®

Check for
updates

Mutation Methods for Structured Input
to Enhance Path Coverage of Fuzzers

Yonggon Park®, Youngjoo Ko®, and Jong Kim ™)
Department of Computer Science and Engineering, Pohang University of Science
and Technology (POSTECH), Pohang, South Korea
{nanimdo,y0108009, jkim}@postech.ac.kr

Abstract. Existing mutation methods used in coverage-based grey-box
fuzzing (CGF), such as those employed by AFL and AFL++, can lead
to biased testing for structured inputs. While fuzzing, certain input sec-
tions of structured input may receive fewer mutations, resulting in less
testing of the code that handles those sections, which leads to lower path
coverage in those code parts.

In this paper, we propose two mutation methods for the structured
input to address the unbalanced problem and improve path coverage. The
first method, Uniform Mutation, involves conducting additional muta-
tions in input sections that trigger less testing, thereby achieving a more
balanced path coverage across the target program. However, this method
requires prior knowledge of the input format, which reduces its usability
when the format of the target program changes. To overcome the limita-
tion, we propose the second method, Format-agnostic Mutation, which
automatically partitions the input into sections based on coverage feed-
back. This method redistributes the number of mutations and resizes the
sections to improve path coverage without knowing the input format.

We evaluate the effectiveness of these methods using two real-world
programs (Xpdf and libxml2) and compare them with AFL. The experi-
mental results demonstrate that Uniform and Format-agnostic mutations
(weight and resizing) outperform AFL regarding path coverage explo-
ration.

Keywords: Fuzzing - Mutation - Structured Input - Path Coverage -
AFL

1 Introduction

Fuzzing can be classified as black-box, white-box, or grey-box, depending on
the level of awareness about the program structure. Grey-box fuzzing meth-
ods [5,6,23] employ lightweight instrumentation techniques to gather informa-
tion about the program. This instrumentation introduces minimal overhead com-
pared to the analysis techniques used in white-box fuzzing [7,9,10]. By leverag-
ing the obtained information, grey-box fuzzing methods can generate inputs

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 257-268, 2024.
https://doi.org/10.1007/978-981-99-8024-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_20&domain=pdf
http://orcid.org/0009-0008-6085-9200
http://orcid.org/0000-0002-8774-7697
http://orcid.org/0000-0002-0484-0790
https://doi.org/10.1007/978-981-99-8024-6_20

258 Y. Park et al.

l Dete:ministic Havoc stage Splicing
stage stage

bitflip, byteflip, arithmetic

» bitflip, byteflip,
arithmetic Inc/dec etc ’ Meltoe) (e s, —> Cross over
overwrite byte

Fig. 1. The mutation method in AFL [23]

that are more effective at triggering bugs than inputs generated by black-box
fuzzing [4,8,19].

Coverage-based grey-box fuzzing (CGF) is a widely used technique in the
field of grey-box testing for detecting security vulnerabilities in real-world pro-
grams. CGF leverages metrics such as path or code coverage, acquired through
lightweight instrumentation, to generate test inputs. Its primary objective is to
enhance the chances of triggering vulnerabilities that may be present in less
frequently executed or unexplored paths within the target program. Typically,
CGF involves several key components, including seed selection, power schedule,
mutation, execution, and seed evaluation with feedback. Initially, CGF selects
a seed from a set of initial inputs and generates multiple test cases by applying
mutations to the selected seed. The power schedule then determines the number
of test cases created from each seed. Subsequently, CGF executes the program
with the generated test cases and collects coverage information. If a test case
executes previously unexplored code locations, CGF identifies it as a new seed to
explore in the subsequent fuzzing iteration cycle. This iterative process enables
CGPF to systematically explore different paths of the program and increase the
likelihood of uncovering vulnerabilities.

