
Howon Kim
Jonghee Youn (Eds.)

LN
CS

 1
44

02

24th International Conference, WISA 2023
Jeju Island, South Korea, August 23–25, 2023
Revised Selected Papers

Information
Security Applications

Lecture Notes in Computer Science 14402
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Howon Kim · Jonghee Youn
Editors

Information
Security Applications
24th International Conference, WISA 2023
Jeju Island, South Korea, August 23–25, 2023
Revised Selected Papers

Editors
Howon Kim
Pusan National University
Busan, Korea (Republic of)

Jonghee Youn
Yeungnam University
Gyeongbuk, Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-8023-9 ISBN 978-981-99-8024-6 (eBook)
https://doi.org/10.1007/978-981-99-8024-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0001-8475-7294
https://doi.org/10.1007/978-981-99-8024-6

Preface

In the modern digital landscape, progress in information technology has undoubtedly
improved various facets of our daily lives. Nonetheless, as technology advances, so
do the intricacies of safeguarding data, networks, and systems. Therefore, engaging in
research, the dissemination of knowledge, and the creation of innovative techniques are
of paramount importance, to ensure various aspects of information security.

The World Conference on Information Security Applications (WISA) is a premier
security research event, hosted by the Korea Institute of Information Security and Cryp-
tology (KIISC); sponsored by theMinistry of Science, ICT, and Future Planning (MSIP);
and co-sponsored by the Electronics & Telecommunications Research Institute (ETRI),
the Korea Internet & Security Agency (KISA), and the National Security Research Insti-
tute (NSR). We are open to participants coming from diverse backgrounds, including
researchers and practitioners passionate about advancing the state of the art as well as
addressing fundamental security challenges. In 2023, WISA explored the innovative
possibilities of various technologies in enhancing (and threatening) cyber security: arti-
ficial intelligence (AI), blockchain-driven security, hardware cryptography, quantum and
post-quantum cryptography, as well as other technical and practical aspects of security
applications.

This volume is composed of the 25 selected papers presented atWISA duringAugust
23–25, 2023, on Jeju Island,Republic ofKorea, andone additional revisedpaper accepted
from WISA 2022. Furthermore, we were honored to have an invited talk by SeongHan
Shin from the National Institute of Advanced Industrial Science and Technology, Japan,
entitled “5G-AKA and EAP-AKA from Cryptographic Perspectives”. In addition, we
especially welcomed valuable insights from our two keynote speakers: Bhasin Shivam
fromNanyang Technological University, Singapore, who gave a talk on “LeakingAI: On
Side-Channel Vulnerabilities (and More) on EdgeML Devices”, and Bo-Yin Yang from
AcademiaSinica, Taiwan,whose presentation focusedon “Post-QuantumCryptography:
Now and Onwards”.

The great dedication and tireless work of the General Chairs, Organizing Committee,
and reviewers; the generous support of our sponsors and co-sponsors; and the enthusi-
astic involvement of all attendees collectively resulted in yet another high-quality event.
We extend our heartfelt appreciation to every Program Committee member for their
invaluable contributions, and we sincerely thank reviewers, authors, and participants
from across the globe for their unwavering support. Finally, we sincerely appreciate the
assistance of the Springer team for the LNCS proceedings.

September 2023 Howon Kim
Jonghee Youn

Organization

General Chair

Yoojae Won Chungnam National University,
Republic of Korea

Program Committee Chairs

Howon Kim Pusan National University, Republic of Korea
Jonghee Youn Yeungnam University, Republic of Korea

Organizing Committee Chairs

Kiwook Sohn Seoul National University of Science and
Technology, Republic of Korea

Jong-Hyouk Lee Sejong University, Republic of Korea

Program Committee

Joonsang Baek University of Wollongong, Australia
Xiaofeng Chen Xidian University, China
Jin-Hee Cho Virginia Tech, USA
Yeongpil Cho Hanyang University, Republic of Korea
Dooho Choi Korea University, Republic of Korea
Hongjun Choi DGIST, Republic of Korea
Swee-Huay Heng Multimedia University, Malaysia
Jin Hong University of Western Australia, Australia
Qiong Huang South China Agricultural University, China
Eul-Gyu Im Hanyang University, Republic of Korea
Yuseok Jeon UNIST, Republic of Korea
YouSung Kang ETRI, Republic of Korea
Dongseong Kim The University of Queensland, Australia
Doowon Kim University of Tennessee, USA
Jong Kim POSTECH, Republic of Korea
Jongsung Kim Kookmin University, Republic of Korea
Taeguen Kim Soonchunhyang University, Republic of Korea

viii Organization

Hiroaki Kikuchi Meiji University, Japan
Hyun Kwon Korea Military Academy, Republic of Korea
Yonghwi Kwon University of Virginia, USA
Young-Woo Kwon Kyungpook National University,

Republic of Korea
Changhoon Lee Seoul National University of Science and

Technology, Republic of Korea
Hyungon Moon UNIST, Republic of Korea
Eueung Mulyana Bandung Institute of Technology, Indonesia
Masakatsu Nishigaki Shizuoka University, Japan
Marcus Peinado Microsoft, USA
Junghwan Rhee University of Central Oklahoma, USA
Ulrich Rührmair Ruhr University Bochum, Germany
Kouichi Sakurai Kyushu University, Japan
Hwajeong Seo Hansung University, Republic of Korea
Seog Chung Seo Kookmin University, Republic of Korea
Junji Shikata Yokohama National University, Japan
Sang Uk Shin Pukyong National University, Republic of Korea
SeongHan Shin National Institute of Advanced Industrial Science

and Technology (AIST), Japan
Amril Syalim University of Indonesia, Indonesia
Naoto Yanai Osaka University, Japan
Meng Yu Roosevelt University, USA

Organizing Committee Members

Haehyun Cho Soongsil University, Republic of Korea
Dong-Guk Han Kookmin University, Republic of Korea
Misim Jung Culture Makers, Republic of Korea
Bona Kim SSNC, Republic of Korea
Eunyoung Kim NSR, Republic of Korea
Jeong Nyeo Kim ETRI, Republic of Korea
Kibom Kim NSR, Republic of Korea
Hyun O Kwon KISA, Republic of Korea
Yoonjung Kwon NAONWORKS, Republic of Korea
Im-Yeong Lee Soonchunhyang University, Republic of Korea
Jun Lee KISTI, Republic of Korea
Daesung Moon ETRI, Republic of Korea
Dong-Hwan Oh KISA, Republic of Korea
Jung Taek Seo Gachon University, Republic of Korea
Jungsuk Song KISTI, Republic of Korea

Invited Talk and Keynotes

5G-AKA and EAP-AKA from Cryptographic
Perspectives (Invited Talk)

Seonghan Shin

National Institute of Advanced Industrial Science
and Technology, Japan

Abstract:As widely known, 5G is an infrastructure technology essential
for IoT, smart cities, AR/MR/VR, ultra-high-definition video services,
etc. Currently, 3GPPhas been standardizing the 5G-AKAandEAP-AKA’
protocols for mutual authentication between UE (User Equipment) and
HN (Home Network) and sharing anchor keys in 5G communications.
In this talk, I will revisit the 5G-AKA and EAP-AKA’ protocols from
cryptographic perspectives.

Leaking AI: On Side-Channel Vulnerabilities (and more)
on EdgeML Devices (Keynote)

Bhasin Shivam

Nanyang Technological University, Singapore

Abstract: EdgeML combines the power of machine (deep) learning and
edge (IoT) devices. Owing to its capability of solving difficult problems
in sensor nodes and other resource constrained devices, EdgeMLhas seen
adoption in a variety of domains like smart manufacturing, remote mon-
itoring, smart homes etc. However, deployment on edge devices exposes
machine/deep learning algorithms to a range of new attacks, especially
physical attacks. In this talk, we explore the landscape of practical phys-
ical attacks on EdgeML. First, we show how side-channel attacks can be
used to reverse engineer architectures and parameters of deep learning
models. These models are often proprietary with commercial value and
contain information on sensitive training data. The feasibility of these
attacks is shown both on standalone microcontrollers as well as com-
mercial ML accelerators. Further, we demonstrate practical and low-cost
cold boot-based model recovery attacks on Intel Neural Compute Sticks
2 (NCS2) to recover the model architecture and weights, loaded from the
Raspberry Pi with high accuracy. The proposed attack remains unaffected
by the model encryption features of the NCS2 framework.

Post-Quantum Cryptography: Now and Onwards
(Keynote)

Bo-Yin Yang

Academia Sinica, Taiwan

Abstract:NIST has recently selected a first group of candidates for stan-
dardization in its PQC (Post-Quantum Cryptography) standardization
process. However, we have not come close to achieving or even thor-
oughly preparing for the migration to PQC, yet. We will discuss what
has transpired in PQC, what is the state-of-the-art in PQC, what topics
do remain in PQC, and what needs to be done in the upcoming post-
quantummigration. Finally,wewill summarizewhat is happening around
the world in regards to PQC, particularly to the ongoing standardization
process(es).

