature Augmentation. Following the previous works [8,11], the feature maps
are fed into the self and cross attention module for feature augmentation. In the
Vision Transformer, attention is adopted in the set of query (denoted as Q),
key (denoted as K), and value (denoted as V ). For the feature correspondence
task, taken the flatten feature maps F i

A, F i
B as input, the output Gi

A, Gi
B can be

calculated as:

Gi
A = FFN(F i

A, softmax(F i
AF i

A

T
)F i

A, softmax(F i
AF i

B

T
)F i

B) (1)

Gi
B = FFN(F i

B , softmax(F i
BF i

B

T
)F i

B , softmax(F i
BF i

A

T
)F i

A) (2)

where FFN denotes a feed forward network, which involves concatenation, layer
normalization and linear layers.

Geometry-Aware Pooling. Based the observation that rebundant and unin-
formative features are ubiquitous in the attention layers, which not only increase
computational costs, but also provide noise and interference information. More-
over, local similarities caused by repetitive patterns can easily lead to the incon-
sistence of the correspondences. To solve these problems, we use geometry-
aware pooling, which delete the features with less potential of correspondences
and avoid numerous invalid calculation. Different from the matching pipeline
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in LoFTR [11], the pose is estimated in every attention-based layer, which is
used for screening out feature correspondences conforming to the geometric con-
straints.

Specifically, the score matrix Si is computed through the augmented feature
maps Gi

A, Gi
B , where Si(x, y) = 1

θ <Gi
A(x), G

i
B(y)>. Then a dual-softmax oper-

ator is used to obtain the matching scores Mi. The matches whose matching
score is above the threshold θm is used to estimate the fundamental matrix Pi

in the i-th layer.
Once the fundamental matrix Pi is calculated, the operation of pooling can

be conducted under the guidance of geometric constraints. The goal of this
design is to extract features with crucial information, which give an accurate
and robust pose. Therefore, we choose features in two aspects: 1) The matching
features whose matching score is above the threshold θm, denoted as Hi

A,Hi
B

respectively. 2) We use the self and cross attention score matrix (denoted as
Ri

S , Ri
C ∈ Rm×n×h) in the i-th layer, to screen out the features with more com-

plex relation. We choose the features whose average self and cross score surpass
the threshold of θs and θc respectively, denoted as J i

A, J i
B , as well as their corre-

sponding features in the other image under the guidance of fundamental matrix
Pi, denoted as Ki

A,Ki
B .

Finally, we get the sets of features after the operation of geometry-aware
pooling, as

F i+1
A = {Hi

A ∪ J i
A ∪ Ki

A} ⊆ Gi
A (3)

F i+1
B = {Hi

B ∪ J i
B ∪ Ki

B} ⊆ Gi
B (4)

.

3.3 Matching Determination

We use the same scheme as LoFTR [11] to obtain final correspondences, includ-
ing a coarse matching stage and a refinement stage. Similar to the process of
matching score calculation, the coarse matching stage conducts a dual-softmax
operation on the score matrix S, where S(x, y) = 1

θ<GA(x), GB(y)> (θ is a tem-
perature parameter). Once the coarse matches Mc are generated, they would be
fed into the correlation-based refinement block to get the final matching results,
which is the same as LoFTR [11].

3.4 Loss Formulation

Our loss is composed of three aspects, including coarse-level loss Lc, fine-level
loss Lf , as well as the pose-consistency loss Lp.

Following LoFTR [11], The coarse-level loss Lc is the cross entropy loss of
the dual-softmax score matrix P

Lc = − 1
|Mgt|

∑

(i,j∈Mgt)

log(P (i, j)). (5)
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where Mgt is the ground truth matches.
The fine-level loss Lf is supervised by the L2-distance between the final

matches Mf (i, j) and ground truth reprojection coordinates, which is formulated
in detail in LoFTR [11].

In each layer, we calculate the pose-consistency loss Li
p, as

Li
p = α||P i − Pgt|| + 1

Ngt

∑

k

fsampson(P i, agt
k , bgt

k ). (6)

where P i, Pgt are predict fundamental matrix in the i-th layer and the ground
truth fundamental matrix, (agt

k , bgt
k ) is a ground truth match and Ngt is the total

numbers of matching pairs, fsampson is the Sampson distance which is formulated
in detail in [26].

The final loss is calculated as

L = Lc + Lf +
1
T

T∑

i

Li
p (7)

where T is the number of attention-based layers.

4 Experiments

In this section, we demonstrated the performance of our method on several don-
wnstream tasks, including homography estimation, pose estimation and visual
localization.

4.1 Homography Estimation

Dataset. We evaluate our method on the HPatchses dataset [28], which is widely
used for the evaluation of local descriptors and contains totally 108 sequences
under large illumination and viewpoint changes.

Baselines. We compare our methods with current state-of-the-art methods:
1) detector-based methods, including D2-Net [16], R2D2 [13], Patch2Pix [29],
SuperGlue [8] and SGMNet [9] which are on top of SuperPoints [14]. 2) detector-
free methods, including DRC-Net [30], LoFTR [11], QuadTree [19] and Aspan-
former [12].

Evaluation Metrics. Following [11], We compute the corner error between the
images warped with estimated homograpy matrix and the ground truth homo-
grapy matrix. Then we set the threshold of 3/5/10 to identify the correctness,
and the area under the cumulative curve (AUC) of the corner error indicates the
matching accuracy.

Result. The results of homography estimation is shown in Table 1. The AUC of
the corner error is demonstrated, and the best performance is in bold. As can be
seen, the proposed method outperformed the existing stat-of-the-art methods on
the threshold of 3/5 px, and achieves competitive performance on the threshold
of 10 px.
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Table 1. Results of homography estimation on the HPathes dataset

Category Method Homography est. AUC(%)
@3 px @5 px @10 px

Detector-based D2-Net [16]+NN 23.2 35.9 53.6
R2D2 [13]+NN 50.6 63.9 76.8
Patch2Pix [29] 59.2 69.6 80.9
SP [14]+SuperGlue [8] 53.9 67.4 81.4
SP [14]+SGMNet [9] 51.8 65.4 80.3

Detector-free DRC-Net [30] 50.6 56.1 68.4
LoFTR [11] 65.9 75.6 84.6
QuadTree [19] 64.8 76.7 84.4
Aspanformer [12] 66.1 77.1 85.3
GPMatcher (ours) 66.8 77.3 85.1

4.2 Relative Pose Estimation

Dataset. We evaluate pose estimation on indoor dataset ScanNet [31] and out-
door dataset Megadepth [32] respectively.

The ScanNet dataset [31]is an indoor 2D-3D dataset that collects 1513 indoor
scenes, including rgb, depth, and three-dimensional point cloud data. We choose
1500 RGB image pairs for testing, which contains large viewpoint changes, exten-
sive repetitive patterns, and abundant textureless regions.

The Megdepth dataset [31] contains 1M Internet images of 196 outdoor
scenes, each of which has been reconstructed by COLMAP. Similarly, we choose
1500 test pairs for the following evaluation.

Evaluation Metrics. Following [11], We first compute the pose error, which
is defined as the maximum of angular error in rotation and translation between
the predict and ground truth. Then we calculate the AUC of the above error up
to the threshold of 5◦/10◦/20◦, which indicates the accuracy of pose estimation.

Result. The results of indoor and outdoor relative pose estimation is shown in
Tables 2 and 3, respectively. The AUC of the pose error is demonstrated, and
the best performance is in bold. It is demonstrated that our method achieves
overall best performance on both indoor and outdoor pose estimation among all
the relative methods.

4.3 Visual Localization

Dataset. We choose the Aachen Day-Night v1.1 datasets [33] for our visual
localization evaluation, which consists of a scene model built upon 6697 images
with 824 day-time images and 197 night-time images as queries.
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Table 2. Evaluation on ScanNet dataset [31] for indoor pose estimation

Method Indoor pose est. AUC(%)
@5◦ @10◦ @20◦

D2-Net [16] + NN 5.2 14.5 27.9
SP [14] + SuperGlue [8] 16.2 33.8 51.8
SP [14] + SGMNet [9] 15.4 32.1 48.3
DRC-Net [30] 7.7 17.9 30.5
LoFTR [11] 16.9 33.6 50.6
QuadTree [19] 24.9 44.7 61.8
Aspanformer [12] 25.6 46.0 63.3
GPMatcher (ours) 26.1 47.1 63.7

Table 3. Evaluation on Megadepth [32] dataset for outdoor pose estimation

Method Outdoor pose est. AUC (%)
@5◦ @10◦ @20◦

SP [14] + SuperGlue [8] 42.2 61.2 75.9
SP [14] + SGMNet [9] 40.5 59.0 73.6
DRC-Net 27.0 42.9 58.3
LoFTR [11] 52.8 69.2 81.2
QuadTree [19] 54.6 70.5 82.2
Aspanformer [12] 55.3 71.5 83.1
GPMatcher (ours) 55.6 71.9 83.3

Table 4. Evaluation on Aachen Day-Night v1.1 datasets [33] for outdoor visual local-
iztion

Method Day Night
(0.25m, 2◦)/(0.5m, 5◦)/(1m, 10◦)

SP [14]+SuperGlue [8] 89.8/96.1/99.4 77.0/90.6/100.0
LoFTR [11] 88.7/95.6/99.0 78.5/90.6/99.0
Aspanformer [12] 89.4/95.6/99.0 77.5/91.6/99.5
GPMatcher (ours) 89.6/96.2/98.9 79.0/91.3/99.5

Evaluation Metrics. Following the Long-Term Visual Localization Benchmark
[34], we report the accuracy of localization with matching pairs generated by
HLoc.

Result. The evaluation of outdoor visual localization on Aachen Day-Night v1.1
datasets [33] is shown in Table 4. It is demonstrated that our method achieves
best performance on some cases and competitive performance on the other cases.
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4.4 Ablation Study

To validate the effectiveness of different design components of our method, we
conduct ablation experiments on the Megadepth dataset [32]. The experiment is
conducted as Sect. 4.2 above. Specifically, we compare three designs of pooling
structure: 1) None pooling operation: A design which hold all of the features.
2) Semi-pooling: Pooling according to the attention scores, which discard 1/4
features in each layer. 3) Geometry-aware pooling: Full design of our proposed
method.

Table 5. Ablation Study on Megadepth dataset [32]

Method Outdoor pose est. AUC(%)
@5◦ @10◦ @20◦

None pooling 52.4 69.2 81.1
Semi-pooling 53.5 69.3 81.6
Full design 55.6 71.9 83.3

As in presented Table 5, our method improve overall performance by a con-
siderable margin, validating the essentiality of our network designs.

5 Conclusion

In this paper, we have proposed a novel geometric-aware feature matching frame-
work GPMatcher based on transformers, which is capable of combining the geo-
metric consistence into the attention-based module. State-of-the-art results val-
idates the effectiveness of our method. We believe that this paper would poten-
tially provide new insights on learning feature matching. With more engineering
optimizations, we are looking forward to wider application of our method in real
use.
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Abstract. Making human-like decisions for autonomous driving in
interactive scenarios is crucial and difficult, requiring the self-driving
vehicle to reason about the reactions of interactive vehicles to its behav-
ior. To handle this challenge, we provide an integrated prediction and
planning (PnP) decision-making approach. A reactive trajectory predic-
tion model is developed to predict the future states of other actors in
order to account for the interactive nature of the behaviors. Then, n-
step temporal-difference search is used to make a tactical decision and
plan the tracking trajectory for the self-driving vehicle by combining the
value estimation network with the reactive prediction model. The pro-
posed PnP method is evaluated using the CARLA simulator, and the
results demonstrate that PnP obtains superior performance compared
to popular model-free and model-based reinforcement learning baselines.

Keywords: Lane change · Decision-making · Reinforcement learning

1 Introduction

Recently, self-driving vehicles (SDVs) have received a great deal of attention
from academic and industry communities. With the advancement of Artificial
Intelligence technology, data-driven algorithms are being applied progressively to
automatic driving decision-making systems, demonstrating enormous potential
[5,9,18]. Due to the strong interactivity and uncertainty in complex interaction
scenarios, SDVs still face numerous challenges to make human-like behaviors
such as lane changes in dense traffic [16], unprotected left turn at intersections
[11]. Generally, humans are naturally able to address those social interaction
scenarios, since we own an inherent ability to anticipate how other drivers will
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Fig. 1. The traditional and interactive pipeline in autonomous driving.

react to our actions. This is one of the primary reasons why SDVs can not handle
complex interaction scenarios efficiently.

As shown in Fig. 1, in the conventional pipeline, the prediction and plan-
ning modules are tackled sequentially, where planning is the downstream task of
prediction. After obtaining the predicted trajectories of other vehicles, the SDV
selects a tactical decision behavior (behavior planning) and plans the optimal
trajectory (motion planning) for the control module to execute. In other words,
the planning results have no effect on the trajectory predictions of other system
participants, leading to the passive role of the SDV in the system [10].

Recent research identifies similar challenges in the conventional pipeline
and attempts to incorporate how the ego vehicle influences interactive vehi-
cles by bridging prediction and planning [8]. Model-based DRL algorithms com-
monly construct a dynamic model that the agent uses to make decisions. [20]
introduces an uncertainty-aware model-based reinforcement learning for end-to-
end autonomous driving, resulting in improved learning efficiency and perfor-
mance. In [17], dynamic horizon value estimation is designed based on the world
model from Dreamer [6] for lane changes on the highway. Inspired by AlphaGo
[14], the integration of tree search with learning techniques can also be effec-
tively employed in autonomous driving systems. [2] applies the n-step temporal-
difference (TD) search [15] for robot navigation, where the navigation planning
process involves the utilization of a non-reactive prediction model. [19] proposes
an environment model based on self-attention and develops model-based RL
algorithms upon the model. In other words, the interaction information only
contains the future states of the ego vehicle and other participants, while failing
to account for how the behavior of the ego affects interactive vehicles.

Motivated by this, we propose PnP, a novel integrated prediction and plan-
ning learning method for interactive scenarios that demonstrates the reasoning
ability of interactive vehicles’ responses to the tactical behavior of the ego vehi-
cle. The contributions of our research can be summarized as follows:
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• We develop a reactive trajectory prediction model based on Long Short-Term
Memory (LSTM) and Graph Convolution Network (GCN), which incorpo-
rates deduction capacity to predict how interactive vehicles react to the
behavior of the ego vehicle.

• We introduce PnP, an integrated prediction and planning learning method
for interactive lane changes, which enables the ego vehicle to be an active
actor with interactive reasoning ability by integrating the reactive trajectory
prediction with the TD search.

• To enhance the interactivity of the vehicles, we construct a challenging lane-
change scenario in dense traffic using the high-fidelity simulator CARLA,
and experimental results prove that PnP is superior to popular model-free
and model-based reinforcement learning baselines.

2 Background

2.1 Markov Decision Process (MDP)

The decision-making process in dense traffic can be modeled as an MDP. Gen-
erally, MDP is described as a 5-tuple (S,A, T,R, γ), where S denotes the state
space and A denotes the action space. T (st+1|st, at) is the state transition prob-
ability that the system transitions to the next state st+1 after taking action
at ∈ A at state st ∈ S, and rt = R(st, at) yields the reward for executing action
at at state st. γ ∈ (0, 1) is the discount factor. For the autonomous driving
task, it is difficult to represent the probability distributions T and P explicitly.
The policy π(a|s) maps states to actions. At each time step t, the agent selects
a feasible action at at current state st, which causes the system transitions to
next state st+1 with probability T (st+1|st, at). Meanwhile, the agent receives a
numerical reward rt = R(st, at). The goal of the agent is to learn an optimal
policy by maximizing the cumulative reward:

π∗ = argmax
π

E
[ ∞∑

i=0

γtrt

]
(1)

2.2 TD Search

TD search incorporates the value function approximation and bootstrapping into
simulation-based tree search, which is much more efficient than Monte-Carlo Tree
Search (MCTS) with an equal number of simulations. Using the current state
of the system as the root node, the agent simulates forward search based on
the transition model and reward model. And the value function is estimated
by sampling data from the current policy. After every n-step of simulation, the
value function can be updated employing TD learning:

V (st) ← V (st) + α

(
n−1∑

m=0

γmrt+m + γnV (st+n) − V (st)

)

(2)

where V (st) denotes the value estimation for st, and α is the learning rate.
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2.3 Trajectory Prediction

As a model-based learning method, the environment model is required for
TD search. Note that the reward function can be designed explicitly, and the
unknown transition model should be reconstructed. Different from the world
model in [17], we utilize the reactive trajectory prediction to traverse the tree
to the next state for interactive vehicles over multiple time steps. The trajec-
tory prediction problem can be formulated as utilizing the past states of traffic
participants to estimate their future states, i.e., to obtain the future waypoints
of N vehicles. Let Xego

t = {x0
t } represents the state of the ego vehicle at time

t and Xnei
t = {x1

t , x
2
t , ..., x

N
t } represents other vehicles’, where xi

t ∈ R
d is the d

dimensional state of the i-th actor. Given the decision action of the ego vehicle
at time t, the future path Xego

t+1:t+T−1 can be obtained according to the tra-
jectory planning module. Using past states sequence Xnei

t−τ :t, prediction module
should forecast the future waypoints X̂nei

t+1:t+T , where T represents the prediction
length.

Fig. 2. Schematic diagram of the proposed method PnP.

3 Method

To address interactive lane-change scenarios, we propose the PnP framework
illustrated in Fig. 2. It consists of reactive trajectory prediction and n-step TD
search. With the tactical behavior query, the reactive trajectory prediction and
the trajectory planner of the ego vehicle generate the next states over multiple
time steps for social actors and the ego vehicle, respectively. With the future
states and the designed reward function, the value estimation network is trained
based on n-step TD learning. Then, the expected future return for each action
of the ego vehicle in the current state can be estimated more accurately. Finally,
the action with the highest value is executed as the tactical behavior. The cor-
responding trajectory is selected for the control module.
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3.1 Reactivate Trajectory Prediction

Different from previous trajectory prediction work [4,21], this section builds a
reactive trajectory prediction model considering the reactions of social actors
to the tactical behavior of the ego vehicle. We present a novel architecture to
capture interactive features. The model performs the following operations to
complete prediction tasks: (1) obtaining individual temporal features from the
history trajectory of each social actor based on LSTM; (2) utilizing GCN to
extract global spatial features; (3) predicting the future trajectory with the spa-
tiotemporal features and the interaction flag in a step-wise rollout manner. The
reactive trajectory prediction network is shown in Fig. 3.

Fig. 3. Overall structure of the reactive trajectory prediction model.

LSTM for Individual Features. LSTM has been used to learn the patterns of
sequential data [1]. The historical trajectories of vehicles are fed into the standard
LSTM network, which can obtain the individual features of each vehicle:

hi
t = fLSTM (hi

t−1, x
i
t), i ∈ {1, 2, ..., N} (3)

where xi
t =

[
pi

xt, p
i
yt, v

i
xt, v

i
yt

]
means the input of LSTM cell. pi

x, pi
y and vi

x, vi
y

represent the longitudinal and lateral position and velocity of i-th agent in two
coordinate directions, respectively. Finally, the individual temporal features of
the environmental vehicles are obtained from the LSTM network:

hnei
t = fLSTM (Xnei

t−τ :t) = {h1
t , h

2
t , ..., h

N
t } (4)

GCN for Global Features. GCN is a deep learning model for processing
graph-structured data, capable of extracting global information from a spa-
tial perspective [13]. In the task of vehicle trajectory prediction, we employ
a two-layer GCN with a symmetric adjacency matrix. Taking the positions
Xego

t [0 : 2],Xnei
t [0 : 2] as input, the information goes through a feature extrac-

tion layer, then extracted features are concatenated together to form the node
feature matrix H(0):

H(0) = fconcat(fr(X
ego
t [0 : 2]), fh(Xnei

t [0 : 2])) (5)
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where fconcat is the connecting function, fr, fh are the extract layers.
The adjacency matrix adjusts the connection relationships between nodes by

transforming and integrating features. After applying the softmax operation, the
weights of connections between nodes are converted into a probability distribu-
tion along the row dimension. By multiplying and normalizing with node fea-
tures, effective information propagation and feature aggregation can be achieved
on the graph.

H(1) = Softmax(H(0)WaH(0)T )H(0)W (0)
s

Zt = H(2) = Softmax(H(1)WaH(1)T )H(1)W (1)
s

(6)

where the weights Wa,W
(0)
s ,W

(1)
s are optimized through gradient descent. H

represents the node feature matrix after dimension transformation, and the out-
put Zt represents the global spatial features. The entire graph convolutional
network computation process can be represented by the following formula:

Zt = fGCN (Xego
t [0 : 2],Xnei

t [0 : 2]) (7)

Reactive Trajectory Prediction Combining the Interaction Signal: In
the reactive trajectory prediction model, we concatenate the corresponding spa-
tiotemporal features with the interaction signal iflag between the ego vehicle and
social vehicles. As the interactive signal, when there is an interaction between
the environment vehicle and the ego vehicle, iflag is set to 1; in other cases, it is
set to 0. After the connected features are fed into the fully connected layer, the
future state for each social vehicle at the next time step can be predicted.

X̂nei
t+1 = fMLP (hnei

t , Zt, iflag) (8)

According to the tactical behavior at of the ego vehicle, we can obtain the
future positions of the ego vehicle by the trajectory planner. With the future
states of the ego vehicle and social vehicles, the individual and global features
from LSTM and GCN can be updated sequentially. Finally, we can obtain the
predicted future trajectories of all social vehicles:

X̂nei
t+1:t+T = fP (Xnei

t−τ :t,X
ego
t+1:t+T−1, iflag) (9)

For the training of the reactive trajectory prediction model, the root mean
squared error (RMSE) is chosen as the loss function:

J =

√
1
T

∑T

j=1

(
xi

t+j − x̂i
t+j

)2 (10)

where x̂i
t+j is the predicted future state of i-th social vehicle at time step t + j,

and xi
t+j is the corresponding ground truth.
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3.2 Integrated Prediction and Planning

In this section, we introduce the integrated PnP based on the TD search method
for handling the interactive lane-change task in dense traffic. As a model-based
algorithm, TD search utilizes tree structures to simulate and update the value
function. In the driving task, the reactive trajectory prediction model is learned
as the transition function of interactive vehicles, considering the reciprocal influ-
ences among these vehicles. Firstly, introduce the decision-making problem setup
for lane changes.

State Space. The system state includes the position information of the ego
vehicle and other vehicles. The state at time t is represented as the following
formula:

st = {sego
t , snei

t } =
(
s0t , s

1
t , ..., s

N
t

)
(11)

and si
t = (pi

xt, p
i
yt), i ∈ {0, 1, ..., N}, is also the first two dimensional charac-

teristics of xi
t. For the TD search algorithm, when using the value function to

estimate the state value, the future state is required. The estimation of future
states for environment vehicles can be derived from the trajectories inferred by
the reactive prediction model. The future state of the ego vehicle is provided by
the trajectory planning module with the decision action. The state at time t+1
can be represents as ŝt+1 = {ŝego

t+1, ŝ
nei
t+1}.

Action Space. In this work, we use a discrete action space for lane changes.
The discrete actions are set as {change lane left, change lane right, and stay
in the current lane}. Then, the tactical behavior is forwarded to the trajectory
planner1, which generates the future driving trajectories of the ego vehicle.

Reward Function. Safety and efficiency are crucial in the context of intense
traffic. In addition, the reward function is designed for the following purposes:

• The SDV is expected to be closely oriented with the lane centerline.
• Once encountering a sluggish vehicle, the SDV is encouraged to make the

change decision.
• The collision should be avoided while driving.

In general, the reward function is as follows:

rt =

⎧
⎨

⎩

10.0, if success
−10.0, if collision
0.2 × rm, else

(12)

where rm is calculated by the relative distance. When the SDV stays in the
current lane, the rm term is calculated as rm = −(1 − ∣

∣p0x − plc

∣
∣/(0.5 × wl)),

where p0x is the lateral position of the ego vehicle, plc is the lateral position of
the closest waypoint in current lane centerline, and wl is the width of the current

1 https://github.com/enginBozkurt/MotionPlanner.

https://github.com/enginBozkurt/MotionPlanner
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lane. This reward encourages the ego vehicle to complete lane-change actions in
the designed experimental scenarios.

Transition Model. Transition model is required for n-step TD search. As pre-
viously mentioned, the transition model is divided into two parts for PnP: the
future states of social vehicles are predicted by reactive trajectory prediction net-
work fP (Xnei

t−τ :t,X
ego
t+1:t+T−1, iflag); the future state of the ego vehicle is obtained

according to the trajectory planner.
After constructing the decision model, our temporal-difference search method

can be employed. TD search is a simulation-based search algorithm, where the
agent simulates from a root state and samples with the transition and reward
model. Due to the low dimensional action space, we can simulate the experience
with a limited rollout depth.

A neural network fV , with parameters θV , is used to approximate the value
function V (st). The value of current state st is estimated using the following
formula, with a rollout depth of d:

fV (st) = r(st, at) +
d−1∑

m=1

γmr(ŝt+m, at+m) + γdfV (ŝt+d) (13)

To balance the exploration and exploitation during the learning process, the
ε-greedy policy is adopted to choose the action:

at =

{
arg max

at∈A
r(st, at) + γfV (ŝt+1),with 1 − εt probability

random at ∈ A, with εt probability
(14)

To make the training process more stable, a target value network is adopted.
The update frequency of the target value network is slower compared to the
value network, which benefits the convergence of the network. We use fV ′ rep-
resents the target network with parameters θV ′ . The network parameters are
updated through gradient descent. After adding the target network, the TD
error is represented by the following formula.

δ = r(st, at) +
d−1∑

m=1

γmr(ŝt+m, at+m) + γdfV ′(ŝt+d) − fV (st) (15)

4 Experiments

4.1 Experiment Setup

To verify the performance of the proposed algorithm, we select the high-fidelity
simulator CARLA [3], which can customize the test scenario and generate per-
sonalized traffic flow. Based on the CARLA simulator, we construct a passive
lane-change scenario in dense traffic including social vehicles with different driv-
ing styles. It is a standard straight road with three lanes. The ego vehicle is
initialized in the right lane. Considering accidents or temporal traffic control,
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the preceding vehicle gradually slows down. The ego vehicle has to make a lane
change maneuver to the middle lane. This situation is frequently observed on
urban roads during peak hours and is also applicable to merging scenarios.

We set two types of social vehicles in the target lane. Aggressive vehicles
won’t decelerate when the preceding vehicle executes a lane change. The social
vehicle type is sampled to be cooperative or aggressive from a binary uniform
distribution. The lane-change test scenario terminates as the ego completes a
lane change, surpasses the specified position, or encounters a collision.

To prove the validity of the prediction algorithm, we chose the LSTM pre-
dictor and the same structure of the PnP predictor method without iflag as
the comparative approach. We use average displacement error(ADE) and final
displacement error(FDE) to evaluate results. The metric ADE computes average
L2 norm between the ground-truth trajectory and the predicted trajectory over
all future time steps, while FDE measures the L2 norm at the final time step.

To evaluate the performance of the decision-making model, we train the value
network function using the TD search method in the built scenario and compare
PnP with the following methods:

• DQN [12] uses experience replay to address the issue of sample correlation,
and target network to enhance the stability.

• DreamerV2 [7] samples latent states from a discrete distribution and utilizes
KL balancing techniques to ensure the accuracy of model reconstruction.

In addition, the trained models are tested in the complex scenario with 100
episodes. And the evaluation metrics encompass the success rate of lane-changing
and collision rate, taking into account efficiency and safety. In the testing, we
check if the ego vehicle collides with other agents at every time step during the
simulation. The success rate metric is calculated when the ego changes to the
target lane without any collisions. The collision rate metric is calculated when
the vehicle collides with other vehicles during the driving process.

4.2 Reactive Trajectory Prediction Model Evaluation

A well-balanced dataset can significantly improve the accuracy and robustness
of trajectory prediction models. An interactive dataset is collected by rule-based
driving vehicles in the aforementioned CARLA scenarios. The training set con-
tains 1000 trajectories, and the testing set includes 400 trajectories. The selection
of interactive vehicles is based on relative distance and the lane in which the ego
vehicle is located. The slow-moving vehicle ahead of the ego vehicle is always
the interactive vehicle, while the interactive vehicles in the target lane are the
closest two vehicles to the ego vehicle at the current time step. In Fig. 4, the
interactive vehicles are highlighted with red boxes.

After training 100 epochs in the training set, the experiment results are
shown in the Table 1. The table compares the performance of different predic-
tion algorithms, showing that the prediction model achieves the highest accu-
racy compared to other network models in both overall and interactive scenarios.
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Table 1. Testing displacement error of different prediction models.

Scenario Metric LSTM LSTM+GCN LSTM+GCN+iflag

All scenario ADE 0.42 0.39 0.30
FDE 0.89 0.72 0.58

Interactive scenario ADE 0.87 0.75 0.57
FDE 1.88 1.51 1.17

The results demonstrate that the LSTM predictor cannot accurately predict the
future trajectory of vehicles with different styles. Because the model lacks consid-
eration for the differences in how the two types of vehicles react to the behavior
of the ego vehicle. Benefiting from the well-designed network structure, the reac-
tive prediction model without interaction signals has improved the performance
of the LSTM network, but still cannot perfectly distinguish the two types of
social vehicles. Considering the interactive signals helps the reactive prediction
model more accurately predict future states. The proposed reactive trajectory
prediction model reduces the ADE and FDE in the entire scene to 0.30 and
0.58. Additionally, the model reduces ADE and FDE to 0.57 and 1.17 in the
interactive scene.

Fig. 4. Diagram of the interactive vehicles selection.

4.3 Lane Change Decision Performance

After training 250,000 steps in the scenario, the curves of each algorithm are
shown in Fig. 5. The solid lines depict the mean scores and shaded areas indicate
the standard deviation of five trials over different random seeds. The model-based
algorithm, DreamerV2, demonstrates the highest return, followed by PnP. And
PnP exhibits the least variance, indicating its high stability.



Integrated Prediction and Planning for Interactive Lane Change 313

The performance of the above algorithms in the test scenario is as shown in
Table 2. PnP achieves the highest success rate of 85% in the lane-changing task,
outperforming other baseline algorithms. This result demonstrates the advan-
tage of model-based algorithms and showcases the effectiveness of integrated
prediction and decision-making methods.

According to the training curve, although DreamerV2 achieves higher
returns, its performance in lane-changing tasks is not as good as PnP. Through
analysis, it can be determined that negative rewards are given to the vehicle when
it stays in the current lane. To prevent collisions with vehicles in the target lane,
the vehicle driven by PnP temporarily stays in the current lane, receiving con-
tinuous negative rewards, resulting in a lower return. Figure 6 shows the decision
comparison between PnP and DreamerV2 in this scenario.

Fig. 5. Training curves of model-based and model-free methods.

Table 2. Performances of different algorithms on lane changing in dense traffic.

Model Success rate (%) Collision rate (%)

DQN [12] 51 49
DreamerV2 [7] 68 32
PnP (Ours) 85 15
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Fig. 6. The behaviors of PnP and DreamerV2 in the presence of aggressive vehicles.

5 Conclusion

This paper proposes an integrated prediction and planning learning method. And
the reactive trajectory prediction model is composed of LSTM and GCN, which
can extract the temporal and spatial features. Considering the interactive signal,
our model can predict the diverse responses of social actors to the lane-changing
behavior of the ego vehicle. By connecting the prediction and planning, PnP
improves the application of prediction models to downstream planning tasks,
whose success rate in the overtaking lane-change task is superior to other base-
lines.
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Abstract. Secretary-General António Guterres launched the United
Nations Strategy and Plan of Action on Hate Speech in 2019, recog-
nizing the alarming trend of increasing hate speech worldwide. Despite
extensive research, benchmark datasets for hate speech detection remain
limited in volume and vary in domain and annotation. In this paper, the
following research objectives are deliberated (a) performance compar-
isons between multi-task models against single-task models; (b) perfor-
mance study of different multi-task models (fully shared, shared-private)
for hate speech detection, considering individual dataset as a separate
task; (c) what is the effect of using different combinations of available
existing datasets in the performance of multi-task settings? A total of
six datasets that contain offensive and hate speech on the accounts of
race, sex, and religion are considered for the above study. Our analysis
suggests that a proper combination of datasets in a multi-task setting
can overcome data scarcity and develop a unified framework.

Keywords: Hate Speech · Data scarcity · Single Task · Multi-Task

1 Introduction

Our world’s communication patterns have changed dramatically due to the rise
of social media platforms, and one of those changes is an increase in improper
behaviors like the usage of hateful and offensive language in social media posts.
On 15 March 2021, an independent United Nations human right expert said
that social media has too often been used with “relative impunity” to spread
hate, prejudice and violence against minorities1. Hate speech [15] is any com-
munication that disparages a person or group on the basis of a characteristic
such as color, gender, race, sexual orientation, ethnicity, nationality, religion, or
other features. Hate speech detection is crucial in social media because it helps
in ensuring a safe and inclusive online environment for all users. Even though
social media platforms provide space for people to connect, share, and engage
1 https://news.un.org/en/story/2021/03/1087412.
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with each other, the anonymity and ease of access to these platforms also make
them attractive platforms for those who engage in hate speech.

Hate speech has serious consequences and can cause significant harm to its
targets. It can lead to increased discrimination, bullying, and even physical vio-
lence. Moreover, it can contribute to the spread of misinformation, stoke fear
and division, and undermine the fabric of society. The harm that hate speech
causes is amplified in online spaces, where the reach and impact of messages
can be much greater than in the real world. According to the Pew Research
Center, 40% of social media users have experienced some sort of online harass-
ment2. According to the FBI, there were 8,263 reported hate crime incidents
in 2020, which represents an increase of almost 13% from the 7,314 incidents
reported in 20193. Between July and September 2021, Facebook detected and
acted upon 22.3 million instances of hate speech content4. A study found that
from December 2019 to March 2020, there was a substantial 900% surge in the
number of tweets containing hate speech directed towards Chinese people and
China5. These hate posts that are supposedly safe on social media create real-
world violence and riots. This warrants the requirement for the detection and
control of hate speech.

That is why social media companies have taken steps to detect and remove
hate speech from their platforms. This is a challenging task, as hate speech often
takes many different forms and is difficult to define. In addition, there is often a
fine line between free speech and hate speech, and companies must balance these
competing interests while still protecting users from harm. It is important to note
that hate speech detection is not just a technical challenge, it is also a societal
challenge. Companies must understand the cultural and historical context of
hate speech to develop policies and algorithms that are fair and effective. It is
also important to ensure that hate speech detection does not undermine freedom
of expression, or discriminate against marginalized groups.

Over the last decade, plenty of research has been conducted to develop
datasets and models for automatic online hate speech detection on social
media [17,25]. The efficacy of hate speech detection systems is paramount
because labeling a non-offensive post as hate speech denies a free citizen’s right
to express himself. Furthermore, most existing hate speech detection models
capture only single type of hate speech, such as sexism or racism, or single
demographics, such as people living in India, as they trained on a single dataset.
Such types of learning negatively affect recall when classifying data that are not
captured in the training examples. To build an effective machine learning or deep
learning-based hate speech detection system, a considerable amount of labeled
data is required. Although there are a few benchmark data sets, their sizes are
often limited and they lack a standardized annotation methodology.

2 https://www.pewresearch.org/internet/2017/07/11/online-harassment-2017/.
3 https://www.fbi.gov/news/press-releases/fbi-releases-2019-hate-crime-statistics.
4 https://transparency.fb.com/data/community-standards-enforcement/hate-

speech/facebook/.
5 https://l1ght.com/Toxicity during coronavirus Report-L1ght.pdf.
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In this work, we address three open research questions related to building a
more generic model for textual hate speech detection.

(i) RQ1: Does multi-task learning outperform single-task learning and single
classification model trained using merged datasets? This research question
pertains to the advantage of multi-task learning for various datasets over
other training strategies. When multiple datasets are available, the most
intuitive method of training is to merge the datasets and train the model in
a single-task learning setting. Different datasets are considered individual
tasks in multi-task settings.

(ii) RQ2: Which type of multi-task model performs the best across a wide
range of benchmark datasets? Two widely used multi-task frameworks, Fully
shared (FS) and Shared private (SP) with adversarial training (Adv), have
been explored to investigate which one is preferable for handling multiple
datasets.

(iii) RQ3: What combination of datasets improve or degrade the performance of
the multi-task learning model? This question addressed the effect of different
dataset combinations on model performance. Different dataset combinations
bring knowledge from various domains. For n datasets (n >= 2), there are
(2n−n−1) possible combinations, each containing at least two datasets. The
study on the improvement of performance on the grounds of complementary
or contrasting properties of datasets plays an important role in the selection
of datasets for multi-task learning.

This current paper addresses the above-mentioned questions by developing
three multi-task learning models: fully shared, shared-private, and adversarial,
as well as presenting insights about dataset combinations and investigating the
performance improvement of multi-task learning over single-task learning and a
single model trained using a merged dataset.

2 Related Work

Text mining and NLP paradigms have previously been used to examine a vari-
ety of topics related to hate speech detection, such as identifying online sexual
predators, detecting internet abuse, and detecting cyberterrorism [22].

Detecting hateful and offensive speech presents challenges in understand-
ing contextual nuances, addressing data bias, handling multilingual and code-
switching text, adapting to the evolving nature of hate speech, dealing with sub-
jectivity and ambiguity, countering evasion techniques, and considering ethical
considerations [6]. These challenges necessitate robust and adaptable method-
ologies, including deep learning and user-centric approaches, to enhance hate
speech detection systems. A common approach for hate speech detection involves
combining feature extraction with classical machine learning algorithms. For
instance, Dinakar et al. [3] utilized the Bag-of-Words (BoW) approach in con-
junction with a Näıve Bayes and Support Vector Machines (SVMs) classifier.
Deep Learning, which has demonstrated success in computer vision, pattern
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recognition, and speech processing, has also gained significant momentum in
natural language processing (NLP). One significant advancement in this direc-
tion was the introduction of embeddings [14], which have proven to be useful
when combined with classical machine learning algorithms for hate speech detec-
tion [13], surpassing the performance of the BoW approach. Furthermore, other
Deep Learning methods have been explored, such as the utilization of Convolu-
tional Neural Networks (CNNs) [27], Recurrent Neural Networks (RNNs) [4], and
hybrid models combining the two [9]. Another significant development was the
introduction of transformers, particularly BERT, which exhibited exceptional
performance in a recent hate speech detection competition, with seven out of
the top ten performing models in a subtask being based on BERT [26].

2.1 Works on Single Dataset

The work by Watanabe et al. [25] introduced an approach that utilized unigrams
and patterns extracted from the training set to detect hate expressions on Twit-
ter, achieving an accuracy of 87.4% in differentiating between hate and non-hate
tweets. Similarly, Davidson et al. [2] collected tweets based on specific keywords
and crowdsourced the labeling of hate, offensive, and non-hate tweets, developing
a multi-class classifier for hate and offensive tweet detection. In a separate study,
a dataset of 4500 YouTube comments was used by authors in [3] to investigate
cyberbullying detection, with SVM and Naive Bayes classifiers achieving overall
accuracies of 66.70% and 63% respectively. A Cyberbullying dataset was cre-
ated from Formspring.me in a study by authors in [20], and a C4.5 decision tree
algorithm with the Weka toolkit achieved an accuracy of 78.5%. CyberBERT,
a BERT-based framework created by [17], exhibited cutting-edge performance
on Twitter (16k posts), Wikipedia (100k posts) and Formspring (12k posts)
datasets. On a hate speech dataset of 16K annotated tweets, Badjatiya et al [1]
conducted extensive tests with deep learning architectures for learning semantic
word embeddings, demonstrating that deep learning techniques beat char/word
n-gram algorithms by 18% in terms of F1 score.

2.2 Works on Multiple Datasets

Talat et al. [23] experimented on three hate speech datasets with different anno-
tation strategies to examine how multi-task learning mitigated the annotation
bias problem. Authors in [21] employed a transfer learning technique to build
a single representation of hate speech based on two independent hate speech
datasets. Fortuna et al. [5] merged two hate speech datasets from different social
media (one from Facebook and another from Twitter) and examined that adding
data from a different social network allowed to enhance the results.

Although there are some attempts in building a generalized hate speech
detection model based on multiple datasets, none of them has addressed the
insight on (i) how to combine datasets; (ii) is multi-tasking better than single
task setup and a single model trained using merged dataset, (iii) which type of
multitasking is better: FS or SP.
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Table 1. Source, statistics and domain of six hate speech datasets used in our experi-
ments

Dataset # Samples # Classes and #Samples in each class Source Domain

D1 [2] 24783 3: Hate speech (1430), Offensive (19190),

Neither (4163)

Twitter Hate, Offensive

D2 [7] 10703 2: Non-hate (9507), Hate (1196) Stormfront forum Race, Religion

D3 [24] 10141 3: Racism (12), Sexism (2656), None

(7473)

Twitter Race, Sexism

D4 [12] 7005 2: Non Hate-Offensive (4456), Hate and

Offensive (4456)

Twitter Hate, Offensive

D5 [16] 10000 2: Non-hateful (5790), Hateful (4210) Twitter Immigrants, Sexism

D6 [11] 31962 2: Non-hate (29720), Hate (2242) Twitter Race, Sexism

3 Dataset Description

Six datasets (Table 1) are selected in an attempt to understand the effect of using
multiple datasets and to conduct experiments. These datasets include examples
of hate, offensiveness, racism, sexism, religion, and prejudice against immigrants.
Even though the samples differ in terms of annotation style, domain, demogra-
phy, and geography, there is common ground in terms of hate speech.

4 Methodology

To investigate how multiple hate speech datasets can help in building a more
generalized hate speech detection model, we have experimented with two widely
used multi-task frameworks (Fig. 1), i.e., Fully shared and Shared Private, devel-
oped by [10]. In the feature extraction module (Fig. 2), we employed Glove [18]
and FastText [8] embedding to encode the noisy social media data efficiently. The
joint embedding is passed through a convolution layer followed by max pooling
to generate the local key phrase-based convoluted features. In the FS model,
the final output from the CNN module is shared over n task-specific channels,
one for each dataset (task). For the SP model, individual CNN representation
from each of the tasks is passed through the corresponding task-specific output
layer. In addition to task-specific layers, there is a shared layer (Fully Connected
layer) to learn task invariant features for the SP model. The adversarial loss is
added in model training to make shared and task-specific layers’ feature spaces
mutually exclusive [19].

5 Experimental Results and Analysis

This section describes the results of single task setting, multi-task setting of three
models for different combinations of 6 benchmark datasets. The experiments are
intended towards addressing the following research questions:

– RQ1: How does multi-task learning enhance the performance of hate speech
detection compared to single task learning and single task based on a merged
dataset?
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Fig. 1. (a) Fully shared and (b) Shared private multi-task frameworks.
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– RQ2: Which type of multi-task learning model provides the best results
among the three models?

– RQ3: Which combination of the benchmark datasets should be used for
obtaining the best results from multi-task learning?

The experiments were performed on 5-fold cross-validation on the datasets and
the results are evaluated in terms of accuracy value. The values mentioned inside
the brackets are the improvements or decrements in accuracy compared to single-
task learning. Keeping the size of the datasets in mind, a batch size of 8 was
found optimal and configurations such as the ReLU activation function, and
5e−4 learning rate were chosen and the models were trained for 20 epochs.

