q

Check for
updates

Correlated Online k-Nearest Neighbors
Regressor Chain for Online Multi-output
Regression

Zipeng Wu', Chu Kiong Loo!, and Kitsuchart Pasupa?®)
! Faculty of Computer Science and Information Technology, University of Malaya,
50603 Kuala Lumpur, Malaysia
520139800@siswa.um.edu.my, ckloo.um@um.edu.my
2 School of Information Technology, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok 10520, Thailand
kitsuchart@it.kmitl.ac.th

Abstract. Online multi-output regression is a crucial task in machine
learning with applications in various domains such as environmental
monitoring, energy efficiency prediction, and water quality prediction.
This paper introduces CONNRC, a novel algorithm designed to address
online multi-output regression challenges and provide accurate real-time
predictions. CONNRC builds upon the k-nearest neighbor algorithm in
an online manner and incorporates a relevant chain structure to effec-
tively capture and utilize correlations among structured multi-outputs.
The main contribution of this work lies in the potential of CONNRC
to enhance the accuracy and efficiency of real-time predictions across
diverse application domains. Through a comprehensive experimental
evaluation on six real-world datasets, CONNRC is compared against
five existing online regression algorithms. The consistent results high-
light that CONNRC consistently outperforms the other algorithms in
terms of average Mean Absolute Error, demonstrating its superior accu-
racy in multi-output regression tasks. However, the time performance of
CONNRC requires further improvement, indicating an area for future
research and optimization.

Keywords: Multi output regression - Online machine learning -
k-Nearest Neighbors

1 Introduction

Online machine learning, characterized by its real-time learning and adaptive
capabilities [14], is increasingly emerging as a critical component in a wide range
of applications, including river flow prediction and water quality assessment.
The development of robust and efficient online machine learning algorithms is
important, considering their aptitude for handling continuous data streams and
adapting to evolving data patterns.
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Despite the limited attention received by online multi-output regression, it
is noteworthy that in an increasing number of applications, the need to predict
multiple outputs rather than a single output is becoming more prevalent. Multi-
output regression poses a greater challenge as it involves handling potential
structural relationships between the outputs. Nevertheless, online multi-output
regression holds significant potential in a variety of applications, e.g., Train Car-
riage Load prediction [22], water quality prediction [6].

Typically, multi-output regression can be categorized into global and local
methods. Global methods output all output variables at once, while local meth-
ods often consist of multiple sub-models. However, existing multi-output regres-
sion algorithms are designed to learn a mapping from the input space to the
output space on the entire training dataset, making them suitable for batch pro-
cessing environments but challenging to apply in environments requiring online
model updates.

Several online learning algorithms have been proposed [1,3,5,8,11,15,23]
with Incremental Structured Output Prediction Tree (iISOUP-Tree) [15] and
Passive-Aggressive (PA) [3] algorithms being notable examples. iISOUP-Tree is
a tree-based method that simultaneously predicts all targets in multi-target
regression tasks on data streams. On the other hand, PA is particularly suit-
able for single-output tasks and quickly adapts to data changes and updates
model parameters analytically. It balances proximity to the current classifier and
achieves a unit margin on the latest example. However, both algorithms face
challenges in effectively capturing and exploiting correlations in multi-output
regression tasks.

In this paper, we aim to address this problem by introducing a novel online
multi-output regression algorithm called “Correlated Online k-Nearest Neigh-
bors Regressor Chain” (CONNRC). Our proposed algorithm utilizes a maximum
correlation chain structure to capture the associations among output variables
while also leveraging the strengths of the k-nearest neighbors (kNN) algorithm.

The main contributions of this paper are as follows:

— We propose a novel online multi-output regression algorithm, CONNRC,
which extends the kNN algorithm to handle online multi-output regression
tasks. This algorithm leverages a maximum correlation chain structure to
capture the association between output variables, thus addressing the chal-
lenge of handling potential structural relationships between the outputs in
multi-output regression tasks.