Contents

Cryptography

A New Higher Order Differential of LCB . 3
Naoki Shibayama and Yasutaka Igarashi

Bloomier Filters on 3-Hypergraphs . 16
Hyungrok Jo and Junji Shikata

Principal Component Analysis over the Boolean Circuit Within TFHE
Scheme . 27

Hyun Jung Doh, Joon Soo Yoo, Mi Yeon Hong, Kang Hoon Lee,
Tae Min Ahn, and Ji Won Yoon

A Security Analysis on MQ-Sign . 40
Yasuhiko Ikematsu, Hyungrok Jo, and Takanori Yasuda

Network and Application Security

Research on Security Threats Using VPN in Zero Trust Environments 55
Eunyoung Kim and Kiwook Sohn

A Blockchain-Based Mobile Crowdsensing and Its Incentive Mechanism 67
Yan Zhang, Yuhao Bai, Soojin Lee, Ming Li, and Seung-Hyun Seo

A New Frontier in Digital Security: Verification for NFT Image Using
Deep Learning-Based ConvNeXt Model in Quantum Blockchain 79

Aji Teguh Prihatno, Naufal Suryanto, Harashta Tatimma Larasati,
Yustus Eko Oktian, Thi-Thu-Huong Le, and Howon Kim

AE-LSTM Based Anomaly Detection System for Communication Over
DNP 3.0 . 91

Ilhwan Ji, Seungho Jeon, and Jung Taek Seo

Privacy and Management

Systematic Evaluation of Robustness Against Model Inversion Attacks
on Split Learning . 107

Hyunsik Na, Yoonju Oh, Wonho Lee, and Daeseon Choi

xviii Contents

Vulnerability Assessment Framework Based on In-The-Wild Exploitability
for Prioritizing Patch Application in Control System . 119

Seong-Su Yoon, Do-Yeon Kim, Ga-Gyeong Kim, and Ieck-Chae Euom

Patchman: Firmware Update Delivery Service Over the Blockchain
for IoT Environment . 131

Yustus Eko Oktian, Uk Jo, Simon Oh, Hanho Jeong, Jaehyun Kim,
Thi-Thu-Huong Le, and Howon Kim

Security Risk Indicator for Open Source Software to Measure Software
Development Status . 143

Hiroki Kuzuno, Tomohiko Yano, Kazuki Omo, Jeroen van der Ham,
and Toshihiro Yamauchi

Attacks and Defenses

Defending AirType Against Inference Attacks Using 3D In-Air Keyboard
Layouts: Design and Evaluation . 159

Hattan Althebeiti, Ran Gedawy, Ahod Alghuried, Daehun Nyang,
and David Mohaisen

Robust Training for Deepfake Detection Models Against
Disruption-Induced Data Poisoning . 175

Jaewoo Park, Hong Eun Ahn, Leo Hyun Park, and Taekyoung Kwon

Multi-class Malware Detection via Deep Graph Convolutional Networks
Using TF-IDF-Based Attributed Call Graphs . 188

Irshad Khan and Young-Woo Kwon

OCRMeets the Dark Web: Identifying the Content Type Regarding Illegal
and Cybercrime . 201

Donghyun Kim, Seungho Jeon, Jiho Shin, and Jung Taek Seo

Enriching Vulnerability Reports Through Automated and Augmented
Description Summarization . 213

Hattan Althebeiti and David Mohaisen

Hardware and Software Security

Protecting Kernel Code Integrity with PMP on RISC-V . 231
Seon Ha and Hyungon Moon

Contents xix

Exploiting Memory Page Management in KSM for Remote Memory
Deduplication Attack . 244

Seungyeon Bae, Taehun Kim, Woomin Lee, and Youngjoo Shin

Mutation Methods for Structured Input to Enhance Path Coverage
of Fuzzers . 257

Yonggon Park, Youngjoo Ko, and Jong Kim

Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha 269
Ryo Watanabe, Nasratullah Ghafoori, and Atsuko Miyaji

SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis 282
Seungho Jeon and Jung Taek Seo

Post-Quantum Cryptography and Quantum Cryptanalysis

Quantum Circuit Designs of Point Doubling Operation for Binary Elliptic
Curves . 297

Harashta Tatimma Larasati and Howon Kim

PQ-DPoL: An Efficient Post-Quantum Blockchain Consensus Algorithm 310
Wonwoong Kim, Yeajun Kang, Hyunji Kim, Kyungbae Jang,
and Hwajeong Seo

Efficient Implementation of the Classic McEliece on ARMv8 Processors 324
Minjoo Sim, Hyeokdong Kwon, Siwoo Eum, Gyeongju Song,
Minwoo Lee, and Hwajeong Seo

Evaluating KpqC Algorithm Submissions: Balanced and Clean
Benchmarking Approach . 338

Hyeokdong Kwon, Minjoo Sim, Gyeongju Song, Minwoo Lee,
and Hwajeong Seo

Author Index . 349

Cryptography

A New Higher Order Differential of LCB

Naoki Shibayama(B) and Yasutaka Igarashi

Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
7323703@ed.tus.ac.jp, yasutaka@rs.noda.tus.ac.jp

Abstract. LCB is a 32-bit block cipher proposed by Roy et al. in 2021.
The designers evaluated its security against differential cryptanalysis, lin-
ear cryptanalysis, and so on. On the other hand, it has not been reported
the security of LCB against higher order differential cryptanalysis, which
is one of the algebraic attacks. In this paper, we applied higher order dif-
ferential cryptanalysis to LCB. Consequently, we found a new full-round
higher order differential characteristic of LCB using 1-st order differen-
tial. Exploiting this characteristic, it is possible to apply the distinguish-
ing attack to full-round LCB with 2 chosen plaintexts. Then, we also
show that LCB can be broken under the condition for known plaintext
attacks. Furthermore, we tried to improve the round function of LCB to
analysis this vulnerability.

Keywords: Cryptanalysis · Higher order differential · Saturation
property · Block cipher · LCB

1 Introduction

LCB [1] is a 32-bit block cipher with a 64-bit secret key proposed by Roy et al.
in 2021. The number of rounds is 10. The designers claim that LCB exploits the
benefits of Feistel structure and Substitution Permutation Network to give more
security. Then, they evaluated its security against typical attack, such as differen-
tial attack, linear attack, and impossible differential attack, and argued that LCB
is secure enough against these attacks. So far, Chan et al. [2] reported the results
of differential attack on LCB. On the other hand, it has not been reported the
security of LCB against higher order differential attack. Higher order differential
attack is a powerful and versatile attack on block cipher. It exploits the proper-
ties of higher order differential of functions, defined by Lai, and derive an attack
equation to estimate the key, and then determines the key by solving a formula.

Our Contributions. This paper shows a new higher order differential of LCB.
By focusing on the structure of LCB, we found the 10-round, i.e., full-round
higher order differential characteristic of LCB using 1-st order differential. As far
as we know, this is the first report which investigates the higher order differential
of LCB. If we use it, it is possible to apply the distinguishing attack to full-round
of LCB with 2 chosen plaintexts and encryption operations. Furthermore, we
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 3–15, 2024.
https://doi.org/10.1007/978-981-99-8024-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_1&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_1

4 N. Shibayama and Y. Igarashi

also derive an equivalent LCB and show that the LCB is attackable by known
plaintext attack with only 1 known plaintext. In order to overcome this weakness,
we tried to improve the round function of LCB. As a result, the modified LCB
reduced the length of the higher order differential characteristics to 5-round, and
its algorithm is confirmed to be strengthened by our computer experiments.

Outline. The remainder of this paper is organized as follows. Section 2 explains
the algorithm of LCB. Section 3 gives the general theory of the higher order dif-
ferential attack. Section 4 shows the results of the higher order differential char-
acteristics of LCB. Then, we perform the attack to full-round LCB in Sect. 5.
Section 6 presents the modified LCB and describes its security against higher
order differential attack. Section 7 finally concludes the paper.