Table 2. Single-task learning performance with individual datasets and merged
datasets

Dataset Combination Single Task

STL Merged (All) Merged (-D1)

D1 91.28 20.33 -

D2 87.6 84.96 88.97

D3 82.89 71.71 73.63

D4 63.81 63.74 64.88

D5 70.05 58.5 59.9

D6 94.75 87.63 92.87

Table 3. Multi-task Learning Performance

Dataset Combination Multi Task

FS FS - adv SP SP - adv

D1 92.68 (+1.40) 93.63 (+2.35) 95.04 (+3.76) 95.59 (+4.31)

D2 90.20 (+2.60) 89.02 (+1.42) 88.70 (+1.10) 89.53 (+1.93)

D3 83.81 (+1.12) 83.62 (+0.73) 86.79 (+3.90) 86.95 (+4.06)

D4 67.88 (+4.07) 66.25 (+2.44) 66.10 (+2.29) 65.53 (+1.72)

D5 71.45 (+1.40) 71.67 (+1.62) 74.80 (+4.75) 75.00 (+4.95)

D6 96.16 (+1.41) 95.72 (+0.97) 96.70 (+1.95) 96.78 (+2.03)

5.1 RQ1: Single Task vs Merging All vs Multi-task

In Table 2, the accuracy of single task learning is compared with a model trained
after merging all datasets and with a multitasking framework. It is evident from
this table that the performance of single-task learning is better than that of
the model trained using a merged version of all the datasets. However, when
dataset 1 which performed very poorly was removed from the merged set and
experiments are again conducted, the accuracy values for datasets 2 and 4 are
improved over the single-task learning accuracies. The selection of datasets that
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Table 4. Experimental results of Fully Shared, Shared Private models under multi-
task settings with 2 datasets combinations; Like, in (D3-D5) combination, 1st and 2nd
represent the performance of D3 and D5, respectively

Dataset Combination Fully Shared Shared Private

1st 2nd 1st 2nd

D1-D2 93.33 (+2.05) 90.19 (+2.59) 94.05 (+2.77) 88.00 (+0.4)

D1-D3 93.55 (+2.27) 83.34 (+0.45) 94.01 (+2.73) 84.07 (+1.18)

D1-D4 93.54 (+2.26) 68.88 (+5.07) 93.93 (+2.65) 64.48 (+0.67)

D1-D5 93.35 (+2.07) 72.55 (+2.50) 93.40 (+2.12) 74.60 (+4.55)

D1-D6 92.39 (+1.11) 95.22 (+0.47) 94.61 (+3.33) 95.51 (+0.76)

D2-D3 89.86 (+2.26) 83.39 (+0.50) 89.37 (+1.77) 84.96 (+2.07)

D2-D4 90.55 (+2.95) 67.74 (+3.93) 88.27 (+0.67) 64.45 (+0.64)

D2-D5 90.00 (+2.4) 73.20 (+3.15) 89.25 (+1.65) 74.05 (+4.00)

D2-D6 90.43 (+2.83) 95.52 (+0.77) 88.46 (+0.86) 95.77 (+1.02)

D3-D4 83.88 (+0.99) 67.38 (+3.57) 84.22 (+1.33) 65.24 (+1.43)

D3-D5 83.00 (+0.11) 71.90 (+1.85) 84.57 (+1.68) 74.75 (+4.70)

D3-D6 83.44 (+0.55) 95.18 (+0.43) 84.17 (+1.28) 95.86 (+1.11)

D4-D5 68.09 (+4.28) 71.59 (+1.54) 65.31 (+1.50) 73.25 (+3.20)

D4-D6 67.09 (+3.28) 96.04 (+1.29) 65.42 (+1.61) 96.20 (+1.45)

D5-D6 72.05 (+2.00) 95.95 (+1.20) 73.80 (+3.75) 96.30 (+1.55)

are used to form the merged dataset for developing a unified model plays a signif-
icant role in the performance of the system. When the combination of datasets is
selected after analyzing the domain, supplementary and complementary informa-
tion available with the dataset, the unified model becomes more generalized. But
blindly combining all the datasets leads to decreased performance of the unified
model trained on the merged dataset. In multi-task settings (see Table 3), the
performances on all the datasets are improved significantly over both single-task
learning and single-task training on a merged dataset. In a multi-task setting,
hate speech detection from a single dataset is considered an individual task. This
concept proves to provide an edge to the model for its ability to generalize and
perform better compared to the other training settings.

5.2 RQ2: Fully Shared vs. Shared Private (+/− Adversarial
Training)

Among the models trained over multiple datasets as shown in Tables 4 and 5,
there is no clear winner that can be selected. However, with the benchmark
datasets used in our experiments, the shared private model proves to be the
better model among its alternatives. This could be due to the training of shared
and task-specific layers on the datasets which provide in-depth knowledge and
prioritize the information from both these layers. But, the absence of such an
ability to prioritize shared knowledge inhibits the performance of the fully shared
network. As proof of this, the accuracies for datasets 1, 3, 5, and 6 among all
the combinations are higher in the shared private model compared to the fully
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Table 5. Experimental results of Fully Shared - Adversarial, Shared Private - Adver-
sarial models under multi-task settings with 2 datasets combinations; Like, in (D3-D5)
combination, 1st and 2nd represent the performance of D3 and D5, respectively

Dataset Combination Fully Shared - Adversarial Shared Private - Adversarial

1st 2nd 1st 2nd

D1-D2 93.51 (+2.23) 88.89 (+1.29) 94.69 (+3.41) 87.80 (+0.20)

D1-D3 93.67 (+2.39) 83.30 (+0.41) 94.96 (+3.68) 85.50 (+2.61)

D1-D4 93.60 (+2.32) 66.94 (+3.13) 94.67 (+3.39) 64.74 (+0.93)

D1-D5 93.28 (+2.00) 73.01 (+2.96) 94.71 (+3.43) 75.00 (+4.95)

D1-D6 92.30 (+1.02) 94.98 (+0.23) 94.39 (+3.11) 95.93 (+1.18)

D2-D3 89.95 (+2.35) 83.28 (+0.39) 88.51 (+0.91) 84.17 (+1.28)

D2-D4 90.03(+2.43) 66.87 (+3.06) 87.85 (+0.25) 64.54 (+0.73)

D2-D5 89.74 (+2.14) 73.24 (+3.19) 88.01 (+0.44) 72.85 (+2.80)

D2-D6 90.47 (+2.87) 95.47 (+0.72) 87.98 (+0.38) 95.91 (+1.16)

D3-D4 84.05 (+1.16) 66.83 (+3.02) 84.78 (+1.89) 64.77 (+0.96)

D3-D5 83.96 (+1.07) 72.11 (+2.06) 84.65 (+1.76) 74.98 (+4.93)

D3-D6 84.02 (+1.13) 95.50 (+0.75) 84.71 (+1.82) 95.95 (+1.20)

D4-D5 68.36 (+4.55) 71.52 (+1.47) 64.71 (+0.90) 73.92 (+3.87)

D4-D6 66.91 (+3.10) 95.83 (+1.08) 64.47 (+0.66) 96.66 (+1.91)

D5-D6 72.13 (+2.08) 95.98 (+1.23) 74.00 (+3.95) 96.45 (+1.70)

shared. However, interestingly the accuracy values of dataset 2 (D2) are better
in a fully shared model. A possible explanation for this pattern could be in the
source of the datasets. Unlike other datasets which were tweets, D2 belongs to
a different source of social media posts.

When adversarial training is incorporated, the performance improves in
datasets that have common ground/features. However, when the combination
includes datasets of different sources, then the performance of the shared private
adversarial model worsens compared to the shared private model. The adversar-
ial layer alters the knowledge attained by the shared layer in such a way as to
make the feature space of shared and specific layers to be mutually exclusive.
This creates a more generalization causing deterioration in the performance.
Fully shared adversarial is also similar in nature but the accuracy is hampered
more compared to the shared private adversarial making this pattern difficult to
predict or understand.

5.3 RQ3: Datasets Combination

From Table 6 and 7, it can be observed that the improvement in individual
dataset compared to single task learning is limited as the number of datasets
have increased (most of the time, the combination of two datasets performs
better than the combination of three datasets). This could be due to the dif-
ficulty in generalizing the model on various datasets. The best performance is
observed when using datasets of similar sizes and sources. An interesting insight
was observed when datasets having information on different domains boost the
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Table 6. Fully Shared Model Performance with 3 datasets combination

Dataset Combination Fully Shared

1st 2nd 3rd

D1-D2-D3 92.27 (+0.99) 89.72 (+2.12) 83.44 (+0.55)

D1-D2-D4 92.25 (+0.97) 89.86 (+2.26) 68.31 (+4.50)

D1-D2-D6 92.21 (+0.93) 89.82 (+2.22) 95.06 (+0.31)

D1-D3-D4 92.35 (+1.07) 82.95 (+0.06) 68.74 (+4.93)

D1-D3-D5 91.97 (+0.69) 83.05 (+0.16) 71.15 (+1.10)

D1-D4-D5 91.83 (+0.55) 69.20 (+5.39) 70.95 (+0.90)

D2-D3-D5 90.05 (+2.45) 83.41 (+0.52) 71.60 (+1.55)

D2-D4-D6 90.01 (+2.41) 66.88 (+3.07) 95.17 (+0.42)

D3-D4-D5 83.40 (+0.51) 67.52 (+3.71) 71.15 (+1.10)

D4-D5-D6 67.38 (+3.57) 71.20 (+1.15) 94.90 (+0.15)

Table 7. Shared Private Model Performance with 3 datasets combination

Dataset Combination Shared Private

1st 2nd 3rd

D1-D2-D3 94.67 (+3.39) 88.70 (+1.10) 84.33 (+1.44)

D1-D2-D4 94.57 (+3.29) 88.45 (+0.85) 65.02 (+1.21)

D1-D2-D6 94.59 (+3.31) 88.53 (+0.93) 95.02 (+0.27)

D1-D3-D4 94.45 (+3.17) 83.80 (+0.91) 64.64 (+0.83)

D1-D3-D5 95.05 (+3.77) 83.64 (+0.75) 72.24 (+2.19)

D1-D4-D5 94.49 (+3.21) 63.94 (+0.13) 72.67 (+2.62)

D2-D3-D5 88.78 (+1.18) 83.49 (+1.20) 72.22 (+2.17)

D2-D4-D6 88.51 (+0.91) 64.55 (+0.74) 95.77 (+1.02)

D3-D4-D5 84.05 (+1.16) 64.42 (+0.61) 73.43 (+3.38)

D4-D5-D6 64.67 (+0.86) 73.31 (+3.26) 95.88 (+1.13)

performance of each other significantly. For example, datasets 1 and 6 belong-
ing to the same source have samples emphasizing different domains. Dataset 1
having samples that are majorly offensive gains shared knowledge on the attack
of women and immigrants from dataset 6. Dataset 6 too learns knowledge of
contrasting domains from dataset 1 that help generalize the model to tackle new
samples.

6 Conclusion and Future Work

In this paper, an attempt was made to create a hate speech detection model
that was trained on different datasets. To improve the performance and gen-
erality of the model, multi-task learning was leveraged. With the help of this
methodology and careful examination of the datasets, a robust model that iden-
tifies and prevents various domains of hate attacks can be built, thus creating
a safe and trustworthy space for users in social media. The contributions of the
current work are twofold: (a) Experiments conducted across different types of
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settings and models help us develop a multi-task system that can be trained on
datasets from different domains and detect hate speech in a generalized manner.
(b) Studies were conducted on the effect of combinations and increase in datasets
in a multi-task setting to improve the decision-making process of setting up new
hate speech detection systems.

In the future, we would like to work on multi-modal hate speech detection
systems that can help us monitor a plethora of social media.

Acknowledgements. The Authors would like to acknowledge the support of Ministry
of Home Affairs (MHA), India, for conducting this research.
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7. de Gibert, O., Perez, N., Garćıa-Pablos, A., Cuadros, M.: Hate speech dataset
from a white supremacy forum. In: Proceedings of the 2nd Workshop on Abu-
sive Language Online (ALW2), Brussels, Belgium, October 2018, pp. 11–20. Asso-
ciation for Computational Linguistics (2018). https://doi.org/10.18653/v1/W18-
5102. https://www.aclweb.org/anthology/W18-5102

8. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vec-
tors for 157 languages. arXiv preprint arXiv:1802.06893 (2018)

9. Maity, K., Saha, S.: BERT-capsule model for cyberbullying detection in code-mixed
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Abstract. The development of Internet of Things (IoT) technology has led to
increasingly diverse and complex data collection methods. This unstable sam-
pling environment has resulted in the generation of a large number of irregular
monitoring data streams, posing significant challenges for related data analysis
tasks. We have observed that irregular sequence sampling densities are uneven,
containing randomly occurring dense and sparse intervals. This data imbalance
tendency often leads to overfitting in the dense regions and underfitting in the
sparse regions, ultimately impeding the representation performance of models.
Conversely, the irregularity at the data level has limited impact on the deep seman-
tics of sequences. Based on this observation, we propose a novel Non-isometric
Alignment Inference Architecture (NAIA), which utilizes a multi-level semantic
continuous representation structure based on inter-interval segmentation to learn
representations of irregular sequences. This architecture efficiently extracts the
latent features of irregular sequences. We evaluate the performance of NAIA on
multiple datasets for downstream tasks and compare it with recent benchmark
methods, demonstrating NAIA’s state-of-the-art performance results.

Keywords: Representation learning · Non-isometric Alignment Inference ·
Irregular sequences · Continuous latent representation

1 Introduction

This paper presents a Non-isometric Alignment Inference Architecture (NAIA) for self-
supervised representation of irregular sequences. Irregular sequences exist in various
scientific and engineering fields in the form of non-equidistant time series, including
healthcare [1, 2], meteorology [3], financial markets [4], and industrial production [5].
For example, in mobile health monitoring [6], improper device wearing by users can
lead to temporary interruptions in recording. Additionally, in smart device monitoring
[7], sensors only sample when predefined triggering events occur. This random and
irregular sampling results in variations in observation intervals and densities, generating
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irregular sequences. Irregularly sampled sequences pose challenges to deep learning
models based on fully-observed, fixed-size feature representations [9]. On one hand,
irregular sequences introduce potential structural complexity to the corresponding neural
networks, and the lack of temporal alignment in the data hinders the self-supervised
training process. On the other hand, the advancement in hardware has led to a gradual
increase in the sampling rates of various sensors, makingmodels more prone to over-rely
on patterns in dense regions while tending to neglect sparse data intervals. This can result
in local overfitting or underfitting, consequently reducing the model’s representational
performance [8].

Existing research primarily focuses on constructing specialized network structures
for such irregular sequences [10, 11]. The recently proposed non-isometric time series
imputation autoencoder (mTAN) [12] achieves more advanced sequence classification
and imputation performance by utilizing attentionmechanisms. In fact, Gaussian process
regression, as a classical machine learning algorithm, can represent the variance of
input samples through posterior probability inference [13]. However, its computational
complexity is O(n3), and it lacks a deep neural network structure, making it difficult to
extract deep-level semantics from input sequences. The main contributions of the NAIA
model are as follows:

• It maps the input data to a continuous latent function in the latent space, enabling
any query time related to the input to generate feedback information in the latent
space. This achieves continuous representation and temporal alignment for irregular
sequences.

• By designing the JS module embedded in the latent space, NAIA allows irregu-
lar intervals to generate boundaries based on their own latent distribution stability.
The model only needs to train on randomly samples from each interval, facilitating
lightweight training and mitigating the issue of local overfitting caused by uneven
data sampling.

• Two paths have been specifically designed for the propagation of time information.
They inject query information into NAIA from both the front-end and back-end of the
latent space, enabling the model to be trained under query guidance and enhancing
the performance of representation learning.

2 Related Work

The most classical model in time series tasks is the Autoregressive Integrated Moving
Average (ARIMA). Its simple and effective statistical properties and theoretical archi-
tecture based on Box-Jenkins methodology [14] make it widely applicable to various
forecasting or reconstruction tasks. However, coping with today’s big data tasks, its per-
formance in extracting deep semantics of time series could be much better. Moreover,
ARIMA does not adapt well to non-isometric time series. On the other hand, filter-
based methods infer the sequence values at new time points given from historical data,
including Han-Gyu Kim et al. [15] use recurrent neural networks to infer and impute
the missing data on the sequence. However, this method can only impute the data before
the observation point.
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Among probability-based methods, Gaussian process regression (GPR) [13] is an
important architecture for dealing with irregular sequences. GPR can input an analyz-
able joint posterior distribution based on the non-isometric characteristics of an irregular
sequence. One of the covariance matrices converts the non-isometric structure of the
observed samples into an interpolated uncertainty measure. One problem with GPR is
that the positive definite constraint on its covariance matrix can hinder performance in
a multivariate setting. One standard solution is constructing GPR in multiple sequence
dimensions and using separable temporal kernel functions [17]. However, the construc-
tion process requires each dimension to share the same kernel function, thus hindering its
interpolation performance, the efficiency of the operation is significantly reduced [18].

Among the self-attention mechanisms, various variants of Transformer [19] have
achieved significant performance gains in various deep learning tasks. It has sparked
the attention and interest in multi-headed self-attention mechanisms [22]. The atten-
tion mechanism is effective for capturing long-term dependencies in data. Research has
focused on using it for long-term time series forecasting and anomalous pattern recog-
nition. Notable advancements have been achieved in these areas. However, it still has
some limitations, including squared time/memory complexity and susceptibility to error
accumulation caused by various decoder variants. And then, various new variants, rep-
resented by Informer [16], were proposed. They improved the Transformer architecture
and reduced the complexity, and the performance of capturing semantic patterns of time
series became enhanced [23–25]. In 2022, a new multi-head attention network was pro-
posed. It Makes significant improvements in the performance of irregular sequence rep-
resentations based on the Transformer [12]. This method uses a multi-headed temporal
cross-attention encoder to embed secular values.

3 Non-isometric Alignment Inference

NAIA is a mechanism capable of aligning inference and providing continuous repre-
sentation for non-uniform sequences and their intervals. This continuous latent repre-
sentation enables NAIA to accommodate irregular inputs and generate corresponding
reconstructions or predictions at any given query time.

3.1 Preliminaries

The irregular sequence X(T ) can be decomposed into N subintervals along the time
dimension, and the i-th sub-interval is:

x
(
ti,1:ji

) = [
x
(
ti,1

)
, x

(
ti,2

)
, . . . , x

(
ti,ji

)] ⊂ X (T ) (1)

where x
(
ti,1:ji

)
represents the i-th sub-interval consistingof ji samples arranged in chrono-

logical order. Assuming zi is a latent distribution of x
(
ti,1:ji

)
, we aim to approximate zi

with a posterior probability that follows a relatively stable latent probability distribution:

q
[
zi|ti,1:ji , x

(
ti,1:ji

)] ∼ d
[
x
(
ti,1:ji

)]
(2)

The symbol q represents the posterior probability, zi represents the latent represen-
tation corresponding to x

(
ti,1:ji

)
, and d

[
x
(
ti,1:ji

)]
represents the latent distribution of



332 F. Yu et al.

data x
(
ti,1:ji

)
in the sub-interval. When d

[
x
(
ti,1:ji

)]
remains stable, the corresponding

time interval ti,1:ji is a stable sub-interval. The representation of irregular sequences
using data within stable sub-intervals faces three challenges. Firstly, the latent repre-
sentation in neural networks is discrete, and only when zi is in continuous form can it
provide feedback output for any given query time. Secondly, irregular sequences need
to be automatically partitioned into stable intervals as the input data changes. Lastly,
when the samples within sub-intervals are input to the neural network, it needs to be
based on the assumption of fully-observed, fixed-size, which is not satisfied by irregular
sequences.

3.2 Theoretical Analysis

We train the model by setting queries to achieve representation learning. For irregular
sequences, the only label available is the value corresponding to the query time, making
the entire process self-supervised. The prior association between the query value and
the observed data can be expressed as follows:

max p
[
x
(
ti,1:ji + λi

)|t1,1:j1, . . . , ti:1:ji , ti,1:ji + λi, x
(
t1,1:j1

)
, . . . , x

(
ti,1:ji

)]
(3)

Here, p represents a probability symbol, λi represents the time increment required to
reach the query time from the current time. By integrating and taking the logarithm of
Eq. (3), we obtain:

max log
∫

z

{
q
[
z|t1,1:j1, . . . , ti:1:ji , ti,1:ji + λi, x

(
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)
, . . . , x

(
ti,1:ji + λi

)] ·

log p
[
x
(
ti,1:ji + λi

)|t1,1:j1 , . . . , ti,1:ji + λi, x
(
t1,1:j1

)
, . . . , x

(
ti,1:ji

)]}
dz

(4)

For the formal simplicity of the inference process, let ti = (
ti,1, ti,2, . . . , ti,ji

)
, which

gives:

log p[x(ti + λi)|t1:i, ti + λi, x(t1:i)]

= Eq[z|t1:i,ti+λi,x(t1:i),x(ti+λi)]

{
log

p[z, x(ti + λi)|t1:i, ti + λi, x(t1:i)]
q[z|t1:i, ti + λi, x(t1:i), x(ti + λi)]

}

︸ ︷︷ ︸
ELBO

+

DKL{q[z|t1:i, ti + λi, x(t1:i), x(ti + λi)]||p[z|t1:i, ti + λi, x(t1:i), x(ti + λi)]}

(5)

whereDKL stands for KL-divergence and ELBO stands for evidence lower bound, repre-
senting the expectation part of Eq. (5). Since DKL> 0, maximizing Eq. (4) is equivalent
to maximizing this ELBO. The query time may break through the current stable interval
into the next adjacent interval, and we use the JS-divergence constructed on the time
increment to measure the consistency of the interval distribution:

JS
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(6)
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where JS denotes the JS-divergence, d(*) denotes the prior distribution of the data and
satisfies Eq. (2), and θ denotes the interval stability parameter, which is used to specify
the degree of impact of additional data on the consistency of the interval distribution.
Equation (6) utilizes the JS-divergence to measure the consistency of the distribution of
the queried data x

(
ti,1:ji+λi

)
relative to the current data x

(
ti,1:ji

)
under the effect of time

increments. NAIA uses the method with latent distribution for interval partitioning to
avoid local feature traps and distinguish stable intervals in terms of high-level semantics.
In addition, JS-divergence has symmetry and provides a uniform metric for distribution
differences. When the difference between two intervals satisfies Eq. (6), it indicates
a significant deviation of the query time from the original distribution, which does
not satisfy the consistency. A new stable interval needs to be created to shelter the
x
(
ti,1:ji+λi

)
:

x
(
ti,1:ji+λi

) set up−→ x
(
ti+1,1:ji+1

)
, JS >θ. (7)

where θ denotes the distribution difference threshold. When the JS-divergence in Eq. (6)
is less than or equal to θ, the distribution difference between the new data and the original
data is considered minor, and the original interval absorbs the incremental time on the
data, i.e.

x
(
ti,1:ji+λi

) absorb−→ x
(
ti,1:ji+λi

)
, JS ≤ θ. (8)

Once the interval partition is complete, we factorize the ELBO into an easily
optimized form:

max ELBO

= max Eq[z|t1:i,ti+λi,x(t1:i),x(ti+λi)]

⎧
⎨

⎩

ji+λi∑

j=ji

log p
[
x
(
ti,j + λi

)|ti, z
]
⎫
⎬

⎭
−

min DKL{q[z|t1:i, ti + λi, x(t1:i), x(ti + λi)]||p[z|t1:i, x(t1:i)]}

(9)

In Eq. (9), the ELBO is decomposed into two terms; the former is the expectation of
the prior query value concerning the variational posterior of z. It is not analyzable but
can be approximated by neural networks. The z in the latent space is a state-continuous
functional representation, meaning it can receive λi at the arbitrary size. The latter part
of the ELBO is a KL-divergence to the probabilities q and p. Equation (9) aligns the
non-isometric loss function. Maximizing the ELBO reduces the difference between the
incremental time reconstruction and the query value. Minimizing the KL- divergence
makes the reconstruction probability of incremental time obey the density function di,
making Eq. (9) regularization.

3.3 Non-isometric Alignment Inference Architecture Network

We design a complete inference architecture based on Non-isometric Alignment Infer-
ence (NAIA), which approximates the expectation part of ELBO and outputs query
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values based on the query times in the interval. In the training phase, the self-supervised
signal is the query time, which comes from the next samples of the sequence. The latent
space preserves a continuous functional representation z. In the forecasting or recon-
struction phase, any query time can be chosen since z can output the corresponding den-
sity function based on any query. The computational diagram of NAIA is constructed
according to Eq. (9).

Fig. 1. Computational diagram of NAIA

as shown in Fig. 1, the time ti,1:ji and the corresponding value constitute the observed
data pair for the i-th set of inputs of NAIA, while ti,1:ji + λi is used as query informa-
tion input. They are compressed by their respective fully connected neural network into
abstract representations rh and rq, respectively. The information of these two representa-
tions is fused by additive operations into weak query representations rw for the semantic
association. rw is encoded into latent functional representation z by a neural network. z
then outputs a probability density function di according to the weak query semantics. A
sampling of the density function produces a sampling representation s aligned with the
query time. Finally, rw and s and the query time ti,1:ji +λi are concatenated and fed to the
decoder to reconstruct the sequence corresponding to the query time. The time operator
⊕ represents the concatenate operation. The query data x

(
ti,1:ji + λi

)
is involved in the

training of NAIA as a self-supervised signal. And whether the output data break the Ti

interval or not is decided by the JS module on the dashed path according to Eq. (7).
When the input sample does not break the i-th interval, the self-supervised signal is kept
as x

(
ti,1:ji + λi

)
; otherwise, the self-supervised signal is changed to x

(
ti+1,1:ji+1

)
.

The query time undergoes neural network encoding and additive fusion on the first
path. Its semantics is weakened, but the hierarchy becomes deeper, favoring a more
restrained alignment of the observed temporal semantics toward the self-supervised
signal. rw is again compressed through FCs into a latent functional representation z. The
above process corresponds to the expected probability q of Eq. (9). The second path
of the query time injects it directly into the decoder. The query time is not processed
by the neural network, preserving shallow temporal semantics. This query serves as a
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constraint on the supervised signal, forcing the output density function of the functional
representation to be close to the latent distribution of query values.

When themodel is trained, a portion of the sequence of the current interval is sampled.
Samples that break the distribution consistency measure are assigned to the next interval
by the JSmodule so that the samples retained in each interval represent the distribution of
that interval. The input of the i-th interval corresponds to the conditional part of the prior
of Eq. (4). The queries are incremental in time, and the sequence values corresponding
to the query times are set as self-supervised signals. In this way, each current input is
supervised by the value of the next query time induced by the query. To achieve temporal
alignment in deep semantics, we use rw = rh ⊕ rq, to realize the semantic association
of observed data representations with query representations, where rw is called a weak
query representation.

The functional representation z outputs a density function di in the latent space based
on the weak representation rw of the query, and samples di to obtain the representation
sample s. Since z inherits the deep weak semantics of the query, s is weakly aligned with
the self-supervised signal. NAIA fuses the query, sampling representation s, and weak
query representation into r by concatenation operation r = (t + λ) ⊕ s ⊕ rw where ⊕
denotes the concatenation operation, and finally, the decoder reconstructs query value.
The decoder also serves as a framework interface for NAIA and can choose different
types of neural networks for replacement. This work focuses on inference architecture,
so the most common fully connected neural network is used here.

4 Experiments

The performance of deep neural networks in representation learning cannot be directly
tested. As a general-purpose inference architecture, NAIA can be applied to various
downstream tasks. We explore the representation performance of NAIA by using five
real-world datasets for sequence forecasting and anomaly detection tasks. TheElectricity
dataset [20, 21] contains the electricity consumption of 321 customers. SMD [27] is from
a large technology company, and the data contains 38 dimensions with a true anomaly
rate of 0.042. PSM [28] is a time series of 26 application server nodes recorded by eBay
Inc.MSL [29] is 55 dimensions fromNASA’sMars Science Laboratory rover, with a true
anomaly ratio of 0.105. SWaT [30] is 51 sensors from a continuously operating water
infrastructure system, with a true anomaly ratio of 0.121. The optimizer uses ADAM
[31], where the exponential decay factors for the first- and second-order moments are
set to: 0.87 and 0.995, respectively, and the learning rate is set to 0.001. Each data set
is randomly divided, with 80% of the training set and 20% of the test set. The interval
stability parameter θ was set to 0.05. The deviation parameter h was set to 1 by default.

We set up three sets of neural network configuration schemes given to NAIA. NAIA:
all neural network interfaces are docked to fully connected neural networks. NAIA-
R: Sequences were embedded in RNN instead of a fully connected one. NAIA-D/2:
The number of neural network layers in the decoder part of the default configuration is
reduced by half, and the effect of the interference decoder on the performance of the
functional representation is examined.



336 F. Yu et al.

The experiment contains four baselines: the MTGP based on a Gaussian process
fitting (GPR) [17], which builds a temporal model for each dimension by creating a tem-
poral representation kernel with a task representation kernel and then by their Hadamard
product. GRU-D [32] is a recurrent neural network redesigned based on gating units,
which decomposes the input part into three variables based on GRU, i.e., variable, mask,
and time interval, to make the inference more adequate. VAE-RNN is based on varia-
tional auto-encoder architecture [26], based on neural differential equation approach
ODE-RNN-ODE [30], which uses ODE to construct an encoder and decoder for con-
tinuous representation of samples. The informer is based on a self-attention mechanism
[16] to improve the model’s predictive power for long-term dependence by modifying
the attention mechanism.

4.1 Forecasting Performance

In this section, the sequence forecasting task is used to validate the representation per-
formance and timeliness of the model, and MSE is used as the experiment metric. The
relative training elapsed time rate at optimal performance is used as the timeliness metric
of the training representation, and the elapsed time of NAIA is set at 100 units. During
the training phase, part of the data set is randomlymasked, and an overall masking rate of
m (the proportion of the masked data to the total data) is to generate irregular sequences
and examine the model’s ability to adapt to irregular sequences.

As shown in Table 1, m denotes the overall masking ratio, and it can be found that
when the masking ratio is 0 (the input sequence is equally spaced and complete). In
this case, NAIA does not show a significant advantage. In addition, NAIA maintains the
lead among all other masking ratios. In addition, NAIA-R achieves the best performance
in all masking ratios. The targeted design of the encoders can improve the forecasting
performance ofNAIA, and the neural network interface ofNAIAgives some extensibility
to this architecture. NAIA-D/2 does not show any significant performance degradation
compared to NAIA, which indicates that NAIA’s performance comes mainly from the
embedding and representation modules rather than the decoder.

4.2 Anomaly Detection Performance

Anomaly detection is another downstream task that indirectly demonstrates the represen-
tational performanceof themodel.Weperformanomalydetectionusing four real datasets
with existing anomalous data and mask sequences in the same manner as described in
Sect. 4.1. The model is required to reconstruct the removed data based on contextual
patterns, and anomaly patterns are detected by examining the reconstruction MSE error
(set to 0.03). The performance of anomaly detection is measured using the F1 score.
Experimental results are shown in Table 2.

Table 2 shows that the informer model with self-attention performs best on all four
datasets at m = 0. However, NAIA beats the other baselines when irregular sequences
exist (m > 0), especially with the NAIA-R structure. NAIA is less affected by increasing
masking ratios than othermethods. Its F1 score drops slightly asmgrows. This is because
NAIA uses representative samples to handle non-equally spaced input and determines
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Table 1. Forecasting performance on Electricity (MSE as %)

Strategy m = 0 m = 0.2 m = 0.4 Elapsed
time

MTGP 52.65 ± 0.37 57.79 ± 0.16 63.36 ± 0.02 2.9*

GRU-D 41.32 ± 0.86 44.73 ± 0.60 46.52 ± 0.69 428.3

VAE-RNN 42.09 ± 0.27 46.91 ± 0.18 49.58 ± 0.71 470.5

ODE-RNN-ODE 39.26 ± 0.30 41.02 ± 0.49 47.67 ± 0.35 245.3

Informer 28.92 ± 0.38 39.22 ± 0.52 45.09 ± 0.63 735.9

NAIA 33.25 ± 0.28 34.18 ± 0.58 39.83 ± 0.82 100.0

NAIA-R 31.04 ± 0.47 34.56 ± 0.39* 36.45 ± 0.98* 131.64

NAIA-D/2 36.52 ± 0.56 35.51 ± 0.47 40.74 ± 0.20 98.27

Table 2. Anomaly detection performance (F1 as %)

Dataset SMD PSM MSL SWaT

Metric m = 0 m =
0.2

m =
0.4

m = 0 m =
0.2

m =
0.4

m = 0 m =
0.2

m =
0.4

m = 0 m =
0.2

m =
0.4

MTGP 57.25 53.21 47.42 70.20 69.74 62.53 68.97 65.32 52.28 45.73 43.17 38.42

GRU-D 62.47 59.23 55.01 68.65 64.11 57.28 69.18 68.12 62.52 57.95 56.06 50.21

VAE-RNN 59.53 56.39 51.22 69.31 65.09 61.40 72.57 71.34 61.21 54.24 51.79 47.63

ODE-RNN-ODE 75.59 72.08 63.70 85.88 81.64 76.57 86.33 82.10 75.35 81.29 78.23 70.05

Informer 88.35 82.83 72.47 92.32 83.28 79.94 89.02 82.42 77.16 85.59 80.87 76.49

NAIA 84.19 83.98 80.72 87.79 85.57 84.95 85.07 84.71 84.35 83.62 82.65 81.87

NAIA-R 85.93 85.62 81.06 90.13 87.25 85.11 88.28 86.17 85.92 85.20 84.20 83.81

NAIA-D/2 83.76 83.55 80.34 85.08 83.78 81.04 82.42 83.26 82.75 81.49 79.56 79.30

the stable interval by the latent distribution of the output from the latent function repre-
sentation. Therefore, the masking at the original sequence level has little impact on the
latent distribution of the stable interval AS the data lies. The latent distribution of the
stable interval fills in the local data gaps within the interval at a higher semantic level.

4.3 Ablation Experiments

We explore the contribution of key components to model performance through ablation
experiments. The metric of performance test metric remains consistent with Sect. 4.2.
The functional representation (FP) is responsible for receiving sample functions and
transforming them continuously into density functions. We then remove the first path
(P1) and the second path (P2) of the query times separately to examine the effect of
missing deep/shallow semantic paths on the model. Finally, we remove the stability
interval constraints (SIC) based on JS-divergence discrimination, allowing the sequence
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to mark query times in an uninhibited manner. The experimental results are shown in
Table 3.

Table 3. Ablation results (F1 as %)

Strategy SMD PSM MSL SWaT

m = 0.2 m = 0.4 m = 0.2 m = 0.4 m = 0.2 m = 0.4 m = 0.2 m = 0.4

FP - 64.29 56.51 73.98 57.19 63.35 59.41 68.22 52.05

P1 - 70.49 68.78 71.75 69.43 74.28 65.20 70.12 67.32

P2 - 73.67 70.21 75.92 71.95 77.47 68.09 74.28 66.50

SIC- 79.76 71.65 82.90 77.92 78.38 72.37 79.55 70.97

NAIA 83.98 80.72 85.57 84.95 82.42 77.16 82.65 81.87

as shown in Table 3 (minus signs in the first column represent the removal of the
component), the F1 score decreases the most when the FP is removed. Furthermore, it
is sensitive to the change in masking ratio, and increasing the masking ratio degrades
the F1 scores. This phenomenon indicates that the continuous property of functional
representation plays a vital role in the semantic alignment of irregular sequences. The
absence of path 1 has a more significant impact on performance than path 2, indicating
that the deep weak semantics are more important for the model representation than the
shallow semantics. Even so, the absence of only path 2 still significantly reduces the F1
score, implying the effectiveness of the interplay mechanism between deep and shallow
semantics.

5 Conclusion

This paper introduces NAIA, a method for approximating the distribution among inter-
vals of irregular sequences. By constructing continuous latent function representations,
we capture the temporal semantic information of sequences. NAIA approximates the
semantic associations between observed sequences and queries as density functions
and aligns the sampling points of irregular sequences with query times, enabling self-
supervised learning of the model. The computational architecture of NAIA extracts
deep weak semantics and shallow strong semantics of query times. These semantics
are injected into the pre- and post-stages of the latent representation, replacing the self-
attention mechanism and reducing the representation complexity of irregular sequences
to O(n). Experimental evaluations on five datasets demonstrate that NAIA achieves
state-of-the-art performance compared to four recent baselines. Future research direc-
tions include further exploring the representation mechanisms of latent functions in the
latent space and finding more suitable output methods for sequence distributions.
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Abstract. Text-to-SQL aims at generating SQL queries for the given
natural language questions and thus helping users to query databases.
Prompt learning with large language models (LLMs) has emerged as a
recent approach, which designs prompts to lead LLMs to understand the
input question and generate the corresponding SQL. However, it faces
challenges with strict SQL syntax requirements. Existing work prompts
the LLMs with a list of demonstration examples (i.e. question-SQL pairs)
to generate SQL, but the fixed prompts can hardly handle the scenario
where the semantic gap between the retrieved demonstration and the
input question is large. In this paper, we propose a retrieval-augmented
prompting method for an LLM-based Text-to-SQL framework, involving
sample-aware prompting and a dynamic revision chain. Our approach
incorporates sample-aware demonstrations, which include the composi-
tion of SQL operators and fine-grained information related to the given
question. To retrieve questions sharing similar intents with input ques-
tions, we propose two strategies for assisting retrieval. Firstly, we lever-
age LLMs to simplify the original questions, unifying the syntax and
thereby clarifying the users’ intentions. To generate executable and accu-
rate SQLs without human intervention, we design a dynamic revision
chain that iteratively adapts fine-grained feedback from the previously
generated SQL. Experimental results on three Text-to-SQL benchmarks
demonstrate the superiority of our method over strong baseline models.

Keywords: Large language model · Text-to-SQL · Prompt learning

1 Introduction

Text-to-SQL task aims to convert natural language question (NLQ) to structured
query language (SQL), allowing non-expert users to obtain desired information
from databases [1,2]. As databases are popular in various scenarios involving dif-
ferent domains (e.g., education and financial systems, etc.), it is desirable to train
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a model that generalizes well across multiple domains. To facilitate cross-domain
generalization [3,4], researchers adapt encoder-decoder architecture [5,6], reduc-
ing the requirement for specific domain knowledge via end-to-end training. These
approaches require diverse and extensive training data to train the model, which
is prohibitively expensive [7].

Recent progress focuses on large language models (LLMs) (e.g., GPT-3 [8],
Codex [9] and GPT-4 [10]) with prompt learning [11], which refers to using spe-
cific prompts or instructions to generate desired responses. Rajkumar et al. [12]
and Liu et al. [13] evaluate several prompt learning baselines for Text-to-SQL
tasks. Their findings show that though it is natural for LLMs to generate text
sequences, generating SQL is still a challenge due to the SQL’s strict syntax
requirements. To address these issues, inspired by few-shot learning [11], exist-
ing work employs prompting the LLMs with a list of demonstration exam-
ples (i.e. question-SQL pairs) to generate SQL queries. However, they typi-
cally rely on manual labour to create static demonstration examples tailored
to specific tasks. DIN-SQL [14] selects pre-defined samples from each category,
SELF-DEBUGGING [15] explains the code to LLMs but without explanation
demonstration. These methods employ a static demonstration, meaning that the
demonstration examples provided to LLMs are fixed and do not adapt or change
across different examples. These static demonstration examples hardly adapt to
the scenarios where the semantic gap between retrieved demonstrations and the
input question is large, which is called retrieval bias [16], commonly appearing
in the retrieval-augmented generation.

Inspired by [17], we argue that providing dynamic demonstrations can be
adaptive to specific samples and schema for SQL generation. Dynamic examples
enable the SQL generation to accommodate various scenarios. By adjusting to
specific instances, demonstrations can be customized to incorporate the neces-
sary query structure, logical operations, and question semantics. This adaptabil-
ity makes it easier to generate SQL queries that are relevant and appropriate for
various situations.

In this paper, we propose retrieval-augmented prompts for an LLM-based
Text-to-SQL model, which contains sample-aware prompting and a dynamic
revision chain. Specifically, we propose to retrieve similar SQL queries to con-
struct prompts with sample-aware demonstration examples. Notice that users
often ask questions in different expressions, even if they have the same intention
and SQL query. It makes the model hard to retrieve helpful examples. To solve
this issue, we propose to extract the question’s real intention via two strategies:
Firstly, we simplify original questions through LLMs to clarify the user’s inten-
tions and unify the syntax for retrieval. Secondly, we extract question skeletons
for retrieving items with similar question intents. To produce executable and
accurate SQL, we design a dynamic revision chain, generating SQL queries by
iteratively adapting to fine-grained feedback according to the previous version of
the generated SQL. The feedback includes SQL execution results, SQL explana-
tions, and related database contents. This dynamic chain manages to generate
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executable and accurate SQL through automatic interaction between the lan-
guage model and the database without human intervention.

Our contributions are as follows: (1) We develop a retrieval-augmented frame-
work for Text-to-SQL tasks by prompting LLMs with sample-aware demonstra-
tions. (2) We propose a dynamic revision chain, which adapts to the previously
generated SQL with fine-grained feedback. (3) Our method outperforms strong
baseline models on three Text-to-SQL benchmarks.

2 Related Work

2.1 Encoder-Decoder SQL Generation

SQL generation tasks have achieved significant advancements through the uti-
lization of encoder-decoder architectures [2].

On the encoder side, Guo et al. [18] proposed IRNET, using attention-based
Bi-LSTM for encoding and an intermediate representation-based decoder for
SQL prediction. Later, [19,20] introduced graph-based encoders to construct
schema graphs and improve input representations. Works such as RATSQL [1],
SDSQL [5], LGESQL [21], S2SQL [22], R2SQL [23], SCORE [24], and STAR [25]
further improved structural reasoning by modelling relations between schemas
and questions. GRAPHIX-T5 [6] overcomes the limitations of previous methods
by incorporating graph representation learning in the encoder. Concurrently,
RASAT [26] also provided T5 with structural information by adding edge embed-
ding into multi-head self-attention.

On the decoder side, we divide the methods into four categories: sequence-
based methods (BRIDGE [27], PICARD [3]) directly translate NLQ into SQL
query token by token, template-based methods (X-SQL [28], HydraNet [29])
employ predefined templates to regulate SQL generation and ensure structural
coherence, stage-based methods (GAZP [30], RYANSQL [31]) first establish a
coarse-grained SQL framework and then fills in the missing details in the frame
which calls slot-filling methodologies, and hierarchical-based methods (IRNet
[32], RAT-SQL [1]) generate SQL according to grammar rules in a top-down
manner, resulting in a tree-like structure.

2.2 LLM-Based SQL Generation

LLM-based models recently emerge as a viable option for this task [12,13]. For
effectively utilizing, it is important to design appropriate in-context demonstra-
tion [33] and chain-of-thought (CoT) [34] strategies that can elicit its ability [7].

In terms of searching for demonstrations, DIN [14] selects a fair number
of demonstration examples from each category (e.g. simple classes, non-nested
complex classes and nested complex classes), but they are fixed. Moreover, Guo
et al. [35] adaptively retrieve intention-similar SQL demonstration examples
through de-semanticization of the questions. However, none of these methods
can solve the ambiguous and varied questioning of realistic scenarios.
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Fig. 1. Framework overview: The left half shows retrieval repository construction in
three steps. The top three sentences are three specific instances each. The Green dashed
box presents the training set. The right half is a dynamic revision chain with SQL
queries generated by LLM iterations as nodes (green boxes). The output of steps 2 and
4 are collectively referred to as fine-grained feedback. (Color figure online)

As for the CoT prompting strategy, DIN-SQL [14] follows a least-to-most [36]
prompting method, decomposing Text-to-SQL task into subtasks and solves
them one by one. Pourreza and Chen et al. explore self-correction [14,15], where
the LLM explain the question and SQL, providing valuable feedback for improve-
ment. Tian et al. [37] propose interactive generation with editable step-by-step
explanations, combining human intervention with LLM generation to refine the
final SQL output. Additionally, Sun et al. [38] explore execution-based self-
consistent prompting methods.

Nonetheless, creating task-specific demonstration examples [14,15,37,38]
demands manual labour. Inspired by some retrieval-related research [16,39,40],
we develop a retrieval-augmented framework for Text-to-SQL tasks. Our method
works through automatic interaction between the LLMs and the databases with-
out human intervention. Moreover, explaining to itself and simple feedback
alone [14,15] are weak for digging out errors for correction. Our approach takes
into account all three aspects of fine-grained feedback, which interact with each
other to create effective feedback.

3 Methodology

Our framework consists of two modules as shown in Fig. 1: (1) Retrieval
Repository: (see Sect. 3.1) We construct a retrieval repository with simpli-
fied questions added and then use question skeletons to retrieve sample-aware
SQL demonstration examples. (2) Dynamic Revision Chain: (see Sect. 3.2)
We further revise the generated SQL queries by adding fine-grained feedback.
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3.1 Retrieval Repository

We construct a retrieval repository consisting of multiple key-value retrieval
items, where the keys represent the question skeletons and the values are k
sample-aware SQL queries. These processes enable us to generate demonstra-
tion examples that showcase the desired behaviours of the LLM. Our method
involves: (1) Simplifying original questions to unify various questioning styles
(see Sect. 3.1.1). (2) Extracting question skeletons to construct a retrieval repos-
itory (see Sect. 3.1.2). (3) Retrieving SQL queries according to skeleton similar-
ities (see Sect. 3.1.3).

3.1.1 Question Simplification
We simplify natural language questions by prompting the LLM with instruc-
tions. In this way, we can avoid the frustration of unusual questioning styles and
enhance the syntax and wording variety in the repository.

Specifically, we construct a prompt template prompt(.): “Replace the words
as far as possible to simplify the question, making it syntactically clear, common
and easy to understand: [QUESTION]”, where “[QUESTION]” represents the
original natural language question. We then obtain the simplified question by
feeding prompt(Q) into the LLM. We maintain a consistent temperature setting
in the language model to ensure that all simplified sentences exhibit the same
probability distribution.

3.1.2 Question Skeleton Extraction
We then extract question skeletons, including both original questions and sim-
plified questions. We follow the method proposed by Guo et al. [35] to obtain
question skeletons. This process removes specific schema-related tokens from the
questions, focusing solely on the structure and intent. Finally, we take the (ques-
tion skeleton, SQL) pairs from the training set and store them in the retrieval
repository. Note that the number of samples in the retrieval repository is twice
as large as the training set, due to the addition of the simplified samples.