— We comprehensively evaluate the proposed CONNRC algorithm on six real-
world datasets. The evaluation includes a comparison with the existing online
multi-output regression algorithm, iISOUP-Tree [15], and several classic online
learning algorithms, including Hoeffding Adaptive Tree (HAT) [1], Adaptive
Model Rules (AMRules) [5], Stochastic Gradient Trees (SGT) [8], and PA [3].
Our results demonstrate that CONNRC consistently outperforms other state-
of-the-art algorithms in terms of average Mean Absolute Error (aMAE), sig-
nifying its superior accuracy in online multi-output regression tasks.
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2 Related Work

The related work for this study can be broadly categorized into two main areas:
online multi-output regression and classic online learning methods.

2.1 Online Multi-output Regression

Online multi-output regression is a crucial technique for modeling, predict-
ing, and compressing multi-dimensional correlated data streams. The MORES
method [11] dynamically learns the structure of regression coefficients and resid-
ual errors to improve prediction accuracy. It introduces three modified covariance
matrices to extract necessary information from all seen data for training and sets
different weights on samples to track the evolving characteristics of data streams.
The iISOUP-Tree method [15] learns trees that predict all targets simultaneously.
The iISOUP-optionTree extends the iISOUP-Tree through the use of option nodes
and can be used as a base learner in ensemble approaches like online bagging
and online random forest. The MORStreaming method [23] is another notable
online multi-output regression method. It uses an instance-based model to make
predictions and consists of two algorithms: an online algorithm based on topol-
ogy networks to learn the instances and an online algorithm based on adaptive
rules to learn the correlation between outputs automatically.

2.2 Classic Online Regression

Classic online learning methods have been extensively studied and applied in var-
ious domains. These methods typically focus on single-output regression tasks.
The PA [3] is a well-known online learning algorithm for regression tasks. It
is a margin-based online learning algorithm and has an analytical solution to
update model parameters as new sample(s) arrive. The HAT [1] is a tree-based
method for online regression. It uses an ADWIN concept-drift detector at each
decision node to monitor possible changes in the data distribution. If a drift is
detected in a node, an alternate tree begins to be induced in the background.
When enough information is gathered, the node where the change was detected
is swapped by its alternate tree. Lastly, SGT [8,12] is a tree-based method for
regression. It directly minimizes a loss function to guide tree growth and update
their predictions, differentiating it from other incremental tree learners that do
not directly optimize the loss but a data impurity-related heuristic. AMRules [5]
is an online regression algorithm that constructs rules with attribute conditions
as antecedents and linear combinations of attributes as consequents. It employs
a Page-Hinkley test to identify and adapt to changes in the data stream, and
includes outlier detection to prevent model skewing due to anomalous examples.

3 Proposed Method

The Correlated Online k-Nearest Neighbors Regressor Chain (CONNRC) algo-
rithm, inspired by the Regressor Chain (RC) [21] and its variants [13,17,19,20],
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is designed for online multi-output regression tasks. It uses a chain structure
to leverage correlations among multiple output variables, improving prediction
performance. While the kNN algorithm forms its basis, CONNRC enhances it
by incorporating correlation information, addressing a limitation of traditional
online kNN in online multi-output regression tasks.

Throughout this paper, we use the following notation: a vector of output
variables y = (y1,-.-,Y¢,.-.,yn), where t = 1,... N, with y; representing the
t-th sample and N being the total number of samples. Y denotes a matrix
of output variables, Y = (y1,...,Ym), where y; is the i-th vector of output
variables and m is the total number of output variables. X represents the input
feature space, which is a matrix with N samples and d feature variables. The
correlation coefficient of y; and y; can be denoted as ¢; j, ¢; ; = corr(y;, y;). This
is represented as COE,,, x,,, = corr(Y), where COE is the correlation matrix of
size m X m, with m being the number of output variables. By summing each row
of y;, we obtain the cumulative correlation value ¢;, which indicates the degree
of association between y; and all other variables in Y. The correlation among
output variables is calculated using the Spearman correlation coefficient, which
has the advantage that there is no requirement for the distribution of the data,
and the effect of the size of the absolute values can be ignored. I represents
the index vector corresponding to ¢; that is the order of meta-model in the
chain structure. It is the descending rank of each output variable cumulative
correlation value ¢;, I = (I1,...,I,). This information serves as a guide for the
order in which the kNN models are updated, based on the assumption that the
output variables with higher cumulative correlation are more informative and
should be predicted first.