2 The Algorithm of LCB

This section briefly describes the structure of LCB. It consists of the permuta-
tion, the key addition, and the swap. Figure 1 shows the data processing part of
LCB. The function F Block consists of three permutations shown in Fig. 2. The
symbol ‘S’, ‘P’, and ‘L’ denote the 4-bit, 8-bit, and 16-bit permutation as shown
in Table 1, Table 2, and Table 3 respectively. We represent the MSB of these
table as i = 1. The symbol ‘⊕’ represents an Exclusive-OR operation. Its input
plaintext and output ciphertext are represented by X1 and C10 respectively. Let
Xi = (XL

i , XR
i), XJ

i = (xJ
i,1, xJ

i,2, xJ
i,3, xJ

i,4), xJ
i,� ∈ GF(2)4 and Ci = (CL

i ,
CR

i), CJ
i = (cJi,1, cJi,2, cJi,3, cJi,4), cJi,� ∈ GF(2)4 be an i-th round input and output

respectively, where 1 ≤ i ≤ 10, J ∈ {L,R}, 1 ≤ � ≤ 4. RKi = (RKL
i , RKR

i),
RKJ

i = (rkJ
i,1, rkJ

i,2, rkJ
i,3, rkJ

i,4), rkJ
i,� ∈ GF(2)4 are 32-bit round keys. The

number of iterated rounds of data processing part is 10.
The key scheduling function divides a 64-bit secret key K into four 16-bit

subkeys K� as follows.
K = (K1,K2,K3,K4) (1)

For i-th round of encryption, the round keys RKi are given by Table 4.

Fig. 1. Data processing part of LCB

A New Higher Order Differential of LCB 5

Fig. 2. F Block

Table 1. 4-bit permutation (S)

i 1 2 3 4
S 1 4 2 3

Table 2. 8-bit permutation (P)

i 1 2 3 4 5 6 7 8
P 1 5 4 8 2 6 3 7

Table 3. 16-bit permutation (L)

i 1 2 3 4 5 6 7 8
L 1 9 8 16 2 10 7 15
i 9 10 11 12 13 14 15 16
L 3 11 6 14 4 12 5 13

Table 4. RKi (1 ≤ i ≤ 10)

i Odd Even
RKi (K1, K2) (K3, K4)

3 Higher Order Differential Attack

In this section, we describe the definition of higher order differential and some
of its properties, and we also consider an attack equation using these properties.

3.1 Higher Order Differential [3]

Let E(·) be an encryption function as follows:

Y = E(X;K), (2)

where X ∈ GF(2)n, Y ∈ GF(2)m, and K ∈ GF(2)s. For a block cipher, X, K,
and Y denote plaintext, key, and ciphertext respectively. Let {a1,a2, · · · ,ai} be
a set of linearly independent vectors in GF(2)n and V (i) be a sub-space spanned
by these vectors. The i-th order differential of E(X;K) with respect to X is
defined as follows.

Δ
(i)

V (i)E(X;K) =
⊕

α∈V (i)

E(X ⊕ α;K) (3)

6 N. Shibayama and Y. Igarashi

In the following, we abbreviate Δ
(i)

V (i) as Δ(i), when it is clearly understood.
In this paper, we use the following properties of the higher order differential.

Property 1. If the algebraic degree of E(X;K) with respect to X equals to
N (≤n), then the following equation holds.

degX{E(X;K)} = N →
⎧
⎨

⎩

Δ(N)E(X;K) = const,

Δ(N+1)E(X;K) = 0.
(4)

Property 2. Higher order differential has a linear property on ⊕ operation.

Δ(N) {E1(X;K1) ⊕ E2(X;K2)} = Δ(N)E1(X;K1) ⊕ Δ(N)E2(X;K2) (5)

3.2 Saturation Properties

We describe some definitions of saturation properties related to this paper.
Let a set of 2N elements of N -bit values be X = {Xi|Xi ∈ {0, 1}N , 0 ≤ i <

2N}. Now we first categorize saturation properties of the set X into six types
depending on conditions defined as follows.

– Constant (C): if ∀i,j ,Xi = Xj

– All (A): if ∀i,j , i �= j ⇔ Xi �= Xj

– Even (E): if ∀i, Yi ≡ 0 (mod 2)
– Mod2 (M): if ∀i,j , Yi ≡ Yj (mod 2)
– Balance (B):

⊕

i

Xi = 0,

– Unknown (U): Others,

where Yi denotes the number of occurrences of X = i.
If the saturation property of 2� elements of �-bit values is ‘A’, it is expressed

as A(�). Further, when A(�) is divided into m (≥ 2)-nibble, it is written as follows.

A(�) = (A1 A2 · · · Am),

where � = 4m. For example, 8-th order differential A(8) is written as (A1 A2).
In the following, the symbol ‘c’ indicates the saturation property of 1-bit

value which is ‘C’. Then, if the saturation property of 1-nibble values xJ
i,� is

‘C’, we express this as {xJ
i,�} = C. For multiple-nibble values, it is expressed

as a similar manner. For example, if the saturation property of 4-nibble values
(xJ

i,1, x
J
i,2, x

J
i,3, x

J
i,4) is (A1 A2 C C), we express this as {(xJ

i,1, x
J
i,2, x

J
i,3, x

J
i,4)} =

(A1 A2 CC). We also use the following abbreviation.
{
(xJ

i,1, x
J
i,2, x

J
i,3, x

J
i,4)

}
= (CCCC) = C,

{
(xJ

i,1, x
J
i,2, x

J
i,3, x

J
i,4)

}
= (A1 A2 A2 A3) = A.

Property 3. If the saturation property of ciphertext Y is ‘C’, ‘A’, ‘E’, ‘M’, or
‘B’ using �-th order differential, Δ(�)Y = 0. Then, if the saturation property of
its 1-bit value y is ‘A(1)’ using 1-st order differential, Δ(1)y = 1.

A New Higher Order Differential of LCB 7

3.3 Attack Equation

Consider an r-round iterative block cipher. Let Hr−1(X) ∈ GF(2)m be a part of
the (r−1)-th round output and C(X) ∈ GF(2)n be the ciphertext corresponding
to the plaintext X ∈ GF(2)n. Hr−1(X) is expressed as follows.

Hr−1(X) = Fr−1(X;K1,K2, · · · ,Kr−1), (6)

where Ki ∈ GF(2)s be the i-th round key and Fi(·) be a function of GF(2)n ×
GF(2)s×i→GF(2)m.

If the algebraic degree of Fr−1(·) with respect to X is less than N , we have
the following from Property 1.

Δ(N)Hr−1(X) = 0 (7)

Let F̃ (·) be a decoding function that calculates Hr−1(X) from a ciphertext
C(X) ∈ GF(2)n.

Hr−1(X) = F̃ (C(X);Kr), (8)

where Kr ∈ GF(2)s denotes the r-th round key to decode Hr−1(X) from C(X).
From Eqs. (3), (7), and (8), we can derive following equation and can determine
Kr by solving it. ⊕

α∈V (N)

F̃ (C(X ⊕ α);Kr) = 0 (9)

In the following, we refer to Eq. (9) as an attack equation.

4 Higher Order Differential Characteristics of LCB

By the computer experiments, we searched for the higher order differential char-
acteristics of LCB using a heuristic method. In our search, the secret keys K�

were set randomly and the 1-st order differential characteristics were investigated
comprehensively. As a result, we found that LCB has a 10-round, i.e., full-round
characteristics. One of them is shown below.

(A1) (((A(1)ccc)CCC),C) 10r−−→ (((A(1)ccc)CCC),C)

In the above characteristic, the left-hand side of the formula expresses the input
property and the right-hand side means the 10-th round output property, and the
path is depicted in Fig. 3. We omit the input of the key in the figure, because
they have no influence on the characteristic. Although we found many other
characteristics easily by changing the position of A(1) in the input property, we
omit the description of them.

In the structure of LCB, since there is no diffusion between the MSB 16-
bit XL

1 and the LSB 16-bit XR
1 of the input plaintext, a fixed value is always

propagated in XL
i or XR

i , in which 1-st order differential is not inputted. Fur-
thermore, as LCB is composed of the permutation, for any number of rounds, the
saturation property of 1-bit, 31-bit of its output are always A(1), c respectively.

8 N. Shibayama and Y. Igarashi

Fig. 3. 10-round characteristic using 1-st order differential

5 Attack on the Full-Round LCB

In this section, we present the distinguishing attack to full-round LCB by using
the higher order differential characteristic shown in Sect. 4. Then, we also show
an equivalent LCB and describe the key recovery attack under the condition for
known plaintext attacks.

5.1 Distinguishing Attack

From the results of the above simulations, we found a new 10-round characteristic
using 1-st order differential. Let Ci = (CL

i , CR
i) be an i-th round ciphertext. By

exploiting the characteristic (A1), we can derive the following attack equation
from Property 2. ⊕

CR
10 = 0. (10)

We use Eq. (10) as a distinguisher and claim that the attack is successful
if this equation is satisfied. Therefore, it is possible to apply the distinguish-
ing attack to full-round LCB with 2 blocks for chosen plaintext and times of
encryption operation.