Let Dtrain represent the training set, and R denotes the retrieval repository.
The original natural language question is denoted as Qo, while Qr represents
the simplified question. The question skeletons are denoted as So and Sr for the
original and simplified questions, respectively. We formalize the composition of
the retrieval repository as follows:

R = {(So,SQL), (Sr,SQL) | (Qo,SQL) ∈ Dtrain}.

3.1.3 Sample Retrieval
The retrieval process searches for the most similar question skeletons and returns
their corresponding SQL queries from the retrieval repository. This search is
based on the semantic similarity between the skeleton of the new question and
the items’ keys in R.
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Specifically, given a new question ˜Qo, we first obtain its simplified sentence
˜Qr, and their corresponding question skeletons ˜So and ˜Sr, following the same
method used in previous two subsections (see Sects. 3.1.1 and 3.1.2). Then we
calculate the cosine similarity scores so between the semantic vector of question
skeleton ˜So and all question skeletons S in R. Similarly, we also compute the
cosine similarity scores sr for simplified question skeleton ˜Sr using the formula:
s = cos

(

f(S) · f(˜S)
)

, where f(.) represents an off-the-shelf semantic encoder1.

Here, ˜S will be instantiated as ˜So and ˜Sr, and s will be instantiated as so and
sr, correspondingly.

From these scores, we select the top-k retrieval samples with the highest
rankings. Let k1 and k2 denote the number of samples retrieved from the original
question skeleton ˜So and the simplified question skeleton ˜Sr respectively, such
that k = k1 + k2. We then concatenate the k samples to form a demonstration
example as input to the LLM. Our retrieval repository offers LLMs with sample-
aware SQL examples, which display a more practical answer space.

3.2 Dynamic Revision Chain

We employ LLMs to generate an initial SQL query, and then we iteratively revise
the generated SQL queries based on fine-grained feedback, forming a dynamic
revision chain. The dynamic revision chain consists of the SQL queries generated
by the LLM iteration as nodes and the prompts provided to the LLM as edges.
With minimal human intervention, LLMs interact with databases to generate
accurate and executable SQL queries in two stages of the dynamic revision chain:
(1) assembling prompt based on the fine-grained feedback (see Sect. 3.2.1), and
(2) generating SQL via iterative prompting (see Sect. 3.2.2).

3.2.1 Fine-Grained Feedback
We collect three fine-grained pieces of information based on the SQL generated in
the previous iteration. The intuition is that various information hampers LLMs’
focus, so they struggle to extract necessary data from extensive and complex
databases. Thus, we should progressively narrow down the scope and prioritize
the most likely information. The fine-grained feedback in our approach consists
of three aspects of information:

(1) Execution Error Feedback: We feed the SQL query generated by LLM
into the database engine (i.e. SQLite) for execution. We then obtain the
error messages reported during the execution and add them to the prompt.
It checks whether the predicted SQL can be executed correctly, and reports
the specifics of the error (e.g. “no such table: [TABLE]”, “no such function:
YEAR”, “misuse of aggregate: COUNT()”). By incorporating the execution
error messages into the prompt, LLM can learn from its errors. This helps
to generate queries that follow the SQL syntax rules.

1 We utilize SBERT [41] in our experiment.
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(2) Natural Language Explanation: We prompt the LLM with instructions,
converting the SQL predicted in the previous iteration back into its corre-
sponding natural language expression. Specifically, we construct an instruc-
tion:“What does this SQL query mean? What are the differences between the
predicted meaning and the question meanings above?”. The LLM identifies
semantic gaps and fills them by explaining the meaning of its own generated
SQL and comparing it to the meaning of the original question.

(3) Related Database Contents: We provide the LLM with content details
about the database tables and columns involved in the SQL queries pre-
dicted in the previous iteration, including the possible values involved in
the question. It aims to allow LLMs to simulate execution and thus gener-
ate more contextually relevant and accurate SQL queries.

Overall, the fine-grained feedback approach aims to enable LLMs to learn
from their mistakes, understand the meaning of the SQL queries generated and
use contextual information in the database to generate more accurate and rele-
vant SQL queries. By addressing challenges and focusing on important aspects,
the methodology aims to help the LLm better extract the necessary data from
complex databases and improve the performance of its query generation.

3.2.2 Iterative SQL Generation
Based on prompts with fine-grained feedback, the LLM iteratively generates
SQL queries. The intuition for iterative generation is that one iteration of fine-
grained feedback might not check for all mistakes, whereas multiple iterations
of feedback generation are more likely to get progressively closer to the gold
answer.

Specifically, we concatenate three fine-grained feedback components with the
previously generated SQL in each iteration, feeding them into the LLM. We then
obtain a new SQL and collect new fine-grained feedback based on it, proceeding
so to iterative generation. Let’s denote the previous SQL query generated by
the LLM as SQLprev and the current SQL query as SQLcurr. The fine-grained
feedback components are represented as Ferror for execution error feedback, FNL

for natural language explanation, and FDB for related database contents. At each
iteration i, the LLM generates a new SQL query SQL

(i)
curr by incorporating the

fine-grained feedback components:

SQL(i)
curr = LLM(SQLprev, F

(i)
error, F

(i)
NL, F

(i)
DB).

After executing SQL
(i)
curr using the database engine, we obtain the result

R
(i)
prev from the previous iteration and R

(i)
curr from the current iteration. To avoid

infinite loops, we set a maximum number of iterations Nmax. The termination
condition is defined as: R

(i)
prev = R

(i)
curr or i = Nmax. This control mechanism

ensures that the generated SQL queries converge to an optimal and executable
solution within a reasonable timeframe.
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In this iterative feedback loop, we enable a dynamic interaction between the
LLM and the database engine, maximizing the generation of executable SQL
without extensive human intervention.

4 Experiments

4.1 Experimental Setup

4.1.1 Setting
We evaluate our method on text-davinci-003, which offers a balance between
capability and availability. We apply FAISS [42] for storing the question skeletons
and efficient retrieval followed by Guo et al. [35]. For the initial simplification
of questions, we set temperature τ = 1.0. When generating SQL samples, we set
temperature τ = 0.5. For the number of retrieval samples, we assign k1 = 4 and
k2 = 4. The maximum number of iterations N is 8.

4.1.2 Datasets
(1) Spider [43] is a large-scale benchmark of cross-domain Text-to-SQL across
138 different domain databases. (2) Spider-Syn [44] is a challenging vari-
ant based on Spider that eliminates explicit alignment between questions and
database schema by synonym substitutions. (3) Spider-DK [45] is also a variant
dataset based on Spider with artificially added domain knowledge.

4.1.3 Evaluation
We consider two key metrics: execution accuracy (EX) and test-suite accuracy
(TS) [46]. EX measures the accuracy of the execution results by comparing them
with the standard SQL queries, while TS measures whether the SQL passes all
EX evaluations for multiple tests, generated by database augmentation. Note
that EX is the most direct indication of the model performance in Text-to-SQL,
although it contains false positives. Exact match evaluation is not performed,
as multiple correct SQLs exist for one query. We use the official TS evaluation
procedure, while for EX, we slightly modify the evaluation procedure due to the
need to decouple the fine-tuning-based models for independent evaluation.

4.1.4 Baselines
We compare to two groups of methods:
Fine-Tuning T5-3B Baselines: PICARD [3] is a technique that con-
strains auto-regressive decoders in language models through incremental parsing;
RASAT [26], which incorporates relation-aware self-attention into transformer
models while also utilizing constrained auto-regressive decoders; and RESD-
SQL [5], which introduces a ranking-enhanced encoding and skeleton-aware
decoding framework to effectively separate schema linking and skeleton pars-
ing.
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Prompting LLMs Baselines: As for the large language models, we use two
variants of the Codex family [9,12] (Davinci and Cushman), PaLM-2 [38,47],
the GPT-4 model [10,14] and the ChatGPT model [13]. In addition to a simple
baseline assessment model, we choose several recent LLM-based works. DIN [14]
decompose the Text-to-SQL tasks into sub-tasks: schema linking, query classifi-
cation and decomposition, SQL generation, and self-correction; then performing
few-shot prompting with GPT-4 [10]. SELF-DEBUGGING [15] adds error
messages to the prompt and conducts multiple rounds of few-shot prompting
for self-correction. Few-shot SQL-PaLM [38] adopts an execution-based self-
consistency prompting approach.

4.2 Main Results

4.2.1 Performance on Spider Dataset
Table 1 shows how ours performed on Spider compared to baseline methods.
Across all three datasets, our methods achieve the highest of execution accuracy
(EX) and test suite accuracy (TS).

Table 1. Performance comparison on Spider with various methods. “-” indicates that
the results are not available. Schema indicates that the prompt contains the SQL for
creating the database tables (i.e. tables, columns, value and its type)4.

Model Method EX TS

T5-3B + PICARD [3] 79.3 69.4

RASAT + PICARD [26] 80.5 70.3T5-3B

RESDSQL-3B + NatSQL [5] 84.1 73.5

Few-shot [12] 61.5 50.4
Codex-cushman

Few-shot + Schema [12] 63.7 53.0

Few-shot [12] 60.8 51.2

Few-shot + Schema [12] 67.0 55.1

Few-shot [14] 71.0 61.5

DIN-SQL [14] 75.6 69.9

Codex-davinci

SELF-DEBUGGING [15] 84.1 -

Few-shot SQL-PaLM [38] 82.7 77.3
PaLM2

Fine-tuned SQL-PaLM [38] 82.8 78.2

Zero-shot [14] 72.9 64.9

Few-shot [14] 76.8 67.4GPT-4

DIN-SQL [14] 82.8 74.2

ChatGPT Zero-shot [13] 70.1 60.1

Zero-shot 73.1 71.6
Text-davinci

Ours 85.0 (0.9↑) 83.2 (5.9↑)
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Ours exhibits strong performance on test-suite accuracy, which exceeds the
next-best method results in fine-tuning and prompting by 9.7% and 5.9% respec-
tively. In terms of EX, ours outperforms the next best method in both fine-tuning
and prompting by 0.9%.

Comparison with Zero-Shot Prompting Models: Across all three met-
rics, ours surpasses Codex, ChatGPT and even GPT-4 models utilizing zero-
shot prompting, despite they employ the prescribed format as outlined in the
official guidelines5. This indicates that although LLMs are trained using a spe-
cific format, their acquired competencies become internalized and subsequently
expanded for application within more flexible formats.

Comparison with Few-Shot Prompting Models: Ours also outperforms
all models in a few-shot setting. The closest EX performance compared to ours
is SELF-DEBUGGING, with an iterative prompting strategy as well, but we
still outperform it by 0.9%. Notice that the two methods with similar few-shot
prompting in the Codex-davinci model, the latter performs 10% better than
the former in both EX and TS. It indicates that the selection of demonstration
examples (easy, non-nested complex, and nested complex classes) [14] plays a
significant role. While ours uses an adaptive sample-aware method brings 8.2%
more effective than this static demonstration, which suggests that incorporating
more effective prompts is crucial for LLMs to understand new specific tasks.

4.2.2 Performance on Spider-SYN and DK Datasets
Table 2 shows that ours is significantly more robust than baseline methods for
Spider variants. As compared to Spider-SYN, ours improved 4.5% on EX and
12.6% on TS. Surprisingly, ours improved by 13.6% over the previous SOTA on
Spider-DK.

4.3 Various Difficulty Levels Analysis

As shown in Table 3, we evaluate our effectiveness at various difficulty levels,
which are determined by the number of SQL keywords used, the presence of
nested sub-queries, and the utilization of column selections or aggregations. The
results show that ours outperforms the other models at all levels except for the
easy level, where it is worse than SQL-PaLM. The improvement in performance
with increasing difficulty levels indicates that our model’s strengths become more
pronounced as the queries become more challenging. This suggests that our
model excels in handling complex SQL queries.

4.4 Ablation Study

Figure 2 demonstrates with and without each of the two modules at four com-
plexity levels. It shows that the exclusion of any of the modules leads to a

5 https://platform.openai.com/examples/default-sqltranslate.

https://platform.openai.com/examples/default-sqltranslate
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Table 2. Evaluation of our method on Spider-SYN and Spider-DK datasets10. “-”
indicates that the results are not available11.

SPIDER-SYN

Method EX TS

T5-3B + PICARD [3] 69.8 61.8

RASAT + PICARD [26] 70.7 62.4Fine-tuning

RESDSQL-3B + NatSQL [5] 76.9 66.8

ChatGPT [13] 58.6 48.5

Text-davinci 60.7 60.3

Few-shot SQL-Palm [38] 74.6 67.4

Fine-tuned SQL-Palm [38] 70.9 66.4

Prompting

Ours 81.4(4.5↑) 80.0(12.6↑)
SPIDER-DK

Method EX TS

T5-3B + PICARD [3] 62.5 -

RASAT + PICARD [26] 63.9 -Fine-tuning

RESDSQL-3B + NatSQL [5] 66.0 -

ChatGPT [12] 62.6 -

Text-davinci 66.2 -

Few-shot SQL-Palm [38] 66.5 -

Fine-tuned SQL-Palm [38] 67.5 -

Prompting

Ours 81.1 (13.6↑) -

Table 3. Test-suite accuracy at various complexity levels on Spider. The first four rows
are from [38], which is described as execution accuracy data in the original paper [14],
but actually, it is test-suite accuracy data.

Prompting Easy Medium Hard Extra All

Few-shot (CodeX-davinci) [14] 84.7 67.3 47.1 26.5 61.5

Few-shot (GPT-4) [14] 86.7 73.1 59.2 31.9 67.4

DIN-SQL (CodeX-davinci) [14] 89.1 75.6 58.0 38.6 69.9

DIN-SQL (GPT-4) [14] 91.1 79.8 64.9 43.4 74.2

Few-shot SQL-PaLM (PaLM2) [38] 93.5 84.8 62.6 48.2 77.3

Fine-tuned SQL-PaLM (PaLM2) [38] 93.5 85.2 68.4 47.0 78.2

Ours (Text-davinci) 91.9 88.6 75.3 63.9 83.2
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decrease in performance at all levels of difficulty, in terms of hard and extra
levels. Decreases in model performance are similar for the w/o revise and w/o
simplify settings. Note that both modules of our method are most effective in
improving the Spider-DK’s easy level by 13.6% each, which requires additional
domain knowledge. This suggests that the simplification strategy and dynamic
revision chain strategy contribute to a variety of generalisation issues.

Fig. 2. Ablation study of our model components at various complexity levels across
three datasets. w/o simplify refers to using a direct retrieval of the question skele-
tons rather than a strategy of simplifying questions. w/o revise refers to removing the
dynamic revision chain module.

We found that removing the simplification module resulted in a significant
drop in model performance, particularly in the DK dataset where the overall
drop was 12.5%. The impact at different difficulty levels is in descending order
of extra, hard, easy, and medium. This is possibly due to the fact that the
model can incorporate more external knowledge as a supplementary description
when simplifying, especially in the case of more SQL components. Note that w/o
simplify is rather more effective for solving easy-level problems than medium-
level ones, probably because the execution accuracy of easy-level problems is
already high and short sentences are more likely to cause ambiguity.

Without the revision module, model performance suffers more as the diffi-
culty level increases. On Spider-DK the model performance decreases by 11.0%,
especially on easy-level and extra-level by 13.6% and 13.3% respectively. As
higher difficulty levels require more knowledge, this suggests that the fine-grained
feedback in the revision module effectively complements the domain knowledge
required for SQL generation.
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4.5 Iterative Round Analysis

From Fig. 3, we observe that the major improvement comes from the first two
iteration turns. We note that in addition to the 4.6% improvement in the first
iteration of Spider, the other two datasets studied for generalisability, Spider-DK
and Spider-SYN, also showed a slight improvement in accuracy in the second
iteration over the first. This indicates that iterative feedback of fine-grained
information from a dynamic revision chain helps to deal with more complex
generalisation problems, comparable to multiple reasoning needs to progressively
derive the target answer.

Fig. 3. Analysis of dynamic SQL revision chain with different numbers of iteration
rounds across three datasets: Spider, Spider-SYN, and Spider-DK.

4.6 Case Study

To demonstrate our model, we show a comparison of predicted SQL queries in
Fig. 4 using ChatGPT [12], DIN-SQL [14], SQL-PaLM [38] and Ours.

In the first example, since the question obviously mentions “French”, the
general models will be confused about the exact value of the column “citizenship”
even if they pick it out. Noting that a SQL query must match the exact word
mentioned to find the correct answer. Our approach provides the exact value of
the database content involved in the first fine-grained iteration, which leads to
a golden answer.

The second example requires only the selection of one item, whereas DIN-
SQL and SQL-PaLM both select two. ChatGPT incorrectly uses the aggregate
function COUNT(), which in this case is required in conjunction with GROUP
BY. Our approach self-corrects the error in the second fine-grained iteration by
interpreting the SQL interpretation in natural language.



354 C. Guo et al.

Fig. 4. Two illustrative cases from Spider [43]. Blue-coloured text is the correct gen-
eration, while the red-coloured text indicates the wrong generation. On the right hand
side, � means correct SQL while × means wrong. (Color figure online)

5 Conclusion

We propose retrieval-augmented prompts for an LLM-based Text-to-SQL model.
By utilizing sample-aware prompting and a dynamic revision chain, we address
the challenge of retrieving helpful examples and adapting the generated SQL
based on fine-grained feedback. Experimental results on three Text-to-SQL
benchmarks demonstrate the effectiveness of our method.

Acknowledgements. Research on this paper was supported by National Natural
Science Foundation of China (Grant No. 62306330).
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Abstract. Global Navigation Satellite System Reflectometry (GNSS-R)
technology has great advantages over traditional satellite remote sensing
detection of sea surface wind field in terms of cost and timeliness. It
has attracted increasing attention and research from scholars around the
world. This paper focuses on the Fengyun-3E (FY-3E) satellite, which
carries the GNOS II sensor that can receive GNSS-R signals. We ana-
lyze the limitations of the conventional sea surface wind speed retrieval
method and the existing deep learning model for this task, and pro-
pose a new sea surface wind speed retrieval model for FY-3E satellite
based on a multi-task learning (MTL) network framework. The model
uses the forecast product of Hurricane Weather Research and Forecasting
(HWRF) model as the label, and inputs all the relevant information of
Delay-Doppler Map (DDM) in the first-level product into the network for
comprehensive learning. We also add wind direction, U wind and V wind
physical information as constraints for the model. The model achieves
good results in multiple evaluation metrics for retrieving sea surface wind
speed. On the test set, the model achieves a Root Mean Square Error
(RMSE) of 2.5 and a Mean Absolute Error (MAE) of 1.85. Compared
with the second-level wind speed product data released by Fengyun Satel-
lite official website in the same period, which has an RMSE of 3.37 and
an MAE of 1.9, our model improves the performance by 52.74% and
8.65% respectively, and obtains a better distribution.

Keywords: FY-3E · HWRF · MTL · Wind speed retrieval

1 Introduction

GNSS-R technology is a method of detecting information about the Earth’s sur-
face by receiving the signals reflected from the GNSS satellites to the Earth’s
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surface [1]. It does not require a signal transmitter, only a signal receiver. With
the increasing number of GNSS satellites, GNSS-R technology has the advan-
tages of global coverage, low cost and fast acquisition, and has been widely
applied in various fields [4]. One of them is using GNSS-R technology to retrieve
sea surface wind fields, which is an emerging technology [5]. In the United States,
NASA launched the CYGNSS series of satellites in 2016 to monitor and warn
of tropical cyclones, and released a series of sea surface wind speed retrieval
products [16]; in China, the FY-3E satellite launched in 2021 also carried a
GNSS-R receiver [20], and released the first and second level sea surface wind
speed retrieval products in the following year [10]. Their methods of retrieving
sea surface wind speed are based on a large amount of historical data, construct-
ing empirical physical models, and obtaining the retrieved sea surface wind speed
[19]. However, under normal observation, most of the weather conditions are sta-
ble, and the observed wind speeds are low. There is less data on high wind speeds
under extreme weather conditions. Therefore, the results obtained by retrieving
empirical physical models perform better at low wind speeds, but have larger
errors at high wind speeds [15]. The accuracy of wind speed retrieval has an
important impact on the observation and prediction of extreme weather, which
causes huge economic losses every year. Therefore, improving the accuracy of
GNSS-R sea surface wind speed retrieval has extremely important value.

To tackle the above problem, this paper first uses the wind speed forecasted
by the HWRF model as the label, which is also mentioned in the release of
the CYGNSS second-level wind speed V3.0 version. We collected the HWRF
model data for the past month, and matched it with the FY-3E data at the
same time, and obtained a high wind data set. Based on the multi-task learning
neural network model [7], we designed a sea surface wind field retrieval model
for FY-3E. The model inputs all the information of DDM in all FY-3E first-
level products as input data. In the purely data-driven neural network model,
we added wind direction and other information as physical constraints. Besides
the main task of wind speed, we set up three subtasks of U wind, V wind and
wind direction. Through experiments and validation, compared with the FY-
3E second-level products, our model effectively improved the overall sea surface
wind speed retrieval accuracy of FY-3E.

This thesis makes three contributions:

• Using U wind, V wind, wind direction and other physical information to
constrain the neural network model and improve its performance.

• Fully exploiting all the information of DDM in FY-3E first-level products for
wind speed retrieval.

• Improving the accuracy of sea surface wind speed retrieval compared with
the traditional empirical physical function method, and using the multi-task
learning method to retrieve the FY-3E first-level products.

The rest of the paper is organized as follows: Sect. 2 reviews related work and
limitations. Section 3 describes the data used as labels and input, introduces the
model and defines the evaluation metrics. Section 4 provides detailed information
on the experimental procedure and its results. Section 5 concludes with some
remarks.
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2 Related Work

Besides the empirical physical model function method used by the institutions to
release products to retrieve sea surface wind speed, in recent years, many scholars
have also started to use machine learning methods to retrieve GNSS-R sea surface
wind speed. Jennifer et al. [14] used the ANN method to input several parameters
in the empirical physical model function into the neural network for learning;
Balasubramaniam et al. [2] added satellite latitude and longitude, geophysical
information and other variables, and input them into the ANN neural network;
Chu et al. [3] selected 33 variables from the product information to participate in
the network model; Hammond et al. [7] used the first-level product DDM image
obtained by satellite scanning as the input, and used the CNN neural network
model; in addition, there are Munoz-Martin et al. [12,13,17,21], who introduced
third-party data sources such as wave height, SMAP precipitation data, sea salt
density, etc., as corrections added to the neural network.

All these methods of using machine learning to retrieve high sea surface wind
speed, although they have improved the retrieval accuracy of sea surface wind
field to some extent, they all have some problems. The first problem: no matter
what network model is used in all these papers, the data labels are either the
ECMWF Reanalysis v5 (ERA5) [8] or the second Modern-Era Retrospective
analysis for Research and Applications(MERR-2) [6] global historical reanalysis
data. Due to the characteristics of the historical reanalysis data itself, it shows
good accuracy when the sea surface wind speed is low. But in the case of higher
wind speed, the reanalysis data will produce serious underestimation [11]. There-
fore, all of the above papers are focused on studying the low wind speed sea sur-
face wind field, so that the overall effect of the model has been greatly improved
at low wind speed, but there is no specific research on higher wind speed. The
second problem: due to the traditional physical empirical function method of
retrieving sea surface wind speed, most of the designed neural networks out-
put reference physical empirical function method to extract features from DDM
image part features such as Leading Edge Slope (LES), Normalised Bistatic
Radar Cross Section (NBRCS), DDM Average(DDMA) and results for fitting.
These models also selectively screened the information in the first-level products
when selecting and adding variables for input. For example, 33 pieces of infor-
mation were selected from 119 pieces of information; only processed DDM was
used and Raw DDM was directly ignored; only 5×3 DDMA area was extracted
from 17×11 area; all the information of DDM in the first-level products was not
fully utilized. The third problem: whether it is the traditional empirical physical
formula method or the neural network method, only the final wind speed infor-
mation is used. And the label and forecast products give both U wind and V
wind, and can also calculate the wind direction. The above methods ignore the
physical information implied therein.
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3 Methodology

3.1 FY-3E and HWRF Data

The subject of this paper is the FY-3E satellite. Since the GNOS II sensor carried
by FY-3E can receive GNSS-R signals, compared with the CYGNSS satellite
that can only receive GPS signals [18], it can also receive signals from Galileo
and Beidou positioning satellites [9], so the data source is more abundant. The
training data used in this paper is the first-level product of FY-3E. We obtained
all data in May 2023, about 1.1 million data, through the website. The first-
level product contains six elements: Channel, DDM, Receiver, Specular, Time
and Transmitter. In addition to selecting all 31 variables of the DDM element as
shown in Table 1, we also added two spatial position-related elements SP lon and
Sp lat in Specular to participate in the network. Among these variables, except
for Ddm raw data which is a two-dimensional variable with dimension 122×20
and Ddm effective area which is a two-dimensional variable with dimension
9×20, all other variables are one-dimensional variables.

Table 1. DDM variables

No 1 2 3 4

Name Ddm brcs factor Ddm doppler refer Ddm effective area Ddm kurtosis

No 5 6 7 8

Name Ddm noise m Ddm noise raw Ddm noise source Ddm peak column

No 9 10 11 12

Name Ddm peak delay Ddm peak doppler Ddm peak power ratio Ddm peak raw

No 13 14 15 16

Name Ddm peak row Ddm peak snr Ddm power factor Ddm quality flag

No 17 18 19 20

Name Ddm range refer Ddm raw data Ddm skewness Ddm sp column

No 21 22 23 24

Name Ddm sp delay Ddm sp dles Ddm sp doppler Ddm sp les

No 25 26 27 28

Name Ddm sp nbrcs Ddm sp normalized snr Ddm sp raw Ddm sp reflectivity

No 29 30 31

Name Ddm sp row Ddm sp snr Sp delay doppler flag

The training label uses the forecast data of the HWRF model [18]. HWRF
(Hurricane Weather Research and Forecasting) model is a numerical model for
predicting the track and intensity of tropical cyclones (hurricanes, typhoons). It
was jointly developed by the NOAA and the NRL of the United States, aiming
to provide high-precision hurricane forecast information. We collected the data
forecasted by HWRF in the whole month of May. Since the longer the forecast
time, the larger the deviation from reality, considering that the forecast time
interval of the HWRF model is 3H and the release product time interval is 6 h,
we chose every six hours of 0 o’clock and the first forecast time, i.e., 3 h time
data to ensure the accuracy and richness of the data to the greatest extent, and
finally obtained about 700k valid data.
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Since FY-3E and HWRF data are inconsistent in terms of spatiotemporal
continuity and resolution, data matching is required for FY-3E and HWRF data.
When processing the FY-3E first-level product, we found that its spatial and
temporal distribution was uneven, so we gridded it. In terms of spatial gridding,
we used the method of taking the average, and averaged the grid points within
0.25 range of latitude and longitude as the value of that grid point. In terms
of temporal resolution, because the time resolution of the label data HWRF is
1 h, and the time resolution of the FY-3E first-level product is 1 s, we needed
to reduce the scale of the time resolution. We used the method of time window
averaging, and took the average value of the points within half an hour before
and after as the value of the point for the whole hour. The specific processing
process is shown in Algorithm 1. The first part is to grid the FY-3E DDM
variables. Referring to the spatiotemporal interval of HWRF, we rounded the
latitude and longitude to 0.25◦, and took the integer point time within half an
hour interval as the time. Then, we took the average value of all the same type
of variables at the same location and time as the value of this grid. The second
part is to match the DDM variables and HWRF wind speed values at the same
spatiotemporal location. Since the HWRF wind speed value is represented by U
wind and V wind, we converted it to obtain the normal 10-meter height wind
speed. Through matching, we successfully matched about 90k data, which was
used as the training data set for this time.

3.2 Model Structure

The model is based on the 31 variable data of the FY-3E satellite first-level
product DDM and the latitude and longitude position data. The model design
is based on data-driven combined with physical information constraints, adding
wind direction and horizontal and vertical wind components information. Con-
sidering the characteristics of the task, the model design is based on the multi-
task learning neural network architecture, and obtains a new GNSS-R sea surface
wind speed retrieval model with physical information constraints.

The model consists of three processes as shown in Fig. 1. The first process
is the feature extraction of the two-dimensional image data DDM effective area
and DDM raw data. The features of DDM effective area are extracted through
the shared Conv convolutional network. DDM raw data needs to be convolved
again to extract features separately because its size is much larger than DDM
effective area. Then, all the features are concatenated with DDM 1D features
and position to form training features. The second process is the preliminary
training of the data, which is the shared network layer in the multi-task learning
network. The training features are input into the ANN network for training.
The third process sets different subtask learning network structures according
to different learning tasks. Different network learning layers are designed for
wind speed, wind direction, U wind and V wind respectively. And through the
setting of different learning task weights, the final main task result is obtained
to retrieve the sea surface wind speed.
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Algorithm 1 FY-3E DDM variables with HWRF wind speed matching

Input:

longitude of HWRF wind speed [hwrf long], latituede of HWRF wind speed[ hwrf lat],

the index of HWRF time [hwrf time index],

longitude of DDM[ ddm long], latituede of DDM wind [ddm lat],

time of DDM[ ddm time],variables of DDM [ddm varaibles]

1:DDM Variable Gridding( ddm long, ddm lat, ddm time, ddm varaibles )

2: ddm long = ddm long / 0.25

3: ddm lat = ddm lat / 0.25

4: if ( ddm time % 3600 > 1800)

5: ddm time = ddm time / 3600 + 1

6: else:

7: ddm time = ddm time / 3600

8: unique data = [ ]

9: for i, (lat val, lon val, time val)in enumerate(zip(ddm long, ddm lat, ddm time)):

10: key = (lat val, lon val, time val)

11: if key not in unique data:

12: unique data[key] = [i]

13: else:

14: unique data[key].append(i)

15: for indices in unique data.values():

16: avg variables = mean(Ddm variables[indices])

17: return avg variables

18:DDM Variables Wind Match( ddm long, ddm lat, ddm time, avg varaibles,

hwrf long, hwrf lat, hwrf time)

19: hwrf long = hwrf long / 0.25

20: hwrf lat = hwrf lat / 0.25

21: if (hwrf long == ddm long and hwrf lat == ddm lat and hwrf time == ddm time)

12: u = HWRF wind[”u10”][time index][lat index][long index]

23: v = HWRF wind[”v10”][time index][lat index][long index]

24: match wind =
√

v2 + u2

25: return match wind

Fig. 1. Model structure
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3.3 Metrics

In order to evaluate the training effect of the model, we chose Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Pearson’s Correlation Coefficient and Coefficient(ρ) of Determination
(r2) as the evaluation indicators of the retrieval accuracy results. The specific
formulas are as follows:

RMSE =

√
√
√
√

1
n

n∑

i=1

(yhwrf(i) − ŷfy(i))2 (1)

MAE =
1
n

n∑

i=1

|yhwrf(i) − ŷfy(i)| (2)

MAPE =
1
n

n∑

i=1

∣
∣
∣
∣

yhwrf(i) − ŷfy(i)

yhwrf(i)

∣
∣
∣
∣
× 100% (3)

ρ =
∑n

i=1(yhwrf(i) − ¯yhwrf )(yfy(i) − ¯yfy)
√

∑n
i=1(yhwrf(i) − ¯yhwrf )2

√
∑n

i=1(yfy(i) − ¯yfy)2
(4)

r2 = 1 −
∑n

i=1(yhwrf(i) − ŷfy(i))2
∑n

i=1(yhwrf(i) − ȳfy(i))2
(5)

where n is the number of samples, yhwrf(i) is the label value, ŷfy(i) is the pre-
dicted value, ȳhwrf(i) is the mean value of the label, and ȳfy(i) is the mean value
of the prediction. The smaller RMSE, MAE and MAPE are, the closer the model
results are to the label, and the better the training effect. The larger Pearson’s
Correlation Coefficient(ρ) and Coefficient of Determination (r2) are, the more
the model fits the label data, and the better the training effect.

When comparing with FY-3E second-level products, we also chose PRMSE ,
PMAE , PMAPE and Pρ as evaluation indicators. It can be seen that compared
with the traditional method, the new model has improved in the sea surface
wind speed retrieval problem. The specific formulas are as follows:

PRMSE =
RMSE1 − RMSE2

RMSE1
× 100% (6)

PMAE =
MAE1 − MAE2

MAE1
× 100% (7)

PMAPE = MAPE1 − MAPE2 (8)

Pρ =
ρ2 − ρ1

ρ1
× 100% (9)
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4 Experiment and Result

4.1 Data Preprocessing

In the experiment, the data needs to be cleaned first. Because there are many
missing places in the satellite observation data, these missing NaN values need to
be removed. Some unreasonable data, such as -9999 wind speed and inf values,
are also deleted. And remove the corresponding label of the training data set.
When calculating the loss function, because the wind direction size is 0–360. If
the loss is calculated directly, the wind direction loss greater than 180 will not
conform to the actual situation. Therefore, we design the wind direction function
loss to judge whether the difference between the two wind directions is greater
than 180◦. We keep it within 180◦, if it is greater than 180◦, then we use 360
minus the difference to get the angle of the wind direction.

4.2 Experiment

We split the processed data into training set, validation set and test set according
to the ratio of 7:2:1. Before training, we set the seed to ensure the repeatability
of the experiment. We choose a suitable learning rate, and set it to 0.001 after
testing. We input the test set into the network model for training. When setting
the loss for training, we notice that the wind direction loss is much larger than
the wind speed loss in numerical size. If we simply add them, the model’s training
improvement effect on wind direction is not obvious. Therefore, we set the wind
direction loss to a loss weight of 0.01 according to the numerical value. After
adding U wind and V wind to the model, considering that U wind and V wind
tasks are subtasks, we also set corresponding weights for U wind and V wind.
After multiple debugging, we set the weights of U wind and V wind to 0.1.

4.3 Ablation Experiment

To evaluate the performance of the model and the influence of each subtask
on the main task wind speed accuracy, we designed seven groups of control
experiments. The results of the experiments are shown in Fig. 2. The data used
in the figure is from the validation set, which is used to observe the training
process of the model. The green line in the figure represents the change of the
total loss of the model; the blue line is the change of the loss of the training
set; the red line is the change of the loss of the main task wind speed. It can
be seen from the figure that when the number of training reaches about 70, the
model tends to converge. Comparing the training process of each model, we can
find that whether adding any one of wind direction, U wind, V wind tasks, or
adding several or all tasks, compared with single wind speed retrieval task, they
all have a positive improvement on training network model. Among them, the
wind direction u v model with three subtasks of wind direction, U wind and V
wind has the best training effect. Its model training loss is the lowest among all
models at 4.05.
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Fig. 2. The training process of each model

In terms of effect evaluation, we keep each model and input the test set to
obtain the results as shown in Table 2. We can see that the wind direction u v
model performs excellently in five metrics: RMSE, MAE, MAPE, ρ and r2.

Table 2. Different models’ result

Model RMSE MAE MAPE ρ r2

wind 2.81 2.08 52.60 0.76 0.45

wind direction 2.80 2.09 54.33 0.74 0.46

wind u 2.82 2.15 53.76 0.75 0.43

wind v 2.77 2.08 55.38 0.73 0.47

wind u v 3.00 2.32 60.71 0.72 0.35

wind direction u 2.57 1.89 52.14 0.75 0.54

wind direction v 2.66 1.99 51.54 0.77 0.51

wind direction u v 2.50 1.85 50.20 0.78 0.57

4.4 Result

Comparing the output of the wind direction u v model with the second-level sea
surface wind speed retrieval product of FY-3E in the same time period, we can
see that the accuracy of the wind direction u v model is greatly improved as
shown in Table 3. Among them, RMSE is reduced from 3.37 to 2.50, a decrease
of 52.74%; MAE is reduced from 1.9 to 1.85, a decrease of 8.65%. These two
metrics show that the accuracy of the wind direction u v model has been greatly
improved compared with the traditional method. MAPE is increased from 35.97
to 50.20, an increase of 19.41%; cov is increased from 0.64 to 0.78, an increase of
17.95%; this indicates that the result of the wind direction u v model retrieval
is more concentrated in distribution while improving the accuracy.
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Table 3. Retrieval result copmared to FY-3E L2 product

Model RMSE MAE MAPE ρ

FY-3E L2 3.37 1.9 35.97 0.64

wind direction u v 2.50 1.85 50.20 0.78

Model PRMSE PMAE PMAPE Pρ

wind direction u v 52.74% 8.65% 19.41% 17.95%

Fig. 3. Scatter density plot of winds under 20 m/s

We plot the output of the wind direction u v model and the second-level
sea surface wind speed retrieval product of FY-3E with HWRF wind speed as
scatter density plots respectively. Through the scatter density plot, we can more
intuitively see the advantages of the wind direction u v model compared with
the traditional method. From Fig. 3, we can see that when the wind speed is
concentrated within 20 m/s, the red fitting line of the wind direction u v model
retrieval is more biased towards the middle; from Fig. 4, we can see that when
the wind speed is higher than 20 m/s, the second-level product sea surface wind
speed of FY-3E has a large deviation. The maximum wind speed value is close
to 60m/s and deviates greatly from HWRF wind speed. The distribution and
accuracy performance are poor. While the maximum sea surface wind speed
retrieved by the wind direction u v model is less than 30 m/s, and the distribu-
tion is concentrated, and it fits well with HWRF wind speed. This shows that the
wind direction u v model has a certain improvement effect on the second-level
sea surface wind speed retrieval product of FY-3E in terms of accuracy results
and distribution, whether in high or low wind speed.
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Fig. 4. Scatter density plot of all winds

5 Conclusion

This paper focuses on the GNSS-R sea surface wind speed retrieval research,
and conducts it with the FY-3E satellite data as the subject. By exploring the
traditional GNSS-R sea surface wind speed retrieval method and the current
machine learning method, we find that there are problems such as insufficient
DDM information mining and ignoring relevant physical information. We collect
and match the data of HWRF for a whole month as the label. We take all the
relevant information of DDM in FY-3E first-level product as the input. We use
the multi-task learning model to fit with this research, and combine the wind
direction, U wind and V wind physical information to constrain. By comparing
with the FY-3E second-level wind speed product, we obtain a better GNSS-R
sea surface wind speed retrieval model.

Besides achieving the expected effect of the model, we also have some addi-
tional findings. As one of the subtasks, the wind direction retrieval also achieved
an accuracy within 20◦. While in the traditional GNSS-R wind direction retrieval
research, the accuracy is generally above 20◦. We speculate that wind speed may
also have some help for wind direction retrieval. In the future, we can further
study this field.
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Abstract. Chinese grammatical error correction (CGEC) has recently
attracted a lot of attention due to its real-world value. The current main-
stream approaches are all data-driven, but the following flaws still exist.
First, there is less high-quality training data with complexity and a vari-
ety of errors, and data-driven approaches frequently fail to significantly
increase performance due to the lack of data. Second, the existing data
augmentation methods for CGEC mainly focus on word-level augmen-
tation and ignore syntactic-level information. Third, the current data
augmentation methods are strongly randomized, and fewer can fit the
cognition pattern of students on syntactic errors. In this paper, we pro-
pose a novel multi-granularity data augmentation method for CGEC,
and construct a syntactic error knowledge base for error type Missing
and Redundant Components, and syntactic conversion rules for error type
Improper Word Order based on a finely labeled syntactic structure tree-
bank. Additionally, we compile a knowledge base of character and word
errors from actual student essays. Then, a data augmentation algorithm
incorporating character, word, and syntactic noise is designed to build
the training set. Extensive experiments show that the F0.5 in the test set
is 36.77%, which is a 6.2% improvement compared to the best model in
the NLPCC Shared Task, proving the validity of our method.
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1 Introduction

Chinese Grammatical Error Correction (CGEC) is a research hotspot in the field
of natural language processing (NLP) [6,7,12,16,17], with the goal of identify-
ing and correcting all grammatical errors present in the text, such as Spelling
Errors, Missing and Redundant Components, Grammatical Structural Confu-
sion, Improper Word Order etc. [7], providing a practical solution for improving
proofreading efficiency, reducing content risk, and aiding language teaching.

Recently, many studies are trying to continuously optimize the performance
of CGEC through neural networks, and the best solution is currently based pri-
marily on data-driven neural network models, such as Transformer [11]. However,
the existing models still have the following problems: (1) Text containing com-
plexity and a variety of errors in real-world scenarios is difficult to obtain and
insufficient, and data-driven methods frequently produce poor results due to a
lack of data. (2) To address the issue of insufficient real error samples, researchers
have attempted to increase the scale of the training set through data augmen-
tation. However, existing methods primarily focus on word-level augmentation,
ignoring syntactic-level information. Figure 1 shows that the types of syntactic
errors are diverse, making syntactic data augmentation difficult. (3) Current
data augmentation methods are strongly randomized, and CGEC-oriented data
augmentation samples are less reasonable and significantly different from the
real errors, few of them can fit the pattern of students cognition of grammatical
errors. In the literature [12], for example, the original sentence is “列车为前往
机场的乘客提供了行李架(The train provided luggage racks for passengers going
to the airport)”, and the sentence with noise is “列车本应前往机场的朝兴乘客
猫爪草了行李架(The train should have gone to the airport for the Chaoxing
passengers catclawed the luggage racks)”, with a large error gap between the
faked sample and the real scenario.

Fig. 1. Top five statistical results of syntactic errors in the HSK dynamic composition
corpus. The most frequent error type in red is “Improper Word Order ” (Color figure
online).
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To alleviate the above problems and integrate students cognition in CGEC
training, a multi-granularity data augmentation algorithm based on the pattern
of real error cognition is proposed, incorporating character, word, and syntactic
noise. First, to address the issue that the existing data augmentation samples
are not sufficiently realistic, we summarize the error information based on the
realistic corpus and construct a knowledge base of lexical and syntactic errors.
Meanwhile, to address the problem of existing data augmentation algorithms for
fused syntactic noise, a linguistic rule-based method for Improper word order is
developed, which accounts for the majority of errors in the corpus, to convert cor-
rect sentences into sentences containing errors based on the annotated syntactic
pattern structure treebank, which can also improve the diversity and authenticity
of syntactic errors in training data. To address the issue of insufficient data, we
design a data augmentation method that incorporates multi-granularity noise.
Because language cognition cannot leave the real context [4], to tackle the prob-
lem of cognitive pattern fusion, we argue that the knowledge base used is derived
from real student essays, while the faked samples retain readability and conform
to the error-generating habits of students, and the training data constructed on
this basis can fit students cognition and provide interpretable of CGEC models.
Finally, the Transformer-based CGEC method is used to generate samples.

2 Related Work

2.1 Chinese Grammatical Error Correction

The main frameworks of the established CGEC models include seq2seq [7,10,12]
(similar to neural machine translation), seq2edit [3], seq2action [5], and non-
autoregressive [6] etc. Transformer [12,17] is now the primary model utilized in
the seq2seq framework for CGEC, in addition to CNN [9] and RNN [18]. Numer-
ous studies have recently been carried out to enhance the performance of CGEC
by improving the quality of training samples through data augmentation. Wang
et al. [12] propose the MaskGEC model that improves CGEC by dynamically
adding random masked tokens to the source sentences during training, increas-
ing the diversity of training samples. To improve the training dataset, Zhao et
al. [17] propose a data augmentation technique that corrupts a monolingual cor-
pus to produce parallel data. Tang et al. [10] provide a novel data augmentation
technique that includes word and character granularity errors. However, they all
ignore syntactic information in the data augmentation.

2.2 Chinese Sentence Pattern Structure Treebank

Treebank is a meticulously annotated corpora that provides details of each sen-
tence about the part-of-speech, syntactic structure, etc. The main types of tree-
banks that are widely used in NLP are phrase-structured treebanks [14] and
dependency-structured treebanks [2]. In this paper, we employ a Sentence Pat-
tern Structure treebank (SPST) based on sentence-based grammar, which uses
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the hierarchical diagrammatic syntactic analysis method to parse the structure
of complex sentences suitable for Chinese grammar teaching and students cog-
nition [8,15]. SPST contains diagrammatic scheme, XML storage structure, and
sentence pattern structure expression (SPSE), the example is shown in Fig. 2.
The application of SPST in the area of teaching Chinese as a second language
demonstrates its applicability and effectiveness [8] and syntactic error sentence
generation is implemented in Sect. 3.2 based on SPSE.

Fig. 2. An example and explanation of chinese SPST.

3 Proposed Method

3.1 Materials

In this paper, there are three granularities of noise: character, word, and syntac-
tic, and an error knowledge base for each granularity separately is also designed.