A kNN model is initialized for each output variable, and a window of recent
data points is maintained. The maximum window size, w, is a parameter that
can be adjusted based on the specific requirements of the task. The window
always contains the most relevant data points for prediction, which is ensured
by a mechanism that adds the current point to the window if its distance to the
nearest neighbor is greater than a certain threshold, min_distance_keep, and
removes the oldest point in the window if the window is full.

For each training example in the stream, (x,y), the KNN model for each
output variable is updated. For the first output variable, the model kNN, is
updated with the input features and the corresponding output value (x, y1). For
subsequent output variables, the model kNN ; is updated with the input features
and the predicted values of the previous output variables (x,y;).

After updating the model, the kyeignbors Nearest neighbors for the current
point (&, y;) are computed from the window. If the distance to the nearest neigh-
bor is greater than a certain threshold, the current point is added to the window.
If the window is full, the oldest point in the window is removed. This process
ensures that the window always contains the most relevant data points for pre-
diction. The pseudocode of CONNRC is illustrated in Algorithm 1.
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Algorithm 1: Correlated Online k-Nearest Neighbors Regressor Chain

Data: Historical training dataset D = (Xpistory, Yhistory), and stream data
X,y)

Result: Online Multi-output regression model h;,j = {1,...,m}
COE,,xm = corr(Y) ;
¢ = COE(;,1),l ={1,...,m};

[¢/, 1] = rank(c;, ‘decending’), where I = (I1,..., L) ;
for y; in y1,m do
Let kNN, be a kNN model for the output y;;
Initialize the window W for kNN ; with a maximum window size w;
end
for all training examples (x,y) in stream do
if i =1 then

| Update kNN with (, y1);
else
r =T; U (yl . .yi_l);
Update kNN; with (x,y:);
end
for each y; iny = (yry,---,yr1,,) do
Compute the kneighbors nearest neighbors for (x,y;) from the window
do
Calculating the Euclidean distance between (x,y;) and all points in
the window;
Selecting the kneighbors points with the smallest distances;
end
if the distance to the nearest neighbor > min_distance_keep then
Add (z,y:) to the window of kNN;;
if size(W) > w then

| Remove W0];
end

end
end

end

In this algorithm, the historical dataset is denoted as D = (Xpistory: Yhistory)-
For the current experiment, we utilize the first 25% of the entire dataset as our
training data.

The CONNRC algorithm has several advantages. First, it considers the cor-
relation among multiple output variables by correlated chain structure, which
can improve the prediction performance in multi-output regression tasks. Sec-
ond, it is based on the simple yet effective kNN algorithm, which makes it easy
to implement and understand. It is worth noting that CONNRC consists of two
hyperparameters: the maximum window size (w) and the threshold for adding
points to the window (min_distance_keep). These hyperparameters need to be
tuned. Furthermore, the computation of the k;cighsors nearest neighbors can be
time-consuming, especially when the window size is large.
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4 Experiment Framework

In this section, we present the experimental framework used to evaluate the
performance of our proposed method, CONNRC, in comparison with several
state-of-the-art online regression algorithms. All experiments were implemented
in Python 3.9 and executed on a PC with an Intel Core i7 12700 processor
(4.90 GHz) and 16 GB of RAM.