5.2 Key Recovery Attack

Figure 4 shows the equivalent circuit which calculates ciphertext (CL
10, CR

10) from
plaintext (XL

1 , XR
1). Note that the swap of each round is equivalently trans-

formed, and the round keys RKJ
i are expressed by the secret keys K� according

A New Higher Order Differential of LCB 9

Fig. 4. Equivalent LCB Fig. 5. Equivalent circuit of Fig. 4

Table 5. 16-bit permutation (V)

i 1 2 3 4 5 6 7 8

V 1 13 2 14 5 9 6 10

i 9 10 11 12 13 14 15 16

V 7 11 8 12 3 15 4 16

Table 6. 16-bit permutation (W)

i 1 2 3 4 5 6 7 8

W 1 7 9 15 5 3 13 11

i 9 10 11 12 13 14 15 16

W 2 8 10 16 6 4 14 12

to Table 4 in the figure. From the figure, it is clear that the MSB 16-bit data
XL

1 is only influenced by keys K1, K4 and the LSB 16-bit data XR
1 by K2, K3

respectively.
In addition, because LCB does not have any non-linear function, we use an

equivalent representation of Fig. 4 shown in Fig. 5 to simplify the attack algo-
rithm. Here, the symbol ‘V’ and ‘W’ are the 16-bit permutation shown in Table 5
and Table 6 respectively. The permutation V is equivalent to transformation of
the function F Block applied 10 times. Moreover, K� (1 ≤ � ≤ 4) are respectively

10 N. Shibayama and Y. Igarashi

Fig. 6. Data processing part of modified LCB

replaced by equivalent keys K
′
1 and K

′
2 given by K

′
1 = W [K1] ⊕ V [K4], K

′
2 =

W [K2] ⊕ V [K3]. Then, these keys can be determined from K
′
1 = V [XL

1] ⊕ CL
10,

K
′
2 = V [XR

1]⊕CR
10. Therefore, attackers prepare a pair of the ciphertexts C10 and

its corresponding plaintexts X1, they can identify the two 16-bit keys K
′
1 and K

′
2.

6 Modification of LCB

As mentioned above, since LCB is a vulnerable algorithm, we found a full-round
characteristic of LCB using 1-st order differential. In this section, we try to
strengthen the LCB algorithm. Then, we discuss its security against higher order
differential attack.

6.1 The Algorithm

Figure 6 shows the data processing part of modified LCB. The modified LCB
adds the following two components to the original one as improvements1.

– The non-linear layer S Block which consists of four parallel PRINCE [4] 4-bit
S-boxes is added before the linear function F Block to introduce nonlinearity.

– An ⊕ operation from the MSB 16-bit XL
1 to the LSB 16-bit XR

1 is added after
the round keys addition in order to introduce diffusion between XL

1 and XR
1 .

6.2 Higher Order Differential Characteristics

If we use 16-th order differential in the same manner as in Sect. 4, the higher
order differential characteristic of modified LCB from input to 5-round output
can be written as follows.
1 The improving LCB proposed in [2], which replaced only the S-box by a non-linear

function, has full-round higher order differential characteristics since there is no
diffusion between XL

1 and XR
1 .

A New Higher Order Differential of LCB 11

Fig. 7. 5-round characteristic of modified LCB using 16-th order differential

(A16) (C,A) 5r−→ (B,B)

The path of the characteristic of (A16) is depicted in Fig. 7. We also found that
the length of the higher order differential characteristics is the same using 31-st
order differential. Thus, the length of the higher order differential characteristics
is reduced to 5-round from full-round, so that the algorithm of modified LCB is
confirmed to be stronger than the original one.

6.3 Higher Order Differential Attack

In this subsection, we estimate the number of chosen plaintexts and computa-
tional complexity for the 8-round modified LCB attack by using the 5-round
characteristic of (A16).

Attack Equation. Figure 8 shows the equivalent circuit of modified LCB which
calculates 5-th round output CL

5 from 8-th round ciphertext (CL
8 , CR

8). Because

12 N. Shibayama and Y. Igarashi

Fig. 8. Equivalent circuit of modified LCB which calculates 5-th round output CL
5 from

8-th round ciphertext (CL
8 , CR

8)

F Block is a linear function, we can move the i-th round key RKJ
i as shown in

Fig. 8. Note that RKJ
i is replaced by equivalent key RK

′J
i = F Block−1(RKJ

i),
where F Block−1 denotes the inverse function of F Block, and RK

′J
i = (rk

′J
i,1,

rk
′J
i,2, rk

′J
i,3, rk

′J
i,4), rk

′J
i,� ∈ GF(2)4, 1 ≤ i ≤ 10, J ∈ {L,R}, 1 ≤ � ≤ 4. Let

HJ
i = (hJ

i,1, hJ
i,2, hJ

i,3, hJ
i,4), hJ

i,� ∈ GF(2)4 be the variable after the round key is
added, and ZJ

i = (zJi,1, zJi,2, zJi,3, zJi,4), zJi,� ∈ GF(2)4 be an output of function F
Block.

The attack equation for the key recovery attack on 8-round modified LCB
using the characteristic of (A16) is allows.

⊕
cL5,� = 0, (11)

cL5,� = S−1(hL
6,� ⊕ rk

′L
6,�),H

L
6 = F Block−1(CR

6),

CR
6 = S Block−1(HR

7 ⊕ RK
′R
7),H

R
7 = F Block−1(ZR

7),

ZR
7 = S Block−1(HL

8 ⊕ RK
′L
8) ⊕ S Block−1(HR

8 ⊕ RK
′R
8),

HL
8 = F Block−1(CR

8),H
R
8 = F Block−1(CL

8 ⊕ CR
8),

where S−1 and S Block−1 denote the inverse function of S-box and S Block
respectively. Though there are four 16-bit unknown keys RK

′L
6 , RK

′R
7 , RK

′L
8 ,

A New Higher Order Differential of LCB 13

and RK
′R
8 , we can efficiently recover these keys using the relation among the

round keys. In the key schedule, from Table 4, since the 16-bit secret key K3 is
added as the 6-round key RKL

6 and the 8-round one RKL
8 respectively, so RK

′L
6

is equivalent to RK
′L
8 . Because of this relation, the number of bit of unknown

can be reduced from 64-bit to 48-bit.

Attack Algorithm. We describe the derivation for the four 4-bit Mod 2 Fre-
quency Distribution Table (MFDT) of cL5,� in Eq. (11) using the partial sum
technique [5]. Then, we calculate

⊕
cL5,� from the MFDT of cL5,�, and confirm if

Eq. (11) holds.
Attackers execute the following procedure to recovery the 48-bit keys RK

′R
7 ,

RK
′L
8 , and RK

′R
8 .

Step1. The 32-bit MFDT (MFDT(1)) of (CL
8 , CR

8) derives from 216 ciphertexts
corresponding to the input a set of 216 plaintexts.
Step2. The 32-bit MFDT (MFDT(2)) of (HL

8 , HR
8) can derive from MFDT(1).

Step3. By assuming the 8-bit keys rk
′L
8,1 and rk

′R
8,1, the 28-bit

MFDT (MFDT(3)) of (zR7,1, hL
8,2, hL

8,3, hL
8,4, hR

8,2, hR
8,3, hR

8,4) can calculate from
MFDT(2).
Step4. By assuming the 8-bit keys rk

′L
8,2 and rk

′R
8,2, the 24-bit

MFDT (MFDT(4)) of (zR7,1, zR7,2, hL
8,3, hL

8,4, hR
8,3, hR

8,4) can calculate from
MFDT(3).
Step5. By assuming the 8-bit keys rk

′L
8,3 and rk

′R
8,3, the 20-bit

MFDT (MFDT(5)) of (zR7,1, zR7,2, zR7,3, hL
8,4, hR

8,4) can calculate from MFDT(4).

Step6. By assuming the 8-bit keys rk
′L
8,4 and rk

′R
8,4, the 16-bit

MFDT (MFDT(6)) of ZR
7 can calculate from MFDT(5).

Step7. The 16-bit MFDT (MFDT(7)) of HR
7 can derive from MFDT(6).

Step8. By assuming the 16-bit keys RK
′R
7 , the 16-bit MFDT (MFDT(8)) of

CR
6 can calculate from MFDT(7).

Step9. The four 4-bit MFDTs (MFDT(9,�)) of hL
6,� (1 ≤ � ≤ 4) can derive from

MFDT(8).
Step10. By inputting the four 4-bit keys rk

′L
8,� assumed in Step3 – Step6 into

rk
′L
6,� respectively, the four 4-bit MFDTs (MFDT(10,�)) of cL5,� can derive from

MFDT(9,�).
Step11. The values of

⊕
cL5,� can be computed from MFDT(10,�). Then, attack-

ers can judge whether the key is correct or not by examining if Eq.(11) holds.

Complexity Estimation. If the assumed value of the 48-bit key is true, Eq.
(11) hold with probability 1. Since Eq. (11) are four 4-bit equations, it is satisfied
with (2−4)4 = 2−16 even if the assumed key is false. From one set of Eq. (11), the
number of candidates for the 48-bit key is reduced from 248 to 232 on average.