Lexical Error Knowledge Base. In real-life situations, character and word
errors are more frequent. The errors are caused by the fact that many Chinese
characters and words have identical sound, morphology, and meaning. Based on
the analysis of existing error instances, the high-frequency error samples from
the HSK dynamic composition corpus are collected, and the extraction results
are displayed in Table 1. Among them, the frequencies of char and word are
22,116 and 7,612, respectively.

Syntactic Error Knowledge Base. For Missing and Redundant Components,
we extract classical sentences according to the Chinese second language syllabus
and design regular expressions to identify the raw texts, e.g., the regular expres-
sion for the concessive complex sentence “虽然(although)...但是(but)...” is “虽
然[\u4e00 − \u9fa5] + [, ; ] 但是”. Our syntactic knowledge base contains 410
records.
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Table 1. Examples of high-frequency errors from HSK dynamic composition corpus.

Wrong char Correct char Frequency Wrong word Correct word Frequency

作 做 442 而 而且 178
象 像 334 发生 产生 105
咽 烟 254 决解 解决 101
建 健 248 经验 经历 96
份 分 205 权力 权利 89

Table 2. Examples of syntactic conversion rules.

Conversion description Examples

①Subject exchange with
object of prepositional
structure

Input:我对历史很感兴趣(I am very interested in
history)

SPSE:我‖[对∧历史][很]感│兴趣
①①①Output:历史对我很感兴趣

②Subject + tense verb +
epithet: subject postposition

Input:我跟你不一样(I am not like you)

SPSE:我‖[跟∧你][不]一样
②②②Output:跟你不一样我

③Subject + auxiliary verb +
verb → auxiliary verb +
subject + verb

Input:我想当翻译(I want to be a translator)

SPSE:我‖想∶当│翻译
③③③Output:想我当翻译

④Converting the locative to
a complement;
⑤Prepositional-object
structure as adverbial: put at
the end; ⑥Complement place
before predicate

Input:我在外交部工作十五年(I have worked in
the Ministry of Foreign Affairs for 15 years)

SPSE:我‖[在∧外交部]工作〈十五年〉
④④④Output:我工作在外交部十五年
⑤⑤⑤Output:我工作十五年在外交部
⑥⑥⑥Output:我在外交部十五年工作

3.2 Syntactic Error Sentence Generation

For Improper Word Order, a syntactic error sentence generation method that
generates error sentences directly by regular expressions based on SPSE is
designed. For example, input sentence “我对历史很感兴趣(I am very interested
in history)”, the SPSE is “我‖[对∧历史][很]感│兴趣”. By swapping the posi-
tions of the two adverbials, the sentence in the wrong order is “我‖[很][对∧历
史]感│兴趣(I very am interested in history)”. By deleting “我(I)”, the sentence
with the missing subject is “‖[对∧历史][很]感│兴趣(am very interested in his-
tory)”. This paper has designed 14 various types of error conversion rules, which
generate 21,627 error sentences. This generated data is directly used for training
without additional noise addition. Table 2 shows some of the conversion rules
and examples.
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3.3 Multi-granularity Data Augmentation

In the following, the materials from Sect. 3.1 are used to add noise to raw
text for data augmentation, the multi-granularity data augmentation method
is described in Algorithm 1. Syntactic-level noise is added to the current char-
acter and word noise studies [10,12]; additionally, its source is multi-granularity
knowledge base rather than random noise. Syntactic data augmentation, unlike
character and word augmentation, requires analyzing syntactic knowledge in
a sentence and then performing operations for specified targets. Considering
the specificity of the syntactic noise addition process, the input sentences are
subjected to syntactic noise addition, word noise addition and character noise
addition in order according to different ratios, resulting in the final output noise-
added sentences. The noise addition ratio are controlled by parameters αsyn,
αword, αchar. Each noise addition process is implemented by insertion, deletion,
and replacement. The proposed method is illustrated in Fig. 3.

Algorithm 1. Syntactic data augmentation algorithm
Input: The original correct sentence Sclean; syntactic knowledge base Ksyn; the length

N of Ksyn; the regular expressions REGsyn, insertion operations I, deletion oper-
ations D, and replacement operations R in Ksyn.

Output: The sentence Snoise after adding noise.
1: function SYNDA(Sclean, Ksyn)
2: for i = 1 → i = N do
3: if Match (Sclean, REGi

syn) then
4: Snoise ← execute Ri or Di;
5: end if
6: end for
7: if Snoise is null then
8: Select Kj

syn and position p < len(Sclean) at random;
9: Snoise ← insert Ij ;

10: end if
11: end function

3.4 Transformer for CGEC

Transformer [11] framework is adopted in previous works [10,17]. The proposed
model is depicted in Fig. 3, where the encoder transforms the input text into a
semantic vector, the decoder transforms the output vector of the current step
based on the output encoded in the previous step, each vector corresponds to a
Chinese character, and all the output characters are combined to produce the
corrected sentence. The encoder consists of N = 6 identical blocks, each with a
Multi-Head Attention (MHA) layer and a Feed-Forward Network (FFN) layer.
The MHA mechanism employs a scaled dot-product in each attention layer,
where Q, K and V denote the query matrix, key matrix, and value matrix of
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Fig. 3. An illustration of our method. In WordNoise sentence, “历史” (history) and “理
事” (council member) are pronounced “lishi” in Chinese. In CharNoise sentence, the
word “兴趣” (interested) is deleted to a single character “趣”.

the attention layer, respectively, which are obtained by passing the input vector
through different linear layers. The following is the MHA calculation procedure:

Attention(Q, K, V ) = Softmax

(
QKT

√
dk

)
V, (1)

MHA(Q, K, V ) = (h1 ⊕ h2 ⊕ . . . ⊕ hn)WO, hi = Attention (Qi, Ki, Vi) , (2)

where dk is the embedding dimension, ⊕ means concatenation, hi denotes the
ith head of MHA and n is the number of heads.

4 Experiments and Results

4.1 Datasets

This section describes the data that is used in the experiments. (a) NLPCC
dataset1 which is presented in NLPCC 2018 Shared Task 2 is the most com-
monly used for CGEC in recent years, and it contains 1,220,734 sentence pairs
of training set and 2,000 of test set. (b) HSK dynamic composition corpus2
which collects the essay exam answer sheets of Hanyu Shuiping Kaoshi (HSK),
which is Chinese pinyin for the Chinese Proficiency Test, which contains var-
ious grammatical errors. This dataset has 156,870 publicly available sentences
for training. (c) Chinese SPST3 which is a high-quality finely labeled corpus
1 http://tcci.ccf.org.cn/conference/2018/dldoc/trainingdata02.tar.gz.
2 http://hsk.blcu.edu.cn/.
3 http://www.jubenwei.com/.

http://tcci.ccf.org.cn/conference/2018/dldoc/trainingdata02.tar.gz
http://hsk.blcu.edu.cn/
http://www.jubenwei.com/


Incorporating Syntactic Cognitive in Multi-granularity Data Augmentation 377

with syntactic information and the error correction sentence pairs for training are
obtained using the sentence conversion rules proposed in Sect. 3.2. The sources of
the corpus are Chinese second language teaching materials, totaling 12,103 sen-
tences. The 21,627 sentence pairs are obtained through Sect. 3.2 for training. (d)
AI Challenger4 which is a large-scale corpus, contains 10,051,898 sentences. To
obtain the sentence pairings utilized for training, these data are noised using the
data augmentation method suggested in Sect. 3.3 for all sentences. The follow-
ing experiments will select one million, two million, four million, and six million
pairs to validate the influence of adding noise scale on model performance.

4.2 Parameters and Metrics

The implementation of our model is based on fairseq5, using a Tesla V100-SXM2
32G GPU. The model hyperparameters are set as follows: Word embedding
dimensions of 512 and shared weights for both source and target. Optimizer
using Adam with β1 and β2 set to (0.9, 0.98). The initial learning rate is 1×10−7,
which increases linearly to 1 × 10−3 over the first 4,000 training steps, followed
by a gradual dropout until training is completed. The dropout is set to 0.3 and
the batch size is set to 128. The beam search size is set to 12 during decoding.

As evaluation metrics, Precision (P ), Recall (R), and F0.5, and Max Match
(M2) are employed to measure the largest overlap of words between input and
output. The formula for computation is as follows:

P =

∑N
i=1 |ei ∩ gi|∑N

i=1 |ei|
, R =

∑N
i=1 |ei ∩ gi|∑N

i=1 |gi|
, F0.5 =

(
1 + 0.52

) × R × P

0.52 × P + R
, (3)

where e is the edit set of the text to be modified by the model, g is the standard
edit set of that text, and |ei ∩ gi| denotes the number of matches between the
edit set of the model and the standard edit set for sentence i, which is calculated
as shown in Eq. 4. The m2scorer toolkit6 is used for testing.

|ei ∩ gi| = {e ∈ ei | ∃g ∈ gi, match (e, g)} . (4)

4.3 Baselines

The first three are the CGEC models that performed well in NLPCC 2018 Shared
Task 2, and the next four are the CGEC models that used data augmentation,
the last one is a ensemble model for CGEC. (a) YouDao [1]. This method
modifies the sentences separately using five different hybrid models. Finally, the
language model reorders the output. (b) AliGM [18]. This method combines
NMT-based GEC, SMT-based GEC, and rule-based GEC. (c) BLCU [9]. This

4 https://challenger.ai/datasets/translation.
5 https://github.com/pytorch/fairseq.
6 https://github.com/nusnlp/m2scorer.

https://challenger.ai/datasets/translation
https://github.com/pytorch/fairseq
https://github.com/nusnlp/m2scorer
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method employs a multi-layer convolutional seq2seq model. (d) MaskGEC [17].
This method improves CGEC by dynamically adding random masked tokens to
source sentences during training, increasing the diversity of training samples. (e)
Word&Char-CGEC [10]. This method proposes a data augmentation method
that integrates word granularity noise for CGEC. (f) C-Transformer [13]. This
method introduces a copy mechanism and constructs error samples to expand the
training data based on a vocabulary of homomorphic and homophonic words. (g)
E-Transformer [12]. This method adopts data augmentation by corrupting a
monolingual corpus to produce parallel data. (h) HRG [3]. This method consists
of a Seq2Seq model, a Seq2edit model, and an error detector.

4.4 Main Results

The experimental results are shown in Table 3, the F0.5 of our model achieves
36.77%, which is a considerable improvement when compared to the top three
baselines in the NLPCC 2018 Task 2. Compared to the C-Transformer and
E-Transformer, the improvement is 2.72% and 2.36%, respectively. Our app-
roach produces comparable results when compared to the Word&Char-CGEC
and MaskGEC. Compared with HRG, our method improves 9.47% in precision
and 2.21% in F0.5. This demonstrates that the CGEC model is competitive
when compared to the CGEC model that incorporates data augmentation. The
experimental findings provided above show that applying data augmentation can
increase the performance of the CGEC model, and our method is also an effec-
tive data augmentation scheme. The discrepancy between the MaskGEC and the
Word&Char-CGEC is mostly due to the simple reason that the corpus applied
for data augmentation in experiments differs from each of these two models, and
the change in data sources will have some impact during training.

Table 3. Experimental result. The results are in percentage.

Line Model P ↑ R ↑ F0.5 ↑
1 AliGM 41.00 13.75 29.36
2 YouDao 35.24 18.64 29.91
3 BLCU 47.63 12.56 30.57
4 MaskGEC 44.36 22.18 36.97
5 Word&Char-CGEC 47.29 23.89 39.49
6 C-Transformer 38.22 23.72 34.05
7 E-Transformer 39.43 22.80 34.41
8 HRG 36.79 27.82 34.56
9 ours 46.26 20.20 36.77

4.5 Effect of Data Augmentation at Different Scales

To investigate the effect of the scale of noised data on model performance, five
groups of tests with no noise data and noise data of one million, two million, four
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million, and six million are set. The experimental results displayed in Fig. 4 reveal
that, when compared to the model without noise addition, the performance of
the model with noise-added data improves by about 3%, with the best result
obtained when the noise-added data reaches 2 million, and the improvement of
the model performance decreases as the data size grows further. We also attempt
to train more epochs on four and six million, and the experimental findings
indicate that the F0.5 of the model does not change much at 40 and 50 epochs
compared to 30 epochs, showing that the model stabilized at 30 epochs. There
are two reasons for the ineffectiveness of the four million and six million data.
The first is that the monolingual corpus chosen in this paper contains spoken
language, which does not conform to the characteristics of written language
and deviates from the textual error correction field; the second is that, despite
manual proofreading, the quality and distribution of the data require further
improvement. Other comparative tests are carried out in this work using the 2
million noised data.

Fig. 4. Effect of data augmentation at different scales.

4.6 Effect of Data Augmentation at Different Granularities

We mainly test the usefulness of the proposed data augmentation strategy. The
noise addition ratios of different granularities for the experiments are deter-
mined using statistics and analysis of the HSK dynamic composition corpus, as
stated in the second column of Table 4. The Char&Word&Syntactic model has
the best result, demonstrating that the data augmentation strategy of including
multi-granularity noise is beneficial. When compared to models with only sin-
gle noise-added, the model with character noise performs best, due to the fact
that character errors are the most common in writing, and models with only
word noise and syntactic noise cannot fit this error distribution. When compar-
ing the models of char&word, char&syntactic, and word&syntactic, we discover
that the model with char-granularity noise is the best for the same reason as
stated above. When comparing the models of char&word and char&syntactic,
the model with syntactic noise is more effective because the syntax contains
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not only information on syntactic structure but also information about words,
which implies that the addition of noise with syntax proposed in this paper is
superior to the previous data augmentation methods for CGEC. Furthermore,
the process that generates word noise requires the splitting of sentences, and the
correctness of the splitting affects the model effort. The syntactic knowledge base
built in this paper currently comprises more than 400 rules, which is insufficient
to match the model training requirements, indicating that the syntactic noise
addition method suggested in this paper has room for further improvement.

Table 4. Effect of data augmentation at different granularities. The results are in
percentage.

Model Noise ratio P ↑ R ↑ F0.5 ↑ ΔF0.5

w/o noised data – 42.23 17.55 32.96 –
char – 45.34 20.29 36.36 +3.4
word – 42.2 16.38 32.08 –0.88
syntactic – 38.77 14.45 29.01 –3.95
char&word 7 : 3 44.61 18.34 34.67 +1.71
char&syntactic 8 : 2 48.1 17.55 35.68 +2.72
word&syntactic 7 : 3 40.85 16.02 31.19 –1.77
char&word&syntactic 6 : 2.5 : 1.5 46.26 20.2 36.77 +3.81

4.7 Effect of Chinese Sentence Pattern Structure Treebank

In this section, two sets of comparison experiments are carried out, as indicated
in Table 5, in order to test the enhanced effect of the Chinese SPST on our
method. The F0.5 is enhanced by 0.21% when the training samples created from
the Chinese SPST are added on top of the NLPCC and HSK datasets. The
F0.5 value improves by 2.62% compared with the model in line 1, but is slightly
lower than that of model 3 when the samples generated from the Chinese SPST
are added to the NLPCC and HSK datasets and the 2 million noised data.
The experimental results show that the model with the samples generated by
the Chinese SPST is effective and syntactic cognitive information fusion can
improve the ability of CGEC, but the improvement is not obvious, owing to the
fact that there are only 21,627 training pairs in this corpus, which is insufficient
in comparison to the existing data set for the model to learn enough syntactic
knowledge from it.
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Table 5. Effect of chinese SPST. The results are in percentage.

Line Training data P ↑ R ↑ F0.5 ↑ ΔF0.5

1 NLPCC+HSK 42.23 17.55 32.96 –
2 NLPCC+HSK+SPST 42.63 17.57 33.17 +0.21
3 NLPCC+HSK+2 million noised data 46.26 20.2 36.77 +3.81
4 NLPCC+HSK+SPST+2 million noised data 45.24 19.15 35.55 +2.62

5 Conclusion

In this paper, we propose a novel multi-granularity data augmentation method
for CGEC. We build a multi-granularity knowledge base to fit the cognition
pattern of students on syntactic errors, with 7,612 pieces of character error
knowledge, 23,816 pieces of word error knowledge, and 426 pieces of syntac-
tic error knowledge. And 21,627 samples are generated based on Chinese SPST.
The experimental results prove effectiveness and show that syntactic cognitive
information fusion and the ability to enhance the model. In the future, we will
investigate the influence of different noise addition ratios on the model further.
In addition, to further the use of Chinese SPST, we will target new error kinds
for sample generation and explore expanding the finely annotated corpus.
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Abstract. In Conversational Recommendation Systems (CRS), the cen-
tral question is how the conversational agent can naturally ask for
user preferences and provide suitable recommendations. Existing works
mainly follow the hierarchical architecture, where a higher policy decides
whether to invoke the conversation module (to ask questions) or the
recommendation module (to make recommendations). This architecture
prevents these two components from fully interacting with each other. In
contrast, this paper proposes a novel architecture, the long short-term
feedback architecture, to connect these two essential components in CRS.
Specifically, the recommendation predicts the long-term recommendation
target based on the conversational context and the user history. Driven
by the targeted recommendation, the conversational model predicts the
next topic or attribute to verify if the user preference matches the target.
The balance feedback loop continues until the short-term planner output
matches the long-term planner output, that is when the system should
make the recommendation.

Keywords: Conversational Recommendation Systems · Planning

1 Introduction

Traditional recommendation systems rely on user behavior history, such as rat-
ings, clicks, and purchases, to understand user preferences. However, these sys-
tems often encounter challenges due to the data sparseness issue. Specifically,
users typically rate or buy only a small number of items, and new users may not
have any records at all. As a result, achieving satisfactory recommendation per-
formance becomes difficult. Furthermore, traditional models struggle to address
two critical questions without clear user guidance and proactive feedback: (a)
What are users interested in? and (b) What are the reasons behind each system
recommendation?
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Fig. 1. The architecture of previous studies (a) and our work (b)

The emergence of conversational recommender systems (CRSs) has funda-
mentally transformed traditional recommendation methods. CRSs facilitate the
recommendation of products through multi-turn dialogues, enabling users and
the system to dynamically interact using natural language. In these dialogues,
the system not only elicits a user’s preferences but also provides explanations for
its recommended actions. Such capabilities are often absent in traditional recom-
mendation approaches. Moreover, the conversational setting of CRSs presents a
natural solution to the cold-start problem by allowing the system to proactively
inquire about the preferences of new customers.

Most existing works for CRS use a hierarchical structure, where a higher
policy determines whether to use the conversation module (to ask questions)
or the recommendation module. This architecture prevents the conversation and
the recommendation modules from fully interacting with each other. In contrast,
this paper proposes a new approach where we plan the conversation and the rec-
ommendation by the same module, the short-term planner. Here, the short-term
planner is influenced by a long-term planner that aims to model user long-term
preference. Figure 1 demonstrates the main difference between our framework
and the previous ones.

Our main constribution is three-fold: Firstly, it proposes a solution to com-
bine user’s past interactions and ongoing interactions (in conversations) into a
long-term planner that takes into account the timestamps of these actions. Sec-
ondly, it presents a short-term planner that smoothly drives the conversations
to the targeted item from the long-term planner. Lastly, it introduces a new
dataset that captures practical aspects of both the recommendation module and
the conversation module in the context of conversational recommender systems.
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2 Related Work

Previous studies focus on the conversation (Light Conversation, Heavy Recom-
mendation) or recommendation (Heavy Recommendation, Light Conversation).

2.1 Heavy Recommendation, Light Conversation

In this type of CRS, the aim is to understand user preferences efficiently and
make relevant suggestions quickly. To achieve this, the system needs to focus
on selecting the right attributes and asking the right questions. Sun et al. [16]
and Lei et al. [7] proposed CRM and EAR, which train a policy of when and
what attributes to ask. In such studies, the recommendation is made by an
external recommendation model. Lei et al. [8] proposed SCPR that exploits a
hierarchical policy to decide between asking and recommendation then invokes
the corresponding components to decide what to ask and which to recommend.
Deng et al. [3] proposed UNICORN, a unified model to predict an item to rec-
ommend or an attribute to ask the question. The model allows rich interactions
between the recommendation and the conversation model.

These methods rely on a simple conversation module that is limited to tem-
plated yes/no responses. Our approach differs from these studies as we focus on
real conversations where users can actively change the dialog flow and agents
should smoothly change the topic towards the targeted recommendation.

2.2 Light Recommendation, Heavy Conversation

This kind of CRS puts a greater emphasis on understanding conversations and
generating reasonable responses. These methods [2,10,11,14,19,20] also adopt a
hierarchical policy that decides between recommendation and conversation, but
additional strategies are used to bridge the semantic gap between the word space
of the conversation module and the item space of the recommendation module.
Li et al. [10] proposed REDIAL that exploits a switching decoder to decide
between recommendation and conversation. Chen et al. [2] proposed KBRD,
that exploited a switching network like REDIAL [10], but improved the interac-
tions between the recommendation and conversation modules with entity linking
and a semantic alignment between a recommendation item to the word space for
response generation. Zhou et al. [19] proposed KGSF that uses word-oriented
and entity-oriented knowledge graphs (KGs) to enrich data representations in
the CRS. They aligned these two semantic spaces for the recommendation and
the conversation modules using Mutual Information Maximization. These meth-
ods (REDIAL, KGSF, KBRD) do not plan what to ask or discuss, but generate
responses directly based on the conversational history. Zhou et al. [20] intro-
duced TG-Redial where topic prediction is used as a planner for conversations.
However, there is still a higher policy to decide to invoke the conversation or
the recommendation module. Similarly, Zhang et al. [18] predicted a sequence of
sub-goals (social chat, question answering, recommendation) to guide the dialog
model. Here, the goal prediction plays the role of higher policy.
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Unlike these methods, we do not have two distinct modules for deciding what
to ask and what to recommend. Instead, we assume a knowledge graph (KG)
that connects attributes, topics, and items, and aim to plan the next entity node
on the graph for grounding the dialog. Specifically, a long-term policy module,
which has access to user historical interactions, predicts a targeted item in the
KG. The short-term policy then exploits the targeted item and predicts either
an attribute for conversation or an item for the recommendation. The objective
of the short-term policy is to select a node in the KG so that the agent can
smoothly drive the conversation to the long-term (targeted) item (Table 1).

3 Preliminaries

Table 1. The description of the key symbols
Description

Pu The user profile
Cu The current conversation
Su The entity sequence with timestamp

derived from Cu and the user profile
Pu

el The targeted recommendation to be
made in the upcoming turns (output
of long-term plan)

es The entity that will be grounded in
upcomming turns (output of short-
term plan)

w The latest user utterance in Cu

zw The representation of the current
utterance

ze The representation of the current
dialog entity sequence

K Knowledge graph entities

Notations for CRS. Formally,
we are given an external knowl-
edge graph G that consists
of an entity set V and a
relation set E (edges). The
entity set V contains all enti-
ties, including items and non-
items (e.g., item attributes).
Alternatively, the knowledge
graph can be denoted as a set
of triples (edges) {(eh, r, et)}
where eh, et ∈ V are the head
and tail entities and r indicates
the relationship between them.

A CRS aids users in pur-
chase decisions via conversa-
tion. During training, utter-
ances from a user-agent conver-
sation are labeled with entities
from the knowledge graph K.
The agent’s responses contain
references to item entities for
recommendations or non-item entities for clarification or chitchat. On the other
hand, users refer to entities such as items or attributes to express their desired
request.

In addition to the conversation history C, we also have access to the user
profile for each user u. The user profile is a list of pairs (si, ti), where si is an
item entity that the user u has interacted with in the past, and ti is the time
of the interaction. Here, the interactions can be purchases, browsing, or other
historical activities besides conversations.

Task Definition. Based on these notations, the CRS is defined as given a multi-
type context data (i.e., conversation, knowledge graph, user profile), we aim to
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(1) select entities from the knowledge graph to ground the next system response;
(2) generate a response based on the selected entities. The selected entities may
contain items (for the recommendation) or information about item attributes.
The selected entities should be relevant to a dialog context (short-term user
preference) and the user profile (long-term user preference).

4 Our Proposed Model

The LSTP’s overall structure is depicted in Fig. 2. The process begins with the
extraction of entities from the conversation, of which the timestamps are set to
zero. Then, the user profile is combined with this sequence to create a unified
entity sequence. A targeted item entity is then selected by the long-term planner
from the knowledge graph based on the sequence Su. Lastly, the short-term plan-
ner picks a grounding entity (item/non-item), which is then utilized to produce
the next system response.

Fig. 2. The architecture of our LSTP framework

The long-term planner uses user profiles to more accurately target long-
term user preferences, while the short-term planner considers recent utterances
when planning the next entity in the conversation. The short-term planner is
guided by the long-term planner to potentially lead to the long-term plan’s
target, while also ensuring the next entity is relevant to the dialogue history
for a natural conversation. When a recommendation is necessary, the short-term
planner should provide output consistent with the long-term planner.

4.1 Knowledge Representation and Grounding

Entities in the knowledge graph are represented by vectors in the same semantic
space using Knowledge Graph Embeddings (KGE). This step is essential for
both the long-term planner and the short-term one.
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Knowledge Graph Embeddings. In this paper, we utilize TransE [1], which is
available in the toolkit OpenKE [5], for knowledge graph embeddings. The main
idea of TransE is that we represent entities and relations in the same semantic
space so that if eh should be connected to et via the relation r then eh + r ≈ et.
Here, we use the same notation for entities (relations) and their vector represen-
tations. Formally, TransE learns a scoring function f as follows:

f(eh, r, et) = −||eh + r − et||1/2
where ||1/2 is either L1 or L2 norm, and eh, et ∈ Rd with d = 1024 being the
embedding dimension. The scoring function is larger if (eh, r, et) is more likely to
be a fact, i.e., eh is connected to et via r in KG. Contrastive learning [5] is used
to learn embeddings for all the entities and relations by enforcing the scores of
true triples higher than those of negative (distorted) triples.

Entity Linking (or Knowledge Grounding). The objective of entity linking is to
find entities previously mentioned in the dialog context. This is done by learning
sentence representation so that it can be used to retrieve related entities from
the knowledge graph. Specifically, we are given a training set of pairs (wi, ei) in
which wi indicates a conversational utterance and ei is an entity mentioned in
the utterance wi. User utterances are represented by BERT [4] whereas entities
are represented as previously described. We exploit BERT large, and thus the
output representation for the user utterance is of size 1204, which is the same
with knowledge embeddings. Contrastive learning [5] is used to finetune the
representation of the utterances wi so that the representation of wi is closer to
the entity representation if ei is mentioned in wi. Note that, here we only update
the utterance representation while keeping entity embeddings unchanged.

4.2 Long-Term Planning

The goal of the Long-term Planner (LTP) is to anticipate the upcoming recom-
mendation that can be made based on a series of entities from the user profile
and ongoing conversation context. To train LTP, we randomly select conversa-
tional contexts and their respective recommendations to create a dataset. It’s
important to note that not every conversation turn results in a recommendation,
so the recommended item may come several turns after the latest turn in the
dialog context. LTP is designed to consider a user’s past interactions to make
recommendations further in the future.

The training set for LTP consists of triples (Pu, Cu, el). Here, Pu and Cu

respectively represent the user profile and the context of the dialogue with the
user u, and el indicates the targeted recommendation to be made in the upcom-
ing turns. The entity sequence with timestamp derived from Cu and the user
profile Pu is denoted as Su = {(es1, t1), . . . , (esl , tl), (esl+1, 0), . . . , (e

s
l+m, 0)}, where

l and m respectively represent the count of entities in the user profile and dialog
history. To ensure uniformity, we set the length of the sequence Su to be N
and truncate the old entities in the sequence. The entity sequence can be then
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represented as Su = {(es1, t1), . . . , (esN , tN )}, where the timestamp ti is zero if
the corresponding entity is mentioned in the current dialog context instead of
the user profile. Padding is applied to the sequences Su with length less than N .

We represent the sequence Su by Multi-head Time-Aware Self-Attention
(MH-TaSelfAttn) [9]. Unlike standard self-attention in Transformer [17], time-
aware Self-attention (Ta-SelfAttn) takes into account the personalized interval
between two user interactions (entities in Su) to calculate the attention score
between them. By personalization, the user-specific minimum and maximum
interval values are considered for modeling temporal information between two
user interactions. Specifically, we initially represent each entity in Su by knowl-
edge embeddings, and then obtain the entity sequence representation as follows:

Z = MH-TaSelfAttn(Su) (1)

Here Z = {z1, . . . , zN} is the sequence of output representations and zi ∈ Rd.
To predict the upcoming recommendation, we obtain the last vector from Z as
the sequence representation zl. We then measure the relevance between zl and a
candidate item using a dot product score. We then finetune the MH-TaSelfAttn
layers to optimize the output representation so that the upcoming recommenda-
tion el is higher compared to other (negative) items. During inference, the item
with the highest score ẽl is used as the predicted recommendation target.

4.3 Short-Term Planning

The purpose of the Short-term planner (STP) is to choose an entity that is
related to the current dialog context and helps guide the conversation toward
the LTP target. Intuitively, if the selected entity matches the LTP output, the
next system response should provide a recommendation. The STP pays more
attention to the current dialog when making decisions, unlike the LTP, which
makes use of the user’s historical actions. During STP training, the actual target
(el) is used instead of the predicted (long-term) target ẽl for the upcoming
recommendation. In addition, STP accepts as input the lastest user utterance
w and the entity sequence Su

c , which is the part of Su containing entities in the
dialog context Cu. The representation for multi-type input of STP is obtained
by:

zw = BERT (w) (2)
ze = Pooling[MH-SelfAttn(Su

c )] (3)

zs = Mean[SelfAttn(zw, ze, el)] (4)

where the last equation shows how the short-term representation is obtained by
fusing the current utterance representation zw, the current dialog entity sequence
ze and the long-term target el. Here, Pooling indicates that we get the last item
representation from MH-SelfAttn similarly to LTP, and SelfAttn indicates the
standard self-attention operation in Transformer [17]. The STP is trained so that
the next entity associated with the current context is higher compared to other
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entities. Like in LTP, only the additional layers in STP are finetuned, not entity
embeddings. During inference, the item with the highest score ẽs is used as the
prediction for the next grounding entity.

4.4 Plan-Based Response Generation

Given the next grounding entity ẽs from the STP, and let ẽs−1 be the grounding
entity of the previous agent turn, knowledge search (Algorithm 1) aims to select
a set of surrounding K entities to(one or two hops away) improve the context for
smooth response generation. This returned list is then flattened and combined
with the latest utterance w as input to the T5 model [13] for generating a
response. During the training process, T5 is fine-tuned by optimizing the model
to generate the correct response given the latest user utterance and correct
grounding knowledge.

Algorithm 1. Knowledge Search
Require:

Grounding entities for the previous and next agent turns ẽs−1, ẽs;
Knowledge Graph K = {(ehk , rk, etk)}Ntri

k=1 where ehk and etk indicate the head and
tail entities in the k-th triple;

Ensure:
Extended grounding knowledge list K

1: Initialize K = ∅;
2: for k = 1 to Ntri do
3: if ehk = ẽs−1 and etk = ẽs then
4: K = K ∪ (ehk , rk, e

t
k)

5: else if ehk = ẽs−1 and ∃r so that (etk, r, ẽ
s) ∈ K then

6: K = K ∪ (ehk , rk, e
t
k)

7: else if ehk = ẽs or etk = ẽs−1 then
8: K = K ∪ (ehk , rk, e

t
k)

9: end if
10: end for
11: return K[: 20];

5 Data Collection

Our assumption is that a user’s current preference should be influenced by their
ongoing dialogue and long-term interests reflected by their historical actions.
However, current datasets do not provide sufficient information for our evalu-
ation. For instance, the ReDial dataset lacks user profiles. On the other hand,
although the TG-Redial dataset offers user profiles, they are not accompanied
by timestamps essential for LSTP modeling. Therefore, we created our dataset,
TAP-Dial (Time-Aware Preference-Guided Dial). Data gathering for TAP-Dial is
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similar to TG-Redial but with some differences. Firstly, every user profile comes
with a timestamp, which is not present in TG-Redial. Secondly, although the
conversation grounding task in TAP-Dial resembles the next topic prediction in
TG-Redial, we propose that there is a unified knowledge graph that links item
attributes and topics. More details on our data collection are provided below.

Table 2. Statistics of entities and relations in the knowledge graph

Name Number Name Number

Entity Movie 5733 Date 8887
Star 2920 Number 1223
Types of Movies 31 Key words 2063
Location 175 Constellation 12
Profession 21 Awards 15816

Relation The Constellation of 2691 The director of 2766
The type of 14566 The release date of 7862
The relative of 470 The country of 842
The award records of 35245 The birth date of 2607
The popularity of 5733 The profession of 8606
The key words of 18369 The birthplace of 2852
The representative works of 7668 The score of 5719
The screenwriter of 2997 Collaborate with 1094
The main actors of 14364 Star 14364

Data Collection and Knowledge Graph Construction. We focused on movies as
our domain of research and obtained raw data from the Douban website. Our
selection process involved filtering users with inaccurate or irrelevant informa-
tion to create a user set of 2,693. In addition, we gathered a total of 5,433 movies
that were the most popular at the time as our item set. We also gathered supple-
mentary data including information about directors, actors, tags, and reviews.
A knowledge graph is then constructed with entities and relations as shown in
Table 2.

Dialog Flow Construction. To generate a list of recommendations for user conver-
sations, we begin by selecting a set of targeted items. This is done by clustering
the items in the user’s history to determine a mixture of their preferences. We
then choose the cluster centers as potential targets for recommendations, taking
into account the most significant clusters and the timestamp.

Inspired by TG-Redial, we assume that the conversation should smoothly
and naturally lead to the recommended items. Unlike TG-Redial, which relies
on a separate topic set to ground non-recommendation turns, we use the knowl-
edge graph’s set of entities as potential grounding knowledge. In order to ensure
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smooth transitions between turns, we construct dialog flows consisting of lists of
entities in the knowledge graph that gradually lead to the targeted items. Note
that the first grounding entity can be randomly chosen.

Dialog Annotation. In the final stage, we recruit crowd-workers for writing the
dialogs given dialog flows. We then received a total of 4416 dialogs for training,
552 dialogs for validation, and 552 for testing. Note that, all the dialogs are
accompanied with grounding entities and targeted recommendations.

6 Experiments

6.1 Baselines and Metrics

In our experiments, we used several baselines, including REDIAL [10], KBRD [2],
KGSF [19], TG-REDIAL [20]. All these baselines rely on sequence to sequence
models as the bases for the conversation modules.

For evaluation, previous methods assume that there is an oracle policy that
predefines recommendation turns, and evaluate the recommendation task and
the conversation task separately. To ensure fairness, we compared our LSTP
method with other methods on the recommendation and conversation tasks sep-
arately using a similar procedure. We used MRR [15], NGCG [6], HIT for the
recommendation task, and BLUE [12], Distinct, and F1 for the generation task.

6.2 Main Results

Table 3. Results of recommendation task
Model NDCG HIT

@1 @10 @50 @10 @50
REDIAL 0.002 0.010 0.048 0.005 0.013
KBRD 0.132 0.284 0.327 0.228 0.237
KGSF 0.103 0.222 0.263 0.177 0.186
TG-REDIAL 0.267 0.466 0479 0.399 0.404
LSTP 0.301 0.474 0.481 0.417 0.418

Recommendation. The recommended
task results are shown in Table 3. It
is observable that TG-REDIAL out-
performs the other baselines. This is
because it incorporates both contex-
tual and historical sequence informa-
tion. LSTP achieves the best per-
formance as it includes not only
sequence information but also tempo-
ral interval information. In the long-term planning model, the accuracy can be
improved by increasing the number of stacked attention modules, but it comes
with time overhead. Therefore, a model with four stacked attention modules was
chosen to balance between time and accuracy.

Dialog Generation. The generated task results in Table 4 indicate that LSTP
performs the best. In comparison to the dialogue modules of other models, the
advantage of LSTP lies in its ability to select relevant knowledge from the knowl-
edge graph based on correct prediction results. Without the knowledge search
module (LSTP w/o KS), the model’s advantage would not be apparent, which
also demonstrates the role of the Long-Short Term Planner (LSTP) module in
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predicting the next topic and making recommendations. Additionally, the dis-
tinctiveness of LSTP (w/o KS) is lower than the baseline, but the distinctiveness
value of LSTP is significantly higher than the baseline. This confirms the signif-
icant impact of introducing external knowledge for diverse responses.

Table 4. The results of dialog generation task

Model BLEU@1 BLEU@2 BLEU@3 BLEU@4 Dist@1 Dist@2 Dist@3 Dist@4 F1

REDIAL 0.168 0.020 0.003 0.001 0.017 0.242 0.500 0.601 0.21

KBRD 0.269 0.070 0.027 0.011 0.014 0.134 0.310 0.464 0.28

KGSF 0.262 0.058 0.021 0.007 0.012 0.114 0.240 0.348 0.26

TG-REDIAL 0.183 0.040 0.013 0.005 0.013 0.153 0.352 0.532 0.22

LSTP (w/o KS) 0.297 0.106 0.054 0.029 0.019 0.182 0.332 0.450 0.32

LSTP 0.333 0.136 0.081 0.054 0.022 0.263 0.519 0.607 0.38

6.3 Additional Analysis

Conversational Grounding Task. Following TG-Redial [20], we compare LSTP
to several baselines including MGCG [11], Connv-Bert, Topic-Bert [20] on pre-
dicting entities to ground the conversation at non-recommendation turns. The
results of the entity prediction for non-recommendation turns are shown in
Table 5, demonstrating that the LSTP model achieves the best performance.
This is partially because LSTP incorporates not only sequence information but
also temporal interval information and sentence information.

Ablation Study. The results of our ablation study are presented in Table 6. Here,
Over., Rec., Conv. respectively refer to the grounding prediction at all the turns,
recommendation turns, or conversation turns. We implemented the Long Short-
Term Planning (LSTP) with different variants of the short-term planner, where
we include history to the short-term planner (w/ history), exclude the long-term
planner (w/o long-term) or the latest user utterance (w/o latest utt). When inte-
grating the user’s historical interaction into the short-term planner, we observed
a substantial enhancement in the recommendation outcomes but a significant
deterioration in the conversation results. On the other hand, without the guid-
ance of long-term planning (w/o long-term), the performance of recommenda-
tions suffered, partially demonstrating the importance role of the long-term plan-
ner. In contrast, the consideration of the latest user utterance did not seem to
have a significant impact on the results, partially showing that entity linking
might provide sufficient information for planning.
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Table 5. Grounding entity prediction
at non-recommendation turns

Model HIT@1 HIT@3 HIT@5

Conv-Bert 0.169 0.245 0.285

Topic-Bert 0.251 0.348 0.394

MGCG 0.174 0.281 0.335

TG-REDIAL 0.219 0.327 0.382

LSTP 0.312 0.447 0.482

Table 6. HIT@1 of LSTP with vari-
ants of the Short-term planner

Model Over. Rec. Conv.

LSTP 0.308 0.301 0.312

w history 0.279 0.33 0.254

w/o long-term 0.304 0.286 0.312

w/o lastest utt. 0.308 0.305 0.309

7 Conclusion

In this paper, we investigated the issue of the insufficient interaction between the
dialogue and recommendation modules in previous CRS studies. We introduced
LSTP model, which consists of a long-term model and a short-term module. The
long-term model predicts a targeted recommendation based on long-term human
interactions (historical interactions). The short-term model is able to predict the
subsequent topic or attribute, thereby ascertaining if the user’s preference aligns
with the designated target. This harmonious feedback loop is continuously cycled
until the output from the short-term planner matches the long-term planner’s
output. The equilibrium state indicates the system’s optimal readiness for rec-
ommendation. We crafted a novel conversation dataset reflecting this dynamic.
Experimental results on this dataset verify the effectiveness of our method.

Acknowledgements. We thank the data annotators for their meticulous work on
dialogue annotation, which was pivotal for this research.
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Abstract. Graph structure learning (GSL), which aims to optimize
graph structure and learn suitable parameters of graph neural networks
(GNNs) simultaneously, has shown great potential in boosting the per-
formance of GNNs. As a branch of GSL, multi-view methods mainly
learn an optimal graph structure (final view) from multiple informa-
tion sources (basic views). However, basic views’ structural information
is insufficient, existing methods ignore the fact that different views can
complement each other. Moreover, existing methods obtain the final view
through simple combination, fail to constrain the noise, which inevitably
brings irrelevant information. To tackle these problems, we propose a
Gated Bi-View GSL architecture, named GBV-GSL, which interacts
two basic views through a selection gating mechanism, so as to “turn off”
noise as well as supplement insufficient structures. Specifically, two basic
views that focus on different knowledge are extracted from original graph
as two inputs of the model. Furthermore, we propose a novel view interac-
tion technique based on selection gating mechanism to remove redundant
structural information and supplement insufficient topology while retain-
ing their focused knowledge. Finally, we design a view attention fusion
mechanism to adaptively fuse two interacted views to generate the final
view. In numerical experiments involving both clean and attacked condi-
tions, GBV-GSL shows significant improvements in the effectiveness and
robustness of structure learning and node representation learning. Code
is available at https://github.com/Simba9257/GBV-GSL.

Keywords: Graph neural networks · Graph structure learning ·
Gating mechanism

1 Introduction

Graph is capable of modeling real systems in diverse domains varying from
natural language and images to network analysis. Nowadays, as an emerging
technique, Graph Neural Networks (GNNs) [7,12,18] have achieved great suc-
cess with their characteristic message passing scheme [5] that aims to aggregate
information from neighbors iteratively. So far, GNNs have shown superior per-
formance in a wide range of applications, such as node classification [21,22] and
link prediction [23].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Luo et al. (Eds.): ICONIP 2023, LNCS 14452, pp. 396–407, 2024.
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GNNs are extremely sensitive to the quality of given graphs and thus require
resilient and high-quality graph structures. However, we are not always provided
with graph structures, such as in natural language processing [2,13] or computer
vision [17]. Even if given the graph structures, due to the complexity of real
information sources, the quality of graphs is often unreliable. On one hand, graph
structures in real-world tend to be noisy, incomplete, adversarial, and heterophily
(i.e., the edges with a higher tendency to connect nodes of different types). On the
other hand, graphs sometimes suffer from malicious attacks, such that original
structures are fatally destroyed. With attacked graphs, GNNs would be very
vulnerable. As a result, there are various drawbacks prevailing in real graphs,
which prohibits original structure from being the optimal one for downstream
tasks.

Recently, graph structure learning (GSL) has aroused considerable atten-
tions, which aims to learn optimal graph structure and parameters of GNNs
simultaneously [25]. Current GSL methods can be roughly divided into two cat-
egories, single-view [4,9,10,24] based and multi-view based [1,14,16,19]. The
single-view based GSL method is first proposed to estimate the optimal structure
from one view, i.e., the given adjacency matrix, by forcing the learned structure
to accord with some properties. For instance, LDS [4] samples graph structure
from a Bernoulli distribution of adjacency matrix and learns them together with
GNN parameters in a bi-level way. Pro-GNN [10] learns the graph structure
with low rank, sparsity and feature smoothness constraints. However, consider-
ing that learning graph structure from one information source inevitably leads
to bias and uncertainty [14], the multi-view based GSL method aims to extract
multiple basic views from original structure, and then comprehensively estimate
the final optimal graph structure based on these views. As an example, IDGL [1]
constructs the structure by two type of views: normalized adjacency matrix and
similarity matrix calculated with node embeddings. GEN [19] presents an itera-
tive framework based on Bayesian inference. CoGSL [14] propose a compact GSL
architecture by mutual information compression. Multi-view based methods are
able to utilize multifaceted knowledge to make the final decision on GSL.

While promising, multi-view based GSL methods still have the following
issues. (1) The complementarity of different views is ignored. Different views
have their own focused knowledge. For example, the adjacency matrix focuses
on the actual connection between nodes in reality, while the similarity matrix
focuses on the similarity of node embeddings. These views may be insufficient,
but they can complement each other to supplement insufficient knowledge. Exist-
ing multi-view methods augment the basic view separately, which ignores the
complementarity between different views and may not be able to deeply explore
the optimal graph structure. (2) Unrestricted information irrelevant to down-
stream tasks. An optimal graph structure should only contain the most concise
information about downstream tasks (e.g., node labels), so that it can conduct
the most precise prediction on labels. If the learned structure absorbs the infor-
mation of labels as well as additional irrelevance from basic views, this structure
is more prone to adversarial attacks when small perturbations are deployed on
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these irrelevant parts. Existing multi-view methods obtain the final view through
simple combination, fail to constrain the irrelevant information from basic views
to final view. Hence, the final structure inevitably involves additional noise and
disassortative connections and are also vulnerable to perturbations.