Representative fuzzers, such as AFL, AFL++, and VUzzer, employ the muta-
tion method illustrated in Fig. 1, which involves modifying inputs from the begin-
ning to the end while treating all input parts equally. This mutation process
typically employs predetermined bitflips and additions as the modifying oper-
ations. The mutation methods employed by these fuzzers generally operate in
three stages: deterministic, havoc, and splicing. In the deterministic stage, all
input positions are mutated using the predetermined operations. In the havoc
stage, positions for mutation are randomly selected from the input. Occasionally,
an input is mutated through a crossover operation in the splicing stage. These
stages collectively enable the fuzzers to systematically modify inputs and explore
different paths, increasing the likelihood of triggering bugs or vulnerabilities in
the target program.

However, we have observed that existing mutation methods exhibit a bias
towards specific input sections, often neglecting others. This approach may not
be optimal for programs that rely on structured inputs, where different input
sections dictate the execution of different code segments. For example, consider
the case of PDF file inputs, which consist of distinct sections such as the header,
data, cross-reference table, and trailer (depicted in Fig.2). Each section is pro-

Mutation Methods 259

cessed by different code segments within the program, making their comprehen-
sive coverage essential. To evaluate the impact of existing mutation methods
on path coverage exploration for PDF inputs, we conducted a 24-hour fuzzing
experiment using 30 randomly selected PDF files. The distribution of mutations
applied to each section during the fuzzing process is depicted in Fig.3. The
results revealed a significant disparity in the distribution of mutations. Approx-
imately 90% of the mutations were applied to the data section, while the header
and cross-reference table sections received less than 3% of the mutations. This
observation indicates that the mutation process primarily focused on the larger
data section, disregarding smaller sections like the header. Consequently, it fails
to consider crucial information about the most effective locations in the input for
effective fuzzing. Consequently, certain input parts, such as the header section or
less frequently accessed sections, may have fewer mutations, potentially leading
to lower path coverage in those areas. This biased mutation approach limits the
exploration of specific regions within the input and may hinder the detection of
vulnerabilities or bugs associated with those neglected sections.

PDF header

Data

Cross reference table

trailer

Data

Cross reference table

Trailer

= header =body = xreftable = trailer

Fig. 2. The structure of PDF file Fig. 3. Mutation rate of each section of
PDF by AFL

We propose two primary mutation methods to address the problem and
achieve high path coverage. The first method, Uniform mutation, tackles the
issue by introducing additional mutations in input sections that have triggered
fewer tests for a particular part of the target program. Its goal is to achieve a
more balanced path coverage across the entire program. However, a prerequisite
for utilizing this method is prior knowledge of the input format, which may limit
its applicability. Furthermore, implementing this method requires extra effort
whenever there are changes in the input format or the corresponding part of the
target program. To overcome this limitation, we introduce the second method,
Format-agnostic mutation. This method automatically divides the input into
sections based on feedback obtained from coverage analysis. By partitioning the
input, it redistributes the number of mutations and adjusts the sizes of sections
to enhance path coverage. The Format-agnostic mutation method eliminates
the need for explicit knowledge of the input format and ensures adaptability to
changes in the input structure and target program.

260 Y. Park et al.

The effectiveness of these methods is evaluated by measuring their perfor-
mance on real-world programs (Xpdf and libxml2) and comparing them with
AFL, a popular fuzzer. The evaluation clearly demonstrates that the proposed
methods outperform AFL regarding path coverage exploration. This research
offers the following key contributions:

— We introduce novel Uniform and Format-agnostic mutation methods.

— We demonstrate the efficiency of the Uniform mutation method in increasing
path coverage.

— We effectively partition the input into sections, leading to higher path cover-
age compared to conventional fuzzers like AFL, while still maintaining usabil-

ity.

2 Background

2.1 Coverage-Based Grey-Box Fuzzing

Coverage-based grey-box fuzzing has been widely used and detected many vul-
nerabilities in real-world programs. It generates testing inputs by leveraging
lightweight instrumentation that extracts the coverage information, such as path
and code coverage. The coverage information helps to explore the program’s deep
paths and detect bugs and vulnerabilities [1,5,6,11-13,15,21,23].