14 N. Shibayama and Y. Igarashi

In a similar manner, we need 4 (> � 48
16�) sets of 16-th order differential with

different X1 with 4 ·216 = 218 chosen plaintexts in order to identify the true key.
Next, we evaluate the computational complexity for the key recovery attack

to 8-round modified LCB. Because the procedure which required the most com-
putational complexity is to identify the 48-bit key by solving Eq. (11), other
computational complexities are negligible smaller than this, and are omitted.
Therefore, the computational complexity T is as follows.

T = T1 + T2 ≈ T2 ≈ 264 (S-box),
T1 = 218,
T2 = 28(232 + 28(228 + 28(224 + 28(220 + 216 · 216)))),

where T1 is the computational complexity of 4 sets of 16-th order differential, T2

is the computational complexity required to determine the key is T2 ≈ 264 times
of S-box operation. Because the 8-round modified LCB consists of 64 (= 8 × 8)
S-boxes, this computational complexity is equivalent to 264/64 = 258 times of
encryption operation.

7 Conclusion

We have studied a higher order differential of LCB. By focusing on the structure
of LCB, we found the full-round characteristics of LCB using 1-st order differ-
ential. If we use it, it is possible to apply the distinguishing attack to full-round
LCB with 2 blocks of chosen plaintext. Then, we also showed an equivalent LCB
and described the all key recovery for full-round LCB with only 1 block of known
plaintext. Furthermore, we tried to improve the round function of LCB. By the
computer experiments, we discovered that there was 5-round characteristic of
modified LCB using 16-th order differentials. Then, by using this characteristic
and the partial sum technique, it is possible to apply the higher order differ-
ential attack to 8-round modified LCB with 218 blocks of chosen plaintext and
258 times of encryption operation. Thus, we think that modified LCB is secure
against higher order differential attack shown in this paper.

Our future work is to improve the key scheduling function and to set the
number rounds with enough security margin.

References

1. Roy, S., Roy, S., Biswas, A., Baishnab, K.L.: LCB: light cipher block an ultrafast
lightweight block cipher for resource constrained IOT security applications. KSII
Trans. Internet Inf. Syst. 15(11), 4122–4144 (2021)

2. Chan, Y.Y., Khor, C.-Y., Teh, J.S., Teng, W.J., Jamil, N.: Differential cryptanalysis
of lightweight block ciphers SLIM and LCB. In: Chen, J., He, D., Lu, R. (eds.) EISA
2022. CCIS, vol. 1641, pp. 55–67. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-23098-1_4

3. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography, pp. 227–233. Kluwer Academic Publishers (1994)

https://doi.org/10.1007/978-3-031-23098-1_4
https://doi.org/10.1007/978-3-031-23098-1_4

A New Higher Order Differential of LCB 15

4. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive comput-
ing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
34961-4_14

5. Ferguson, N., et al.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_15

https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/3-540-44706-7_15

Bloomier Filters on 3-Hypergraphs

Hyungrok Jo1(B) and Junji Shikata1,2

1 Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan
{jo-hyungrok-xz,shikata-junji-rb}@ynu.ac.jp

2 Graduate School of Environment and Information Sciences,
Yokohama National University, Yokohama, Japan

Abstract. A Bloom filter, originally proposed by Bloom in 1970, is a
probabilistic data structure used to determine membership in a set with
enduring false positive errors. Due to the trade-off between space effi-
ciency and the probability of false positive errors, Bloom filters have
found numerous applications in network systems and various fields of
information sciences. Chazelle et al. [6] extended this concept to a more
versatile data structure known as the Bloomier filter, capable of encoding
arbitrary functions. With Bloomier filters, it becomes possible to asso-
ciate values with specific elements of the domain, enabling more general-
ized use. In this paper, we propose a variant of Charles and Chellapilla’s
scheme [5] that utilizes minimal perfect hashings. Specifically, instead of
using bipartite random graphs like existing Bloomier filters, we present
a space-efficient Bloomier filter with faster creation time based on an
analysis of 3-hypergraphs, in comparison to previous results.

Keywords: Bloom filter · Bloomier filter · hypergraph

1 Introduction

A Bloom filter is a probabilistic data structure that probabilistically determines
whether a specific element is present or absent in a given set. It was initially
proposed by B. H. Bloom [1] in 1970 and has since become an essential concept
used in network routers, web browsers, databases, and more, to efficiently per-
form data detection within a limited space. In brief, when querying whether an
element belongs to a data structure created using a Bloom filter, it provides an
answer of either “probably positive” or “definitely negative”. “Probably positive”
means that the target element can receive a positive response even if it does not
actually belong to the data structure. On the other hand, a response of “defi-
nitely negative” guarantees that the target element does not belong to the data
structure. This trade-off between reducing memory usage and decreasing search
accuracy aims to achieve space-efficiency. As the number of elements in the set
increases, the probability of “probably positive” errors also increases.

In 2004, Chazelle et al. [6] designed a Bloomier filter, which is an associative
array with a Bloom filter that associates added elements with corresponding

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 16–26, 2024.
https://doi.org/10.1007/978-981-99-8024-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_2&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_2

Bloomier Filters on 3-Hypergraphs 17

values. Similar to the Bloom filter, this data structure is space-efficient but
has a possibility of false positive errors. In the Bloomier filter, a false positive
occurs when a value is returned for a key that is not mapped. However, it will
never return an incorrect value for a mapped key. Their main idea came from
the creation of lossless expander graphs. In 2008, Charles and Chellapilla [5]
improved a construction of Bloomier filter from the creation of minimal perfect
hash function [7].

In this paper, we give a space-efficient Bloomier filter from the creation of
3-hypergraphs. We propose how to create the table for the Bloomier filter by
leveraging the concept of 3-hypergraphs, which play a role in achieving faster
creation. Furthermore, this paper highlights the work of Charles and Chellapilla
in 2008, who enhanced the construction of the Bloomier filter by drawing insights
from minimal perfect hashing. Our contributions further strengthen the effec-
tiveness and practicality of Charles and Chellapilla’s Bloomier filter. The result
contributes to the growing body of knowledge in probabilistic data structures
and expand the range of practical applications for the Bloomier filter. We briefly
provide our contributions comparing the existing results in Table 1. Our proposed
construction is most efficient in storage space, while [6] is best in creation time.

Table 1. Comparisons with the earlier k-bit Bloomier filters. Here, c ą 1, c2 “ 2.1,
c3 “ 1.23, r ě 2, ε, ε′: the probability of an error (ε′ ą ε), and n: the size of D, where
D is the (large) data set.

Bloomier filter Creation time Storing space Query time Evaluation
time

Chazelle et
al. [6]

O(n logn) cnr(log rε´1 ` k) O(1) O(1)

Charles &
Chellapilla [5]

O(c2n) c2n(log ε´1 ` k) O(1) O(1)

Our proposal O(c3n) c3n(log ε′´1 ` k) O(1) O(1)

The paper is organized as follows: In Sect. 2, we give an introductory expla-
nation of the Bloom filter and some definitions and problems of hypergraph for
constructing minimal perfect hash functions. In Sect. 3, we give some brief expo-
sitions of the existing Bloomier filters. In Sect. 4, we propose a 1-bit Bloomier
filters on 3-hypergraphs. Finally, we conclude some remarks and give open prob-
lems in Sect. 6.

2 Preliminaries

2.1 Bloom Filters

Bloom filters are a highly efficient data structure for answering membership
queries in a set, offering a remarkably compact representation. Given a set S Ď
D where D is a large set and |S| “ n, the Bloom filter requires space O(n)
and has the following properties. It can answer membership queries in O(1)

18 H. Jo and J. Shikata

time. However, it has one-sided error: Given x P S, the Bloom filter will always
declare that x belongs to S, but given x P DzS the Bloom filter will, with
high probability, declare that x R S. Their space requirements are significantly
lower than the theoretical lower bounds for error-free data structures. While
they introduce a small probability of false positives (indicating an item is in the
set when it is not), they guarantee no false negatives (correctly identifying items
in the set). Bloom filters find extensive practical applications in scenarios where
storage is limited, and occasional false positives can be tolerated.

Fig. 1. Example of a Bloom filter for synonym discrimination of Jeju Island

Let’s consider a toy example of a Bloom filter shown in Fig. 1. We have con-
structed a 20-bit Bloom filter with memory to discern a synonym for Jeju Island
in South Korea. Assuming all bits in the 20-bit memory are initially set to 0,
we added three words related to Jeju Island, namely Jeju-island, Tamna, and
Samdado, to the data structure S. The process of adding each word to the data
structure S is as follows: From a family of (collision-resistant and efficient) hash
functions that uniformly assign 0s and 1s to the 20-bit memory of S, we select
three distinct hash functions. Each hash function assigns a 1 to the correspond-
ing memory slot for Jeju-island at positions 9, 15, and 19. Similarly, Tamna is
assigned 1 at positions 5, 7, and 18, and Samdado is assigned 1 at positions 0, 5,
and 12. Now, when we search for Jeju-island, Tamna, or Samdado in this memory
table, they will always receive positive responses based on the three designated
hash functions. If we search for the word Guam, which does not belong to S,
each hash function will check the corresponding bits at positions 0, 4, and 15,
and since at position 4 is 0, it will provide a negative response. However, for the
word Hawaii, which also does not belong to S, but has bits assigned to positions
7, 18, and 19, it will erroneously receive a positive response. As such, while a
Bloom filter exhibits the mentioned inaccuracies in positive responses, negative
responses guarantee a definite absence.