To address these issues, considering that basic views are the information
source of final view, it is vital to guarantee the quality of basic views. On one
hand, basic views are also needed to contain the information about labels, which
can fundamentally guarantee the performance of final view. On the other hand,
these views also should be independent of each other, so that they can eliminate
the redundancy and provide diverse knowledge about labels for final view. In
addition, considering that the final view extracts information from basic views,
we need to constrain the information flow from basic views to final view, which
avoids irrelevant information and contributes to the robustness of the model.
In this paper, we present GBV-GSL, an effective and robust graph structure
learning framework that can adaptively optimize the topological graph struc-
ture and can achieve superior node representations. Specifically, we first care-
fully extract two basic views that focus on different knowledge from original
structure as inputs, and utilize a view estimator to properly adjust basic views.
With the estimated basic views, we propose a view interaction technique based
on selection gating mechanism to remove redundant structural information and
supplement insufficient topology. In this mechanism, the model first calculates
the gating signal based on two estimated views, and the gating signal controls
the proportion of their mixed information to their respective topological struc-
tures. The objective of gating is twofold: on the complement side, to control the
importance given to mixed information, and on the denoise side, how much of
the redundant information every view should “forget”. Then, we further design a
view attention fusion mechanism to automatically learn the importance weights
of the interacted views, so as to adaptively fuse them. In the end, the label
information is not only used for the final view, but also for supervising the clas-
sification results of two interacted views. Our contributions are summarized as
follows:

– To our best knowledge, we are the first to utilize gating mechanism to study
the optimal structure in GSL. We propose a view interaction module, which
aims to insufficient structures as well as suppress irrelevant noise.

– We propose GBV-GSL, an effective and robust gated bi-view graph structure
learning framework, which can achieve superior node representations.

– We validate the effectiveness of GBV-GSL compared with state-of-the-art
methods on seven datasets. Additionally, GBV-GSL also outperforms other
GSL methods on attacked condition, which further demonstrates the robust-
ness of GBV-GSL.

2 Problem Definition

Let G = (V, ξ) represent a graph, where V is the set of n nodes and ξ is the set
of edges. All edges formulate an original adjacency matrix A ∈ R

n×n, where Aij
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Fig. 1. The overview of our proposed GBV-GSL. (a) Model framework. (b) View esti-
mator. (c) View interaction.

denotes the relation between nodes vi and vj . Graph G is often assigned with node
feature matrix X = [x1, x2, . . . , xN ] ∈ R

n×d, where xi means the d dimensional
feature vector of node i. In semi-supervised classification, we only have a small
part of nodes with labels YL. The traditional goal of graph structure learning
for GNNs is to simultaneously learn an optimal structure and GNN parameters
to boost downstream tasks.

As one typical architecture, GCN [12] is usually chosen as the backbone,
which iteratively aggregates neighbors’ information. Formally, the kth GCN layer
can be written as:

GCN
(
A,H(k)

)
= D−1/2AD−1/2H(k−1)W (k), (1)

where D is the degree matrix of A, and W (k) is weight matrix. H(k) represents
node embeddings in the kth layer, and H(0) = X. In this paper, we simply utilize
GCN(V, H) to represent this formula, where V is the view and H is the node
features or embeddings.

3 The Proposed Model

In this section, we elaborate the proposed model GBV-GSL. The overall archi-
tecture is shown in Fig. 1(a). Our model begins with two basic views. Then, we
utilize a view estimator to optimize two basic views separately. With two esti-
mated views, we propose a view interaction technique based on selection gating
mechanism to optimize them again. Next, we design a view attention fusion
mechanism to adaptively fuse two interactive views to generate the final view.
Finally, we provide the optimization objective of this model.

3.1 The Selection of Basic Views

Given a graph G, GBV-GSL starts from extracting different structures. In this
paper, we mainly investigate three widely-studied structures: (1) Adjacency
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matrix, which reflects the local structure; (2) Diffusion matrix, which repre-
sents the stationary transition probability from one node to other nodes and
provides a global view of graph. Here, we choose Personal PageRank (PPR),
whose closed-form solution [8] is S = α

(
I − (1 − α)D−1/2AD−1/2

)−1
, where

α ∈ (0, 1] denotes teleport probability in a random walk, I is a identity matrix,
and D is the degree matrix of A; (3) KNN graph, which reflects the similarity in
feature space. We utilize original features to calculate cosine similarity between
each node pair, and retain top-k similar nodes for each node to construct KNN
graph.

These three views contain the different properties from various angles, and
we carefully select two of them as two basic views V1 and V2, which are the
inputs of GBV-GSL.

3.2 View Estimator

Given two basic views V1 and V2, we need to further polish them so that they
are more flexible to generate the final view. Here, we devise a view estimator
for each basic view, shown in Fig. 1(b). Specifically, for basic view V1, we first
conduct a GCN [12] layer to get embeddings Z1 ∈ R

n×des::

Z1 = σ (GCN (V1,X)) , (2)

where σ is non-linear activation. With embedding Z1, probability of an edge
between each node pair in V1 can be reappraised. For target node i, we concate-
nate its embedding z1i with embedding z1j of another node j, which is followed
by a MLP layer:

w1
ij = W1 · [

z1i ‖z1j
]
+ b1, (3)

where w1
ij denotes the weight between i and j, W1 ∈ R

2des×1 is mapping vector,
and b1 ∈ R

2des×1 is the bias vector. Then, we normalize the weights for node i to
get the probability p1ij between node i and other node j. Moreover, to alleviate
space and time expenditure, we only estimate limited scope S1. For example,
for adjacency matrix or KNN, we only inspect their k-hop neighbors, and for
diffusion matrix, we only reestimate top-h neighbors for each node according to
PPR values. Here, h and k are hyper-parameters. So, p1ij is calculated as:

p1ij =
exp

(
w1

ij

)
∑

k∈S1 exp (w1
ik)

. (4)

In this way, we construct a probability matrix P 1, where each entry is cal-
culated by Eq. (4). Combined with original structure, the estimated view is as
follows:

V 1
es = V1 + μ1 · P 1, (5)

where μ1 ∈ (0, 1) is a combination coefficient, and the i-th row of V 1
es, denoted

as V 1
es−i, shows new neighbors of node i in the estimated view. Estimating V2 is

similar to V1 but with a different set of parameters, and we can get the estimated
view V 2

es finally.
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3.3 View Interaction

The two estimated views V 1
es and V 2

es only have topological information contained
in their respective basic structural views V1 and V2, which may be insufficient
or noisy. To address this issue, we introduce a portion of their mixed topology
information for V 1

es and V 2
es, and referred to this process as view interaction,

shown in Fig. 1(c). Specifically, we use a selection gating mechanism to make V 1
es

and V 2
es interact with each other. First, the gating signal r is computed by

r = σ
(
V 1

es · Ur + b1r + V 2
es · Wr + b2r

)
, (6)

where Ur,Wr ∈ R
n×n are learnable parameters, b1r, b

2
r ∈ R

n×1 are bias vector, σ
is activation function sigmoid(x) = 1

1+e−x , and r ∈ (0, 1) represents the impor-
tance of the data passed by the gate. After having the gating signal r, taking V 1

es

as an example, we have it pass through the gate with Ves = V 1
es+V 2

es

2 , to obtain
the interactive view V 1

in:

V 1
in = (1 − r) · Ves + r · V 1

es, (7)

here we use Ves to represent mixed topology information because it is simple
and effective. Similarly, another interactive view V 2

in is obtained from the same
gating system:

V 2
in = (1 − r) · Ves + r · V 2

es, (8)

3.4 View Attention Fusion

Now we have two interactive views V 1
in and V 2

in. Considering the node label can
be correlated with one of them or even their combinations, we use the attention
mechanism att

(
V 1

in, V 2
in

)
to learn their corresponding importance

(
β1, β2

)
as

follows: (
β1, β2

)
= att

(
V 1

in, V 2
in

)
, (9)

here β1, β2 ∈ R
n×1 indicate the attention values of n nodes with embeddings

V 1
in , V 2

in , respectively.
Here we focus on node i, where its embedding in V 1

in is V 1
in−i ∈ R

1×n (i.e.,
the i-th row of V 1

in). We firstly transform the embedding through a nonlinear
transformation, and then use one shared attention vector q ∈ R

h′×1 to get the
attention value ω1

i as follows:

ω1
i = qT · tanh

(
W ·

(
V 1

in−i

)T

+ b

)
. (10)

Here W ∈ R
h′×h is the weight matrix and b ∈ R

h′×1 is the bias vector. Similarly,
we can get the attention values ω2

i for node i in view V 2
in. We then normalize

the attention values ω1
i , ω2

i with softmax function to get the final weight:

β1
i = softmax

(
ω1

i

)
=

exp
(
ω1

i

)
exp (ω1

i ) + exp (ω2
i )

. (11)
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Larger β1
i implies the corresponding view is more important. Similarly, β2

i =
softmax

(
ω2

i

)
. For all the n nodes, we have the learned weights β1 =

[
β1

i

]
, β2 =[

β2
i

] ∈ R
n×1, and denote β1

in = diag
(
β1

)
, β2

in = diag
(
β2

)
. Then we combine

these two views to obtain the final view V ∗:

V ∗ = β1
in · V 1

in + β2
in · V 2

in. (12)

3.5 Optimization Objective

V ∗ is a fusion of V 1
in and V 2

in, indicating that better V 1
in and V 2

in can result in
better V ∗. Therefore, we optimize parameters Θ of classifiers for each view to
improve the accuracy on given labels YL. Specifically, we first utilize two-layer
GCNs to obtain predictions of V 1

in and V 2
in :

O1 = softmax
(
GCN

(
V 1

in, σ
(
GCN

(
V 1

in,X
))))

,
O2 = softmax

(
GCN

(
V 2

in, σ
(
GCN

(
V 2

in,X
))))

,
(13)

where σ is activation function. Similarly, we also can get the predictions of V ∗:

O∗ = softmax (GCN (V ∗, σ (GCN (V ∗,X)))) , (14)

The parameters of GCNs involved in Eq. (13) and Eq. (14) are regarded as
the parameters Θ of classifiers together. Θ can be optimized by evaluating the
cross-entropy error over YL:

min
Θ

Lcls = −
∑

O∈{O1,O2,O∗}

∑
vi∈yL

yilnoi, (15)

where yi is the label of node vi, and oi is its prediction. With the guide of labeled
data, we can optimize the proposed GBV-GSL via back propagation and learn
the embedding of nodes for classification.

4 Experiments

4.1 Experimental Setup

Datasets. We employ seven open datasets, including three non-graph datasets
(i.e., Wine, Breast Cancer (Cancer) and Digits) available in scikit-learn [15], a
blog graph Polblogs [10] and three heterophily graph datasets (i.e. Texas, Cornell,
Wisconsin). Notice that for non-graph datasets, we construct a KNN graph as
an initial adjacency matrix as in [1].

Baselines. We compare the proposed GBV-GSL with two categories of base-
lines: classical GNN models GCN [12], GAT [18], GraphSAGE [7] and four graph
structure learning based methods Pro-GNN [10], IDGL [1], GEN [19], CoGSL
[14].
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Implementation Details. For three classical GNN models (i.e. GCN, GAT,
GraphSAGE), we adopt the implementations from PyTorch Geometric library
[3]. For Pro-GNN, IDGL, GEN and CoGSL, we use the source codes provided by
authors, and follow the settings in their original papers with carefully tune. For
the proposed GBV-GSL, we use Glorot initialization [6] and Adam [11] optimizer.
We carefully select two basic views for different datasets as two inputs. We tune
the learning rate for Adam optimizer from {0.1, 0.01, 0.001}. For combination
coefficient μ, we test ranging from {0.1, 0.5, 1.0}. Finally, we carefully select total
iterations T from {100, 150, 200}, and tune training epochs for each module from
{1, 5, 10}. For fair comparisons, we set the hidden dimension as 16 and randomly
run 10 times and report the average results for all methods.

For Pro-GNN, IDGL, GEN, CoGSL and our GBV-GSL, we uniformly choose
two-layer GCN as backbone to valuate the learnt structure.

4.2 Node Classification

In this section, we evaluate the proposed GBV-GSL on semi-supervised node
classification. For different datasets, we follow the original splits on training set,
validation set and test set. To more comprehensively evaluate our model, we use
two common evaluation metrics, including F1-macro and F1-micro. The results
are reported in Table 1, where we randomly run 10 times and report the average
results. As can be seen, the proposed GBV-GSL generally outperforms all the
other baselines on all datasets, which demonstrates that GBV-GSL can boost
node classification in an effective way. The huge performance superiority of GBV-
GSL over the backbone GCN implies that the view interaction and classifiers of
our model are collaboratively optimized and mutually reinforcing. In comparison
with other GSL frameworks, our performance improvement demonstrates that
the proposed framework is effective, and the learned structure with more effective
information, which can provide better solutions.

4.3 Defense Performance

Here, we aim to evaluate the robustness of various methods. Cancer, Polblogs
and Texas are adopted. We focus on comparing GSL models, because these
models can adjust original structure, which makes them more robust than other
GNNs. Specifically, we choose Pro-GNN from single-view based methods. And
for multi-view based methods, IDGL and CoGSL are both selected.

To attack edges, we adopt random edge deletions or additions following [1,4].
Specifically, for edge deletions, we randomly remove 5%, 10%, 15% of original
edges, which retains the connectivity of attacked graph. For edge addition, we
randomly inject fake edges into the graph by a small percentages of the number
of original edges, i.e. 25%, 50%, 75%. In view of that our GBV-GSL needs two
inputs while other methods need one input, for a fair comparison, we deploy
attacks on each of two inputs separately and on both of them together with the
same percentages. We choose poisoning attack [20], where we firstly generate
attacked graphs and then use them to train models. All the experiments are



404 X. Wang and H. Yan

Table 1. Quantitative results (%± σ) on node classification. (bold: best)

datasets metric GCN GAT GraphSAGE LDS Pro-GNN IDGL GEN CoGSL GBV-GSL

Wine F1-macro 94.1± 0.6 93.6± 0.4 96.3± 0.8 93.4± 1.0 97.3± 0.3 96.3± 1.1 96.4± 1.0 97.5± 0.6 97.9±0.3
F1-micro 93.9± 0.6 93.7± 0.3 96.2± 0.8 93.4± 0.9 97.2± 0.3 96.2± 1.1 96.3± 1.0 97.4± 0.7 97.8± 0.3

Cancer F1-macro 93.0± 0.6 92.2± 0.2 92.0± 0.5 83.1± 1.5 93.3± 0.5 93.1± 0.9 94.1± 0.8 93.5± 1.2 94.5± 0.3
F1-micro 93.3± 0.5 92.9± 0.1 92.5± 0.5 84.8± 0.8 93.8± 0.5 93.6± 0.9 94.3± 1.0 94.0± 1.0 94.9± 0.3

Digits F1-macro 89.0± 1.3 89.9± 0.2 87.5± 0.2 79.7± 1.0 89.7± 0.3 92.5± 0.5 91.3± 1.3 92.5± 1.3 92.7± 1.0
F1-micro 89.1± 1.3 90.0± 0.2 87.7± 0.2 80.2± 0.9 89.8± 0.3 92.6± 0.5 91.4± 1.2 92.5± 1.2 92.7± 1.0

Polblogs F1-macro 95.1± 0.4 94.1± 0.1 93.3± 2.5 94.9± 0.3 94.6± 0.6 94.6± 0.7 95.2± 0.6 95.5± 0.2 95.9± 0.2
F1-micro 95.1± 0.4 94.1± 0.1 93.4± 2.5 94.9± 0.3 94.6± 0.6 94.6± 0.7 95.2± 0.6 95.5± 0.2 95.9± 0.2

Texas F1-macro 42.1± 2.6 32.2± 6.8 76.8± 9.3 33.9± 9.1 35.5± 7.2 51.0± 4.8 51.6± 7.2 70.0± 4.8 78.5± 4.8
F1-micro 61.1± 1.3 59.2± 4.6 84.9± 5.4 59.7± 7.0 60.8± 6.1 64.9± 3.0 73.4± 6.7 80.8± 2.6 86.0± 2.1

Cornell F1-macro 52.9± 1.0 31.8± 7.5 58.9± 5.0 36.3± 9.3 32.1± 9.8 49.6± 4.3 36.3± 9.1 61.4± 7.9 75.6± 4.5
F1-micro 66.8± 1.2 58.1± 2.8 73.2± 3.9 63.8± 7.8 63.0± 7.9 64.9± 2.2 65.6± 6.7 76.5± 2.1 84.9± 1.9

Wisconsin F1-macro 44.2± 1.7 33.3± 3.1 43.3± 5.2 31.2± 9.8 34.6± 8.6 38.1± 3.2 31.3± 5.1 55.1± 7.2 77.1± 7.3
F1-micro 65.1± 0.8 58.4± 2.7 77.8± 3.8 53.1± 6.7 55.7± 7.0 58.8± 3.9 55.1± 8.1 83.3± 3.4 89.6± 2.3

Fig. 2. Results of different models under random edge deletion.

Fig. 3. Results of different models under random edge addition.

conducted 10 times and we report the average accuracy. The results are plotted
in Figs. 2 and 3. Besides, the curves of “GBV-GSL_v1”, “GBV-GSL_v2” and
“GBV-GSL_all” mean the results that one of inputs of GBV-GSL is attacked
and both of them are attacked, respectively.

From the figures, GBV-GSL consistently outperforms all other baselines
under different perturbation rates by a margin for three cases. We also find that
as the perturbation rate increases, the margin becomes larger, which indicates
that our model is more effective with violent attack. Besides, “GBV-GSL_all”
also performs competitive. Although both of its two inputs are attacked, “GBV-
GSL_all” still outperforms other baselines.
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Fig. 4. Results with or without view interaction module.

Fig. 5. Results on different fusions.

4.4 Ablation Studies

Analysis of View Interaction. With two estimated views, we propose a view
interaction technique based on selection gating mechanism to optimize them
again. To evaluate the effectiveness of view interaction, we compare the evalu-
ation result of the final view trained with and without the view interaction on
Digits, Polblogs and Wisconsin in Fig. 4. We can see a significant performance
drop consistently for GBV-GSL on all datasets by turning off the view interac-
tion component (i.e., using two estimated views for fusion directly). The reason
is that, without our view interaction, the two estimated views only have topo-
logical information contained in their respective basic structural views, which
may be insufficient or noisy. View interaction allows estimated views to retain
a portion of their own structure while introducing their mixed structure, which
removes noise and solves the problem of insufficient structure.

Analysis of View Attention Fusion. We use an attention fusion mecha-
nism, which assigns weights to two interactive views based on the corresponding
importance for each node as Eqs. (9)–(12) in Sect. 3.5. To verify the validation
of this part, we design two more baselines. One is to simply average two inter-
active views as the final view. The other is to use adaptive fusion mechanism
[14] to fuse them. We test on Digits, Texas and Wisconsin and show the results
in Fig. 5, where “Attention” refers to attention fusion we introduce. We can see
that the attention fusion we designed is the best behaved of three ways, which
fully proves its effectiveness.
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5 Conclusion

In order to solve the problems of neglecting the complementarity of different
views and unrestricted information irrelevant to downstream tasks in existing
multi-view GSL methods, this paper proposes a novel GSL framework GBV-
GSL that introduce the selection gating mechanism into GSL. We designed a
view interaction module that incorporates mixed information controlled by the
same gating signal into two estimated views, so as to remove redundant structural
information and supplement insufficient topology while retaining their focused
knowledge. Then, the final view is generated by adaptive attention fusion. Exten-
sive experimental results, under clean and attacked conditions, are conducted to
verify the effectiveness and robustness of GBV-GSL.
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Abstract. The existing methods for predicting Easily Confused Charges (ECC)
primarily rely on factual descriptions from legal cases. However, these approaches
overlook some key information hidden in these descriptions, resulting in an inabil-
ity to accurately differentiate between ECC. Legal domain knowledge graphs can
showcase personal information and criminal processes in cases, but they primar-
ily focus on entities in cases of insolation while ignoring the logical relationships
between these entities. Different relationships often lead to distinct charges. To
address these problems, this paper proposes a charge prediction model that inte-
grates a Criminal Behavior Knowledge Graph (CBKG), called Charge Predic-
tion Knowledge Graph (CP-KG). Firstly, we defined a diverse range of legal
entities and relationships based on the characteristics of ECC. We conducted
fine-grained annotation on key elements and logical relationships in the factual
descriptions. Subsequently, wematched the descriptions with the CBKG to extract
the key elements, which were then encoded by Text Convolutional Neural Net-
work (TextCNN).Additionally, we extracted case subgraphs containing sequential
behaviors from the CBKG based on the factual descriptions and encoded them
using a Graph Attention Network (GAT). Finally, we concatenated these represen-
tations of key elements, case subgraphs, and factual descriptions, collectively used
for predicting the charges of the defendant. To evaluate the CP-KG, we conducted
experiments on two charge prediction datasets consisting of real legal cases. The
experimental results demonstrate that the CP-KG achieves scores of 99.10% and
90.23% in the Macro-F1 respectively. Compared to the baseline methods, the
CP-KG shows significant improvements with 25.79% and 13.82% respectively.
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1 Introduction

With the application of information technologies such as Artificial Intelligence (AI)
and big data in various scenarios, there is a growing demand for judicial services. To
meet the evolving needs of legal judgment by the general public and keep up with the
development of the times, researchers have attempted to integrate AI into the field of
legal to achieve fairness, intelligence, and efficiency in legal judgments. In China, to
promote AI applications such as intelligent information retrieval and Natural Language
Processing (NLP) in the legal domain, the Supreme People’s Court and the Chinese
Information Processing Society of China jointly organized the Challenge of AI in Law
(CAIL) competition. This competition has been held continuously for five years since
2018 and has become an important platform for academic exchanges in the field of legal
AI. In CAIL 2018, three tasks were set: legal article recommendation, charge prediction,
and sentence prediction.

This study focuses on charge prediction within the CAIL competition. Charge pre-
diction is a crucial task in the intelligent judiciary, which involves analyzing factual
descriptions in legal cases to predict the charges for defendants. The predicted results
can serve as references for judicial personnel, helping to correct the subjective biases
of judges and reduce negative impacts caused by intuition and other subjective factors.
Predicting Easily Confused Charges (ECC) has always been a research hotspot and chal-
lenge in charge prediction. ECC often share similar criminal processes, but they differ
in individual criminal behaviors and outcomes. Different charges often lead to differ-
ent legal judgments and punishments. The examples of ECC are illustrated in Fig. 1.
Among them, blue represents the same elements in the two legal cases, and red repre-
sents different elements. Although the behavior information and sequence of behaviors
of the two defendants were the same, the behavior on the right also resulted in death.
The charges and punishments in the two legal cases are completely different. Therefore,
differentiating these key elements and the order of elements is crucial for predicting ECC
accurately. Existing methods mostly apply mature AI to predict ECC, which often fails
tomeetmany specialized needs of legal professionals. For example, when traditional text
classification models like Long Short-Term Memory (LSTM) [1] are applied to charge
prediction, they merely encode and process factual descriptions of legal cases, lacking
the fine-grained recognition and understanding of tools and behavioral elements within
these descriptions. They do not fully utilize the information presented in legal cases.

’’

Fig. 1. Easily confused charges comparison
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Knowledge Graphs (KGs) are graph-structured data that describe entities and their
relationships. Due to their intuitive and rich knowledge representation, KGs have been
widely applied in NLP tasks. KGs can generally be categorized into two types: general-
purpose KGs and domain-specific KGs. The former contains extensive knowledge,
mainly consisting of common-sense knowledge and coarse-grained knowledge. The lat-
ter focuses on a specific domain, emphasizing deeper andmore specialized knowledge. It
incorporates expert experience and industry-specific information, covering fine-grained
knowledge. Compared to text, KGs provide more explicit and logical representations,
playing a supportive and enabling role in intelligent judiciary. In the legal domain,
general-purpose KGs provide limited knowledge. Therefore, researchers have begun
to construct domain-specific KGs for addressing legal domain tasks. However, exist-
ing legal domain KGs often focus on the entities within legal cases and often overlook
the logical relationships between legal entities, that different behavioral relationships
between entities can lead to different charges and varying punishments. Therefore, for
the task of predicting ECC, it is necessary to construct a novel domain-specific KG that
highlights key elements and sequential information of legal cases.

To address these challenges, this paper proposes a Charge Prediction method
called CP-KG, which integrates a Crime Behavior Knowledge Graph (CBKG). The
contributions of this work are summarized as follows:

(1) We constructed a novel domain-specific knowledge graph in the field of legal, known
as the CBKG. It encompasses a wealth of legal entities and relationships, enabling
a clear depiction of the criminal process associated with ECC.

(2) We extracted Key Elements (KE) and Case Subgraphs (CS) from legal cases, which
supplements the model with fine-grained legal knowledge and enhances its ability
to comprehend ECC.

(3) Experimental results on two charge prediction datasets consisting of real legal cases
demonstrate that the CP-KG achieves Macro-F1 scores of 99.10% and 90.23%
respectively. Moreover, it significantly outperforms the baseline methods, achieving
approximately 25.79% and 13.82% improvement in the Macro-F1 metric.

2 Related Work

2.1 Charge Prediction

With the development of deep learning, it has achieved successful applications in NLP in
recent years. Inspired by this, researchers have attempted to apply deep neural networks
to the task of charge prediction, aiming to improve accuracy by extracting deep seman-
tic information from legal cases. Jiang et al. [2] treated charge labels as supervision
and used deep reinforcement learning to extract key factual fragments from case facts,
enhancing case representations and improving model performance. Zhong et al. [3] pro-
posed a topological multi-task learning framework that models the explicit dependency
relationships among three sub-tasks: legal article recommendation, charge prediction,
and sentence prediction. Yang et al. [4] introduced the Multi-Perspective Bi-directional
Feedback Network (MPBFN) with word collocation attention mechanism to fully utilize
the topological dependencies among multiple task results, effectively improving judg-
ment prediction. Zhao et al. [5] employed a reinforcement learning method to extract
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sentences containing criminal elements in cases, simulating the process of judgment in
real-world scenarios.

2.2 Legal Domain Knowledge Graph

The construction of a legal domain KGs based on legal cases is beneficial for various
important legal tasks. Chen et al. [6] treated criminal charges and keywords from charge
description articles as entity nodes and defined four types of relationships. They con-
structed a charge knowledge graph by using a relationship classifier to determine the
relationships between entities. Chen et al. [7] addressed the issue of dispersed knowl-
edge and inconvenient queries in the judicial domain by constructing a knowledge graph
based on a legal case. They preprocessed the legal case using the Language Technology
Platform (LTP). Then, they organized and compiled it using the Neo4j graph database
to build a case knowledge graph. Chen [8] proposed a knowledge graph construction
method focused on criminal behavior. They utilized the LTP and a pre-built legal dictio-
nary to extract elements from legal cases and then extracted triples of criminal behavior
entity relationships with the assistance of Chinese grammar rules. Guo [9] introduced a
causation graph based on legal cases, using dependency syntactic analysis and regular
expression matching to obtain a relationship between events. Chen et al. [10] developed
an information extractionmodel specifically for criminal cases to construct a drug-related
case graph. Hong et al. [11] focused on judicial charges of “motor vehicle traffic accident
liability disputes” and defined 20 entity types and 9 relationship types. They used deep
learning to extract entities and relationships and construct a knowledge graph for traf-
fic cases. To address the interpretability issue in sentencing prediction, Wang et al. [12]
focused on drug trafficking cases as their research subject. Under the guidance of domain
experts, they designed concepts and relationships within the case factual descriptions
and extracted triples from the case facts based on the knowledge graph ontology.

Although these methods have made some progress in the task of charge predic-
tion, there are still challenges that need to be addressed. Firstly, deep learning cannot
accurately identify behavior within factual descriptions at a fine-grained level. This lim-
itation results in poor model understanding for ECC. Secondly, existing KGs tailored to
the legal domain often focus on the entity within factual descriptions while neglecting
the behavioral relationship between legal entities. This limitation hinders the accurate
identification of the criminal process associated with ECC, leading to lower prediction
performance.

3 Methods

In this section, we detail the construction process of the CBKG and the various com-
ponents of the CP-KG. Firstly, in Sect. 3.1, we introduce the process of constructing
the CBKG. Next, in Sect. 3.2, we discuss the extraction process of KE and CS, while
Sect. 3.3 covers the encoding process of KE and CS. Moving forward, Sect. 3.4 presents
the encoding process of Fact Descriptions (FD) in legal cases. Finally, in Sect. 3.5, we
describe the process of feature fusion and predict charge.
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3.1 Overview

The CP-KGmodel extracts features and fuses them based on the input legal cases. Then,
the resulting information is fed into a Fully Connected Layer to predict the defendant’s
charges. The specific process is illustrated in Fig. 2. Firstly, the FD of the legal cases
and the CBKG are used as input data and passed to the Extract Module, which obtains
KE from the FD and CS of the CBKG. Subsequently, TextCNN and GAT are employed
to encode KE and CS. Finally, the representations of the FD, KE, and CS are fused
to predict the charges. Detailed descriptions of these modules will be provided in the
following sections.

…… ……

Fig. 2. The structure of the CP-KG model

3.2 Criminal Behavior Knowledge Graph (CBKG)

Collect Legal Cases. The data used for constructing the CBKG is sourced from the
criminal legal cases available on China Judgments Online1. We have selected eight
categories of ECC, namely: intentional injury, intentional homicide, dangerous driving,
traffic accident, theft, fraud, robbery, and snatching. For each category, we collected 600
legal cases, resulting in a total of 4,800 legal cases. (Note: The collected legal cases for
each charge are from the courts in the same region and only include criminal first-instance
cases.)

Define Legal Entities and Relationships. We have redefined 19 categories of legal
entities and 11 categories of legal relationships to address the characteristics of cases
involving ECC. By utilizing diverse entity and relationship information, we can accu-
rately construct the criminal processes of legal cases and differentiate the subtle differ-
ences between ECC. The detailed legal entities and legal relationships are presented in
Table 1.

We following the defined entities and relationships as presented in Table 1, with the
annotation and verification of legal experts, we ultimately constructed a high-quality
dataset for Judicial Long Text Triple Extraction (JLT). Detailed statistics regarding the
dataset will be presented in Sect. 4.

1 https://wenshu.court.gov.cn/.

https://wenshu.court.gov.cn/
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Table 1. Definition of legal entities and relationships

Information

Entity Case Defendant Victim Cause Behavior Tool Injury

Primary
Culprit

Accessory Recidivism Surrender Forgiveness Amount Total Amount

Law Charge Prison Term Penalty Truthful
Confession

Relationship Include Involve Crime Cause Behavior
Description

Use Total Injury
Classification

Crime
Type

Sentencing Violate Judgment
Information

Defining Criminal Behavior Knowledge Graph. For predicting ECC tasks, the
sequential information of criminal behaviors within criminal events is of paramount
importance. Consequently, following the defined legal entities and relationships, we
extracted the most relevant criminal behaviors of the defendant and their respective
sequences. Criminal behaviors constitute KE, while sequence information constitutes
CS. The extracted relevant entities include Crime Cause, Behavior, Tool, Injury Classi-
fication, and Charge. The extracted relevant relationships include Use, Cause, Favour,
Subsequence, Lead to, and Constitute. From the JLT, we selected entities and relation-
ships related to criminal behaviors and constructed CBKG using NetworkX2. At this
stage, CBKG represents a large graph containing information about criminal behaviors.
Subsequently, specific CS are extracted based on the behaviors corresponding to each
legal case. The CBKG is illustrated in Fig. 3.

Fig. 3. An example of CBKG

3.3 Extract Module

In criminal cases in China, defendants often have a series of criminal behaviors that
occur in a sequence from cause to outcome. This sequential information on criminal

2 https://github.com/networkx/networkx.

https://github.com/networkx/networkx
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behaviors can reflect the order in which the defendant engaged in criminal activities and
provide additional perspectives for legal professionals in their judgment. Within a case,
multiple behaviors of the defendant can be extracted, and then multiple paths related
to these behaviors can be captured from the CBKG. By combining the captured paths,
we can obtain a CS that reflects the differences in criminal behaviors between different
charges, providing distinguishing features of the criminal process.

The Extract Module takes FD and CBKG as input data and is responsible for extract-
ing KE and CS. Initially, all node information from CBKG is retrieved, and a string
matching is conducted with the FD. Successfully matched nodes are identified as KE
within theFD.Additionally,multiple paths related to behaviors are extracted fromCBKG
based on the sequence of node appearances, and these paths are combined to construct
CS for criminal behaviors.

3.4 Encoder Module

The FD and KE both fall under textual information. In order to obtain rich features, we
choose to encode them using a TextCNN. Specifically, the representation of the KE can
provide the model with additional fine-grained semantic information.

For a legal case, denoted as dk = [w1, w2, …, wt, …wT ], where T represents the
number of words in the k-th case, andwt represents the t-thword in the case facts dk . For
the KE extracted from the FD, denoted as Ek = [e1, e2, …, ei, …, eI ], where I represent
the number of KE in the k-th case, and ei represents the i-th KE in the KE sequence Ek .
In this study, GloVe [13] embeddings are used to obtain word representations for each
word in dk and each element in Ek , represented as wt ∈ Rm and et ∈ Rm, respectively,
where m is the dimensionality of the vectors. The representations of all the words in dk
are concatenated in the order they appear in the text, resulting in the representation Xdk

= w1:T = [w1, w2, …, wt, …, wT ] for the case facts. Similarly, the representations of all
the elements in Ek are concatenated in the sequence order, resulting in the representation
XEk = e1:T = [e1, e2, …, ei, …, eI] for the KE. These representations, Xdk and XEk , are
then inputted into the convolutional layer of the TextCNN. Different-sized convolutional
kernels are used to extract text features. This process can be represented as Eqs. (1) and
(2).

c = f
(
W1 ∗ Xdk + b1

)
(1)

l = f
(
W2 ∗ XEk + b2

)
(2)

whereW1,W2 ∈ Rh×m represent the sizes of the convolutional kernels, b1,b2 are biases,
and ƒ(·) represents a non-linear function. By using convolutional kernels of different
sizes, feature sets are obtained for the case facts dk and the KE sequence Ek , represented
as C = [c1, c2, …, cT-h+1] and L = [l1, l2, …, lI-h+1], respectively. T and I represent
the number of words in the FD and KE respectively. Finally, the maximum pooling is
applied to obtain the text representation Cdk for the case facts dk and the representation
LEk for the KE Ek , capturing representative features. This process can be represented
as Eqs. (3) and (4).

Cdk = [max(C)] (3)
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LEk = [max(L)] (4)

3.5 Subgraph Encoder Module

Graph Convolutional Neural Networks (GCNs) typically aggregate neighboring node
information using equal or pre-defined edge weights. In contrast, GAT can assign dif-
ferent weights to different nodes in the graph, allowing for varying importance levels of
each neighboring node. Furthermore, GATs do not require the utilization of the entire
graph; they only rely on first-order neighboring node information. This addresses some
of the limitations of GCNs. Therefore, we choose GAT to encode the extracted CS.

Assuming that the CS contains N nodes, we denote the node vectors of graph as h =
{h1, h2,…, hN}, hi ∈RF where F represents the feature dimension of input nodes. Next,
the CS is fed into the GAT. When aggregating information between nodes, GAT incor-
porates an attention mechanism. The formula for calculating the attention coefficients
eij is shown in Eq. (5).

eij = a
(
Whi,Whj

)
(5)

where W represents the weight matrix that can be shared, and a denotes the shared
attention mechanism. Eij represents the relevance of node I to node j, where j ∈ Ni

and Ni represents all the first-order neighboring nodes of node i. Next, the attention
obtained is normalized using the Softmax function. This normalization allows for easy
comparison of attention weights between nodes. This process can be represented by
Eq. (6).

αij = softmax
(
eij

) = exp
(
LeakyReLU

(
aT

[
Whi‖Whj

]))

∑
k∈Ni

exp
(
LeakyReLU

(
aT [Whi‖Whk ]

)) (6)

where the attention mechanism is implemented as a single-layer feed-forward neural
network with parameters denoted as a. The activation function used is the LeakyReLU.
W represents trainable parameters and || denotes the concatenation operation.

In order to stably represent nodes, we extend the attention mechanism to a multi-
head attention mechanism, aiming to improve model stability. M is used to represent
the number of attention heads. The final node representation is obtained by averaging
the representations obtained throughM attention heads. The output can be expressed as
shown in Eq. (7).

hi′ = σ

⎛

⎝ 1

M

M∑

m=1

∑

j∈Ni

αM
ij W

M hj

⎞

⎠ (7)

where σ (·) represents the activation function. αM
ij represents the value computed by the

m-th attention head. WM is the linear matrix used for the linear transformation of the
input vector. h

′
i represents the feature obtained after feature extraction through the multi-

head GAT, which captures the aggregated semantic information of neighboring nodes.
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Next, applies max pooling to all the nodes h
′
i in the subgraph of the k-th case, resulting

in a CS representationGdk that captures the sequential information of criminal behavior.
This can be expressed as shown in Eq. (8).

Gdk = MaxPooling
(
h′) (8)

3.6 Feature Fusion

The KE of the case, as well as the relevant CS representation, can provide additional
information for representing the case facts. Therefore, in this paper, theCS representation
Gdk, KE representation LEk, and FD representation Cdk are concatenate and fed into
a fully connected layer, resulting in a representation denoted as p, as shown in Eq. (9).
Finally, this representation is inputted into a softmax to predict the involved charges.
This process is represented by Eq. (10).

p = concat
[
LEk ,Cdk ,Gdk

]
(9)

z = softmax(p) (10)

4 Experimental Setup

4.1 Dataset

This study conducted experiments on two charge prediction datasets consisting of real
legal cases, JLT and CAIL-8. The JLT includes 8 ECC and comprises 3,842 cases. The
CAIL-2018 is an official charge prediction task dataset released by CAIL and contains
202 charges. The CAIL-8 dataset is a subset of CAIL-2018, consisting of legal cases
with the same charges as the JLT dataset. (Note: Extracting legal cases with the same
charges as the JLT dataset aims to fully validate the effectiveness of the CBKG. In the
experiments, CS was extracted from the CBKG, while KE and FD corresponded to the
content of the respective dataset.) We conducted a detailed analysis of the case length,
and the statistical data is presented in Table 2.

4.2 Implementation Details

The baseline and CP-KG were trained and tested on NVIDIA Tesla V100. According
to the analysis in Table 2, the average length of a legal case fact description when using
characters as the smallest semantic unit is 497, while it is 371 when using words as
the smallest semantic unit. Therefore, in the experiments, the fixed length for input text
sequences was set to 400, and the fixed length for KE was set to 50. The experiments
utilized word embeddings trained by the GloVe with a dimension of 200 for parameter
settings. The convolutional kernel sizes were set to 2, 3, 4, and 5. The training was
performed for 20 epochs, and the Adam optimizer was used. The dropout rate was set
to 0.5, and the learning rate was set to 1e−3.
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Table 2. Dataset statistics information

JLT-Train JLT-Test JLT-Valid CAIL-8-Train CAIL-8-Test CAIL-8-Valid

Total
cases

2304 769 769 8243 5227 2441

Average
words

391.08 398.76 396.08 281.00 263.48 269.99

Average
characters

530.87 564.76 555.82 352.99 331.30 340.56

4.3 Metric

The performance of the CP-KG in this experiment was evaluated using Accuracy (Acc),
Macro-Precision (Mac-P), Macro-Recall (Mac-R), and Macro-F1 (Mac-F1) as metrics.

4.4 Baseline Methods

To evaluate the experimental performance of the CP-KG, the following methods were
chosen as baseline. All methods used the default settings from the original papers.

• TFIDF-SVM [14] is a baseline model provided in the CAIL2018 competition. It uses
TF-IDF to extract text features and employs a Support Vector Machine (SVM) for
case fact classification.

• TextCNN [15] utilizes multiple convolutional layers with different kernel sizes
followed by max pooling to encode case facts and predict charges.

• Bi-GRU employs a Bi-directional Gated Recurrent Unit to capture text features.
• TOPJUDGE [3] is a topological multitask framework that captures the topologi-

cal dependencies among three judgment prediction subtasks: charge prediction, law
article recommendation, and sentence prediction. It uses a Directed Acyclic Graph
(DAG) structure.

• NeurJudge [16] primarily uses the Bi-GRU approach to encode texts and construct
charge graphs and legal provision graphs using charge definition and legal provision.
It utilizes graph decomposition to distinguish confusing legal provisions and charge
categories and combines the obtained label semantic information with case facts for
prediction.

5 Experimental Results

5.1 Analyze

From the experimental results in Table 3, it can be observed that the results of deep
learning are generally higher than those of the TFIDF-SVM. This is because the length
of case facts is not uniform, and there is a considerable amount of content in the FD.
The use of the Bi-GRU leads to the issue of content forgetting, resulting in poor per-
formance in charge prediction. TextCNN effectively captures local features of the text,
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thus demonstrating better performance in charge prediction. TOPJUDGE, also based on
a CNN, differs in associating the three judgment prediction subtasks, leading to superior
performance. NeurJudge is based on the Bi-GRU and also establishes some degree of
correlation in the three subtasks. However, the graph decomposition operation in this
method is more suitable for multiple classes of charges, making it difficult to effectively
distinguish distinctive features and resulting in lower prediction performance than other
models. The proposed CP-KG combines CS, KE, and FD for feature fusion and predic-
tion. Experimental results demonstrate that CP-KG achieves State-Of-The-Art (SOTA)
performance among the baseline. This is primarily due to the fine-grained semantic
information provided by the KE in the cases, as well as the criminal process of the
defendant and the relationships between elements provided by the CS, which enable a
deep understanding of the FD.

Table 3. Comparison of experimental results

Dataset JLT CAIL-8

Methods Acc Mac-P Mac-R Mac-F1 Acc Mac-P Mac-R Mac-F1

TFIDF-SVM 0.7757 0.7722 0.7749 0.7331 0.8041 0.8191 0.8265 0.7641

TextCNN 0.9831 0.9813 0.9784 0.9796 0.9346 0.9044 0.8782 0.8773

Bi-GRU 0.8388 0.8145 0.8142 0.8090 0.9038 0.8611 0.8791 0.8569

TOPJUDGE 0.9863 0.9897 0.9784 0.9839 0.8719 0.8581 0.8608 0.8334

NeurJudge 0.9714 0.9697 0.9672 0.9683 0.9066 0.8644 0.8967 0.8699

CP-KG 0.9922 0.9917 0.9903 0.9910 0.9474 0.9165 0.8975 0.9023

5.2 Ablation Study

We conducted an extensive ablation study on CP-KG to validate the effectiveness of the
KE and CS. In these experiments, the names of methods indicate the encoder and the
encoded object.

From Table 4, it can be observed that incorporating the KE and CS along with the
FD leads to improved prediction performance compared to using only the FD, KE, or
CS. Mac-F1 increases by an average of 2%. Furthermore, the results show that incorpo-
rating the CS yields higher performance than incorporating the KE. This indicates that
the sequential information of the elements in the CBKG provides additional semantics,
which helps differentiate betweenECC.The ablation study results on theCAIL-8 demon-
strate that the CBKG is applicable not only to the JLT but also to different cases with
the same charges. This validates the generalizability of the CBKG and the effectiveness
of the CP-KG.
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Table 4. Ablation study results (For example, TextCNN w/KE means that TextCNN was used to
encode the Key Elements).

Dataset JLT CAIL-8

Methods Acc Mac-P Mac-R Mac-F1 Acc Mac-P Mac-R Mac-F1

TextCNN w/FD 0.9831 0.9813 0.9784 0.9796 0.9346 0.9044 0.8782 0.8773

TextCNN w/KE 0.9727 0.9709 0.9727 0.9716 0.9045 0.8545 0.8839 0.8603

GAT w/CS 0.9493 0.9503 0.9432 0.9458 0.9013 0.8505 0.8676 0.8547

TextCNN w/FD+KE 0.9896 0.9879 0.9876 0.9877 0.9334 0.8976 0.8865 0.8821

TextCNN w/FD+CS 0.9909 0.9899 0.9874 0.9885 0.9336 0.8966 0.8903 0.8867

CP-KG 0.9922 0.9917 0.9903 0.9910 0.9474 0.9165 0.8975 0.9023

6 Conclusion

In this paper, we propose the CP-KG model that integrates a Criminal Behavior Knowl-
edgeGraph (CBKG) to address the problem of overlooking crucial elements and sequen-
tial information in legal cases in the context of charge prediction methods. The CP-KG
first extracts Key Elements (KE) and Case Subgraphs (CS) from the CBKG and the
Fact Descriptions (FD). Subsequently, these KE and CS are encoded by a combination
method of TextCNN and GAT. Finally, KE, CS, and FD representations are fused to
predict the defendant’s charges. Experimental results demonstrate that CP-KG outper-
forms the baseline and achieves state-of-the-art performance, with 25.79% and 13.82%
improvements in the Macro-F1 metric. Moreover, the ablation study validates the effec-
tiveness of KE and CS, as they collectively enhance the predictive performance of the
CP-KG. Additionally, the CBKF constructed in this paper provides fine-grained seman-
tic information for charge prediction and exhibits generalizability, making it transferable
to related legal tasks.
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Abstract. Scene text recognition, as a cross-modal task involving vision
and text, is an important research topic in computer vision. Most existing
methods use language models to extract semantic information for opti-
mizing visual recognition. However, the guidance of visual cues is ignored
in the process of semantic mining, which limits the performance of the
algorithm in recognizing irregular scene text. To tackle this issue, we pro-
pose a novel cross-modal fusion network (CMFN) for irregular scene text
recognition, which incorporates visual cues into the semantic mining pro-
cess. Specifically, CMFN consists of a position self-enhanced encoder, a
visual recognition branch and an iterative semantic recognition branch.
The position self-enhanced encoder provides character sequence posi-
tion encoding for both the visual recognition branch and the iterative
semantic recognition branch. The visual recognition branch carries out
visual recognition based on the visual features extracted by CNN and
the position encoding information provided by the position self-enhanced
encoder. The iterative semantic recognition branch, which consists of a
language recognition module and a cross-modal fusion gate, simulates
the way that human recognizes scene text and integrates cross-modal
visual cues for text recognition. The experiments demonstrate that the
proposed CMFN algorithm achieves comparable performance to state-
of-the-art algorithms, indicating its effectiveness.