Grey-box fuzzing follows a typical workflow that includes seed selection,
power schedule for energy assignment, seed mutation, execution feedback, and
seed evaluation. Allow us to provide a brief description of the grey-box fuzzing
workflow: The process begins with selecting a seed from the seed pool. The initial
seed pool consists of regular inputs known as seeds. This seed selection process
determines which seed from the pool is used to generate test cases, which serve
as input for testing the target program. The power schedule plays a crucial role
in determining the number of test cases, referred to as energy (F), that will be
generated from the selected seed. The fuzzer applies mutation techniques to the
seed based on the energy, creating new test cases. The target program executes
each test case, which provides feedback during execution. This feedback typ-
ically includes coverage information, highlighting which code paths, branches,
or functions were traversed. Leveraging this feedback, the fuzzer evaluates the
input and identifies cases that increase coverage or exhibit abnormal behav-
iors. These interesting inputs are considered valuable and are added to the seed
pool for further exploration in subsequent iterations. The fuzzing process contin-
ues iteratively, generating new test cases, executing them, and evaluating their
impact based on the coverage feedback collected. Once all seeds in the seed pool
are selected, the fuzzer selects seeds again from the beginning so they can be
selected multiple times.

2.2 Mutation Method

We explain the mutation method used in AFL (shown in Fig. 1) because many
coverage-based fuzzers have been implemented based on AFL and have adopted

Mutation Methods 261

Header: 40
Data: 2000
Ref: 70

Deterministic Havoc stage
stage
Conduct additional

- B bitflip, byteflip, arithmetic
bitflip, byteflip,
arithmetic Inc/dec etc Iretlss, rapdom iy
overwrite byte
\

mutations

|

Count the locations
where mutations are applied by section

Fig. 4. The workflow of Uniform mutation. The yellow stage, section havoc, is the
mutation stage that we newly added. (Color figure online)

a similar mutation method. This method consists of several stages, including
deterministic, havoc, and occasionally splicing. Let us delve into each stage:

— Deterministic stage. AFL applies predetermined mutation operations to
the input data in a systematic manner. These operations are typically per-
formed on every bit or byte of the input. The deterministic stage encompasses
mutation operators such as bit flips, byte flips, arithmetic increments/decre-
ments, and other simple transformations.

— Havoc stage. In the havoc stage, randomness is introduced into the mutation
process. AFL randomly selects positions by offsets within the input data and
modifies the bytes or bits at those positions. These modifications can involve
altering values, flipping bits, or applying arithmetic operations.

— Splicing stage. The splicing stage combines portions of two or more different
inputs to generate new test cases. It is important to note that this stage is
occasionally conducted.

While most mutations in AFL primarily occur in the deterministic and havoc
stages, it is noteworthy that these mutation stages lack information regarding
which positions in the input are particularly effective for fuzzing.

3 The Proposed Mutation Methods

3.1 Uniform Mutation

The first proposed mutation method, Uniform mutation, aims to tackle the
inequality problem present in existing mutation methods by introducing addi-
tional mutations in input sections that have triggered less testing within the
target program. Figure4 illustrates the workflow of Uniform mutation with the
newly added component, the section havoc stage. The fuzzer needs prior knowl-
edge of the section structure of the input to facilitate fuzzing with the boundaries
and divisions of different sections within the input. The mutation algorithm fol-
lows the standard execution of the deterministic and havoc stages. Upon com-
pleting the existing mutation stage, the fuzzer keeps track of the number of

262 Y. Park et al.

8 8
1 1 0.8
20 20 1.2
> 25 » 25 1.2
Divide file Record 10 Update section 10
equally path coverage 3 weight 3 08
5 5

Repeat

Fig. 5. Format-agnostic mutation with control of weight

mutations performed in each input section during the deterministic and havoc
stages. This allows comparing the number of mutations across sections to iden-
tify those that have undergone less testing. To address the imbalance problem,
we incorporate the section havoc stage into the fuzzer, wherein random positions
within the sections requiring additional mutations are selected. Random offsets
are chosen like the existing havoc stage, and additional mutations are applied
at these positions. By integrating the section havoc stage into the mutation
method, Uniform mutation ensures a more equitable distribution of mutations
across input sections. This approach helps mitigate coverage imbalances and
increases the likelihood of exploring new paths in the target program that have
received less testing.