Bloomier Filters on 3-Hypergraphs 19

2.2 Hypergraph

For a usage of (minimal perfect) hash functions, we give some preliminaries of
hypergraphs, which is a basic structure of perfect hash function. Please see [8]
and [11] for details. We define a r-hypergraph as follows:

Let G(V,E) be a r-hypergraph with a vertex set V and an edge set E Ď
(

V
r

)
,

the set of r-subsets of V . The k-core of a hypergraph is its maximal induced
subgraph having degree at least k. Now we consider some problems for con-
structing a minimal perfect hash function from m keys into an r-hypergraph
with m edges and n vertices. We omit the specific explanation of a minimal
perfect hash function. However, it is necessary to consider a problem that the
edges of the r-hypergraph must be independent.

Problem 1. For a given r-hypergraph G “ (V,E), |E| “ m, |V | “ n, where each
e P E is an r-subset of V , find a function g : V Ñ [0, . . . , m ´ 1] such that the
function h : E Ñ [0, . . . , m ´ 1] defined as

h(e “ {v1, v2, . . . , vr} P E) “ (g(v1) ` g(v2) ` · · · ` g(vr)) (mod m)

is a bijection.

Actually, this problem above does not give the existence of a solution for arbi-
trary graphs. If the graph G is an acyclic graph, a simple procedure can be used
to find values for each vertex. In order to a high probability of constructing a
r-hypergraph with independent edges, it is common to use very sparse graphs.
So we choose n “ cm, where c is some constant. If c “ cr, it means the constant
depending on the cardinality r. As we can see in [11], if n “ cm holds with c ą 2,
then the probability p such that G has independent edges, is close to

p “ e1{c
√

c ´ 2
c

(1)

for n Ñ ∞. When c ď 2.09, be (1), we can calculate the expected number of
times to re-generate the graph until getting an acyclic graph (i.e. a graph is
acyclic is equivalent to a graph has independent edges.), which is less than 3
times.

On the other hand, in a case of r-hypergraphs for r ą 2, we know that
there exists a constant cr depending on r such that if m ď crn the probability
that a random r-hypergraph has independent edges tends to 1. Specifically, the
values are known as c2 “ 2.1, c3 “ 1.23, c4 “ 1.29, and c5 “ 1.41 in [11]. Since cr

affects the size of vertex set when constructing a table in Bloomier filters, we can
say that c3 seems to be good to choose. In a sense of space-efficiency, there is a
trade-off between the cardinality r of each edge of hypergraphs and the accuracy
(false positive) of Bloomier filters. If r is increasing, then the probability of false
positive r

m for some integer m. However, when r is small enough (r “ 2 or 3), it
is negligible by choosing large enough m. Moreover, the size of the table depends
on the size of the vertex set (i.e. crn, where n is the size of the large data set
D). Since the constants c4 and c5 are bigger than c3, there are no benefits on
both sides of above.

20 H. Jo and J. Shikata

3 The Existing Bloomier Filters

3.1 Chazelle et al. [6]

Given a set S Ď D where D is a large set with |S| “ n and a function f : S Ñ
{0, 1}k, a Bloomier filter is a data structure that supports queries to the function
value. Given x P S, it always outputs the correct value f(x) and if x P DzS with
high probability it outputs ‘K’, a symbol not in the range of f .

While the traditional Bloom filter enables membership queries on a set,
Chazelle et al. [6] extend this concept to a more versatile data structure known as
the Bloomier filter, capable of encoding arbitrary functions. With Bloomier fil-
ters, it becomes possible to associate values with specific elements of the domain,
allowing for a more generalized use. This approach excels in scenarios where
the function is defined over a small subset of the domain, a common occur-
rence in many applications. Bloomier filters find utility in constructing meta-
databases, specifically directories that encompass a consolidated set of small-scale
databases. By utilizing Bloomier filters, information about the database contain-
ing each entry is efficiently maintained. This enables users to swiftly navigate
to the pertinent databases while bypassing those that hold no connection to the
specified entry.

We describe the original idea of the Bloomier filter as the pair of the Bloom
filters A and B. First, consider an associative array with possible values of 1 and
2 only. We create two Bloom filters, A and B. Register keys with a value of 1
in A and words with a value of 2 in B. When seeking the corresponding value
for a key, both filters are referenced. If the key does not exist in either filter, it
means there is no corresponding value for that key. If a key is present in A but
not in B, it can be said with high probability that the corresponding value is
not 2 but 1. Conversely, if a key is present in B but not in A, it can be said
with high probability that the corresponding value is not 1 but 2. A problem
arises when false positives occur in the Bloom filter, and both filters indicate
the presence of a key. Since it is an associative array, the same key is not added
to both Bloom filters. However, it is not possible to determine which filter is
providing false information. To address this, create two additional small filters,
A1 and B1. Register keys in A1 that result in false positives in B for a value of 1,
and register keys in B1 that result in false positives in A for a value of 1. Then,
verify the keys that are said to be present in both A and B using A1 and B1.
However, there is still a possibility of false positives at this stage. To address this,
apply the same solution recursively. Since the pairs of filters are mapped to one
side of the higher-level pair and result in false positives on the other side, only
register the keys that need to be added. As the process continues, the number
of keys to be registered dramatically decreases, reaching a point where it can
fit into a deterministic data structure. The number of times the filter hierarchy
needs to be traversed is very small, resulting in overall search time in linear time.
Furthermore, most of the required space is taken up by the initial filter pairs
and is unrelated to n. So far, the data structure and search algorithm have been
provided. The method for storing new key-value pairs is as follows. In this case,

Bloomier Filters on 3-Hypergraphs 21

the program must never set both values for the same key. If the value is 1, add
the key to A and check if it also has the key in B (returning a false positive). If
B returns a false positive, add the key to the next level, A1, and continue the
process. Once the final level is reached, simply insert the key. Alternatively, if
the value is 2, perform the same operation by swapping A and B.

3.2 Charles and Chellapilla [5]

The main part of the Bloomier filter by Charles and Chellapilla [5] is constructing
the table using minimal perfect hash function [7]. Especially, the case when r “ 2,
(c2 ≈ 2.1 in [11]), it has to do at least 3 trials to generate an acyclic graph.

Algorithm 1. Generate table g on random acyclic graphs
Input: A set S Ď D and a function f : S Ñ {0, 1}, c2 :“ 2.1, and an integer m ě 2.
Output: Table g and hash functions h1, h2, h3 such that ∀s P S : g[h1(s)]` g[h2(s)]`

h3(s) ” f(s) (mod m).
1: Let V “ {0, 1, . . . , �c2n� ´ 1}.
2: repeat
3: Generate h1, h2 : D Ñ V where hi are chosen independently from H – a family

of hash functions; Let E “ {(h1(s), h2(s)) | s P S}.
4: until G(V, E) is a simple acyclic graph.
5: Let h3 : D Ñ Z{mZ be a third independently hash function from H.
6: for all T - a connected component of G(V, E) do
7: Choose a vertex v P T whose degree is non-zero.
8: F ← {v}; g[v] ← 0.
9: while F �“ T do

10: Let C be the set of vertices in T zF adjacent to vertices in F .
11: for all w “ hi(s) do
12: g[w] ← f(s) ´ g[h3´i(s)] ´ h3(s) (mod m).
13: end for
14: F ← F ∪ C.
15: end while
16: end for

A table function g : V Ñ {0, 1} is defined as for every x P S, the equation
f(x) ” g(h1(x)) ` g(h2(x)) (mod 2) holds, where h1, h2 : D Ñ V . The values
g(v) P {0, 1} for v P V are stored in the table. To evaluate the function f for a
given x, we compute the values of h1(x) and h2(x), and then sum up the values
stored in the table g at these two indices, considering the result modulo 2. Then,
it can be extended the method to encode the function f̃ : D Ñ {0, 1, K}, where
f̃ agrees with f on the set S, but assigns the value K with high probability
on the DzS. For achieving this, the same construction of a bipartite random
graph G(V,E) is established along with a mapping from S to E using two hash
functions h1 and h2. Let m ě 2 be an integer and h3 : D Ñ Z{mZ be another

22 H. Jo and J. Shikata

independent hash function. We can solve a function g : V Ñ Z{mZ such that
the equations

f(x) ” g(h1(x)) ` g(h2(x)) ` h3(x) (mod m)

holds for each x P S.
As the graph G is acyclic, it could be solved these equations efficiently using

back-substitution. To evaluate the function f at x we compute one of hash
functions among h1, h2 and h3 and then compute g(h1(x)) ` g(h2(x)) ` h3(x)
(mod m). If the computed value is either 0 or 1, output it. Otherwise, we output
the symbol K. It can be checked in Algorithm 2. Here, it can be known

PrxPDzS [g(h1(x)) ` g(h2(x)) ` h3(x) P {0, 1}] “ 2
m

.