4.1 Datasets

Our proposed method, CONNRC, underwent evaluation on six real-world
datasets, each exhibiting unique characteristics and posing specific challenges.
These datasets were chosen based on their previous utilization in online multi-
output regression research [4,15] and their role as benchmark datasets in the
field of multi-output regression [21]. The datasets used in our evaluation are as
follows:

— Water Quality Prediction [6]: It comprises 16 input attributes that are asso-
ciated with physical and chemical water quality parameters. Additionally, it
includes 14 target attributes that represent the relative presence of plant and
animal species in Slovenian rivers.

— Supply Chain Management Prediction [9,16]: It is derived from the Trading
Agent Competition in Supply Chain Management (TAC SCM) tournament
from 2010. This consists of two sub-datasets. The dataset consists of 16 regres-
sion targets, where each target corresponds to either the mean price for the
next day (SCM1D) [9] (as the first sub-dataset) or the mean price for a 20-
day period in the future (SCM20D) [16] (as the second sub-dataset) for each
product within the simulation.

— River flow Prediction [21]: This dataset consists of hourly flow observations
collected from 8 sites within the Mississippi River network in the United
States. The data was obtained from the US National Weather Service. FEach
row of the dataset contains the most recent observation for each of the eight
sites and time-lagged observations from 6, 12, 18, 24, 36, 48, and 60 h in the
past.

— Energy Building Prediction [18]: The focus of this dataset is the prediction
of heating load and cooling load requirements for buildings. The prediction is
based on eight building parameters, including glazing area, roof area, overall
height, and other relevant factors.

— Sea Water Quality Prediction [10]: The Andromeda dataset focuses on pre-
dicting future values for six water quality variables, namely temperature, pH,
conductivity, salinity, oxygen, and turbidity. The dataset pertains specifically
to the Thermaikos Gulf of Thessaloniki in Greece. The predictions are made
using a window of five days and a lead time of five days, indicating that the
model aims to forecast the values of these variables five days ahead based on
the observations from the previous five days.

These datasets represent a variety of application domains and provide a com-
prehensive basis for evaluating the performance of the proposed method.
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4.2 Experiment Settings

To evaluate the performance of each multi-output method, we employed the pre-
quential strategy introduced in [7]. In this strategy, a sample is used to update
the model after it has been evaluated by this model. This approach allows us to
simulate a real-time learning environment, which is a key characteristic of online
machine learning. We also employed progressive validation, as suggested in [2].
This method is considered the canonical way to evaluate a model’s performance,
as it allows us to accurately assess how a model would have performed in a
production scenario. In progressive validation, the dataset is transformed into a
sequence of queries and responses. For each step, the model is tasked with pre-
dicting an observation or undergoing an update, and the samples are processed
one after the other.

In our comparison, we assessed the performance of our proposed algorithm,
CONNRC, in comparison to the state-of-the-art iISOUP-Tree, as well as several
classic online learning algorithms: PA, AMRules, HAT, and SGT. It’s impor-
tant to note that our task involves multi-output regression, while these classical
online learning algorithms were originally designed for single-output tasks. We
trained separate models for each output variable to adapt them to the multi-
output setting, denoting them with the prefix “MT-". The reason for choos-
ing single-output classical online learning algorithms as baselines is that online
multi-output regression currently receives little attention, and few open-source
algorithms are available for this purpose. These baseline algorithms represent
a diverse range of approaches to online regression, providing a comprehensive
benchmark for evaluating the performance of our proposed method, CONNRC.

4.3 Performance Evaluation

To evaluate the overall performance of the model, we conducted performance
evaluations at regular intervals, incrementally increasing the data sample by
25%. This approach allowed us to monitor the model’s performance as the
dataset size grew and gain a comprehensive understanding of its effectiveness
across various sample sizes. In our evaluation, we considered several metrics to
assess the performance of the model, including average Mean Absolute Error
(aMAE), memory usage, and time. It is important to note that smaller values
for all three metrics indicate better performance. The aMAE can be calculated
by the following equation:

t=1 i=1

aMAE_—Z o>t -l (1)

m N

5 Experiment Results and Discussion

Figure 1 illustrates the accuracy performance of the algorithms based on the
average Mean Absolute Error (aMAE). Our proposed method, CONNRC, con-
sistently outperforms the other algorithms by achieving the lowest aMAE values
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across all sample sizes and datasets. The performance of CONNRC remains sta-
ble and promising at every regular checkpoint, whereas the performance of the
other algorithms fluctuates. This underscores the effectiveness of CONNRC in
capturing and leveraging the correlations among multiple outputs, resulting in
enhanced prediction accuracy.
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Fig. 1. Comparison of aMAE by different algorithms at regular intervals of 25% data
sample incremental