3.2 Format-Agnostic Mutation

The second mutation method, Format-agnostic mutation, aims to increase the
usability of the prior Uniform mutation by allowing arbitrary division of the
input into sections when there is no prior knowledge of the input format struc-
ture. We propose two versions of Format-agnostic mutation, as shown in Figs. 5
and 6.

The first version is the Format-agnostic mutation with weight, depicted in
Fig. 5. This method divides the input into sections with equal size and weight,
which might be not consistent with the actual section structure. Subsequently, it
applies existing mutation methods to each section, according to the weight given
to each section. Throughout this process, the fuzzer keeps track of the number
of discovered paths for each section, serving it as a measure of path coverage.
Based on this information, the fuzzer calculates a distinct weight for each section.
The weight calculation is adjustable and determines the weight ratio using the
following heuristic: Sections in the top one-third of path coverage receive a weight
increase of 20%, while sections in the bottom one-third experience a weight
decrease of 20%. We repeated above process 10 times, to form more precise and
useful section information. In Fig. 5, the blue part corresponds to the top one-
third, indicating a weight increase, while the red part corresponds to the bottom
one-third, reflecting a weight decrease.

Mutation Methods 263

8
1&8
1
20 20
> 25 > 25
Divide file Record 10 Update section 10
equally path coverage 3 size
3&5
5

Repeat

Fig. 6. Format-agnostic mutation with control of section size

The second version is the Format-agnostic mutation with resized sections,
illustrated in Fig. 6. Similar to the previous version, it evenly divides the input
into sections and applies existing mutation methods to each section. Each
section’s path coverage is evaluated like the Format-agnostic mutation with
weight approach. Sections within the top one-third of path coverage undergo
resizing by dividing them in half. Conversely, sections within the bottom one-
third of path coverage are merged with adjacent sections exhibiting low path
coverage. Following the resizing of sections, the fuzzer once again proceeds with
the mutation algorithm, targeting the resized sections. In Fig. 6, the blue sec-
tions, which have discovered 20 and 25 paths, are divided, while the red sections,
with only one and three paths, are merged with neighboring low-coverage sec-
tions.

4 Evaluation

Prototypes of the Uniform mutation and two versions of the Format-agnostic
mutation (weight and resizing sections) are implemented on AFL as part of
our research. The experiments are conducted using Xpdf and libxml2 as the
target programs. The performance of the Uniform and Format-agnostic mutation
methods was compared to that of AFL. The primary focus of the evaluation was
to assess the path coverage achieved by each method. Our evaluation aims to
address the following research questions:

RQ1. Does the Uniform mutation approach, which targets input sections with
knowing the input structure, enhance the coverage exploration capabilities of
fuzzing?

RQ2. Can we attain high path coverage by automatically dividing the input into
sections without knowing the input structure?

By conducting comprehensive experiments and analyzing the results, we provide
insightful answers to these research questions, shedding light on the benefits and
potential of the Uniform and Format-agnostic mutation methods in improving
coverage exploration during fuzzing.

264 Y. Park et al.

4.1 Experiment Setup

All of our evaluations were performed on an AMD Ryzen 7 6800H with Radeon
Graphics @ 3.20 GHz (4 MB cache) machine with 8 GB of RAM. The O.S. is
Ubuntu 20.04 with Linux 5.15.0-72-generic 64-bit. We tested Xpdf and libxml2
for six hours.

4.2 The Result of Uniform Mutation

Table 1 shows the number of paths found by AFL and the Uniform mutation
method. The experiment was conducted multiple times (five times) on the Xpdf
benchmark for six hours to ensure fairness. The average results showed that the
Uniform mutation method explored 9.64% more paths than AFL.

Table 1. The # of paths found by AFL and Uniform mutation on Xpdf.