4 Our Proposals

We only construct a 1-bit Bloomier filter based on Charles and Chellapilla’s
scheme [5]. The consecutive constructions of general k-bit Bloomier filters and
mutable Bloomier filters are omitted and supposed to be constructed in a similar
way of [5]. The response set is usually {0, 1} for the existing schemes. It allows
constructing a bipartite random graph, which has a left set for 0 and a right
set for 1. The analysis on these Bloom filters is working on these a bipartite
random graph, which is also related to lossless expander graph. Please refer to
[2,3,7,10–12] and [13] for details.

In our case, we generalize these approaches to random r-hypergraphs for
some integer r. When r “ 2, it is already discussed in [5] and [6]. If r ą 2, the
response set becomes larger as {0, 1, . . . , r ´1}. The number of Bloom filters are
increasing, but the depth of additional small filters are dramatically decreasing.
As argued at the latter of Sect. 2.2, a main target to construct a Bloomier filter
is when given a set S of n elements and a function f : S Ñ {0, 1, 2}, encode
f into a space efficient data structure that allows fast access to the values of f
starting with the triple of the Bloom filters. (i.e. the case when r “ 3). Moreover,
it should have a compact encoding of the function f̃ : D Ñ {0, 1, 2, K}, where
f |S “ f and f(x) “ K with high probability if x R S. Here, the ultimate goal is
to construct an efficient Bloomier filter when D is much larger than S, which is
not obvious.

Our construction is also from the creation of minimal perfect hash function [7]
as Charles and Chellapilla’s scheme but not a bipartite random graph, a random
3-hypergraph G(V,E). We map a set S on the edges of G(V,E) as follows:

Let h1, h2, h3 : D Ñ V and h4 : D Ñ R be hash functions compressing from
D to V , respectively. For each x P S, we make an edge e “ (h1(x), h2(x), h3(x))
and let E be the set of all edges such an e, which gives the fact that |E| “ |S| “ n.
Since the argument of an acyclic property of obtained graphs in [5], we remark
that it has the condition of c ą 2, where c is the constant of satisfying |V | ď c|S|.
It is also mentioned that if G(V,E) is a random graph with c ą 2, then the graph

Bloomier Filters on 3-Hypergraphs 23

is acyclic, with probability e1{c√(c ´ 2){c as mentioned in (1). In our case, it is
enough to fix the c3 “ 1.23. Then, we can guarantee that our graph is acyclic
without the re-generating procedure (i.e. the probability of generating acyclic
graph is 1).

Algorithm 2. Generate table g on 3-hypergraph
Input: A set S Ď D and a function f : S Ñ {0, 1, 2}, c3 :“ 1.23 and an integer m ě 3.
Output: Table g and hash functions h1, h2, h3, h4 such that ∀s P S : g[h1(s)] `

g[h2(s)] ` g[h3(s)] ` h4(s) ” f(s) (mod m).
Let V “ {0, 1, . . . , �c3n� ´ 1}.
Generate h1, h2, h3 : D Ñ V where hi are chosen independently from H – a family
of hash functions; Let E “ {(h1(s), h2(s), h3(s)) | s P S}.
Then G(V, E) is an acyclic graph.
Let h4 : D Ñ Z{mZ be a third independently hash function from H.
for all T - a connected component of G(V, E) do

Choose a vertex v P T whose degree is non-zero.
F ← {v}; g[v] ← 0.
while F �“ T do

Let C be the set of vertices in T zF adjacent to vertices in F .
for all w “ hi (mod 3)(s) do

g[w] ← f(s) ´ g[hi`1 (mod 3)(s)] ´ g[hi`2 (mod 3)(s)] ´ h4(s) (mod m).
end for
F ← F ∪ C.

end while
end for

Mapping to a Table. Let us define a table function g : V Ñ {0, 1, 2} such that
for every x P S, the equation f(x) ” g(h1(x)) ` g(h2(x)) ` g(h3(x)) (mod 3)
holds. The values g(v) P {0, 1, 2} for v P V are stored in the table. To evaluate the
function f for a given x, we compute the values of h1(x), h2(x) and h3(x), and
then sum up the values stored in the table g at these three indices, considering
the result modulo 3. We now extend this method to encode the function f̃ : D Ñ
{0, 1, 2, K}, where f̃ agrees with f on the set S, but assigns the value K with
high probability on the DzS.

To achieve this, we employ the same construction of a bipartite random graph
G(V,E), along with a mapping from S to E using three hash functions h1, h2

and h3. Let m ě 3 be an integer and h4 : D Ñ Z{mZ be another independent
hash function. We solve for a function g : V Ñ Z{mZ such that the equations

f(x) ” g(h1(x)) ` g(h2(x)) ` g(h3(x)) ` h4(x) (mod m)

holds for each x P S.
We always have that G is acyclic, we can solve these equations efficiently

using back-substitution. To evaluate the function f at x we compute one of hash
functions among h1, h2, h3 and h4 and then compute g(h1(x)) ` g(h2(x)) `

24 H. Jo and J. Shikata

g(h3(x)) ` h4(x) (mod m). If the computed value is one of {0, 1, 2} we output
it. Otherwise, we output the symbol K. It can be checked in Algorithm 2. Here,
we know that

PrxPDzS [g(h1(x)) ` g(h2(x)) ` g(h3(x)) ` h4(x) P {0, 1, 2}] “ 3
m

.

Then, we summarize the properties of 1-bit Bloomier filters as below:
Fix c3 “ 1.23 and let m ě 3 be an integer, the algorithms described above

(Algorithm 2) implement a Bloomier filter for storing the function f̃ : D Ñ
{0, 1, 2, K} and the following properties:

1. The expected time for creation of the Bloomier filter is O(n).
2. The space used in �c3n��logm� bits, where n “ |S|.
3. Computing the value of the Bloomier filter at x P D requires O(1) time (4

hash function computations and 3 memory look-ups).
4. Given x P S, it outputs the correct value of f(x).
5. Given x R S, it outputs K with probability 1 ´ 3

m .

5 Further Discussion

In the works of Chazelle et al. [6] and of Charles and Chellapilla [5], it can be
said that they used lossless expander graph for constructing a table. Please refer
to [4,12] and [13] for details. Especially, there is a famous problem in an area of
lossless expander graph, which is called Densest Subgraph Problem.

Definition 1 (Densest Subgraph Problem). Let G “ (V,E) be an undi-
rected graph, and let S “ (VS , ES) be a subgraph of G. Here, the density of S is
defined to be den(S) “ ES

VS
. The densest sub-graph problem is to find S such that

it maximizes den(S). We denote the maximum density by Den(G).

In 1984, against the above densest subgraph problem, Goldberg [9] proposed a
polynomial time algorithm to find the densest subgraph S whose den(S) is maxi-
mized. The running time of the Goldberg’s algorithm is O(|V ||E| log |V | log |E|).
Xie et al. [13] pointed out the connection between the densest subgraph and the
lossless expander graphs. By utilizing the Goldberg’s algorithm to exclude the
non-expanding graphs, it might be possible to create the table of the Bloomier
filters more efficiently.

6 Conclusion

Our proposal formalized the case of a 1-bit Bloomier filter. It is necessary to
generalize the case of k-bit Bloomier filter, even though it is a quite natural to
follow the way of [5]. As mentioned in [5], the efficiency could be earned when
we apply the bucketing technique to the suggested algorithm. It is necessary to
check if it is applicable. We expect that the properties of the Bloomier filter in
a similar way of Charles and Chellapilla, as below: For ε ą 0 and δ ě 4, s ě 2

Bloomier Filters on 3-Hypergraphs 25

an integer, let S Ď D, |S| “ n and m, k be positive integers such that m ě k.
Given f : S Ñ {0, 1, 2}k, k-bit Bloomier filter is expected to have the following
properties

1. The expected time to create the Bloomier Filter is nearly Õ(n ` mδ).
2. Computing the value of the Bloomier filter at x P D requires O(1) hash

function evaluations and O(1) memory look-ups.
3. If x R S, it outputs K with probability 1 “ O(ε´13k´m).