Keywords: Scene Text Recognition · Scene Text Understanding ·
Neural Networks · OCR

1 Introduction

Scene text recognition, whose main task is to recognize text in image blocks
[21], remains a research hotspot in the field of artificial intelligence because of
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its wide application scenarios [25], such as intelligent driving, visual question
answering, image caption. This task still faces great challenges, mainly due to
the complexity and diversity of scene text [22].

Fig. 1. Comparison of different scene text recognition methods related to our algo-
rithm. (a) Visual recognition methods. (b) Recognition method of visual module series
language module. (c) The method of visual module recognition is modified by the
language module. (D) Our scene text recognition method(CMFN). Our CMFN fuses
visual cues in the language module when mining semantic information.

Most existing methods mainly consider scene text recognition as a sequence
generation and a prediction task [1,11]. In the early methods [1,11,16], CNN
extracts visual features from the scene image. The vision module decodes the
visual features and predicts the scene text (Fig. 1(a)). For example, TRBA [1],
MORAN [11], SATRN [9] and VisionLAN [20] use LSTM or transformer module
to decode the visual features extracted by CNN. This kind of vision method
decodes the visual features but encodes less textual semantic information.

The text carries rich semantic information, which is of great significance in
improving the accuracy of text recognition. To exploit the semantic information
of text in the recognition process, several visual-language coupling methods [2,14]
have been proposed. This kind of method connects the language module after
the vision module(Fig. 1(b)). For example, a language decoder set up in PIMNet
[14] extracts semantic information from previous predictive text for semantic
recognition. The advantage is that the text semantic information can be mined
in the recognition process, but the disadvantage is that the recognition result
only depends on the performance of the language module, and visual recognition
is only the intermediate result. In order to overcome this problem, some visual-
language fusion methods [3,21–23] have been gradually proposed(Fig. 1 (c)).
After the language module, the fusion gate fuses the visual recognition of the
vision module with the semantic recognition of the language module and outputs
the fused recognition. The language module in these algorithms only excavates
semantic information from the recognized text and ignores visual clues, which
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means that even if interesting visual clues are found in images or videos, the
language module cannot use them to enhance its understanding of semantics.

When humans read scene text, if the visual features are not enough to rec-
ognize the text, they will extract semantic information based on the previous
recognition. The process of extracting semantic information, not only relies on
the context of previous recognition but also incorporates visual cues. It is impor-
tant to note that the visual cues here are slightly different from explicit visual
information such as color, shape, brightness, etc. They refer to more abstract
signals or hints perceived from this explicit visual information. Inspired by this,
this paper proposes a novel cross-modal fusion network(CMFN) to recognize
irregular scene text. The contributions of this paper can be summarized as fol-
lows:

– We propose a novel cross-modal fusion network that divides the recognition
process into two stages: visual recognition and iterative semantic recognition,
with cross-modal fusion in the iterative semantic recognition process.

– We design a position self-enhanced encoder to provide more efficient position
coding information for the visual recognition branch and iterative semantic
recognition branch.

– In the iterative semantic recognition branch, we design a language module
that fuses visual cues. It can alleviate the problem of over-reliance on visual
recognition when language the module mining semantic information.

– To verify the effectiveness of the proposed algorithm, abundant experiments
are carried out on publicly available datasets.

Fig. 2. The overall architecture of CMFN, comprises a position self-enhanced encoder,
a visual recognition branch, and an iterative semantic recognition branch. The dashed
arrow indicates the direction of attention maps ATm as visual cues transmission. The
blue arrows represent the iterative process. (Color figure online)

2 Methodology

The overall structure of CMFN is shown in Fig. 2. Given scene text image I
and pre-defined maximum text length T , the recognition process of scene text
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consists of three steps. Firstly, the position self-enhanced encoder encodes the
character sequence information of the text and outputs position self-enhanced
embeddings Pse. The character sequence information is an increasing sequence
starting from 0 to T -1. Then, the visual branch extracts text visual features
from the scene image I and performs text visual recognition based on the visual
features and the position self-enhanced embeddings Pse and outputs the text
prediction probability as text visual recognition TV . In addition, attention map
ATm is also output as visual cues. Finally, the iterative semantic recognition
branch mines semantic information in an iterative way. The iterative semantic
recognition branch consists of a language recognition module and a cross-modal
fusion gate. The language recognition module integrates visual cues to mine
semantic information and outputs the text language prediction probability as
text language recognition TL. The cross-modal fusion gate fuses visual and lan-
guage features to output cross-modal text fusion prediction probability as text
fusion recognition TF . At the end of the last iteration, the text fusion recognition
TF is output as the final recognition result.

2.1 Position Self-enhanced Encoder

While the structure of learnable positional encoding [4] is relatively simple, a
large dataset is required for training. The fixed positional encoding [17] uses
constant to express position information, which can meet the requirements in
some tasks with relatively low sensitivity to the position. However, in scene
text recognition tasks, there are limited training samples and existing models
are sensitive to character position information. We are inspired by [3,17,22] to
propose a position self-enhanced encoder whose structure is shown in Fig. 2.

The position self-enhanced encoder is designed to enhance the expression
ability of character position information based on the correlation between the
encoding feature dimensions. The following formula can be obtained:

Eδ = δ (CNN (pool (Ps,c))) (1)

Pe = Ps,c ∗ σ (CNN (Eδ)) + Ps,c (2)

where Ps,c ∈ R
T×Cp is fixed positional encoding, Cp is the dimension of the

position self-enhanced embedding, pool is average pooling operation, CNN is
convolution operation, δ and σ are relu and sigmoid activation functions, Pe is
the output of the self-enhance (SE) block. The formulaic expression of position
self-enhanced encoder coding process:

Mp = softmax

(
QKT√

Cp

)
V + Ps,c (3)

Pse = LayNorm (Mp) ∈ R
T×Cp (4)

where query Q is from the fixed positional encoding Ps,c, key K and value V
are from two self-enhanced block outputs Pe, respectively. KT is the transpose
of key K. LayNorm represents layer normalization and Pse is the output of
position self-enhanced encoder.
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2.2 Visual Recognition Branch

The branch encodes visual features of the image according to the position self-
enhanced embedding Pse, recognizes the scene text, and outputs the attention
map ATm as visual cues. In this paper, ResNet50 is used as the backbone network
to extract visual features. Given scene text image I ∈ R

H×W×3, the scene text
recognition process of the visual recognition branch can be expressed as:

Vr = Res (I) ∈ R
H
4 ×W

4 ×C (5)

ATm = softmax

(
PseK

T
r√

C

)
∈ R

H
4 ×W

4 ×1 (6)

Fv = ATm ∗ Vr (7)

where C is the dimension of the feature channel, Res stands for Resnet50, Kr =
U(Vr), and U is U − Net. Based on the feature Fv, the recognition of the visual
recognition branch can be formalized:

TV = softmax(fully (Fv)) ∈ R
T×cls (8)

where cls is the number of character classes, fully is the fully connected layer
and softmax is activation function.

2.3 Iterative Semantic Recognition Branch

Language Recognition Module. The language recognition module integrates
visual cues to mine language information from the currently recognized text.
The structure of the multi-head position enhanced self-mask attention module is
shown in Fig. 3. Inspired by [3,22], language models treat character reasoning as
a fill-in-the-blank task. In order to prevent the leakage of its own information, the
mask matrix M ∈ RT×T is set. In this matrix, the elements on the main diagonal
are negative infinity and the other elements are 0. Text semantic coding features
can be obtained by position self-enhanced embedding Pse, visual recognition Tv

and attention map ATm:

VL = KL = fully(TV ) ∈ R
T×C (9)

FL = softmax

(
PseK

T
L√

C
+ M

)
VL (10)

where fully is the fully connected layer and softmax is activation function. The
language recognition can be expressed as:

Lvc = ATm ∗ P ′
s,c ∈ R

T×C (11)

FvL = FL + Lvc (12)

TL = softmax(fully (FvL)) ∈ R
T×cls (13)
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Fig. 3. The structure of the Mult-Head self-mask attention [3] and Mult-Head position
enhanced self-mask attention. MTDC is short for Matrix multiplication, Transpose,
Division, Channel square root. ATm comes from the visual recognition branch, and
Lvc is the representation of visual cues in the semantic space of the text.

Fig. 4. Visualization of Lvc for two scene text instances (“PAIN” and “Root”). The
first figure in each row represents a scene text example, followed by the visual cues Lvc

representation corresponding to each character in the text. In the visualization diagram,
the horizontal axis represents feature dimensions and the vertical axis represents the
corresponding feature values.

where P ′
s,c ∈ R

H
4 ×W

4 ×C is the sine and cosine position code in two-dimensional
space [10,17], and the sizes of its first two dimensions are consistent with the
first two dimensions of ATm. TL is visual text recognition results.

Lvc is considered as the representation of visual cues in the semantic space
of the text, so can also refer to visual cues if not otherwise specified. The visu-
alization of visual cues Lvc for each character of two text instances “PAIN” and
“Root” as shown in Fig. 4.

As can be seen from Fig. 4, on the one hand, the visual cues Lvc of different
characters in the text have obvious differences. On the other hand, the Lvc of
the same character in a text tends to have similar expressions. However, due to
the different positions, the expression also has a certain difference. This finding
suggests that the use of visual cues can enhance the expression of text features.
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Cross-Modal Fusion Gate. In order to integrate the recognition of the visual
recognition branch and language recognition module, this paper uses a simple
fusion gate [3,22]. The cross-modal fusion process can be expressed as:

Fg = σ([Fv, FvL]Wg) (14)

TF = Fv ∗ (1 − Fg) + FvL ∗ Fg (15)
where Wg and Fg are trainable superparameters and fusion weights, respectively.

2.4 Training Objective Function

In the training process, the recognition results of multiple modules need to be
optimized, so we set a multi-objective loss function:

L = γvLTv +
1
N

N∑
i=1

(γl × L
i
TL

+ γf × Li
TF ) (16)

where LTv is the standard cross-entropy loss between the predicted probability
TV of the visual recognition branch and ground truth labels for the text. Li

TL and
Li

TF are standard cross-entropy loss corresponding to the predicted probability
TL of the language recognition module and TF of cross-modal fusion gate at the
ith iteration. N is the number of iterations. γv, γl and γf are balanced factors.
All of these balance factors are set to 1.0 in the experimental part of this paper.

3 Experiments

3.1 Datasets

Synthetic Datasets. MJSynth [6] is a dataset generated by rendering text in
scene images. It contained 9M texts, each of which is generated from a dictionary
containing 90,000 English words, covering 1,400 Google fonts. SynthText [5]
dataset is originally proposed for the scene text detection task. In scene text
recognition tasks, the dataset contains 8M images cut from detection task sets.

Regular Datasets. The three regular text datasets are ICDAR2013 (IC13) [8],
Street View Text (SVT) [19] and IIIT5k-words (IIIT) [12]. IC13 consists of a
training subset with 848 images and a validation subset with 1015 images. SVT
comprises images sourced from Google Street View, which includes a training
set of 257 samples and a validation set of 647 samples. IIIT includes a training
subset of 2000 samples and a validation subset of 3000 samples.

Irregular Datasets. Three irregular scene text datasets are ICDAR2015 (IC15)
[7], SVT Perspective (SVTP) [13] and CUTE80 (CUTE) [15]. IC15 contains 4468
train samples and 2077 validation samples. SVTP is from Google Street View,
which includes 238 images. 645 image blocks containing text are cropped from
this dataset for scene text recognition tasks. The images in the CUTE dataset
are collected from digital cameras or the Internet, with a total of 288 images,
usually with high resolution and irregularly curved text. All the images are used
to verify the algorithm.
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Table 1. Text recognition accuracy comparison with other methods on six datasets.
The current best performance on each dataset is shown in bold.

Methods Years Regular Irregular Params
IC13 SVT IIIT IC15 SVTP CUTE

MORAN [11] 2019 92.4 88.3 91.2 68.8 76.1 77.4 –
TRBA [1] 2019 92.3 87.5 87.9 77.6 79.2 74.0 49.6M
Textscanner [18] 2020 92.9 90.1 93.9 79.4 84.3 83.3 56.8M
RobustScanner [22] 2020 94.8 88.1 95.3 77.1 79.5 90.3 –
SRN [21] 2020 95.5 91.5 94.8 82.7 85.1 87.8 49.3 M
PIMNet [14] 2021 95.2 91.2 95.2 83.5 84.3 84.8 –
VisionLAN [20] 2021 95.7 91.7 95.8 83.7 86.0 88.5 33M
ABINet [3] 2021 97.4 93.5 96.2 86.0 89.3 89.2 36.7M
SGBANet [25] 2022 95.1 89.1 95.4 78.4 83.1 88.2 –
S-GTR [23] 2022 96.8 94.1 95.8 84.6 87.9 92.3 42.1M
ABINet-ConCLR [24] 2022 97.7 94.3 96.5 85.4 89.3 91.3 –
CMFN Ours 97.9 94.0 96.7 87.1 90.1 92.0 37.5M

3.2 Implementation Details

In order to make the comparison with other SOTA algorithms [3,24] as fair
as possible, this paper adopts the experimental setup that is as close to these
algorithms as possible. Before the scene image is input into the model, the size
is adjusted to 32 × 128, and data enhancement pre-processings are adopted,
such as random angle rotation, geometric transformation, color jitter, etc. In the
experiment, the maximum length T of the text is set to be 26. The text characters
recognized are 37 classes, including 26 case-insensitive letters, 10 digits, and a
token. The multi-head attention unit in the visual recognition branch is set to
1 layer. The language recognition module transformer is set as 4 layers and 8
heads. The experiment is implemented based on Pytorch. Two NVIDIA TITAN
RTX graphics cards are used, each with 24GB of space. When MJSynth and
SynthText are used for training, the training model provided by ABINet [3] is
used for initialization, the batch size is set to 200, the initial learning rate is
1e−4, and the optimizer is ADAM. The model is trained for a total of 10 epochs.
The learning rate decays by one-tenth with each increase of epoch after 5 epochs.

3.3 Comparisons with State-of-the-Arts

In fact, due to the differences in training strategies and backbone, it is difficult
to make an absolutely fair comparison between different methods. To be as fair
as possible, only the results using the same or similar training strategies are
analyzed and compared in this experiment. Specifically, each algorithm model is
supervised learning, and the same datasets are used for training.
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The statistical results of our CMFN and other published state-of-the-art
methods are shown in Table 2. Compared with ABINet-ConCLR [24], our CMFN
improved 1.7%, 0.8%, and 0.7% on the three irregular datasets IC15, SVTP,
and CUTE, respectively. Compared to irregular datasets, the improvement on
regular datasets is relatively small. This is because the accuracy of regular scene
text recognition is already quite high (for example, the recognition accuracy
of ABINet-ConCLR [24] on the IC13 dataset has reached 97.7%), leaving a
relatively limited space for improvement.

In conclusion, our CMFN outperforms state-of-the-art methods in recogniz-
ing irregular scene text and achieves comparable results for regular scene text
recognition.

3.4 Ablation Study

Analysis of Iteration Number. The visualization of text recognition results
under different iterations number is shown in Fig. 5. The overall recognition
accuracy reaches 88.3% on three irregular text datasets and 96.5% on three
regular datasets when the iteration number is set to 3. Further increasing the
iteration number does not lead to significant improvement in accuracy. Therefore,
the default iteration number for subsequent experiments is set to 3.

Fig. 5. Text recognition accuracy of different iteration numbers. TOTAL indicates the
statistic result of the three corresponding scene text datasets as a whole.

Analysis of the Position Self-enhanced Encoder and Visual Cues. To
verify the effectiveness of the position self-enhanced encoder, we compared its
performance with learnable positional encoding [4] and fixed positional encod-
ing [17], as shown in Table 1. The position self-enhanced encoder improved by
0.6%, 1.3%, and 1.0% compared to fixed positional encoding, and by 1.0%, 1.1%,
and 1.7% compared to learnable positional encoding, on IC15, SVTP, and CUTE
datasets. This indicates that our position self-enhanced encoder can bring higher
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recognition performance. Compared to the language module without visual cues,
the inclusion of visual cues in the language module improves performance by
0.6%, and 0.8% on the IC15 and CUTE datasets. This demonstrates the effec-
tiveness of the fusion of visual cues proposed in this paper (Table 3).

Table 2. Ablation study of position self-enhanced encoder. PSE, LPE, VPE are abbre-
viations for position self-enhanced encoder, learnable positional encoding and fixed
positional encoding, respectively. TV, TL, TLn and TF represent the visual recogni-
tion branch, language recognition module with visual cues, language recognition module
with visual cues exclude visual cues and the cross-modal fusion gate, respectively.

Module IC15 SVTP CUTE

VPE+TV+TLn+TF 85.9 88.7 89.2
VPE+TV+TL+TF 86.5 88.8 91.0
LPE+TV+TL+TF 86.1 89.0 90.3
PSE+TV+TL+TF 87.1 90.1 92.0

Table 3. Ablation study of different modules. PSE represents the position self-
enhanced encoder. TV(text of visual recognition), TL(text of language recognition)
and TF(text of fusion gate recognition) represent the visual recognition branch, lan-
guage recognition module, and the cross-modal fusion gate, respectively.

Module IC15 SVTP CUTE

PSE+TV 84.6 85.4 88.9
PSE+TV+TL 84.3 89.8 89.9
PSE+TV+TL+TF 87.1 90.1 92.0

Analysis of Different Module. The ablation data of each module are shown in
Table 1. The visual branch achieved 84.6%, 85.4%, and 88.9% recognition accu-
racy on the IC5, SVTP, and CUTE. Compared to the visual recognition branch,
the text recognition accuracy of the language recognition module decreased by
0.3% on IC15 but increased by 4.4% on SVTP and 1.0% on CUTE. The cross-
modal fusion gate achieved optimal recognition performance on IC15, SVTP,
and CUTE, with improvements of 2.5%, 4.7%, 3.1% compared to the visual
recognition branch, and 2.8%, 0.3%, 2.1% compared to the language recognition
branch. This further shows that the modules in our model are valid.
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Fig. 6. Examples of successful recognition of irregular text. GT are the ground truth.
ABINet and Ours are the recognition results corresponding algorithms, respectively.

3.5 Qualitative Analysis

For qualitative analysis, some recognition cases are visualized as shown in
Fig. 6. Compared with ABINet, CMFN has stronger recognition performance.
For example, the visual features of “ri” in “safaris” are similar to those of “n”,
but “safans” is not a meaningful text, and our algorithm can correct “ri” to “n”
according to the semantic relation, to correctly recognize the text. In summary,
our CMFN has stronger text visual expression ability. For scene texts with insuf-
ficient visual features, the text also can be correctly recognized through semantic
mining. Even for some scene texts that are difficult for human eyes to recognize,
such as “church” and “grand”, CMFN can also recognize them correctly.

4 Conclusion

Inspired by human recognition of scene text, this paper proposes a cross-modal
fusion network(CMFN) for irregular scene text recognition. The network mainly
consists of three parts: a position self-enhanced encoder, a visual recognition
branch, and an iterative semantic recognition branch. The position self-enhanced
encoder encodes the position information of characters in the text. The visual
recognition branch decodes the visual recognition text based on the visual fea-
tures. The iterative semantic recognition branch simulates the way of integrating
visual and semantic modes when a human recognizes scene text and improves the
recognition performance of irregular texts by fusing visual features with semantic
information. The experimental results show our CMFN not only achieves opti-
mal performance in the recognition of irregular scene text but also has certain
advantages in the recognition of regular scene text. In future research, we will
explore how to design the recognition model based on knowledge reasoning.
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Abstract. Current semantic segmentation models typically use deep learning
models as encoders. However, these models have a fixed receptive field, which
can cause mixed information within the receptive field and lead to confounding
effects during neural network training. To address these limitations, we propose
the “semantic-based receptive field” based on our analysis in current models. This
approach seeks to improve the segmentation performance by aggregate image
patches with similar representation rather than their physical location, aiming to
enhance the interpretability and accuracy of semantic segmentation models. For
implementation, we utilize Graph representation learning (GRL) approaches into
current semantic segmentation models. Specifically, we divide the input image
into patches and construct them into graph-structured data that expresses seman-
tic similarity. Our Graph Convolution Receptor block uses graph-structured data
purpose-built from image data and adopt a node-classification-like perspective to
address the problem of semantic segmentation. Our GCRmodule models the rela-
tionship between semantic relative patches, allowing us to mitigate the adverse
effects of confounding information and improve the quality of feature represen-
tation. By adopting this approach, we aim to enhance the accuracy and robustness
of the semantic segmentation task. Finally, we evaluated our proposed module on
multiple semantic segmentation models and compared its performance to base-
line models on multiple semantic segmentation datasets. Our empirical evalua-
tions demonstrate the effectiveness and robustness of our proposed module, as it
consistently outperformed baseline models on these datasets.
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1 Introduction

As a fundamental task in computer vision, semantic segmentation strives to give a rich
per-pixel classification of image data. These methods for interpreting visual input have
a variety of applications including scene comprehension, object recognition and aug-
mented reality. Existing semantic segmentation methods are mostly end-to-end, deep-
learning-based methods [23] that use Convolutional Neural Networks (CNNs) [19] or
transformer-based models [32] as encoder, while generating prediction mask with a
decode neural network. These current models have already achieved excellent perfor-
mance, but still facing some problems.

The “neurons” within deep neural network models possess receptive fields, which
are defined as the spatial extent of image that a set of weights can access. At lower levels
of processing, both convolutional neural network (CNN) and current vision transformer
encoders have local receptive fields with fixed sizes [28]. This characteristic can lead to
the loss of crucial global information that underpins semantic segmentation, as well as
the confounding interference of information within receptive field. Consequently, these
limitations can impede the training and prediction of the model and make it difficult for
models to learn the true pattern in the image.

The fixed-shape receptive field of CNNs ensures the network’s inductive biases,
such as translation invariance and locality. However, the fixed nature of the recep-
tive field shape can result in the inclusion of information that is irrelevant to the tar-
get task, which may interfere with the neuron’s ability to accurately perceive the tar-
get information. This information has the potential to negatively impact the perfor-
mance and generalization ability of the neural network. To address this issue, research
efforts have focused on developing techniques to effectively handle confounding infor-
mation, including approaches such as increasing network depth [12] and incorporating
attention-based mechanisms [9].

Fig. 1. Illustration of the receptive fields. As illustrated in (a), the receptive field of CNNs have a
fixed size, information from multiple categories are included in it. The receptive field of ViT (b)
is even better, as it can change the weights of internal vectors to focus attention on key parts. The
semantic-based receptive field (c), on the contrary, covers only those parts that can be classified
as “goat” and ignores the irrelevant part for segmentation.

Vision transformers regards an image as a sequence, and achieve cognition by
performing attention-weighting on every position in the image, leading to the global
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receptive field [8]. However, this global receptive field may have limitations in segmen-
tation tasks. In the context of semantic segmentation, the global receptive field of vision
transformers has some inherent problems such as the loss of crucial local information
and inevitably introduce confounding information that interferes with model conver-
gence and leads to performance degradation. To address this issue, contemporary vision
transformers address the locality issue by employing methods such as sliding windows
[21] and limiting the local receptive field [31]. However, this still does not fully resolve
the problem of confounding factors within the receptive field for the model still process
information from irrelevant pixels. Because the features at each position are obtained
by weighting information from all pixels in the entire image or a certain set of image
patches.

In light of the limited success of previous works involving CNNs and vision trans-
formers in addressing the issue of confounding information, we propose the “semantic-
based receptive field”. As illustrated in Fig. 1(c), the semantic-based receptive field has
a more flexible form depending on semantic information, whereas the receptive field of
CNNs and transformers has a fixed size. Learning direct effect from high-relative part
of image can allow specific patches to aggregate only with those patches that are related
to their representation. However, while CNN and transformer-based models both use a
predefined paradigm to learn how to represent images, neither of them can implement
the suggested idea. Notice that Graph Representation Learning (GRL) are a more flex-
ible approach to processing, we introduce GRL to address this issue. GRL methods
are usually used to process graph data with topological forms. To represent images as
graph structure for processing, before each time that data is input into the model, we
first divide the image into multiple patches as graphs nodes. Then, based on the simi-
larity between these patches, they are constructed as graphs. Finally, we employ GNNs
to extract representations from the constructed graphs. The advantage of such design
is that similarity, rather than spatial information, is used to bind the patches together.
Patches with more similar information tend to be connected as training goes on, which
is akin to the receptive field being deformed in accordance with the semantic infor-
mation. However, this design also has a disadvantage. That is, it also lacks important
inductive biases like locality and translation invariance.

So, for implementation, we propose our Graph Convolution Receptor module as a
plugin to current semantic segmentation models. By replacing a portion of the CNN or
transformer channels, we are able to enhance the model’s performance without intro-
ducing additional parameters. Empirically, we evaluate our proposed structure on three
different datasets. Extensive experiments show that model GCR outperforms state-of-
the-art graph representation learning methods on semantic segmentation tasks. Further-
more, models adding our GCR module show better robustness on naturally and artifi-
cially corrupted data. Our contributions are as follows:

– We analyze the receptive field of current semantic segmentation models and propose
the semantic-based receptive field which is crucial for semantic segmentation tasks.

– We propose a novel block, GCR, which uses Graph representation learning to
enhance the performance of semantic segmentation models.

– We conduct multiple experiments to verify the effectiveness of our method. Our
model also shows advantages in robustness and convergence speed.
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2 Related Works

2.1 Semantic Segmentation

Semantic information holds wide applications within machine learning tasks [1,16],
and semantic segmentation utilizes semantic information among images to forecasts a
pixel-level categorization. Such task can be viewed as a more challenging, fine-grained
form of image classification. The relationship is pointed out and studied systematically
in a seminal work [23] where authors designed fully convolutional networks (FCNs)
for semantic segmentation. Since then, the FCN model has become a standard design
paradigm for dense prediction and has inspired many follow-up works. Works after
mainly focused on improving FCNs from aspects such as using deeper neural network
[41], enlarging the receptive field [38], introducing boundary information [7]. These
architectures improved the performance of semantic segmentation significantly. Fur-
thermore, transformer models introduced from natural language processing (NLP) also
achieved competitive performance on semantic segmentation tasks. The application of
semantic segmentation is not limited to 2D images, but point clouds [18], 3D scenes
[27] and videos.

2.2 Graph Neural Networks (GNNs)

GNNs conduct graph representation learning by propagating information among neigh-
bor nodes. The learned representation have various applications in downstream tasks.
Similar to other artificial neural networks, multiple variants of GNNs were developed,
such as Graph Convolution Networks (GCNs) [17], which utilizes convolution for graph
learning, Graph Attention Networks (GATs) [33], which introduces the attention mech-
anism, and Graph Isomorphism Networks (GINs) [36], which proposes a graph learning
architecture that is as powerful as the Weisfeiler-Lehman test. Based on these networks,
relevant researchers also propose many improved architectures according to application
domains, including social networks [37], natural language processing [25], molecular
biology [10], chemistry [2], and physics [26].

Some methods also adopt GNNs for computer vision tasks. In these tasks, GNNs
were mainly used to learn data that naturally possess a graphic structure, e.g., 3D point
cloud segmentation [18] and human action recognition [15]. However, recent works
applied GNNs for image classification [11] and proved their potential in processing
digital images.

3 Method

Base on our analysis of the prediction generation process for semantic segmentation,
we introduce the GCR block. As shown in Fig. 2, our model consists of two major
components: 1) standard pyramid semantic segmentation model that provides useful
inductive biases, 2) a graph convolution receptor implemented using graph representa-
tion learning, is used to replace part of the channels of the pyramid encoder to achieve
semantic-based receptive field.
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Fig. 2. The overview of our model structure.

3.1 Graph Convolution Receptor

We use a GNN to implement our semantic-based receptive field by replacing a set of
CNN or ViT channels to GNN channels. This module can enhance the performance
of existing models, allowing neurons to more prominently attend to image blocks that
have semantic relationships with the position being considered. Different from CNNs
and ViTs, our graph convolution receptor possesses a changeable form that based on
learned information. As shown in right in Fig. 3, the semantic-based receptor selects
semantically related neurons from the feature map for aggregation, rather than accord-
ing to the physical location like CNNs. The form of the semantic-based receptive field
of each neuron is defined based on representation of the input visual data. To generate
such receptive field, a GNN architecture was introduced into our encoder.

The input image, denoted as I , with dimensions of H ×W ×C, is transformed into
a graph-based representation, G = {V,E}, where V represents the node set and E rep-
resents the edge set. The image is divided into N patches, each of which is represented
as a vector xi ∈ R

D, where D is the dimension of the patch vector.
In order to mitigate the potential loss of information due to direct slicing of an

image into patches, a stem architecture utilizing convolutional layers is implemented.
The stem architecture downsamples the input image I to a feature map with a size of
H/4 × W/4, providing each patch with overlapped data. These patch vectors are then
utilized as node features within the set of nodes, V . Edges within the set of edges,
E, are established based on similarity, as calculated from the semantic representation.
Specifically, an edge euv ∈ E is created between nodes v and u if node u is among the
k-nearest neighbors of node v in terms of similarity.

The encoder employs a neighborhood aggregation strategy, in which the representa-
tion of node h

(k)
v is iteratively updated at the k-th layer. Through k rounds of aggrega-

tion, the information of the k-hop neighborhood of node v is propagated to itself. The
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architecture of the k-th layer of the GCR module can be mathematically formulated as
follows:

a(k)
v = f (k)({h(k−1)

u : u ∈ N (v)}), (1)

h(k)
v = φ(k)(h(k−1)

v , a(k)
v ). (2)

where h
(k)
v is the vector representation of node v in the k-th layer of the network. The

aggregation function f(·) and combine function φ(·) are critical operators for GNNs.
There exists multiple choices for these operators, as many kinds of aggregation func-
tions with different characteristics have been proposed. Here, we model the pairwise
distances between these nodes as edge weights. Specifically, the weight of the edge
between any two nodes (i.e., two patch representations) is positively correlated with the
proximity of their respective distances. Formally, the aggregation function f(·) can be
formulated as:

f (k) =
Duv({h

(k−1)
v − h

(k−1)
u |u ∈ N (v)})

N
(3)

where Duv represents the pairwise distance between feature u and v and N represents
the number of neighbours of node v. As for the combine function φ(·), the formal
representation is as follows:

h(k)
v = φ(k)(h(k−1)

v , f (k)(h(k−1)
v )) (4)

With the transformed data and the GCRmodule, we are able to implement semantic-
based receptive field for our method. As the graph generation do not rely on physi-
cal position to select neighbors but based on similarity, the data propagation will be
committed among semantically related nodes, which yields a semantic-based respec-
tive field as result. Figure 2 gives an illustration for such semantic-based receptive field.
Such mechanism also provides an explicit structure for the aggregation of high-level
semantics. Experimental results of Sect. 4.3 demonstrate that models with GCR module
converges significantly faster than other models. Moreover, the GCR module encodes
relative value of each nodes generated from image patches, thus it shows better zero-
shot robustness especially on corruptions like blur, fog and color casts.

3.2 Over-Smoothing Alleviation

Our GCR module utilizes data aggregation among nodes to learn the representation of
graph nodes. However, this mechanism can lead to the over-smoothing phenomenon,
which results in the decrease of distinctiveness in node features and ultimately results
in all nodes possessing the same vector representation. This finally leads to degradation
of performance in the segmentation task. This can negatively impact performance in
the segmentation task. To mitigate this issue, we propose the implementation of the
following modifications to our GCR module:
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Diversity Elevation. Alike our baseline methods [11,21,22], we apply a linear layer
before and after the graph convolution layer to increase the diversity and limit the
dimensionality of features. A nonlinear layer is added after the graph convolution layer.
Given a feature map H(k) = {h

(k)
1 , h

(k)
2 , ..., h

(k)
v } ∈ R

N(k) × D(k) of layer k, and
define the graph process mentioned above as H(k) = Φ(H(k−1)), the modified graph
procession module of layer k can be formalized as:

H(k)
g = σ(Φ(H(k))W (k)

in )W (k)
out + H(k) (5)

where σ represents nonlinear activate function for diversity enhancement, Win and
Wout denote the learnable parameters of the linear layers.

Fig. 3. The receptive field of different models. Our method improves the receptive field of CNN
or ViT, enabling the models to perceive global semantic information without losing important
inductive biases.

Transformation Elevation. To further alleviate the over-smoothing phenomenon, we
use a simple MLP (multilayer perceptrons) on each node of every graph node for more
transformation on vector space, like the method used in our baseline models [11,21,22].
This can be described as:

H
(k)
f = MLP (Hk

g ) (6)

where H
(k)
f ∈ R

N(k)×D(k)
is the final output of our GCR module in the k-th layer.

The hidden dimension of MLP is usually greater than D(k) by an augmentation factor
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called expansion ratio. Following the implementation of all fully-connected layers, a
batch normalization operation is applied as a standard practice, although it has been
omitted in this concise description. This structure forms the core component of the
GCR module.

Graph Shortcut. Inspired by the idea of residual connection, we apply a strategy called
Graph Shortcut which effectively mitigates the issue of over-smoothing while introduc-
ing a minimal number of additional parameters. Formally, our Graph Shortcut is defined
as:

H l
f

′
= αDH0

f + (1 − α)H l
f (7)

where H l
f represents the last layer’s output of the GCR module and α is a hyperparam-

eter that will be discussed later. The function D is a simple MLP that downsamples the
scale of H0

f to be the same as H l
f .

3.3 Baseline Encoder

The GCR module takes image patches as unordered graph data, which causes the loss
of inductive biases like translation invariance and localization. Based on the analysis
above, we build our GCR module in parallel to any typical pyramid backbones. The
baseline encoder works in parallel with the GCR module, providing basic inductive
biases for image understanding. As shown in Fig. 2, our GCR is a plugin to current
models that process in parallel to baseline encoder.

To assess the efficacy of our proposed GCR method, we evaluate its performance
using commonly used state-of-the-art transformer and CNN models as baseline. By
comparing our method to these well-established baselines, we aim to demonstrate the
superiority of our approach and establish its effectiveness in improving the overall qual-
ity and accuracy of semantic segmentation results.

3.4 Decoder

Pyramid architecture [12] considers the multi-scale property of images by extracting
features with gradually smaller spatial size and greater dimension as network goes
deeper and has become a popular paradigm for semantic segmentation. Larger num-
bers of empirical results have shown that pyramid architecture is effective for visual
tasks especially semantic segmentation task which needs both global semantics and
fine-grained forecasting. The representation of a typical semantic segmentation decoder
can be described formally as:

Outputo = Concat(Ho
f , Co) (8)

where o ∈ {1, 2, ..., n} represents the n output stages of pyramid encoder. Co is the
output of CNN at stage o, and Ho

f is the output of GNN at stage o. The Concat(·) is
the concatenate operator. The output scales of encoder are H/4 × W/4, H/8 × W/8,
H/16 × W/16 and H/32 × W/32 of an image with the scale of H × W . An UperNet
[35] decoder that takes the pyramid feature maps as input and then generating per-pixel
prediction is applied.
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4 Experiments

In this section, we present a series of experiments to evaluate the performance of our
proposed GCR module and examine their structures.

4.1 Datasets

We adopt ADE20k and Cityscapes datasets for semantic segmentation. ADE20k [42]
is a widely-used benchmark which has 20,000 well-labeled training images and 2,000
validation images which belong to 150 categories. For the licenses of ADE20k dataset,
please refer to https://groups.csail.mit.edu/vision/datasets/ADE20k/. Most images in
ADE20k belong to indoor scene segmentation, while Cityscapes [4] mainly focuses
on outdoor scenes on roads. Cityscapes contains 19 categories of labels and has 2,975
training images along with 500 validation images. For the licenses of the Cityscapes
dataset, please refer to https://www.cityscapes-dataset.com/.

4.2 Experimental Settings

For all our models, we pretrain the encoder blocks on ImageNet1k or ImageNet22k
[6] dataset. For the pretraining strategies, we follow the widely-used training strate-
gies proposed in DeiT [30] for fair comparison. The data augmentation techniques
we used includes RandAugment [5], Mixup [40], CutMix [39], repeated augment
[13]and stochastic path [14]. To ensure fairness in comparison, a widely-utilized Uper-
Net decoder structure is adopted in the decoder without any additional modifications.
The models are trained using a batch size of 16 for the ADE20k dataset and 8 for the
Cityscapes dataset on 8 RTX5000 GPUs. The implementation of our method is based
on MMsegmentation [3] codebase and during training, data augmentation techniques
such as random resize with a ratio of 0.5–2.0, horizontal flipping, and random cropping
to 512×512 and 1024×1024 for ADE20k and Cityscapes respectively are applied. The
models are trained using the AdamW optimizer for 160,000 iterations on both ADE20k
and Cityscapes datasets, with an initial learning rate of 0.00006 and a “poly” learning
rate schedule with a default factor of 1.0. Inference is performed using a sliding window
approach by cropping 1024 × 1024 windows for Cityscapes.

4.3 Comparison with Baseline Methods

In our evaluation, we compare our proposed method against several baseline methods
from three key aspects: performance, robustness, and convergence speed. Specifically,
we conduct a comprehensive analysis of the performance of our approach and the base-
lines in terms of multiple metrics. We also investigate the robustness of the methods by
examining their performance under various perturbations, such as noise and occlusion,
and assess their ability to handle input variations. Furthermore, we analyze the conver-
gence speed of the methods and compare the time taken to reach a satisfactory level of
performance.

https://groups.csail.mit.edu/vision/datasets/ADE20k/
https://www.cityscapes-dataset.com/
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Table 1. The main results on ADE20k and Cityscapes. Results with ‘*’ mark represents the model
is pretrained on ImageNet22k dataset.

Method Encoder Decoder ADE20k (Val) CityScapes (Val) Parameters (M)

mIoU aACC mIoU aACC

UperNet-r50 ResNet-50 UperNet 41.65 80.14 - - 66.52

UperNet-r101 ResNet -101 UperNet 43.21 80.81 - - 85.51

ConvNeXt-Ti ConvNext-Ti UperNet 46.41 81.77 80.78 96.57 60.24

ConvNeXt-S ConvNext-S UperNet 48.33 82.44 81.93 96.77 81.88

ConvNeXt-B ConvNext-B UperNet *51.44 *84.27 82.01 96.79 122.1

UperNet-r50(with GCR) ResNet-50+GCR UperNet 42.71 80.3 - - 66.49

UperNet-r101(with GCR) ResNet -101+GCR UperNet 44.13 80.96 - - 85.47

ConvNeXt-T(with GCR) ConvNext-Ti+GCR UperNet 46.63 81.85 80.84 96.5 60.19

ConvNeXt-S(with GCR) ConvNext-S+GCR UperNet 48.59 82.49 81.99 96.79 81.81

ConvNeXt-B(with GCR) ConvNext-B+GCR UperNet *51.64 *84.62 82.24 96.89 121.9

SwinTransformer-T SwinTransformer-Ti+GCR UperNet 44.53 81.17 78.66 96.21 59.94

SwinTransformer-S SwinTransformer-S UperNet 47.99 82.58 79.62 96.4 81.26

SwinTransformer-B SwinTransformer-B UperNet *51.27 *84.27 80.42 96.53 121.28

SegFormer-b5 MiT MLP 48.7 82.51 80.35 96.53 82.01

SwinTransformer-T(with GCR) SwinTransformer-Ti UperNet 45.12 81.41 78.16 96.01 59.89

SwinTransformer-S (with GCR) SwinTransformer-S+GCR UperNet 48.31 82.65 79.75 96.46 81.19

SwinTransformer-B (with GCR) SwinTransformer-B+GCR UperNet *51.52 *84.46 80.53 96.62 121.08

SegFormer-b5 (with GCR) MiT+GCR MLP 49.08 82.73 80.41 96.57 85.17

Results on Performance. The experimental results on the ADE20k and Cityscapes
datasets are demonstrated in Table 1. For metrics, we evaluate semantic segmenta-
tion performance using mean Intersection over Union (mIoU) and average Accuracy
(aACC). We observed that all the methods achieved performance improvement after
incorporating our module. We attribute such performance to the characteristics of our
GCR that can perceive the global semantic information more effectively.

Fig. 4. Experimental results on ADE-C. Among these blurs and noises, ‘Gauss’ represents Gaus-
sian noise; ‘Shot’ represents shot noise; ‘Impulse’ represents impulse noise; ‘Glass’ represents
glass blur. Models added GCR mainly shows more prominent robustness in color cast, fog and
defocus blur.
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Fig. 5. Examples tested for different models in Foggy-Driving dataset without additional training.
Models with GCR can predict segmentation edges more accurately in the foggy weather.

Results on Robustness. Compared with curated data in well-labeled datasets, images
collected in the natural world face various noises. Examples include clouds, Gaussian
noise, blur, and smudges. Our model introduces the idea of semantic-based receptive
field and implements it using graph representation learning, making the model robust to
these perturbations. In each layer, GNN selects neighbors dynamically according to the
similarity for aggregating. It also processes the difference between feature vectors rather
than their absolute values, which leads to stronger ability to deal with interference. We,
therefore, design experiments to test the performance of our models on noisy data.

We experimentally demonstrate that our method is structurally robust. We train the
model on Cityscapes using standard training pipeline and test the performance directly
on the Foggy-Driving [29] dataset. The Foggy-Driving dataset is a Cityscapes-like seg-
mentation dataset with detailed annotations collected in the real world under fog. It
shares the same annotation categories as Cityscapes. As shown in Fig. 5 and Table 2,
compared to CNN or transformer models, our method can predict more accurate seg-
mentation edges under fog. This is likely due to the fact that the GCR module in our
model processes relative values of patch vectors, as opposed to the absolute values pro-
cessed by CNNs and transformers.

To further test the zero-shot robustness of our proposed method, We generated
ADE-C based on [24], which expands the validation set by 16 kinds of algorithmi-
cally generated corruptions. ADE-C is used to test the robustness of Swin-transformer,
ConvNeXt with or without GCR module. The results, as depicted in Fig. 4, demonstrate
that our method exhibits a high level of robustness, particularly in regards to color cast
and blur distortions. It should be noted that all models tested in this section have a
similar parameter size to that of the ConvNeXt Base-size model.
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Table 2. Test result on Foggy-Driving dataset, all models are trained on Cityscapes dataset and
directly tested without other training procedure.

Model mIoU

ConvNeXt 48.54

ConvNeXt+GCR 52.83

Swin-Transformer 47.22

Swin-Transformer+GCR 49.98

Visualization. The visualization results presented in Fig. 6 demonstrate the efficacy of
our proposed method. Specifically, we used the shallow layers of the neural network
to generate CAM maps for visualization. Clearly, our model is capable of accurately
attending to category-specific edge information in images at shallow levels, which pro-
vides an experimental explanation for the good performance of our model. This obser-
vation provides compelling evidence of the enhanced performance achieved by our
method.

Fig. 6. Visualization examples of Class Activation Mapping (CAM) for Swin-Transformer with
or without our GCR module at low stage. The tested activation class is ‘dog’, ‘llama’, ‘frog’, ‘cat’
respectively.
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Fig. 7. The convergence speed of different models training on ADE20k directly without any pre-
training, all the results were tested on the validation set. This figure shows the early 34000 itera-
tions with the batchsize of 16.

Results on Convergence Speed. In contrast to CNNs and transformers, our GCRmod-
ule employs a novel strategy for semantic segmentation tasks by selecting neighbors
for aggregation based on similarity. This graph convolution module allows the model
to aggregate global information at shallow layers, resulting in faster convergence as
observed through experimental results. The utilization of GCR module is believed to
contribute to the improved performance of the segmentation models.

In order to accentuate the distinction, we refrain from utilizing pre-trained param-
eters and instead opt for direct training on the ADE20k dataset. Empirical evidence
demonstrates that our proposed GCR method exhibits a faster convergence rate during
the initial training iterations when compared to other models. The experimental results
are shown in Fig. 7.