Test Number | AFL (path) | Uniform (path)
#1 4011 4769

#2 4705 4754

#3 4083 4744

#4 4745 4722

#5 4052 4689

Avg 4319.2 4735.6

AFL’s performance demonstrates inconsistency, whereas the Uniform muta-
tion method consistently produces stable results. This inconsistency in AFL’s
performance can be attributed to the imbalance of mutations. AFL mutates the
input by flipping all positions in the input one by one (deterministic stage) or
randomly selecting positions with offsets to modify bytes or bits (havoc stage)
without considering the input section. As a result, the code handling each input
section is not tested with an equal chance. In contrast, the Uniform mutation
method achieves stable results and higher path coverage by focusing on the
exploration of smaller sections (such as the header and the cross-ref) based on
the input section format. By uniformly applying mutations based on the input
sections, this method achieves enhanced coverage and maintains stable fuzzing
performance across multiple experimental attempts. These results clearly demon-
strate the advantages of the Uniform mutation method over AFL in terms of path
coverage and stability in fuzzing performance.

4.3 The Result of Format-Agnostic Mutation

Table 2 displays the path coverage results obtained from AFL, Uniform mutation,
and the Format-agnostic mutations (weight and resize strategies) on the Xpdf

Mutation Methods 265

benchmark. The experiment was repeated five times, with each run lasting six
hours. On average, the Format-agnostic mutations (weight and resize strategies)
revealed 7.0% and 6.4% more paths, respectively, compared to AFL. However,
they still exhibited lower path coverage when compared to the Uniform mutation
method, which has prior knowledge of the input format. These findings highlight
that while the format-agnostic mutations achieved some improvements in path
coverage compared to AFL, the Uniform mutation approach, benefiting from its
understanding of the input format, outperformed the other methods by achieving
higher path coverage.

Table 2. The # of paths found by AFL and Format-agnostic mutation on Xpdf.

Test Number | AFL | Uniform mutation | Format-agnostic (weight) | Format-agnostic (resize)
#1 4011 4769 4660 4665

#2 4705 4754 4654 4517

#3 4083 4744 4659 4525

#4 4745 4722 4567 4629

#5 4052 4689 4559 4647

Avg 4319.214735.6 4619.8 4596.6

The Format-agnostic mutation method is proposed as a solution for cases
where prior knowledge of the input structure is unavailable. We observed that
this method effectively divides the input into sections, resulting in only a slight
difference in performance compared to the Uniform mutation method. When
comparing the two versions (weight and resize strategies) of the Format-agnostic
mutation method applied to the PDF input, the weight strategy shows similar
performance to the resize strategy. This can be attributed to the PDF input’s
simple section structure, which aligns well with the divided sections determined
by the Format-agnostic mutation method. Furthermore, since there is a separate
code segment in the target program that handles each section of the PDF input,
conducting additional mutations on sections with low weight, as facilitated by
the weight strategy, contributes to exploring paths associated with the specific
code segment.

Table 3 provides a detailed overview of the path coverage results of AFL
and the Format-agnostic mutations (weight and resize strategies) on the libxml2
benchmark. The experiment was repeated five times, with each run lasting six
hours. In the evaluation of AFL and Format-agnostic mutations for the libxml2
benchmark, which employs XML format inputs—a more intricate structure than
PDF, the Uniform mutation method was not applied due to the complexity of
XML syntax, including the presence of user-defined tags and attributes. On
average, the Format-agnostic mutations (weight and resize strategies) achieved
101% and 105.4% higher path coverage, respectively, compared to AFL. These
results highlight the effectiveness of the Format-agnostic mutation method in
exploring path coverage by partitioning the input and applying varying numbers

266 Y. Park et al.

of mutations to each section, even for inputs with complex formats like XML.
Notably, the resize strategy outperformed the weight strategy in the case of
XML. This can be attributed to the densely sized sections present in XML inputs,
and the resizing strategy adeptly divides the input to accommodate these dense
sections, thereby contributing to improved path coverage.

Table 3. The # of paths found by AFL and Format-agnostic mutation on libxml2.