While CONNRC demonstrates superior accuracy compared to other meth-
ods, it also exhibits the highest time consumption across all datasets, as depicted
in Fig. 2. This can be attributed to the time complexity associated with searching
for the nearest neighbors in the kNN algorithm, indicating a potential area for
future improvement. Nevertheless, it is important to note that CONNRC still
maintains reasonable efficiency in certain cases, suggesting a balance between
accuracy and computational speed.

It is worth noting that although MT-PARegressor demonstrates the poorest
accuracy in 4 out of 6 datasets, it stands out as the fastest algorithm. This
highlights the potential trade-off between accuracy and computational efficiency
when selecting an algorithm for specific applications.

Figure 3 illustrates the memory usage comparison among the algorithms. It is
evident that MT-PARegressor exhibits the highest efficiency in terms of memory
consumption across all datasets. In contrast, in most cases, CONNRC and MT-
SGTRegressor tend to consume more memory. However, it is worth noting that
CONNRC demonstrates reasonable efficiency, particularly in memory usage, on
certain datasets, such as the River Flow dataset.

One key difference between the online kNN algorithm and other online learn-
ing algorithms lies in their approach to handling data. While both algorithms
learn from each sample once, the kNN algorithm retains the data, allowing its
performance to be comparable to batch algorithms that have the ability to
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review each sample multiple times. On the other hand, typical online learn-
ing algorithms, which do not store data, often do not achieve the same level of
robustness and accuracy as batch algorithms. In the case of CONNRC, our pro-
posed method, we leverage the advantage of data retention inherited from kNN.
Additionally, CONNRC incorporates a relevance chain structure to capture and
exploit the correlations among structured multi-outputs. Moreover, the neigh-
boring meta-models in CONNRC utilize the output of the preceding meta-model
in the chain as latent information. Similar to knowledge distillation, this process
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enhances CONNRC'’s robustness against concept drift, allowing it to adapt to
changing data patterns.

6 Conclusion and Future Work

This paper introduced and evaluated CONNRC, an online multi-output regres-
sion algorithm, using six different datasets. Our experimental results demon-
strated that CONNRC consistently outperformed other algorithms in terms of
accuracy, as measured by the aMAE metric. This indicates that CONNRC is
capable of providing more accurate predictions in online multi-output regres-
sion tasks compared to the evaluated algorithms. However, it is important to
note that the time performance of CONNRC was relatively slower compared to
the other algorithms. This could be a potential limitation in scenarios where
real-time predictions are crucial and time efficiency is a primary concern. While
CONNRC demonstrated reasonable efficiency in terms of memory usage, it was
not the most memory-consuming among the tested algorithms.

Despite these limitations, the superior accuracy performance of CONNRC
underscores its potential for online multi-output regression tasks. The algo-
rithm’s ability to adapt to changes in the data stream and make accurate predic-
tions is a significant advantage in many real-world applications, such as environ-
mental monitoring, energy efficiency prediction, and water quality prediction.

For future work, we have plans to improve the efficiency of CONNRC, par-
ticularly its time performance. One potential approach is to enhance the nearest
neighbor search in the kNN component of the algorithm, as it currently consti-
tutes the most time-consuming part. Through optimization of this process, we
aim to significantly reduce the prediction time, making CONNRC more suitable
for real-time applications. Given the potential application scenarios involving
massive streaming data, we will seek large datasets to validate the performance
of our algorithms in such environments.
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