4.4 Ablation Study

The Necessity of GCRModule. To demonstrate the effectiveness of the GCR module,
we tested the performance of model by replacing the GCRmodule with other CNNs and
transformers with corresponding amount of parameters. In Table 3 we show evaluate
results of models with parameter size around ConvNeXt-Base.

Influence of Different GNN Types. In this experiment, we aimed to demonstrate the
robustness of our model by evaluating its performance when utilizing different types of
graph aggregation operator. Specifically, we modified the GNN structure in our encoder
while maintaining the same pre-training techniques and training procedures on Ima-
geNet1k and ADE20k datasets while using ConvNeXt-B as our baseline. Our results,
as presented in Table 4, indicate that the graph convolution we applied yielded a bet-
ter performance and other graph aggregators has also achieved competitive capacity.
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Table 3.mIoU on ADE20k of different network structure concatenated on ConvNeXt. ‘+C’, ‘+S’,
‘+N’ represents concatenating GCR, Swin-Transformer, ConvNeXt to network, respectively.

Model mIoU Model mIoU

ConvNeXt 49.25 Swin-Transformer 48.75

ConvNeXt+C 49.63 Swin-Transformer+C 49.17

ConvNeXt+S 49.01 Swin-Transformer+S 48.42

ConvNext+N 48.84 Swin-Transformer+N 48.67

This experiment particularly demonstrated the structural rationality and potential of our
method, as it achieved good performance when using various graph operators.

Table 4. ADE20k segmentation results using different type of GNN operators. The FLOPS is
calculated with a image scale of 3× 512× 512.

GNN type Parameters(M) GFLOPS mIoU

Ours 121.9 306.7 49.63

Max-Relative [20] 121.58 301.86 49.53

GIN [36] 121.24 301.57 48.81

Edge Conv [34] 121.9 306.7 49.56

Influence of the Shortcut Coefficient. The utilization of the shortcut coefficient in our
GCR module is crucial due to the potential risk of over-smoothing within a GNN with a
deep structure. To evaluate the effect of the hyperparameter α in Eq. 7 on model perfor-
mance, we conducted experiments using GCR-ConvNeXt-B and ADE20k dataset while
pretraining on ImageNet1k. The results demonstrate that the model performs optimally
when α is approximately 0.5, as illustrated in Fig. 8.

Influence of the Downsample Layer Type. In order to generate features with a pyra-
mid structure in GCR module, a downsampling layer is required as GNNs do not pos-
sess the same convenient downsampling method as CNNs do through pooling. By
default, a single convolution layer is utilized as the downsampling layer. In order to
demonstrate that the type of downsample layer is inconsequential for the GNN model,
an experiment was conducted utilizing various implementations of the downsample
layer on the GCR-ConvNeXt-B model. The results of these different downsample meth-
ods were then compared on the ADE20k dataset (as shown in Table 5). The results of
this experiment indicate that the use of different types of downsample layers has mini-
mal impact on the performance of GNN.
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Fig. 8. The influence of α on mIoU.

Table 5. ADE20k Segmentation results using different types of downsample layer of GNN.

Downsample Conv layer FC layer

mIoU 49.63 49.51

5 Conclusion

This paper presents a novel module, GCR to address the semantic segmentation prob-
lem with a semantic-based receptive field. We put up the idea of such receptive field
with a semantic foundation that adhere to the fundamental tenets of semantic segmen-
tation, and implement it with graph representation learning. Furthermore, we adopt a
paralleled CNN or ViT encoder to ensure the beneficial inductive bias is also accessi-
ble for our model. Experimental results verify the effectiveness of our proposed model,
along with other advantages. Future work will focus on integrating the research intuition
of graph representation learning more deeply into various tasks of image segmentation.
Specifically, for open vocabulary segmentation and scene understanding.
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Abstract. Multilingual modeling has gained increasing attention in
recent years, as the cross-lingual Text-based Visual Question Answer-
ing (TextVQA) are requried to understand questions and answers across
different languages. Current researches mainly work on multimodal infor-
mation assuming that multilingual pretrained models are effective to
encode questions. However, the semantic comprehension of a text-based
question varies between languages, creating challenges in directly deduc-
ing its answer from an image. To this end, we propose a novel multilingual
text-based VQA framework suited for cross-language scenarios(CLVQA),
transductively considering multiple answer generating interactions with
questions. First, a question reading module densely connects encoding
layers in a feedforward manner, which can adaptively work together
with answering. Second, a multimodal OCR-based module decouples
OCR features in an image into visual, linguistic, and holistic parts
to facilitate the localization of a target-language answer. By incorpo-
rating enhancements from the above two input encoding modules, the
proposed framework outputs its answer candidates mainly from the
input image with a object detection module. Finally, a transductive
answering module jointly understands input multimodal information
and identified answer candidates at the multilingual level, autoregres-
sively generating cross-lingual answers. Extensive experiments show that
our framework outperforms state-of-the-art methods for both of cross-
lingual (English<->Chinese) and mono-lingual (English<->English and
Chinese<->Chinese) tasks in terms of accuracy based metrics. More-
over, significant improvements are achieved in zero-shot cross-lingual
settings(French<->Chinese).
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1 Introduction

It is widely recognized that Images with rich text information, such as prod-
uct descriptions and advertising images. Texts in such images generally convey
valuable information and thus are of critical importance in visual understanding
tasks such as Visual Question Answering (VQA) [1].

It requires analyzing both natural language questions and the visual content
of images, and answering text questions based on images, as a comprehensive
problem involving natural language processing and computer vision. Existing
VQA methods [2–6] tend to capture the relationships between visual concepts
directly through sophisticated visual attention mechanisms. These methods pay
few attention on reading the text in images and suffer performance degradation
when answering text-based visual questions (TextVQA) [7]. Compared with ordi-
nary VQA, TextVQA [7–10] is more practical because of its ability to help visu-
ally impaired users better identify information about the surrounding physical
world, such as time, date, temperature, brand name, etc.

Fig. 1. Our work includes both mono-lingual and cross-lingual tasks. The former rep-
resents question-answer pairs in a same language (Chinese and English in our case,
sample a and d). The latter represents that questions and answers are not given in the
same language (sample b and c). Examples are from the EST-VQA dataset.

With the internationalization of human activities, multi-language TextVQA
can well meet people’s needs in various scenarios, for example, Be My Eyes
APP. As shown in Fig. 1, there are mono-lingual and cross-lingual cases. (1)
When questions are given in a specific language, the TextVQA model can provide
answers in the same language as the given question. Examples a and d show that
we can ask questions based on images in English or Chinese, and the Text VQA
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model should give predicted answers in the same language, which represents
mono-lingual TextVQA. In this cases, question-answer pairs can cover multiple
languages. (2) On the other hand, the asked question and the answer given are
not in the same language as example b, the question is in Chinese, "绿色标志上
写的是什么？" ( What does the green sign say? ). Since the answers are given
in English, it belongs to cross-lingual TextVQA.

Based on the languages used in questions and answers, recent multi-lingual
TextVQA methods are classified into three types. (1) Monolingual task with
one fixed lanaguage includes: LoRRA [7], RuArt [11], MM-GNN [12], CRN
[13], SMA [9], M4C [10], LaAPNet [14], LaTr [15], KTVQA [16], and TAP [17],
etc. In terms of text encoding, pre-trained models such as Bert [18], Faster R-
CNN [19], and T5 [20] are commonly used. (2) Monolingual task covering
several languages: [21] is the first attempt to Multilingual TextVQA, which
translates the questions in ST-VQA dataset to 3 languages(Catalan, Spanish,
and Chinese). The latest attempt multilingual task is MUST-VQA [22]. MUST-
VQA translates all the questions in ST-VQA and Text-VQA datasets to 5 lan-
guages with 3 scripts; namely Spanish, Catalan, Chinese, Italian and Greek.
Compared with monolingual tasks, multilingual tasks usually use state-of-the-art
multilingual pre-trained models, such as mBert [23], XLM-R [24], mT5 [25], etc.
Current researches mainly work on multimodal information assuming that those
multilingual pretrained models are effective to encode questions. (3) Cross-
lingual task: current multilingual TextVQA like [22] translates questions into
six languages, and the target language is only English. Therefore, it is not the
true many-to-many cross-lingual evaluation. In summary, current researches uti-
lize multilingual pretrained models to learn the question embeddings of different
languages and while mainly focus on multimodalities. However, the process of
semantically understanding a text-based question varies depending on the lan-
guage used, which create challenges when attempting to directly infer its answer
from an image.

In cross-language TextVQA, Questions are stated in the source language,
with answers in the target language expected to come from the accompany-
ing image. In some case, the question can be understood in one go while others
require multiple interactions with the question for fully comprehend it. As shown
in Fig. 1(c), TextVQA directly understands the "height limit" and find the cor-
responding Chinese "限制高度" (height limit). On the other hand, in Fig. 1(b),
TextVQA initial focus is “写的什么” (what is written), and after TextVQA
understands the question again, it will find that "绿色标志上" (on the green sign)
is equally important. Thus, aligning their semantic information and interacting
with the question multiple times becomes crucial to obtain accurate answers.

To address this end, we propose a cross-lingual Scene-TextVQA framework
called CLVQA with Question Reading, Multimodal OCR, Object Detection and
Transductive Answering. The Question Reading module pays attention to the
rich language information at different linguistic levels given by a text question,
which can adaptively work together with answering. The Multimodal OCR mod-
ule firstly decouples the OCR modal features in the corresponding image and
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divides them into three parts: visual, textual, and holistic features. Moreover,
redundant and irrelevant features are softly filtered through the cross-modal
attention module. The Object Detection module is used to extract visual object
features. Then, the three modality features are trained by Transformer to learn
a joint semantic embedding. The Transductive Answering module utilizes a mix-
ture of answer vocabulary and OCR tokens to obtain answer candidates, which
is transductive conjunction with input multimodal features during iteratively
autoregressive decoding to generate a refined answer. This approach helps to
enhance the mutual understanding of questions and answers at the cross-lingual
level, resulting in effective decoded answers.

Our contributions are summarized as follows: 1) Our proposed CLVQA
framework can handle cross-language scenarios, consisting of Question Read-
ing, Multimodal OCR, Object Detection and Transductive Answering. 2) The
Transductive Answeringmodule is capable of simultaneously learning multimodal
and multi-lingual information while jointly understanding the question and its
answer at the cross-lingual level. 3) To the best of our knowledge, it is the first
empirical analysis conducted on datasets with different target languages, i.e.,
English<->Chinese and English<->French, and our proposed framework out-
performs baselines in terms of Accuracy and ANLS, at both of supervised and
zero-shot settings.

Fig. 2. Our Framework For Cross-Lingual Scene-Text VQA(CLVQA).

2 Our Framework

As shown in Fig. 2, our proposed framework is designed for cross-lingual text
based visual question answering. In the remainder of this paper, all W are learned
linear transformations, with different symbols to denote independent parameters,
e.g., Wfr. LN is Layer Normalization [26]. o represents an element-wise product.
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2.1 The Overview of Our Framework

In Fig. 2, given a textual question in a source language and an image where OCR
is a target language, feature representations are extracted from three modalities,
i.e., the question text reading (in the upper and left part of Fig. 2), the visual
objects in the image(in the bottom and left part of Fig. 2), and the text tokens
identified from the image OCR parts (in the middle and left part of Fig. 2).
These three modalities are represented respectively as a list of question words
embeddings, a list of visual object features from an off-the-shelf object detector,
and a list of OCR token features based on an external OCR system.

Question Reading and Multimodal OCR are part of our concerns since they
contain rich linguistic information. For question words, we dynamically weight
the output of 12-layer transformer encoders and the weight of each layer is a
learnable parameter. In this way, it is effective to obtain the question embedding
containing different levels of semantic information for each question token. The
identified OCR features with rich modality representations will be decoupled into
three parts, linguistic, visual and holistic part. Our main concern is the trans-
ductive answering module, which predicts the answer through iterative decoding
(in the right part of Fig. 2). During decoding, it feeds in the previous output to
predict the next answer component in an autoregressive manner. At each step,
it either locates an OCR token from the image or selects a word from its answer
vocabulary, which allows it to understand input information and answers at the
multilingual level.

2.2 Inputs of Cross-Lingual Text-VQA

Our inputs are from three modalities–question words, visual objects, and OCR
tokens. The feature representations for each modality are extracted and pro-
jected into d-dimensional semantic space through domain-specific embedding
approaches as follows:

Using a multilingual pretrained model, embed the sequence of K words into
the corresponding sequence of d-dimensional feature vectors {xqw

k } (where k =
1, · · · ,K). Since the parameters of a multilingual pretrained model are usually in
large-size, the parameters of all the layers are frozen and only let the parameters
of the weight fusion layer be fine-tuned during training.

To extract a set of M visual objects from an image, a pretrained detector
is used and called Faster R-CNN. Through it we can get visual object features{
xfr
m

}
and location feature

{
xb
m

}
. The final object embedding

{
xoi
m

}
is obtained

by projecting the visual and location features into a d-dimensional space with
two learned linear layers and then summing them up.

xoi
m = LN

(
W1x

fr
m

)
+ LN

(
W2x

b
m

)
(1)

we categorize the features of N OCR tokens into two types: Visual and Lin-
guistic. We also include an external OCR cross-modal pretrained embedding
as an additional feature to aid in recognition. The final linguistic embedding
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xo,l
i is obtained by projecting the pre-trained word embedding and character-

level pyramidal histogram feature [27] with a linear layers. Off-the-shelf visual
encoder can be used to extract object features and spatial features such as VIT
and VGG-16, etc. Merge them into the final features xo,v

i using a linear layer.
In our approach, we introduce the Recog-CNN [28] feature to enhance cross-
modal features. xo,rg

i as a kind of holistic feature to enhance the text and visual
representation learning.

Finally, the Recog-CNN feature, OCR visual and linguistic part features will
enter the attention based multimodal multilingual fusion encoder, and please
refer to [29] for details.

2.3 Question Reading

Question Reading in Source Language. Multilingual pre-trained models
can encode rich linguistic level information, the surface information features are
in the bottom network, the syntactic information features are in the middle layer
network, and the semantic information features are in the high-level network.
Given a question, different languages have their linguistics usage. Some may like
the lower-level information and others may consider the higher-level semantics.
Thus our framework adopts the multi-layer connection to capture different lev-
els of semantic information [30,31] by using different hierarchical features (for
example, 12 layers in our case).

As shown in Fig. 3 and Eq. 2, in this way, the hierarchical information of the
pre-trained model can be better utilized, and the information beneficial to the
current text can be mined. unit = 20 represents a question that contains up to
20 tokens. ∂i represents the output of a certain encoder layer. Wh

k is the weight
score of ∂i, k represents the kth token in the question, and the h is the current
number of layers of the encoder. And the objective function of our framework is
based on cross-entropy defined in Eq. 3.

xques
k = Denseunit=20

(
n∑

i=1

∂i · Wh
k

)

(2)

Fig. 3. Question Reading Network

The above output the d-dimensional embedding of question words, visual
objects, and OCR tokens from each modality. A multi-layer Transformer encoder
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is applied to fuse the three modalities, and the L stacked decoder outputs the
final embedding of K+M+N entities. With the multi-head self-attention mech-
anism in the Transformer, each entity can jointly attend to all other entities
freely, regardless of their modality. This enables us to model both inter-modal
and intra-modal relationships uniformly with the same multi-layers parameters.
The output of our multi-modal decoder is a list of d-dimensional feature vectors
for the entities in each modality.

2.4 Transductive Answering

During prediction, the argmax is done on the concatenation yall
t = [yvoc

t ; yocr
t ]

of fixed answer vocabulary scores and dynamic OCR-copying scores, selecting
the top scoring element (either a vocabulary word or an OCR token) from all
V + N candidates. In our iterative auto-regressive decoding procedure, if the
prediction at decoding time-step t is an OCR token, its OCR representation is
feed to xocr

n as the Transformer input xdec
t+1 to the next prediction step t + 1.

Otherwise, if the previous prediction is a word from the fixed answer vocabulary,
its corresponding weight vector wvoc

i is the next step’s input xdec
t+1. In addition,

two extra d-dimensional vectors are added to our inputs. One is a positional
embedding vector corresponding to step t, and the other is a type embedding
vector corresponding to whether the previous prediction is a fixed vocabulary
word or an OCR token.

Similar to machine translation, our answer vocabulary is augmented with
two special tokens, < begin > and < end >. Here < begin > is used as
the input to the first decoding step, and the decoding process is stopped after
< end > is predicted. To ensure causality in answer decoding, the attention
weights are masked in the self-attention layers of the Transformer architecture
such that question words, detected objects and OCR tokens cannot attend to any
decoding steps. All decoding steps can only attend to previous decoding steps
in addition to question words, detected objects and OCR tokens. In addition,
a random probability is adopted when it is greater than 0.5, the input of the
next step is kept unchanged; when the probability is less than 0.5, the token
representation of the corresponding position of ground truth is used as the input
of the next step instead.

2.5 Training Loss

Given that an answer word can appear in both fixed answer vocabulary and
OCR tokens, multi-label sigmoid loss (instead of softmax loss) is applied, as
defined in Eq. 3.

Lbce = −ygt log( sig(ypred))− (1− ygt) log(1− sig(ypred)) (3)

where ypred is prediction and ygt is ground-truth target.
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3 Experiments

3.1 EST-VQA Dataset and Baselines

Dataset. To the best of our knowledge, the EST-VQA proposed in 2020 is the
first bilingual scene text VQA dataset [32] covering English<->Chinese where
target languages are different. Further discussions on other related datasets are in
Sec4.2 where most ones are with one fixed target language. As shown in Table 1,
the training set of this dataset contains 17102 pictures, each picture corresponds
to a question, of which 9515 pictures are asked in Chinese and 7532 are asked in
English. The test set contains 4000 pictures, of which 2530 are asked in Chinese.

Table 1. Statistics of EST-VQA dataset.

Set English Chinese All
#Image #Question #Image #Question #Image #Question

Train 6,500 6,500 8,000 8,000 14,500 14,500
Val 500 500 750 750 1,250 1,250
Test 587 587 765 765 1,352 1,352

Zero-Shot. To verify the language adaption of our trained framework, we con-
struct an additional set of Chinese<->French question answering pairs to the
test set for the zero-shot setting of Cross-language Text-VQA. Following [22] and
[33], Baidu-translation-API1 is used to translate English questions and answers
in EST-VQA into French questions and answers.

Evaluation Methodology. Since the original test set of EST-VQA is not pub-
lic now, the original training set is randomly divided into our training set, val-
idation set and test set in a ratio of 8:1:1, following EST-VQA’s official split-
ing. The EST-VQA dataset contains multilingual question-answer pairs, with
human-written questions asking to reason about the text in the image. Each
question in the dataset has 10 human annotated answers. Following previous
works [7,9,10,22,29], the main metrics in our experiment is Accuracy that counts
the proportion of successful matching with the real answers. Final accuracy is
measured by averaging the 10 answers. At the same time, edit-distanced based
metric is also considered, i.e., ANLS, which is more relaxed than Accuracy.

Baselines. LORRA [7], SMA [9] and M4C [10] are recent works and those
baselines deal well with monolingual tasks. Their question encoders are replaced
by the multilingual mBERT [23] while reproducing their overall frameworks. The
latest multi-lingual works include MUST-VQA [22] and AttText-VQA [29]. The
former includes the testing of multiple Text-VQA models, among which the best
is LaTr [25] that replaces the T5 language model with the mT5 language model
1 https://api.fanyi.baidu.com.

https://api.fanyi.baidu.com
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to better adapt to multilingual tasks. The latter language model uses mBERT
[23]. For fair comparisons, AttText-VQA [29] is reproduced as our baseline.

3.2 Implementation Details

Our framework is implemented based on PyTorch. For the visual modality, the
settings of M4C are used where Faster R-CNN [19] fc7 features of 100 top-
scoring objects in the image pretrained on the Visual Genome dataset. The fc7
layer weights are fine-tuned during training. For the text modality, we use two
iFLYTEK OCR systems2 to recognize scene text. A trainable 12-layer mBERT
or XLM-R is used [24] for text representation. Pyramidal histogram of characters
(PHOC) representations [34] are applied on OCR text. VIT [35] extracts visual
features in OCR and Recog-CNN [28] extracts holistic features in OCR. Adam
is used as the optimizer, and its learning rate is set to 1e-4, and the epsilon value
is 1e-8. For the training strategy, L2 regularization, warmup learning, gradient
clipping, early stopping, learning rate decay, dropout, etc. are used in our exper-
iment. L = 4 layers of multimodal transformer with 12 attention heads are our
encoders. As for the decoder, a maximum decoding stride of T = 12 is adopted
since it is sufficient to cover almost all answers unless otherwise stated.

3.3 Overall Performance

The overall experimental results are reported in Table 2, * represents that modal-
ity feature processing is followed with self-attention on each of the three modal-
ities of question, detected object, and OCR. In addition, for fair comparisons,
those baselines and ours use XLM-R for multi-lingual text encoding.

Table 2. Supervised Setting covering Chinese<->English.

# Method Acc on val Acc on test ANLS on val ANLS on test

1 LORRA(*) 0.3842 0.3906 0.4792 0.4876
2 SMA(*) 0.4092 0.4168 0.4961 0.5034
3 M4C(*) 0.4048 0.4122 0.5014 0.4985
4 AttText-VQA 0.4326 0.4332 0.5368 0.5294
5 Ours 0.4614 0.4628 0.5708 0.5652

Experimental results show that our proposed framework with question read-
ing, multimodal OCR, oject detection and transductive answering significantly
outperforms prior works. Specifically, our framework achieved the highest per-
formance on the test set with an accuracy of 0.4628 and an ANLS value of
0.5652.

2 https://www.xfyun.cn/services/common-ocr.

https://www.xfyun.cn/services/common-ocr
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The first three experiments in Table 2 show that it is not effective if just
replacing the mono-lingual pretrained embedding of baselines with the multi-
lingual one. On the test set, our answering accuracy is improved by nearly by
12.27% compared to M4C [10], released as the star codes of TextVQA Challenge
2020. M4C fuses different modalities homogeneously by embedding them into
a common semantic space where self-attention is applied to model inter- and
intra- modality context. In our reproduction, all entities of the three modalities
are fused based on the transformer, and the question encoder is replaced with
XLM-R.

Our framework is improved by 6.9% compared to the recent multi-lingual
Text-VQA work of AttText-VQA [29]. AttText-VQA works with Transformer
by using a set of cross-modal attentions. Under ANLS metric, our framework
is improved by 15.91%, 12.27%, 13.38%, and 6.76%, respectively, further high-
lighting the superiority of our framework.

To verify the language adaption of our trained framework, we construct an
additional set of Chinese<->French question answering pairs to the test set for
the zero-shot setting. The specific results are shown in Table 3.

Table 3. Zero-shot Setting for Chinese<->French.

# Method Acc on test (Fr) ANLS on test (Fr)

1 LORRA(*) 0.3523 0.4398
2 SMA(*) 0.3877 0.4762
3 M4C(*) 0.3849 0.4826
4 AttText-VQA 0.4216 0.5134
5 Ours 0.4504 0.5428

In this scenario, the accuracy performance of ours has been improved by
23.41%, 13.98%, 12.47%, and 5.72% and the ANLS performance has been
improved by 23.41%, 13.98%, 12.47%, and 5.72% respectively compared with the
four baselines. At the same time, compared with Table 2, our proposed model
has only a small performance loss, while the results of those baselines have been
dropped a lot. This shows that our proposed framework is more robust to Text-
VQA problems in cross-lingual situations.

3.4 Multi-lingual and Multi-modal Embeddings

This part explains and analyzes the influence of different multilingual models and
different visual feature extractors on our proposed framework. The experimental
results are reported in Table 4 and Table 5.

(1) Experimentingon two mainstream multilingual pre-training models mBERT
and XLM-R, we found that the XLM-R model is more applicable to this
task and can better extract information from texts in different languages. As
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listed in Table 4, XLM-R reaches the Accuracy 0.5444, i.e., 4.4% improve-
ment over mBERT on English->Chinese. Ours w/o means that the different
levels of semantics of a question is not jointly worked with answer gener-
ating. From Table 4, its Accuracy is decreased from 0.5440 to 0.4482. This
observation underscores the ability of our framework to perform well in
cross-lingual textual question answering.

(2) Advanced visual encoding models are effective to extract features. As shown
in Table 5, when our framework uses Faster R-CNN as the target detector
and extracts visual features and uses the VIT model to extract OCR marked
visual features, it can be found that the Accuracy and ANLS indicators
have been further improved on both of dev and test sets. Therefore, paying
attention to new technical approaches and putting them into practice is an
effective strategy.

Table 4. Muli-lingual Pretrained Models

Setting Cross-lingual Multilingual All data

Type En –>CH Ch–>EN CH –>CH En –>En
Ours w/o (mBERT) 0.4208 0.4426 0.4149 0.4192 0.4282
Ours w/o (XLM-R) 0.4482 0.4680 0.4267 0.4236 0.4306
Ours (mBERT) 0.5212 0.5328 0.4354 0.4492 0.4572
Ours (XLM-R) 0.5440 0.5262 0.4396 0.4547 0.4628

Table 5. Visual Feature Extractors

Method visual features OCR visual features acc/% ANLS
dev test dev test

Ours Faster R-CNN VGG16 46.14 46.28 0.5708 0.5652
Ours Faster R-CNN VIT 46.28 46.75 0.5783 0.5726
Ours VIT VGG16 45.64 46.04 0.5592 0.5635
Ours VIT VIT 45.92 45.36 0.5646 0.5598

4 Related Work

4.1 Multilingual Language Models

This paper works on cross-lingual information processing in the field of Text
VQA. Multi-lingual language models are basic to handle different languages.
Common multi-lingual pre-training models include mBert [23]], LASER [36],
MultiFiT [37], XLM-R [24], etc. In current cross-language tasks, mBert and
XLM-R are the mainstream methods with better effects. XLM-R is a scaled
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cross-language sentence encoder derived from 2.5T corpus data in hundreds of
languages. mBert (Multilingual BERT), pre-trained on the large Wikipedia, is
a multilingual extension of BERT that provides word and sentence representa-
tions for 104 languages. Both of mBert and XLM-R have been shown to cluster
polysemy into the different regions of embedding space.

4.2 Text-VQA Datasets

Although the importance of involving scene texts in visual question answering
tasks is originally emphasized by [38], due to the lack of available large-scale
datasets, early development of question answering tasks related to embedded
text understanding is limited in narrow domains such as bar-charts or diagrams
[39,40]. TextVQA [7] is the first large-scale open-domain dataset of the Text-
VQA task, followed by TVQA [8], OCR-VQA [21,41] is the first attempt to do
Multilingual Text VQA, but the question and answer of the above data set is only
in English, which cannot be applied to this task. Moreover, MUST-VQA [22] uses
the Google translation api to translate the questions of ST-VQA and TestVQA
into 6 languages as a multilingual scene. Similar to MUST-VQA, xGQA [33]
(not focusing on Text VQA) claims to be a cross-language task, but the target
language is fixed as English. Therefore, for our cross-lingual task, none of the
above datasets really covered cross-language until the EST-VQA [32] appeared.
It is the first public dataset for bilingual scene Text-VQA with English and
Chinese text-VQA pairs.

4.3 Text-VQA Methods

Recent studies [7,9,10,17,42–44] have proposed several models and network
architectures for the Text VQA task. As previous approaches struggled to answer
questions requiring reading text from images, as the first time, As the first work,
LoRRA [7] based on Pythia [45] studies an OCR branch to encode text infor-
mation in images. MMGAN [43] constructs three sub-graphs for visual, seman-
tic and numeric modalities. M4C [10] fuses multimodal information from ques-
tions, visual objects and OCR tokens with Transformer, and iteratively decodes
answers with a dynamic pointer network. Since remarkable performance has been
achieved, M4C is released as the star codes of TextVQA Challenge 2020. Sub-
sequently, a series of M4C-derived approaches have been reported. For example,
SMA [9] embeds a Graph Convolution Network (GCN) before the multimodal
feature fusion module to encode object-object, object-text and text-text rela-
tions. LaAP-Net [14] thinks the view that OCR tokens play a more important
role than visual objects, so it only takes questions and OCR tokens into consider-
ation when encoding and decoding multimodal information. On the other hand,
SA-M4C [42] takes spatial relations more than semantic relations. It has han-
dled 12 types of spatial relations with the multiple heads of Transformer, and
meanwhile, intentionally suppressed the semantic relations of text and visual
objects. Recent SSbaseline [46] has achieved state-of-the-arts by splitting OCR
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token features into separate visual and linguistic attention branches with a sim-
ple attention mechanism. TAP [17] proposes to pretrain the model on several
auxiliary tasks such as masked language modeling and relative position predic-
tion.

5 Conclusions and Future Work

In this paper, we propose a transductive cross-lingual scene-text VQA frame-
work with Question Reading, Mutilmodal OCR, Object Detection and Trans-
ductive Answering, which aims to delve into the current state-of-the-art studies
to cross-lingual vision and language learning. A series of analytical and empiri-
cal comparisons is conducted to show its effectiveness. In future, OCR system,
advanced language inference module, and generator head will further improve
the performance of cross-lingual Text-VQA.

In summary, the most recent monolingual TextVQA approaches are derived
from M4C [10], and these approaches highlight the role of OCR blocks and spa-
tial relations. Current studies pay less attentions at the semantic understanding
of questions in cross-lingual scenarios by assuming multi-language pretrained
models are good enough. Thanks to the release of EST-VQA [32], our idea can
be evaluated to show its effectiveness and the importance of aggressively consid-
ering question reading and answer generating.
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Abstract. When collecting answers from crowds, if there are many instances,
each worker can only provide the answers to a small subset of the instances, and
the instance-worker answer matrix is thus sparse. The solutions for improving the
quality of crowd answers such as answer aggregation are usually proposed in an
unsupervised fashion. In this paper, for enhancing the quality of crowd answers
used for inferring true answers, we propose a solution with a self-supervised fash-
ion to effectively learn the potential information in the sparse crowd answers. We
propose a method named CROWDLR which first learns rich instance and worker
representations from the crowd answers based on two types of self-supervised
signals. We create a multi-task model with a Siamese structure to learn two clas-
sification tasks for two self-supervised signals in one framework. We then utilize
the learned representations to complete the answers to fill the missing answers,
and can utilize the answer aggregation methods to the complete answers. The
experimental results based on real datasets show that our approach can effec-
tively learn the representations from crowd answers and improve the performance
of answer aggregation especially when the crowd answers are sparse.

Keywords: Crowdsourcing · Answer Aggregation · Representation Learning

1 Introduction

Quality control is a crucial issue for the answers collected by crowdsourcing because
the ability and diligence of the crowd workers are diverse. A typical solution is building
redundancy in the collected answers, i.e., people ask multiple workers to assign the
answers to an instance and then aggregate the answers of the instances to improve the
quality of the crowd answers and discover the truths.

Because it is practical to assume that the ground truths are always not available
before collecting the crowd answers, many answer aggregation approaches are pro-
posed in an unsupervised fashion [2,4,16,25,29,30]. However, when there are many
instances, each worker can only provide the answers to a small subset of the instances;
many workers are required; the instance-worker answer matrix is usually sparse in such
cases, which results in that the existing answer aggregation models may be not well-
learned. In this paper, for enhancing the quality of crowd answers used for inferring
true answers, we propose a solution in a self-supervised fashion to effectively learn the
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potential information in the sparse crowd answers. We then utilize the learned represen-
tations to fill the missing answers. The answers with enhanced quality are then used by
label aggregation methods and improve the performance of label aggregation.

To learn rich instance and worker representations from the sparse crowd answers,
we leverage two types of self-supervised signals in the crowd answers to capture
the potential relations among instances and workers. We propose a multi-task self-
supervised method based on a neural network to learn the representations, named
CROWDLR (Learning Representations for CROWD answers). Self-supervised methods
have recently been concentrated on for learning the feature representations from the
data with unknown ground truths [3,8,9,26]. One popular type of self-supervised meth-
ods is the task-related methods which tend to create supervised pretext tasks from the
raw data, e.g., the context prediction tasks in computer vision [6] and natural language
processing [5], the rotation prediction tasks in computer vision [10].

Fig. 1. Our solution for quality control in crowdsourcing by self-supervised representation learn-
ing on sparse crowd answers. There are two self-supervised tasks and two quality control tasks.

In our work, we design two self-supervised tasks. One intuitive task is predicting
the answer of a worker to an instance. To better understand the relations among the
workers, instances, and answers in the collection, another task is predicting whether
two workers assign the same answers to an instance, which can detect the additional
instance-wise relation information among the workers. Both two self-supervised tasks
can learn different and partial information. We thus propose a multi-task model with a
Siamese structure to learn these two tasks in one framework.

After pre-training the proposed self-supervised model and obtaining the representa-
tions, we can utilize them in the tasks related to quality control in crowdsourcing, i.e.,
answer aggregation. We first make an answer completion, which predicts the answers
of all workers and instances, can fill the missing answers of the instances that a worker
does not annotate. It can naturally be implemented by the module of worker answer pre-
diction in the trained CROWDLR. After that, we can utilize various answer aggregation
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approaches such as [2,4,29] on the complete answers for answer aggregation. In this
paper, we utilize the Majority Voting (MV) method as the backbone answer aggrega-
tion method, which is one of the most typical answer aggregation method always used
by people who are not major in the crowdsourcing research and are working on diverse
practical scenarios. Figure 1 summarizes the framework of our solution for quality con-
trol. The contributions of this paper can be addressed as follows.

– We propose a method named CROWDLR to learn worker and instance representa-
tions with two self-supervised prediction tasks on the crowd answers.

– We propose a multi-task architecture with Siamese structure, comparison-based
learning for efficiently learning the rich information from the raw crowd answers.

– The trained model and learned representations can be utilized for quality control
task of answer aggregation. The experimental results based on real datasets verify
that our approach can effectively learn the representations from crowd answers and
improve the performance of answer aggregation especially when the crowd answers
are sparse.

2 Related Work

2.1 Quality Control in Crowdsourcing

Majority voting is a simple and effective answer aggregation method but only assigns
equal weights to all workers. Because it only assigns equal weights to all crowd workers
and labels, the quality of the aggregated answers is not stable because of diverse qual-
ity. Researchers also proposed more sophisticated statistical models which consider
worker ability, task difficulty, and other uncertainties and strengthen the opinions of
the majority [2,4,17,21,22,25,29,30]. There are also some existing works focusing on
few-expert scenarios with difficult tasks. Some works exploit diverse auxiliary informa-
tion [11]; some works do not rely on side information [16]. Zheng et al. [28] surveyed
existing answer aggregation methods in the scenario of truth discovery. Furthermore,
besides categorical labels, there are some works for other types of crowd labels such as
pairwise similarity or preference comparison labels [1,15,18,27,31], triplet preference
comparison labels [19,24] and text sequence [14,20]. Besides aggregating the crowd
labels, there are some works that trains the classification models by using the noisy
crowd labels directly, e.g., [12]. There are also some works on reducing the budget
while the utility of the aggregated labels is preserved, e.g., [13]. In this paper, answer
aggregation is a downstream task; our method incorporates the existing answer aggre-
gation approaches by executing them on the complete worker answers predicted by the
pre-trained CROWDLR model.

2.2 Self-supervised Representation Learning

Self-supervised methods have obtained many attractions in recent years to learn the rich
feature representations from the data with unknown ground truths [3,8,9,26]. There are
many types of self-supervised methods. One popular type is the task-related methods,
which tend to create supervised auxiliary tasks based on the self-supervised signals
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from the raw data, e.g., the context prediction tasks in computer vision [6] and natural
language processing [5], the rotation prediction tasks in computer vision [10]. In this
paper, we focus on proposing a task-related self-supervised method for our scenario of
crowd worker answers. We propose specific self-supervised tasks and the corresponding
model.

Fig. 2. The architecture of our self-supervised representation learning model CROWDLR. It has
two modules for the worker answer prediction task and one module for the answer consistency
prediction task in a multi-task architecture. It has a Siamese structure, i.e., the two modules of
worker answer prediction share the parameters.

3 Problem Setting

We focus on the multi-choice-one-answer questions in crowdsourcing which is a typical
form for collecting the answers from crowd workers. Workers are asked to select one
answer from multiple candidates for an instance, e.g., a label of an image or an answer
to a scientific question. We define a question assigned to a worker as an instance. For
each instance, the potential answer set is C = {ck}K

k=1. We assume that K is the same
for all questions that is a typical setting. We define the set of workers as A = {ai}N

i=1,
the set of instances as B = {bj}M

j=1. We define yij as the answer given by worker ai

to instance bj . We denote the set of all answers as Y = {yij}i,j , the set of answers
given to bj as Y∗j = {yij |ai ∈ A} and the set of answers given by ai as Yi∗ =
{yij |bj ∈ B}. Because the number of instances can be large, each worker only needs
to annotate a subset of them. The worker representations learned by the self-supervised
model are defined as U = {ui}N

i=1,ui ∈ R
d; the instance representation is defined

as V = {vj}M
j=1,vj ∈ R

d. For simplicity of the model hyperparameter, we use the
same number of dimensions for worker and instance representations. The estimated
true answers is defined as Z̄ = {z̄j}M

j=1. The true answers are Ẑ = {ẑj}M
j=1 which

are unknown to the quality control methods for crowdsourcing. The cold-start problem
is out of scope, we assume that each instance has been annotated by some workers,
which is always guaranteed in crowdsourcing when collecting the crowd answers. In
summary, the problem settings are as follows.

– Inputs: Worker set A, instance set B, and answer set Y .



472 J. Li

– Learning Representations: Learn the worker representation U and instance repre-
sentations V, and a model that predicts worker answers and whether two workers
assign the same answers to an instance.

– Answer Aggregation: The outputs are the estimated true answers Z̄ = {z̄j}j .

4 Learning Representations for Crowd Answers

Because each worker can only annotate a small instance subset, the instance-worker
answer matrix can be sparse when there are many instances. Therefore, how to effec-
tively learn the potential information from the sparse crowd answers is essential. Task-
related self-supervised learning builds supervised learning tasks from the raw data with-
out ground truths. Recent works in multiple areas have shown that it can learn rich
potential feature representations, e.g., [5,9]. In this paper, we propose a method based
on self-supervised learning, namely CROWDLR, to learn the representations of work-
ers and instances, and the relations among workers, instances, and answers. We propose
two specific self-supervised tasks and the corresponding model based on these tasks.

4.1 Self-supervised Tasks

Because the raw crowd answers have no ground truths, we need to create supervised
tasks and convert the data into a format with ground truth labels. We consider the fol-
lowing two self-supervised tasks. An intuitive task is predicting the answer of a worker
to an instance. It can model the relation between instances and workers. It is similar to
the cases based on tensor factorization (TF) [7,30]. To better understand the relations
among the workers, instances, and answers in the collection, a question is what kinds
of additional information we can observe from raw crowd answers. In Fig. 1, from the
answer matrix by workers and instances, we can also find that whether two workers
agree with each other on an instance is important information to describe the instance-
wise relation information among the workers, especially when both of these two work-
ers only annotate a small subset of the instances. It is possible to help the model under-
stand the potential ability relations of two workers, i.e., if two workers agree with each
other on many instances, they may have similar abilities; if two workers disagree with
each other on many instances, they may have different abilities. Therefore, another
self-supervised task leverages this instance-wise worker relation and predicts whether
two workers provide the same answers to a given instance. We clarify these two self-
supervised tasks: (1) Worker Answer Prediction (WAP) Task; (2) Answer Consistency
Prediction (ACP) Task.

4.2 Neural Architecture of CROWDLR

Both of these two tasks can learn different types of information. They partially repre-
sent the relations among the workers, instances, and answers. We thus learn them in
one neural-based model with a multi-task architecture. Figure 2 shows the architecture
of the proposed model. It consists of two modules for the worker answer prediction
task and one module for the answer consistency prediction task. It has a Siamese struc-
ture, i.e., the two modules of worker answer prediction for two workers share the same
parameters.
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To generate the samples for training the model, the raw crowd answers are con-
verted into quintuples (bj , ai1 , ai2 , yi1j , yi2j , yi1j == yi2j). The inputs are the one-hot
worker IDs of two workers ai1 and ai2 and one-hot instance ID of one instance bj . The
embedding layer converts them into worker representations ui1 and ui2 , and instance
representation vj . The parameters in the worker and instance embedding layers are two
matrices, i.e., EA ∈ R

|A|∗d for the workers and EB ∈ R
|B|∗d for the instances. The

worker representation can be obtained by ui = EA · ai; the instance representation can
be obtained by vj = EB · bj .

After that, we fuse the worker and instance representations with some computa-
tions Hp(ui1 ,vj), Hp(ui2 ,vj) and Ht(ui1 ,ui2 ,vj), where Hp is for worker answer
prediction and Ht is for answer consistency prediction. There are several alternatives
for the computation of Hp for fusing worker and instance representations. One is
based on a dot-product computation on the worker and instance representations, i.e.
H1

p(ui,vj) = ui · vj . It can be regarded as a neural-based implementation of tensor
factorization (TF) [7,30] while the non-neural-based TF one has no subsequent linear
layers. Another option is based on a concatenation operation, i.e.H2

p(ui,vj) = [ui,vj ].
It is similar to the neural collaborative filtering (NCF) [7]. We utilize the concatenation
operation for Hp following the neural-based existing work NCF.

For the computation of Ht, we also utilize the concatenation operation. An intuitive
method is H1

t = [ui1 ,ui2 ,vj ]. Because the answer consistency prediction implies the
comparisons between two workers and utilizing H1

t with the linear layer cannot guar-
antee these comparisons are implicitly computed, explicitly appending the computation
of comparison into H1

t is potentially better. We thus have a variant of Ht with explicit
computation of the comparisons,

H2
t = [ui1 ,ui2 , |ui1 − ui2 |,vj ]. (1)

Finally, a linear layer F and an activation function are used to compute the output
predictions, i.e., the predicted answer

ȳij = σp(F(Hp(ui1 ,vj))), (2)

and the predicted consistency

ȳi1i2j = σt(F(Ht(ui1 ,ui2 ,vj))). (3)

σ is an activation function. σp is the Softmax function for the multi-choice-one-answer
worker answer prediction and σt is the Sigmoid function for the binary answer con-
sistency prediction. It is also possible to instead σ(F(·)) by a Multi-Layer Perception
(MLP) like that in [7]. Without loss of generality, we didn’t select such MLP which
needs to tune the number of layers and their dimensions of latent layers; we directly
utilize one linear layer in the current implementation. The size of the entire CROWDLR
model is small and can be trained at a low time cost.

4.3 Loss Function

The loss function for this multi-task structure is as follows,

L = λtLt + λp1Lp1 + λp2Lp2 . (4)
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Lp1 and Lp2 are the losses of worker answer prediction tasks and Lt is the loss of
answer consistency prediction task. These two types of tasks can be regarded as the
constraints to avoid the overfitting of each other and have the generalization effect. λt,
λp1 and λp2 are hyperparameters that can be tuned, in our experiments, we set them as
general values, i.e., λt = λp1 = λp2 = 1, which is always used when the multiple tasks
have same importance and it is not a main-auxiliary multi-task model. This multi-task
neural network model can be optimized by a standard optimizer such as Adam.

When people collect answers, people can set the same number of answers to each
instance, but the numbers of answers that a worker provides are diverse, the numbers of
training samples for the workers are imbalanced. Therefore, we propose the loss func-
tions that consider the imbalanced sample numbers of workers, rather than the vanilla
binary cross-entropy, to train the model more effectively. We refer the focal loss [23] to
propose our loss functions. For the detailed loss functions, our loss Lp1 (Lp2) for the
worker answer prediction task is,

Lpij
= −

∑

k

∑

r∈{0,1}
yckr

ij (1 − ȳckr
ij )γ log ȳckr

ij ,

Lp1 =
∑

(i1,j)

Lpij
, Lp2 =

∑

(i2,j)

Lpij
.

(5)

It has a dynamic weight based on (1 − ȳckr) so that it promotes the importance of the
hard negative samples and decreases the strong influences of the easy negative samples.
On the other hand, the loss Lt for the worker answer prediction task is,

Lti1i2j
= −

∑

r∈{0,1}
yr

i1i2j(1 − ȳr
i1i2j)

γ log ȳr
i1i2j . (6)

4.4 Answer Aggregation

After we obtain the pre-trained model CROWDLR as well as the worker and instance
representations, we can utilize them for the quality control task of answer aggrega-
tion. First, we utilize the worker answer prediction module to estimate worker answers
Ȳ = {ȳij}i,j for all workers and instances in the instances-worker answer matrix.
After that, we can utilize the existing answer aggregation approaches (e.g., [2,4,29])
on the complete answers Ȳ to estimate the aggregated labels. In this paper, we utilize
the Majority Voting (MV) method as the backbone answer aggregation method, which
is one of the most typical answer aggregation method, because it is easy to implement
and always used by people who are not major in the crowdsourcing research and are
working on diverse practical scenarios.