Test Number | AFL | Format-agnostic (weight) | Format-agnostic (resize)
#1 1533 | 3447 3150

#2 1697 | 3249 3654

#3 2073 | 3686 3556

#4 1519 | 3219 3434

#5 1593 | 3314 3490

Avg 1683 | 3383 3456.8

Overall, the results demonstrate that the Uniform and Format-agnostic muta-
tion methods offer significant advantages over AFL regarding path coverage. The
Uniform mutation method, leveraging its prior knowledge of the input format
structure, outperforms the other methods in achieving higher path coverage.
However, the Format-agnostic mutation methods also exhibit notable path cov-
erage by dynamically partitioning the input into sections based on coverage
feedback, even without prior knowledge of the input format structure, regard-
less of its structure complexity. This highlights their effectiveness in adapting to
different input scenarios and achieving satisfactory path coverage.

5 Related Work

Mutation-Based Fuzzing. Mutation-based fuzzing has been proposed to gen-
erate inputs by randomly modifying valid inputs. Some studies leverage heuris-
tics to guide mutation. AFL [23], Angora [2], CollAFL [6], and Mopt [11] utilize
coverage for the guidance, and MemFuzz [3] and MemLock [18] leverage memory
access and memory usage. Mutation-based fuzzing shows high speed to gener-
ate inputs but, it is less effective for programs that use structured inputs. For
example, fuzzers like Angora [2] and Qsym [22] rely on program context (e.g.,
branches), not the file context, there may still exist codes that are less tested for
a given time.

Structured Input Fuzzing. Several approaches have been proposed to per-
form mutations based on grammar or specification to generate structured inputs.
Squirrel [24], Superion [17], SD-Gen [14] leverage the AST based on input spec-
ifications and the grammar to generate the valid inputs. On the other hand,
JANUS [20] and AFLTurbo [16] apply mutations on the metadata dimension
intensively. They focus only on a specific segment of the structured input rather
than the overall input segments.

Mutation Methods 267

6 Conclusion

In this paper, we have tackled the bias issue present in existing mutation meth-
ods utilized in coverage-based grey-box fuzzing. We introduced new mutation
methods for structured input, namely Uniform and Format-agnostic. The Uni-
form mutation method addresses the bias by conducting additional mutations on
the input sections that invoke less testing for the code segments in the target pro-
gram responsible for handling those corresponding input sections. This method
ensures more balanced path coverage across the target program. On the other
hand, the Format-agnostic mutation method automatically divides the input into
sections based on coverage feedback. Then it adjusts the number of mutations
or section sizes according to the adopted strategy. Unlike the Uniform mutation
method, the Format-agnostic mutation method does not rely on explicit format
knowledge, making it more versatile for inputs with complex structures.

To evaluate the effectiveness of our proposed methods, we conducted exper-
iments using two real-world programs (Xpdf and libxml2) and compared the
results with AFL. The experimental outcomes demonstrated that our approaches
surpassed AFL regarding path coverage exploration. The Uniform mutation
method consistently achieved stable results with higher path coverage com-
pared to AFL. Meanwhile, the Format-agnostic mutation method effectively
partitioned the input into sections and successfully explored paths within target
programs even when dealing with inputs featuring complex structural formats.
Our proposed approaches effectively address the bias problem inherent in exist-
ing mutation methods, leading to improved path coverage while maintaining
usability.

Acknowledgements. This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2023-2018-0-01441) supervised by the IITP (Institute for Information
& Communications Technology Planning & Evaluation).

References

1. Béhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45(5), 489-506 (2017)

2. Chen, P., Chen, H.: Angora: efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 711-725. IEEE (2018)

3. Coppik, N., Schwahn, O., Suri, N.: MemFuzz: using memory accesses to guide
fuzzing. In: 2019 12th IEEE Conference on Software Testing, Validation and Veri-
fication (ICST), pp. 48-58. IEEE (2019)

4. Fan, R., Chang, Y.: Machine learning for black-box fuzzing of network protocols. In:
Qing, S., Mitchell, C., Chen, L., Liu, D. (eds.) ICICS 2017. LNCS, vol. 10631, pp.
621-632. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89500-0-53

5. Fioraldi, A., Maier, D., Eififeldt, H., Heuse, M.: {AFL++}: combining incremental
steps of fuzzing research. In: 14th USENIX Workshop on Offensive Technologies
(WOOT 2020) (2020)

https://doi.org/10.1007/978-3-319-89500-0_53

268

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Y. Park et al.