In addition, for the quality control task of worker ability estimation, we can obtain
the results from some answer aggregation methods (e.g., DARE). Furthermore, in the
crowdsourcing context, most of the datasets have diverse instances and no-overlap
workers. It is generally incapable to transfer the presentations learned from one crowd
dataset by the pre-training tasks to the quality control tasks on another dataset. There-
fore, in this paper, the quality control tasks need to utilize the trained model and learned
representations obtained from the same dataset with the same instances and workers.
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Table 1. Statistics of the real datasets with diverse statistical factors. K: # of candidate answers
of a question; |B|: # of instances; |A|: # of workers; |Y|: # of answers; AR: Answer Redundancy
(|Y|/|B|)); MWA: Mean Worker Accuracy.

Dataset K |B| |A| |Y| AR MWA

ENG 5 30 63 1890 63.00 0.256

CHI 5 24 50 1200 50.00 0.374

ITM 4 25 36 900 36.00 0.537

MED 4 36 45 1650 45.00 0.475

POK 6 20 55 1100 55.00 0.277

SCI 5 20 111 2220 111.00 0.295

5 Experiments

5.1 Experimental Settings

We utilize some real crowdsourcing datasets proposed in existing work [16] to verify
our approach. Table 1 lists the statistical factors of these datasets. These datasets contain
the ground truths that are only used for evaluation and not used by the approaches. Mean
Worker Accuracy (WMA) is the mean of accuracy of answer set Yi∗ of each worker ai

to the ground truths, which shows the instance difficulties in these datasets.
There are six datasets in total, i.e., ENG, CHI, MED, POK, and SCI. A description

of the crowd answers of these datasets are as follows.

– ENG (English): the most analogically similar word pair to a word pair;
– CHI (Chinese): the meaning of Chinese vocabularies;
– ITM (Information Technology): basic knowledge of information technology;
– MED (Medicine): about medicine efficacy and side effects;
– POK (Pokémon): the Japanese name of a Pokémon with English name;
– SCI (Science): intermediate knowledge of chemistry and physics.

The type of questions of the instances in these datasets are heterogeneous questions,
i.e., the answers for the questions have different contents. For example, an answer “A.
creek:river” for a question “Select the analogous pair for word pair hill:mountain” and
an answer “A. posse:crowd” for another question “Select the analogous pair for word
pair school:fish” are different. In these datasets, each worker annotates all instances. To
verify our method, we generate datasets with missing answers by randomly removing
the answers. Given a sampling rate r, for each instance in the dataset, we randomly
select �|A| ∗ r� answers where |A| is the number of workers. We set the sampling
rate of r from the set of {0.1, 0.2}. The new datasets are named using r at the suffix,
e.g., ENG.10% for ENG dataset with r = 0.1. For each dataset and r, we run the
generation with five trials. We evaluate the average performance of the five trials in the
experiments. In addition, we define Answer Completeness Rate (ACR), which shows
the sparsity of the answer matrix of workers and instances, i.e., ACR = |Y|/(|A||B|).
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These sampled subsets have relatively low ACR (≤ 20%) and low WMA. They are
sparse and difficult subsets.

We utilize Tensorflow to implement CROWDLR. We set some of the hyperparame-
ters as the general values, i.e., the weights of the multi-task losses in Eq. (4) are equal,
λt = λp1 = λp2 = 1. γ of the loss in Eq. (5) and (6) are 1 which follows the existing
works such as [23]. Besides, we utilize the Adam algorithm for optimization with the
default learning parameters such as learning rate 0.001. The batch size is set as 2,000.
We set 10,000 training epochs with early stopping. We set the dimension of embed-
dings d = 1024 for CROWDLR. Because the size of a training sample and the size of
the neural network of CROWDLR is small, it does not need too much memory cost and
training time cost. We convert all raw crowd answers into the training quintuples and
use all of them to train the self-supervised model.

For the existing works used as baselines for comparisons in the answer aggregation
task, besides MV method, we also compare with typical answer aggregation methods
D&S [4], DARE [2] and Minimax entropy (MINIMAX) [29]. We implement Major-
ity Voting (MV) by using Python and Scipy. We utilize the the public codes of D&S,
DARE and MINIMAX. For MV method, because different rules can be used to break
the ties, i.e., the rule of how to select the answer when the candidate choices have
equal estimated probability, the reported results of the MV method of a dataset may
have minor differences among different existing works as well as our paper. We always
select the first answer in the answers with equal estimated probability if there is a tie in
the answers of an instance.

Table 2. Experimental Results. Bold values show the best results; underlined values show the
results of CROWDLR are better than or equal to that of MV, while CROWDLR utilize MV as the
backbone answer aggregation method.

Dataset CrowdLR w/o ACP Task MV D&S DARE MINIMAX

ENG.10% 0.2933 0.1867 0.2600 0.2133 0.2467 0.2600

CHI.10% 0.4500 0.2750 0.4083 0.3750 0.4417 0.4333

ITM.10% 0.5680 0.3760 0.5440 0.4080 0.5680 0.5520

MED.10% 0.5167 0.3111 0.5056 0.4389 0.5111 0.4833

POK.10% 0.2700 0.1500 0.2200 0.2400 0.2500 0.2700

SCI.10% 0.4700 0.3600 0.4000 0.3700 0.4800 0.4000

ENG.20% 0.4133 0.2933 0.3867 0.3000 0.3600 0.2733

CHI.20% 0.5083 0.4000 0.5083 0.4333 0.5500 0.4583

ITM.20% 0.6560 0.4480 0.6480 0.5680 0.6160 0.5760

MED.20% 0.6333 0.4500 0.6222 0.6667 0.6389 0.5611

POK.20% 0.4600 0.3600 0.3700 0.3400 0.4400 0.4100

SCI.20% 0.4500 0.2800 0.4700 0.5000 0.4800 0.5000
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5.2 Experimental Results

We executed the answer aggregation approach MV on the complete worker answers
Ȳ predicted by the pre-trained model of CROWDLR. We compared these aggregation
results with those from the raw answers Y by the existing answer aggregation meth-
ods. Table 2 lists the results. First, the underlined values in Table 2 show the results
of CROWDLR are better than or equal to that of MV. Comparing the results in the
“CROWDLR” and “MV” columns, it shows that the performance in the columns of
CROWDLR is better than or equal to that of MV in all of the cases. CROWDLR can
effectively learn the representations from crowd answers and improve the performance
of the answer aggregation.

Second, comparing the results in the column “CROWDLR” with the columns
“MV”, “D&S”, “DARE” and “MINIMAX”, the proposed CROWDLR outperforms the
baselines in 8 of 12 cases. Considering the backbone answer aggregation method of
CROWDLR for estimating the answers is the simple MV, i.e., applying MV on the com-
plete answers by CROWDLR, it also shows that CROWDLR is effective for improving
the performance of answer aggregation.

Third, comparing the results between the rows of subsets with r = 0.1 and the
rows of subsets with r = 0.2. Especially, CROWDLR outperforms the baselines in 5
of 6 cases when r = 0.1 and 3 of 6 cases when r = 0.2. It shows that the proposed
CROWDLR is especially effective when the crowd answers are sparse.

We also investigate how the proposed components of CROWDLR influence the
results, i.e., the ablation study. Table 2 also lists the ablation results. If removing the
ACP task (w/o ACP Task, equivalent to NCF), the performance of CROWDLR decrease
a lot. It shows that the ACP task and the multi-task model with Siamese structure are
important for CROWDLR to learn the information from the raw crowd data effectively.

6 Conclusion

In this paper, we propose a task-related neural-based self-supervised method named as
CROWDLR to learn rich instance and worker representations from the crowd answers.
We design two self-supervised tasks and create a multi-task model with a Siamese struc-
ture to learn these two tasks in one framework. The experimental results based on real
datasets show that our approach can effectively learn the representations from the crowd
answers and improve the performance of answer aggregation especially when the crowd
answers are sparse. A potential limitation of the proposed method is that the corrected
answers predicted by CROWDLR are on some instances with relatively higher quality
worker answers; the quality of worker answers of some instances with relatively lower
quality may be not improved. Another potential limitation is that the answer aggregation
approaches utilize the correlation among workers, instances, and answers with complex
behaviors, correcting some of the worker answers may does not exactly generate the
correct aggregated answers. In the future work, we will investigate the relation between
increase of worker answer accuracy and the increase of answer aggregation accuracy.
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Abstract. Software Vulnerability Detection(SVD) is a important means
to ensure system security due to the ubiquity of software. Deep learning-
based approaches achieve state-of-the-art performance in SVD but one
of the most crucial issues is coping with the scarcity of labeled data
in projects to be detected. One reliable solution is to employ transfer
learning skills to leverage labeled data from other software projects.
However, existing cross-project approaches only focused on detecting
whether the function code is vulnerable or not. The requirement to iden-
tify vulnerability types is essential because it offers information to patch
the vulnerabilities. Our aim in this paper is to propose the first sys-
tem for cross-project multiclass vulnerability classification. We detect at
the granularity of code snippet, which is finer-grained compare to func-
tion and effective to catch inter-procedure vulnerability patterns. After
generating code snippets, we define several principles to extract snippet
attentions and build a deep model to obtain the fused deep features; We
then extend different domain adaptation approaches to reduce feature
distributions of different projects. Experimental results indicate that our
system outperforms other state-of-the-art systems.

Keywords: cyber security · multiclass classification · snippet
attention · deep learning · domain adaptation

1 Introduction

Software vulnerabilities dreadfully undermine the security of computer sys-
tems due to the inevitability of vulnerabilities. Thousands of vulnerabilities
are reported publicly to Common Vulnerabilities and Exposures (CVE) [1] and
National Vulnerability Database (NVD) [2] each year. In the field of cyber
security, SVD has always been one of the most important problems faced by
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researchers. Traditional static methods rely experts to define vulnerability pat-
terns [3,4] but failed to achieve decent performance owning to the incomplete
and subjective patterns given by experts. Besides, the work of manually defin-
ing vulnerability patterns is tedious and laborious. Traditional dynamic analysis
such as fuzzing [5,6] inspect vulnerabilities during the program execution but
have low code coverage.

With the rapid development of deep neural networks, researchers leverage
deep neural networks to relive human experts from the arduous task of manu-
ally defining patterns [7–11]. Deep learning-based methods automatically learn
vulnerability patterns using rough features as input and achieve huge success. In
the mainstream deep neural networks, RNN is naturally designed to work with
sequential data such as text. In particular, the bidirectional form of RNN can
capture the long-term dependencies of a sequence. Therefore, a large number of
studies have applied RNN variants to learn the semantic meaning of vulnerabil-
ities and harvest excellent detection performance.

A practical challenge of deep learning-based SVD is the shortage of labeled
data in one software project. Deep models are trained with large amount of
labelled data but the process of labeling vulnerable code is very time-consuming.
Moreover, models trained from one project cannot be generalized to another
since data distribution differ across different projects. One ingenious solution
is to adopt transfer learning skills to reduce the distribution discrepancy. In
the field of SVD, several researches attempt to draw close data distributions
between different domains. After feature-level transfer, labeled data in source
domain can then be applied to the target domain [12–15]. However, all these
work only focus on binary classification but cannot figure out vulnerability types,
which is essential for security analysts to determine the risk level and patch
the vulnerabilities. Furthermore, all these existing cross-project studies detect
vulnerabilities at function level, which is too coarse-grained and cannot capture
inter-procedure vulnerabilities.

To solve these problems, we propose a novel system for cross-project mul-
ticlass vulnerability detection at code snippet level. Compared with previous
studies, our work is the initial investigation on cross-project multiclass vulnera-
bility detection. Besides, there are three more contributions:

1. Inspired by fine-grained image recognition in computer vision [16,17], we
defined several types of statement and several principles to generate snippet
attentions by matching these types of statement. In addition, we build a
deep model, which is composed of three sub-models to accommodate code
snippets/snippet attentions to obtain fused deep features. Our deep feature
extracting strategy achieves better experimental results than others.

2. We devise to align multiple source projects before involving the target
projects. Also, we extend a Mahalanobis distance metric learning algorithm
to draw close distributions between source and target projects. Experimental
results indicate that our multi-source alignment method improves the detec-
tion performance.
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3. We collected and labeled 5 real-world open source projects with two pro-
fessional security researchers and it took more than 240 h of manual work.
Equipped with the dataset, we conducted extensive experiments, which ver-
ify that our system significantly outperforms other state-of-the-art approaches
in the following cross-project settings:

– Scenario 1: Single source to single target project. Source project contains
all the corresponding vulnerability types with target project, which is the
most straightforward scenario.

– Scenario 2: Single source to single target, but the vulnerability types in
source project are not identical with target project. This scenario mea-
sures the capability to detect across vulnerability types.

– Scenario 3: Multi-source to single target. This scenario is very common
since it is likely that some types of vulnerability are absent in one source
project (subcase 1), or there’s no label absence but the samples of each
vulnerability type in each source project are small (subcase 2). Thus,
combining multiple sources together is supposed to achieve better perfor-
mance.

Paper Organization. The rest of the paper is organized as follows. Section 2
describes the previous work. Section 3 states our proposed method in detail.
Experiment implementation and results analysis are presented in Sect. 4.
Section 5 concludes the paper and prospects for future work.

2 Previous Work

Traditional approaches completely rely on experts to formulate vulnerability
patterns, which always suffers unsatisfied performance. Recent years, more and
more researchers employ deep neural networks to conduct SVD since they obvi-
ously outperforms traditional approaches and relief security experts from tedious
manual work. Li et al. proposed VulDeePecker [7], which is the first SVD sys-
tem based on deep learning. They extracted code slices from API calls though
dataflow propagations. Then Zou et al. proposed a multiclass vulnerability detec-
tion system [8] by combining different kinds of features. However, this in-domain
detecting system only works on slices generated from API calls. After that, Li et
al. proposed SySeVR [9], which is a binary classification system and expands the
slicing points, not limited to API calls. Duan et al. [10] embedded features from
code property graph and apply attention mechanism to capture potential vul-
nerable code lines. Zhu et al. [11] adopted bidirectional self-attention mechanism
and used a pretrained BERT to detect multiclass vulnerabilities. However, all
these approaches split training and test data from a same dataset, which means
deep model built by the training data is able to directly apply to the test data.

When coping with the scarcity of labeled vulnerabilities in a project,
researchers resort to transfer learning technique and leverage labeled data from
other projects. Lin et al. [12] employed BiLSTM to learn the transferable repre-
sentation between projects and used a random forest as downstream classifier.
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Then they combined the heterogeneous data of entire code text and abstract syn-
tax tree(AST) to learn unified representations of the vulnerability patterns [13].
Nguyen et al. [14] employed adversarial learning framework to learn domain-
invariant features that can be transferred from source to target project. Liu et
al. [15] adopted RNN to learn high-level features and utilised the metric transfer
learning framework to transform these features to transferable ones. However,
all these cross-project researches only detect the presence of vulnerabilities, but
cannot determine the vulnerability types.

3 Framework

A domain D = {X,Y, P (X,Y )} is characterized by a feature space X, a label
space Y and a joint probability distribution P (X,Y ). Ps(X,Y ) �= Pt(X,Y )
where Ps(X,Y ) and Pt(X,Y ) represent source domain and target domain respec-
tively. Further more, since P (X,Y ) = P (X)P (Y |X) and Ps(Y |X) = Pt(Y |X),
the discrepancy of joint probability distribution can be reduced by minimizing
the discrepancy between Ps(X) and Pt(X) and thus we can train a classifier in
source domain and apply it to target domain. Without drawing close these dis-
tributions, classifiers trained in one domain suffer over-fitting results in another
domain. One project represents a domain since its feature distribution differs
with other projects and several researches tried to tackle this problem as men-
tioned in Sect. 2. The main idea of our work is to learn cross-domain representa-
tions and diminish the gap between different domains at the code snippet level.
Consequently, classifier trained by source domain representations can be applied
to target. The structure of system is shown in Fig. 1, which will be illustrated in
details.

3.1 Code Snippet Generation

There are two disadvantages of function-level detection: When a function is
detected as vulnerable, it takes experts laborious work to locate vulnerable lines
because a real-word software project function always contains abundant lines
of code and experts still need other techniques or manual check to figure out
the vulnerability locations. Moreover, detecting within function scope fails grasp
vulnerability patterns across functions calls. These data propagation-caused vul-
nerabilities through function calls are pretty common and easily lead to serious
security issues. Thus we detect at the granularity of code snippet, which includes
significantly less numbers of code lines than functions and also spans across func-
tion calls to include potential inter-procedure vulnerabilities.

– Step1: Key Points Locating. In the first place, we select key points for the
source program. By analyzing the syntax characteristics of the program, we
focus on four key points which are API/Library Call, Array Usage, Pointer
Usage and Expression. We use the open-source analysis tool Joern [18] to
generate the AST and match these four types of syntactic features in the
AST, as shown in Fig. 2.
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Fig. 1. The framework of our system.

Fig. 2. Four types of key points.

– Step2: Code Snippets Extracting. The Program Dependency Graph
(PDG) of code contains data dependency and control dependency informa-
tion. We traverse the PDG starting from four types of key points and get
the traversed code lines as code snippets. Both forward and backward traver-
sals are considered. For relationships between functions, we extracted code
lines along function calls and put them ordered. Figure 3 includes the pro-
cess of generating a code snippet from a function via PDG. We start from the
Pointer Usage “pointer[9] =′ \0′;” and extract snippet by traversing the PDG.
Function “void print(const char *ptr)” is reached through data dependency.
Finally, we get the code snippet.

– Step3: Labeling Code Snippets. We labeled the ground truth data accord-
ing to the method in [7] and extended it to figure out the vulnerability types:
1. We collect projects from the NVD and exam the diff files of all functions.

If a diff file contains “-”, we mark the corresponding lines as vulnerable.
Professional experts manually mark vulnerable lines if there is no “-”.
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2. A code snippet containing no marked line is labeled as “0” (i.e., not vulner-
able). It is vulnerable if containing at least one marked statement. Since
each CVE-ID in NVD has a CWE-ID (Common Weakness Enumeration
Identifier) [19], we labeled the classes of vulnerable snippets according to
CWE-IDs (vulnerability types).

3. Because it is not possible to label vulnerable code snippets as “0”, experts
then manually check if the “vulnerable” ’ snippets are mislabeled.

Fig. 3. Process of generating code snippet and snippet attention from a function. In
the PDG, red arrows represents control dependency while blue arrows represents data
dependency. (Color figure online)

3.2 Snippet Attention Generation

Region attention in image recognition refers to the location in a picture that
is able to provide a strong basis for fine-grained classification. For example,
mouth shape and hair color are discriminative in determining the types of birds.
Inspired by this, we focus on several types of local features such as pointer/array
usage statements and API/Library function call statements in our PDG-based
code snippet, which we call snippet attention. We believe that our snippet atten-
tion can provide more information in our cross-project multiclass detection sce-
nario. For example, pointer usage statements often provide information on many
pointer-related vulnerabilities such as null pointer dereference and use after free.
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Array usage easily contributes buffer-related vulnerabilities. APIs such as str-
cpy() and memset() can cause buffer overflows while scanf() can cause improper
input validation. To capture information on the dataflow, we also focus on vari-
able definition, formal parameter and bounds-checking operations. Thus, we
define variable definition and formal parameter in function definition as “def-
inition” statement type, pointer and array usage as “usage” statement type, API
call as “API” statement type, control statement such as “if” or “while” as “control”
statement type. The “control” statement may also provide information on vul-
nerabilities such as infinite loop. Pointer/array usage here has the same meaning
with key points in Subsect. 3.1, which means a write operation in the correspond-
ing memory. We further define the following principles to get snippet attentions:

1. Match between “definition” statement and “API” statement: If there is a vari-
able in a “definition” statement which matches an argument in a “API” state-
ment, we select both the “definition” statement and “API” statement as snip-
pet attention. We do not choose “API” without variables in “definition” as its
argument.

2. Match between “definition” statement and “usage” statement: If there is a
variable in a “definition” statement which matches a pointer/array variable
in use in a “usage” statement, we select both the “definition” statement and
“usage” statement as snippet attention.

3. If a statement is a “control” type, we extract it as snippet attention, which
probably conduct proper bounds-checking and security screening.

With these principles, we can get snippet attention from code snippet, which
is also depicted in Fig. 3. Since the code snippet is not able to be compiled,
we implement an automate lexical-analysis-based program that analyzes token
and context structures to obtain the statement types and match the principles
from scratch. Non ASCII characters and comments are discarded. The algorithm
to generate snippet attention is illustrated in Algorithm 1. The operation “∪”
removes duplicated “definition” statement.

3.3 Vectorization

We use our lexical analysis to generate tokens (e.g., variables, operators, key-
words) as corpus from code snippets and snippet attentions. Then we use the
word2vec tool [20] with Continuous Bag-of-Words, to embed token sequences
of code snippets/snippet attentions into vectors. To deal with different vector
lengths, we set two different lengths τ1 for code snippet and τ2 for snippet atten-
tion. If vector lengths of code snippets (snippet attentions) are longer than τ1
(τ2), we cut the vectors at the ending part of code snippets (snippet attentions).
If vector lengths of code snippets (snippet attentions) are shorter than τ1 (τ2),
we pad zeros at the ending part to match τ1 (τ2).
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Algorithm 1. Snippet Attention Generation
Input: “definition” statements D, “API” statements A, “usage” statements U and “con-

trol” statements C in a code snippet CS.
Output: Snippet attention SA in CS.
1: SA ← ∅
2: for each “definition” statement di ∈ D do
3: for each “API” statement ai ∈ A do
4: if di and ai match principle 1 then
5: SA ← SA∪ di ∪ ai

6: end if
7: end for
8: for each “usage” statement ui ∈ U do
9: if di and ui match principle 2 then

10: SA ← SA∪ di ∪ui

11: end if
12: end for
13: end for
14: for each “control” statement ci ∈ C do
15: SA ← SA∪ ci
16: end for
17: return SA

3.4 Deep Feature Representation

We propose a network that use BiGRU as a basic building block since it is able
to catch long distance information from both forward and backward direction.
The network, as highlighted in Fig. 4, is composed of global feature model, local
feature mode and fusion model. The global feature model uses code snippets as
input while the local feature model uses snippet attentions as input. Because
these two kinds of features accommodate different kinds of information, we put
a fusion model to get the comprehensive features. For global and local feature
models, the global and local features vectors have lengths of τ1 and τ2 and we
make the parameter returnsequence true to obtain a two-dimensional output for
every code snippet and snippet attention. The hidden_units in global/feature
models are 128 and the outputs of the BiGRU layers are concatenated to form
a (τ1 + τ2,256) dimensional vector for each (code snippet, snippet attention)
pair. The hidden_units in fusion model is set to 256. After max-pooling, we get
a hidden representation of 512 dimension for each input pair. To obtain deep
features, two steps are required:

– Deep Model Pre-training. In this step, we put a softmax in each model
and train these three models separately. Code snippet and snippet attention
pairs from all source projects are used to pre-train the parameters of the three
models.

– Deep Feature Extraction. After pre-training, we feed data from all projects
(source and target) into this pre-trained network to obtain the deep features
for source and target domains.
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Fig. 4. Deep Feature Model.

3.5 Domain Adaptation and Classification

In this stage, we aim to wipe off the distribution discrepancy of deep features
among different domains. If we combine multiple source domains, we extend the
CORAL algorithm [21] to align these source domains, which is described in step
1. In the next step, the MTLF [22] is applied to draw close data distribution
of the same class between source and target domains. In single source domain
scenario, we skip step 1 and directly use step 2 to get close source and target
domains.

– Step1: Multi-Source Alignment. Inspire by CORAL, we align the distri-
bution of different source domains by exploring their second-order statistics—
the covariance, which reflects the distribution of a dataset. CORAL whitens
features in one domain and re-colors it with the covariance of the distribution
in the other domain. The whitened domain is removed with its feature cor-
relations and clustered around the normalized zero mean. Since we will draw
close the distribution of the same class between source and target domains
in the next step, we whiten all the source domains, discarding the re-coloring
procedure. Our alignment method is illustrated in Algorithm 2.

– Step2: Mahalanobis Distance Metric Learning. This step aims to min-
imize the distribution gap between source and target domains, which means
minimizing intra-class and maximizing inter-class distance. At the core of
this algorithm is MTLF, which bridges the distributional divergences between
source and target domains by learning an appropriate distance metric. This
approach need a handful of labeled data for training in target domain. A
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Mahalanobis distance metric, which is defined as follows:

distij =
√

(xi − xj)M(xi − xj)T (1)

where the matrix M is positive semi-definite and can be decomposed as M =
ATA. Thus, learning the Mahalnobis distance metric can be substituted by
learning A. Moreover, if an instance is highly co-related to the other domain,
the re-weighting function ω(x) gives high weight to it. The within-class loss
to be minimize is defined as:

�in(A, ω) =
∑

yi=yj

ω(xi)ω(xj)‖A(xi − xj)‖2 (2)

where x is the deep feature and y denotes the label. Samely, the loss function
�out designed for inter-class data to be maximized is similarly defined. Finally,
the overall training object is formulated as:

min
A,ω

tr(A�A)+α
∑

i∈Ds

⋃
Dt

‖ω(xi) − ω0(xi)‖2+

β[�in(A, ω) − �out(A, ω)]
(3)

where ω0(xi) =
PT (xi)
PS(xi)

is the estimated density ratio. Ds and Dt are labeled
data from source and target domains. By repeatedly updating ω and A, we
obtain the final Mahalanobis matrix A.

– Step3: Classification. Since A(xi − xj) is same as Axi −Axj and Ax can
be regarded as projecting x into a new space by matrix A. In this new space,
samples with same labels are get closed. Consequently, we put a KNN as the
final classifier trained by all labeled data and pinpoint vulnerability types in
target domain.

Algorithm 2. Multi-Source Alignment
Input: Multiple Source Data D = {S1, ..., Sn}
Output: Adjusted Source Data D∗ = {S∗

1 , ..., S
∗
n}

1: for Si ∈ D do
2: Ci = cov(Si) + eye(size(Si, 2))

3: S∗
i = Si ∗ C

−1
2

i

4: end for

4 Experiment Implementation

We raise four Research Questions (RQs) based on the detection scenarios men-
tioned in Sect. 1 and our experiments are designed to answer them.
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– RQ1: Is our approach effective in cross-project multiclass vulnerability detec-
tion? How well is the detection performance compared with other state-of-
the-art approaches?

– RQ2: When there’s CWE inconsistency between source and target projects, is
our system capable of achieving decent performance in this cross vulnerability
type scenario?

– RQ3: When handling with multi-source scenario, is our system more effi-
cient compared to other techniques and is the multi-source alignment able to
improve detection capabilities?

– RQ4: Does our deep feature extracting strategy contribute to improving the
detection effects?

We adopt Tensorflow-1.15.0 to implement the deep model. We use python 3.8.0
to implement our Multi-Source Alignment and the MTLF is implemented with
Matlab R2021a. The genism package(version 4.0.1) is used to make code snip-
pets/snippet attentions vectorized with Word2vec. We run our experiments in a
server installed Ubuntu Linux 18.04, with NVIDIA GeForce RTX 2080Ti GPU
and Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 GHz.

4.1 Dataset and Experimental Setup

Dataset: We selected 5 real-world projects, which are Linux Kernel, Qemu,
Wireshark, Firefox and FFmpeg. We reuse the original functions of these projects
offered in [9] and collected more project functions to start the Code Snippet
Generation phase. Finally we obtained code snippets of 6 different CWEs for
each projects. Thus, including data with no vulnerability, there are 7 different
classes in each project. The numbers of all the basic 7 vulnerability types and
the corresponding labels in each projects are shown in Table 1.

Table 1. Basic Dataset and Label

CWE Type(Label) Linux Kernel Qemu Wireshark Firefox FFmpeg

Non-vulnerable(0) 460 467 489 422 335
CWE-119(1) 174 80 294 183 202
CWE-399(2) 155 42 217 68 43
CWE-20(3) 107 33 91 29 42
CWE-189(4) 82 28 103 27 64
CWE-835(5) 106 98 75 10 20
CWE-416(6) 103 86 30 16 20

For RQ2 (i.e., scenario 2), we collect 3 more CWE types of Linux Kernel,
which are CWE-200, CWE-787 and CWE-400. In this scenario, we substitute an
basic CWE type in source project (i.e., Linux Kernel) with a new type. We make
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the new type has the same label with the substituted basic type. The numbers
of CWE-200, CWE-787 and CWE-400 are 30, 40 and 93, respectively.

When experimenting to answer RQ3, there are two subcases in this multi-
source scenario (i.e., scenario 3 mentioned in Sect. 1). Subcase 1 simulates label
absence in source domains and combines different labels from different source
domains. In this subcase, we use all data of the selected classes in a source
project. For example, if we choose the label 4, 5 and 6 from Wireshark, we
pick all samples of these labels. In subcase 2, there’s no label absence in source
domains but the samples of each class in each source domain is much less than
target domain. To simulate this subcase, when combining Linux Kernel and
Wireshark to detect Qemu, we discard 70% of the data in each source domain;
when combining Linux Kernel and Qemu to detect Firefox, we also discard 70%
of the data in each source domain; In addition, we further combine Firefox and
FFmpeg to detect Wireshark, keeping all the data since samples of most classes
in each source domain are already much smaller than target domain.

Experimental Setup: After the hyperparameter tuning, in the deep model,
we set learning rate to 0.01. Epoch is 50 and batch size is 32 for all the three
models. τ1 is 500 and τ2 is 300. The input shapes of global feature model and
local feature model are (500,40) and (300,40). We make K equal 1 in KNN. Same
as CD-VULD [15], we hold out 30% as labeled data in target domain to train
Matrix A and the rest is for test.

4.2 Evaluation Metric and Baseline

Evaluation Metric: We use the multiclass classification evaluation met-
ric [23], which includes Macro-Averaged False Positive Rate (M_FPR), Macro-
Averaged False Negative Rate (M_FNR), Macro-Averaged F1-measure (M_F1 ),
Weighted-Averaged False Positive Rate (W_FPR), Weighted-Averaged False
Negative Rate(M_FNR) and Weighted-Averaged F1-measure(W_F1 ). The met-
ric reflect the average or weighted-average indicators of each class such as FPRs,
where the weight refers to the sample numbers in each class.

Baseline: We include state-of-the-art deep learning technique SySeVR [9] and
multiclass vulnerability detection system AMVD [11] in our baseline. Further
more, we also use CD-VULD, which is a state-of-the-art detection system using
transfer learning and domain adaptation. For CD-VULD, we hold out exactly
the identical labeled target data with our approach for training Matrix A. For
SySeVR and CD-VULD, we apply softmax layer in the models to get the clas-
sification results. To answer RQ4, we use only code snippet and apply the deep
feature extraction approach in CD-VULD, which is a RNN-based structure spe-
cially designed to extract deep feature for codes. Also, we apply the approach
in [8] to get the deep feature at the same output layer corresponding with our
system.
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4.3 Experimental Results

1) Experiments for answering RQ1

We use one project as the source project that is of high quality labels to
detect another target project. Results are shown in Table 2.

Table 2. Results for RQ1: Cross-Project Multiclass Vulnerability Detection

Source-Target Methods M_FPR M_FNR M_F1 W_FPR W_FNR W_F1

Linux Kernel-Firefox SySeVR 0.1517 0.8178 0.1915 0.4541 0.5970 0.3840
AMVD 0.1412 0.7660 0.2713 0.4282 0.5537 0.4406
CD-VULD 0.0487 0.2749 0.6716 0.0697 0.2505 0.7903
Ours 0.0299 0.1814 0.7513 0.0415 0.1619 0.8583

Linux Kernel-Qemu SySeVR 0.1506 0.8161 0.1803 0.3350 0.6927 0.3205
AMVD 0.1273 0.7266 0.2508 0.3084 0.6372 0.3727
CD-VULD 0.0509 0.2877 0.6775 0.1034 0.2496 0.7619
Ours 0.0266 0.1562 0.8401 0.0604 0.1248 0.8769

Wireshark-Firefox SySeVR 0.1619 0.7664 0.2871 0.2410 0.6855 0.3846
AMVD 0.1520 0.8087 0.2181 0.2461 0.6573 0.3952
CD-VULD 0.0482 0.2743 0.7296 0.1000 0.2241 0.8067
Ours 0.0213 0.1729 0.8434 0.0563 0.0923 0.9012

FFmpeg-Firefox SySeVR 0.1477 0.7519 0.2949 0.3466 0.6290 0.4089
AMVD 0.1459 0.7583 0.2881 0.4003 0.5951 0.4214
CD-VULD 0.0664 0.4248 0.5856 0.0845 0.3313 0.7296
Ours 0.0439 0.2560 0.7208 0.0732 0.2182 0.8159

Linux Kernel-FFmpeg SySeVR 0.1937 0.7759 0.2353 0.0791 0.7629 0.3291
AMVD 0.1278 0.6879 0.2799 0.1991 0.6235 0.4293
CD-VULD 0.0397 0.2735 0.6466 0.0595 0.2191 0.7961
Ours 0.0200 0.1071 0.8559 0.0464 0.0936 0.9177

The most intuitive conclusion is that pure deep learning without any transfer
learning technique such as SySeVR completely fails because of the large diver-
gency between projects. Although CD-VULD leverages domain adaptation and
uses the same labeled target data with our system, its performance is obviously
worse than ours. The average M_F1 and W_F1 of our system are 0.1401 and
0.0971 higher than CD-VULD. The average evaluation metric comparison with
other approaches is shown in Fig. 5.

Insight1: Our system is effective in cross-project multiclass vulnerability detec-
tion and it outperforms other state-of-the-art approaches.

2) Experiments for answering RQ2

We use the prepared extra CWEs of Linux Kernel. In this scenario, we sub-
stitute one of the basic CWEs with a new one in each test case. The overall
result is shown in Table 3.

The parentheses in the first column demonstrate the new vulnerability type
and its corresponding label. In this scenario, source project and target project
have one mismatched vulnerability type but with the same label. Our system
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Fig. 5. Average metric for cross-project multiclass vulnerability detection.

Table 3. Results for RQ2: Cross CWE Type Detection

Source-Target Methods M_FPR M_FNR M_F1 W_FPR W_FNR W_F1

Linux Kernel(CWE-200 as label 6)-FFmpeg SySeVR 0.1800 0.7505 0.2480 0.0765 0.7529 0.3335
AMVD 0.1266 0.7278 0.2836 0.2053 0.6215 0.4361
CD-VULD 0.0406 0.2993 0.6379 0.0589 0.2219 0.7966
Ours 0.0180 0.1208 0.8039 0.0121 0.1138 0.8933

Linux Kernel(CWE-787 as label 2)-Qemu SySeVR 0.1482 0.8018 0.1896 0.3207 0.6923 0.3232
AMVD 0.1385 0.7488 0.2343 0.3157 0.6410 0.3658
CD-VULD 0.0582 0.3443 0.6268 0.1096 0.2895 0.7204
Ours 0.0288 0.1498 0.8222 0.0559 0.1421 0.8631

Linux Kernel(CWE-400 as label 3)-Firefox SySeVR 0.1539 0.7894 0.2497 0.4197 0.6252 0.3896
AMVD 0.1501 0.7796 0.2577 0.4528 0.5875 0.4099
CD-VULD 0.0425 0.3085 0.6504 0.0625 0.2241 0.8066
Ours 0.0305 0.1892 0.7341 0.0349 0.1667 0.8710

also achieves decent performance in this scenario compared with other methods.
The average M_F1 and W_F1 are 0.1483 and 0.1013 higher than CD-VULD.

We also record the evaluation metric of the mismatched vulnerability type
by our approach, as shown in Table 4.

Table 4. Performance of our system on mismatched types

Source-Target(Evaluated Label) FPR FNR F1

Linux Kernel-FFmpeg(6) 0.0145 0.0714 0.7647
Linux Kernel-Qemu(2) 0.0126 0.1379 0.8197
Linux Kernel-Firefox(3) 0.0217 0.1000 0.7347

We can conclude from Tables 3 and 4 that in testcase 1, although the F1 of
mismatched type is lower than the M_F1, we acquire better FPR and FNR for
the mismatched type. In testcase 2 and testcase 3, the F1 of mismatched type
is more or less compared with the M_F1.

Insight2: Our system also performs well in cross vulnerability type detection
scenario and obtains the best results compared with other techniques.
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3) Experiments for answering RQ3

Equipped with the dataset mentioned above, we are able to conduct detecting
experiments for Multi-Source scenario. Experimental results for this scenario are
displayed in Table 5.

Table 5. Results for RQ3: Multi-Source Scenario

Source-Target Methods M_FPR M_FNR M_F1 W_FPR W_FNR W_F1

Linux Kernel +Wireshark (0-3)+(4-6)-Firefox SySeVR 0.1799 0.8534 0.1638 0.4523 0.7419 0.2712
AMVD 0.1674 0.8074 0.2214 0.4648 0.6798 0.3278
CD-VULD 0.0588 0.2935 0.6511 0.0759 0.2975 0.7560
Ours 0.0296 0.1728 0.7681 0.0481 0.1544 0.8631

FFmpeg+ Linux Kernel (0-3)+(4-6) -Qemu SySeVR 0.1546 0.8106 0.1812 0.3566 0.6997 0.3103
AMVD 0.1494 0.7631 0.2380 0.3819 0.6461 0.3538
CD-VULD 0.0571 0.3529 0.6675 0.0451 0.3042 0.7322
Ours 0.0299 0.1597 0.8181 0.0447 0.1555 0.8546

Wireshark+ Linux Kernel (0-3)+(4-6) -FFmpeg SySeVR 0.2612 0.7921 0.2214 0.0931 0.8028 0.2799
AMVD 0.1569 0.7716 0.2333 0.0729 0.7410 0.3526
CD-VULD 0.0479 0.3199 0.6076 0.0609 0.2629 0.7669
Ours 0.0197 0.1306 0.7816 0.0232 0.1135 0.8997

FFmpeg +Firefox (0-6)+(0-6) -Wireshark SySeVR 0.1511 0.7540 0.2384 0.1201 0.7486 0.3156
AMVD 0.1441 0.7759 0.2144 0.0983 0.7304 0.3408
CD-VULD 0.0718 0.3826 0.6178 0.0811 0.3777 0.6792
S1-Wire 0.0358 0.1908 0.7661 0.0342 0.1991 0.8449
S2-Wire 0.0400 0.2342 0.7428 0.0341 0.2231 0.8280
Ours− 0.0337 0.1984 0.7681 0.0335 0.1898 0.8488
Ours 0.0298 0.1562 0.7959 0.0325 0.1650 0.8697

Linux Kernel +Qemu (0-6)+(0-6) -Firefox SySeVR 0.1668 0.7902 0.2228 0.4082 0.7348 0.2888
AMVD 0.1649 0.7895 0.2206 0.4038 0.7273 0.2921
CD-VULD 0.1026 0.3908 0.5884 0.1162 0.3700 0.6429
S1-Firefox 0.0325 0.2201 0.7138 0.0547 0.1982 0.8211
S2-Firefox 0.0433 0.2426 0.7003 0.0566 0.2019 0.8179
Ours− 0.0338 0.2217 0.7159 0.0540 0.1996 0.8206
Ours 0.0301 0.1983 0.7402 0.0472 0.1736 0.8455

Linux Kernel +Wireshark (0-6)+(0-6) -Qemu SySeVR 0.1797 0.8013 0.2245 0.3268 0.7518 0.2922
AMVD 0.1767 0.7883 0.2364 0.3337 0.7426 0.2986
CD-VULD 0.0890 0.4428 0.5496 0.1791 0.4051 0.6223
S1-Qemu 0.0337 0.2245 0.7702 0.0599 0.1709 0.8348
S2-Qemu 0.0349 0.2088 0.7682 0.0603 0.1794 0.8266
Ours− 0.0343 0.2236 0.7759 0.0589 0.1744 0.8338
Ours 0.0305 0.1776 0.8097 0.0576 0.1521 0.8531

In this table, parentheses in the first column denote the corresponding label
picked from each source domain. For example, “Linux Kernel + Wireshark (0-3)
+ (4-6)” means we pick label 0, 1, 2, 3 from Linux Kernel and label 4, 5, 6 from
Wireshark. The upper part of this table demonstrated 3 testcases for subcase 1,
and the lower part denotes subcase 2. “S1” in the “Methods” column represents
using only the first source project with our system while “S2” represents using
the second source project by our system, and “Wire” in the “Methods” column
represents “Wireshark”. “Ours−” refers to removing the multi-source alignment
step from our system and is given to indicate the importance of the alignment
step. In subcase 2, for detecting with single source, Ours− and our whole system,
we hold out the same part of target labeled samples. Obviously, the detecting
performance improves when aligning multiple source domains than only single
source. Also in subcase 2, there’s a huge performance gap between CD-VULD
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and our system. Moreover, the performance of our system is apparently better
than Ours− due to the reason that the distribution divergency of the same class
in each source domain interferes the intra-class clustering when drawing close
with target domain. The average metric of the 6 testcases compared with other
systems is shown in Fig. 6.

Fig. 6. Average evaluation metric of our system and other approaches in multi-source
scenario.

Insight3: Our detecting system can hold the multi-source scenario and greatly
improves the performance compared with other ones. Besides, the Multi-Source
Alignment algorithm significantly raise the detection performance.

4) Experiments for answering RQ4

We conducted two contrast experiments using deep feature extracting
approaches in [8] and CD-VULD as mentioned above. Experimental results are
shown in Table 6.

In this table, “CD-VULD+” refers to using the deep feature extracting
method of CD-VULD, which only takes code snippet as input. “μvuld+” rep-
resents adopting system of μvuldeepecker [8] to get deep features, which takes
code snippet and the defined features in their paper as input. The rest part is
the same with our system. We can infer that CD-VULD+ leads to the worst
results and μvuld+ is also worse than ours since it fails to capture vulnerability
patterns related to pointers and arrays. Besides, API calls with no variables as
parameters are not related to vulnerabilities. The average M_F1 and W_F1 of
our system are 0.0639 and 0.0278 higher than μvuld+ while the M_FNR and
W_FNR of ours are 0.0454 and 0.0337 less than μvuld+. Compared with CD-
VULD+, our system achieves 0.072 less M_FNR and 0.0656 less W_FNR. The
average metric comparison with the other two approaches is shown in Fig. 7.

Insight4: Our deep feature extracting method helps to improve the detection
effects and performs better than other deep feature extracting approaches.
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Table 6. Results for RQ4: Evaluating our deep feature extraction strategy

Source-Target Methods M_FPR M_FNR M_F1 W_FPR W_FNR W_F1

Linux Kernel-Firefox CD-VULD+ 0.0409 0.2528 0.6706 0.0562 0.2178 0.8169
µvuld+ 0.0375 0.2272 0.6908 0.0557 0.1988 0.8291
Ours 0.0299 0.1814 0.7513 0.0415 0.1619 0.8583

Linux Kernel-Qemu CD-VULD+ 0.0408 0.2547 0.7239 0.0813 0.1966 0.8231
µvuld+ 0.0364 0.2338 0.7473 0.0802 0.1709 0.8413
Ours 0.0266 0.1562 0.8401 0.0604 0.1248 0.8769

Wireshark-Firefox CD-VULD+ 0.0345 0.2243 0.7045 0.0668 0.1723 0.8421
µvuld+ 0.0262 0.1944 0.7695 0.0626 0.1212 0.8812
Ours 0.0213 0.1729 0.8434 0.0563 0.0923 0.9012

FFmpeg-Firefox CD-VULD+ 0.0558 0.3081 0.6470 0.0814 0.2765 0.7743
µvuld+ 0.0474 0.2979 0.6591 0.0802 0.2348 0.8010
Ours 0.0439 0.2560 0.7208 0.0732 0.2182 0.8159

Linux Kernel-FFmpeg CD-VULD+ 0.0304 0.1935 0.7898 0.0537 0.1556 0.8581
µvuld+ 0.0260 0.1470 0.8251 0.0452 0.1337 0.8786
Ours 0.0200 0.1071 0.8559 0.0464 0.0936 0.9177

Fig. 7. Average evaluation metric of our and other deep feature extracting methods.

5 Conclusion and Future Work

We proposed a system to identify software vulnerability types across different
projects at the granularity of code snippet. It’s also the first system to figure out
vulnerability types in cross-project settings. This work helps with the task when
detecting a project with no high quality training data. Besides, we leverage snip-
pet attention and adopt feature fusion model for high-level feature extracting.
Moreover, different domain adaptation techniques are extended to eliminate dis-
tribution divergency between different projects. In the future, we will be engaged
in vulnerability detection across different programming languages. Moreover, we
will research and try more deep learning-based domain adaptation techniques to
see if they work in our detecting scenarios.
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