. Gan, S., et al.: CollAFL: path sensitive fuzzing. In: 2018 IEEE Symposium on

Security and Privacy (SP), pp. 679-696. IEEE (2018)

. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: 2009

IEEE 31st International Conference on Software Engineering, pp. 474-484. IEEE
(2009)

. Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., Rieck, K.: PULSAR: stateful

black-box fuzzing of proprietary network protocols. In: Thuraisingham, B., Wang,
X.F., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp. 330-347.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28865-9_18

. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In:

Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 206215 (2008)

Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing.
Commun. ACM 55(3), 40-44 (2012)

Lyu, C., et al.: MOPT: optimized mutation scheduling for fuzzers. In: 28th USENIX
Security Symposium (USENIX Security 2019), pp. 1949-1966 (2019)

Peng, H., Shoshitaishvili, Y., Payer, M.: T-fuzz: fuzzing by program transformation.
In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 697-710. IEEE (2018)
Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
application-aware evolutionary fuzzing. In: NDSS, vol. 17, pp. 1-14 (2017)
Sargsyan, S., Kurmangaleev, S., Mehrabyan, M., Mishechkin, M., Ghukasyan,
T., Asryan, S.: Grammar-based fuzzing. In: 2018 Ivannikov Memorial Workshop
(IVMEM), pp. 32-35. IEEE (2018)

Serebryany, K.: {OSS-Fuzz}-Google’s continuous fuzzing service for open source
software (2017)

Sun, L., Li, X., Qu, H., Zhang, X.: AFLTurbo: speed up path discovery for grey-
box fuzzing. In: 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), pp. 81-91. IEEE (2020)

Wang, J., Chen, B., Wei, L., Liu, Y.: Superion: grammar-aware greybox fuzzing. In:
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 724-735. IEEE (2019)

Wen, C., et al.: MemLock: memory usage guided fuzzing. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp. 765-777
(2020)

Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational
fuzzing. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pp. 511-522 (2013)

Xu, W.,; Moon, H., Kashyap, S., Tseng, P.N.; Kim, T.: Fuzzing file systems via
two-dimensional input space exploration. In: 2019 IEEE Symposium on Security
and Privacy (SP), pp. 818-834. IEEE (2019)

Yue, T., et al.: {EcoFuzz}: adaptive {Energy-Saving} greybox fuzzing as a variant
of the adversarial {Multi-Armed} bandit. In: 29th USENIX Security Symposium
(USENIX Security 2020), pp. 2307-2324 (2020)

Yun, I, Lee, S., Xu, M., Jang, Y., Kim, T.: {QSYM}: a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 2018), pp. 745-761 (2018)

Zalewski, M.: American fuzzy lop (2020). https://lcamtuf.coredump.cx/afl/
Zhong, R., Chen, Y., Hu, H., Zhang, H., Lee, W., Wu, D.: SQUIRREL: testing
database management systems with language validity and coverage feedback. In:
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 955-970 (2020)

https://doi.org/10.1007/978-3-319-28865-9_18
https://lcamtuf.coredump.cx/afl/

	Mutation Methods for Structured Input to Enhance Path Coverage of Fuzzers
	1 Introduction
	2 Background
	2.1 Coverage-Based Grey-Box Fuzzing
	2.2 Mutation Method

	3 The Proposed Mutation Methods
	3.1 Uniform Mutation
	3.2 Format-Agnostic Mutation

	4 Evaluation
	4.1 Experiment Setup
	4.2 The Result of Uniform Mutation
	4.3 The Result of Format-Agnostic Mutation

	5 Related Work
	6 Conclusion
	References