As a result, we propose a method to construct the Bloomier filter with
improved creation time and storage space compared to existing results, by lever-
aging the concept of 3-hypergraphs with the optimal constant c3 “ 1.23.

Acknowledgements. This research was in part conducted under a contract of
“Research and development on new generation cryptography for secure wireless com-
munication services” among “Research and Development for Expansion of Radio Wave
Resources (JPJ000254)”, which was supported by the Ministry of Internal Affairs and
Communications, Japan. This work was in part supported by JSPS KAKENHI Grant
Number JP22K19773.

References

1. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

2. Botelho, F.C., Pagh, R., Ziviani, N.: Practical perfect hashing in nearly optimal
space. Inf. Syst. 38(1), 108–131 (2013)

3. Belazzougui, D., Venturini, R.: Compressed static functions with applications. In:
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 229–240. Society for Industrial and Applied Mathematics (2013)

4. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conduc-
tors and constant-degree lossless expanders. In: Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing, pp. 659–668 (2002)

5. Charles, D., Chellapilla, K.: Bloomier filters: a second look. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 259–270. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87744-8_22

6. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient
data structure for static support lookup tables. In: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 30–39 (2004)

7. Czech, Z.J., Havas, G., Majewski, B.S.: An optimal algorithm for generating min-
imal perfect hash functions. Inf. Process. Lett. 43(5), 257–264 (1992)

8. Duke, R.: Types of cycles in hypergraphs. In: North-Holland Mathematics Studies,
vol. 115, pp. 399-417. North-Holland (1985)

9. Goldberg, A.V.: Finding a maximum density subgraph. University of California
Berkeley (1984)

10. Genuzio, M., Ottaviano, G., Vigna, S.: Fast scalable construction of (minimal per-
fect hash) functions. In: Goldberg, A.V., Kulikov, A.S. (eds.) SEA 2016. LNCS,
vol. 9685, pp. 339–352. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
38851-9_23

https://doi.org/10.1007/978-3-540-87744-8_22
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1007/978-3-319-38851-9_23

26 H. Jo and J. Shikata

11. Havas, G., Majewski, B.S., Wormald, N.C., Czech, Z.J.: Graphs, hypergraphs and
hashing. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 153–165. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-57899-4_49

12. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theory 42(6), 1723–1731 (1996)

13. Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time.
In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp.
299–328. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_11

https://doi.org/10.1007/3-540-57899-4_49
https://doi.org/10.1007/978-3-031-15985-5_11

Principal Component Analysis
over the Boolean Circuit Within TFHE

Scheme

Hyun Jung Doh1, Joon Soo Yoo2, Mi Yeon Hong2, Kang Hoon Lee2,
Tae Min Ahn2, and Ji Won Yoon2(B)

1 Department of Mathematics, Korea University, Seoul, Republic of Korea
smarthammer@naver.com

2 School of Cybersecurity and Institute of Cybersecurity and Privacy (ICSP), Korea
University, Seoul, Republic of Korea

{sandiegojs,hachikohmy,hoot55,xoals3563,jiwon yoon}@korea.ac.kr

Abstract. In today’s information-driven world, the need to protect per-
sonal data while maintaining efficient data processing capabilities is cru-
cial. Homomorphic Encryption (HE) has emerged as a potential solution,
allowing secure processing of encrypted information without compromis-
ing privacy. However, current HE schemes suffer from slow processing
speeds, especially when dealing with high-dimensional data. This paper
focuses on leveraging the PCA technique within the Fast Fully Homomor-
phic Encryption over the Torus (TFHE) scheme to optimize the speed
of subsequent algorithms. TFHE offers the advantage of enabling the
homomorphic implementation of any circuit but suffers from extensive
execution time. We present tailored PCA algorithms for TFHE, utiliz-
ing the power method and eigen-shift techniques to extract eigenvalues
and eigenvectors. These techniques provide efficient solutions for per-
forming PCA computations within the TFHE framework. By designing
a dedicated PCA circuit using TFHE’s fundamental homomorphic gates,
we achieve efficient evaluation times for PCA. The performance analysis
shows execution times of 3.42 h for a 16-bit dataset and 12.22 h for a
32-bit dataset, with potential for further improvement.

Keywords: Homomorphic Encryption · TFHE · Principal Component
Analysis

1 Introduction

In the present era, individuals enjoy convenient and unrestricted access to vast
amounts of information, facilitated by seamless information exchange and effi-
cient online processing capabilities. However, this convenience gives rise to con-
cerns regarding the vulnerability of important personal information. Conse-
quently, the protection and security of personal data assume paramount impor-
tance, with homomorphic encryption emerging as a potential solution.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 27–39, 2024.
https://doi.org/10.1007/978-981-99-8024-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_3&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_3

28 H. J. Doh et al.

Homomorphic Encryption (HE) technology offers a distinctive advantage by
enabling the processing of information in an encrypted form. Users of this tech-
nology can obtain desired information while preventing the processing institution
from accessing personal details. The development and implementation of homo-
morphic encryption hold the potential to alleviate concerns related to privacy
rights infringement, thereby enabling individuals to entrust their information
with greater confidence and security.

Nevertheless, the existing homomorphic encryption technology suffers from
the drawback of slow processing speed, posing challenges when dealing with
high-dimensional information. As the dimensionality of the data increases, the
current encryption schemes encounter difficulties in effectively addressing this
issue. To overcome this limitation, Principal Component Analysis (PCA) [1] is a
statistical methodology capable of reducing the dimensionality of a data matrix.
By leveraging PCA, it becomes possible to condense the information into a
lower-dimensional space, retaining only the crucial components. This enables
the efficient processing of large-dimensional data even within the context of
homomorphic encryption.

This paper focuses on leveraging the PCA technique within HE to optimize
the speed of subsequent algorithms. To achieve this, we employ the Fast Fully
Homomorphic Encryption over the Torus (TFHE) [2] encryption scheme, which
is renowned for its Boolean evaluation capabilities. TFHE’s distinctive advan-
tage lies in its ability to enable the homomorphic implementation of any circuit
through its bootstrapping technique. However, a notable drawback of TFHE is
its extensive execution time, which adversely affects performance in terms of
speed. Therefore, it is crucial to address this issue in the early stages of the
TFHE encryption scheme, particularly for subsequent algorithms like statistical
analysis, machine learning, and deep learning.

To implement the PCA technique, we design a dedicated PCA circuit utilizing
fundamental homomorphic gates—AND, OR, and XOR—provided by the TFHE
library. Notably, the total evaluation time for the PCA algorithm is measured
to be 3.42 h for a 16-bit dataset and 12.22 h for a 32-bit dataset, both using a
matrix size of 10 by 10. Although the execution time for PCA is considerable,
it is important to highlight that subsequent algorithms can greatly benefit from
its application once the cloud evaluates the PCA algorithm. Furthermore, to
address the limitations of our small dataset, we provide the time complexity of
the PCA algorithm as an estimation for larger or real datasets.

Moreover, we present PCA algorithms specifically designed for TFHE, tak-
ing into account its unique characteristics. In the context of TFHE, conventional
techniques such as the Gaussian elimination trick are not employed for finding
the inverse matrix in the encrypted domain. Instead, we propose an alterna-
tive approach that leverages the power method and eigen-shift techniques to
accurately extract eigenvalues and eigenvectors. This method proves to be more
appropriate and efficient for performing PCA computations within the TFHE
framework.

Principal Component Analysis over the Boolean Circuit 29

This paper introduces the PCA technique to the TFHE scheme, address-
ing the time-consuming nature of multi-dimensional data analysis with Boolean
evaluation. We also propose a more suitable method for the PCA algorithm
in the encrypted domain. Furthermore, we conduct timing analysis of PCA
implemented using the TFHE scheme. By utilizing the dimensionality reduc-
tion capabilities of PCA, TFHE enables advanced machine learning techniques
while ensuring the security and privacy guarantees. This synergistic combination
of PCA and TFHE presents promising opportunities for unlocking secure and
privacy-preserving data analysis.

2 Background

2.1 Homomorphic Encryption (HE)

Rivest et al. [3] first introduce the concept of HE in 1978. HE encompasses
four distinct types of schemes with varying capabilities. Partially Homomorphic
Encryption (PHE) permits either repeated addition [4,5] or multiplication [6–
8] operations, while Somewhat Homomorphic Encryption (SHE) [9,10] enables
both addition and multiplication operations. However, SHE has a limitation on
the number of times these operations can be performed. Leveled Homomorphic
Encryptions (LHE) provide the capability to perform computations on encrypted
data using circuits with bounded depths on ciphertexts. Fully Homomorphic
Encryption (FHE) represents an enhanced variant of LHE that incorporates the
bootstrapping technique, enabling unrestricted computations on encrypted data.
Notable schemes within the domain of FHE include BFV [11], CKKS [12], and
the primary focus of our discussion, TFHE. The term “fully” implies that an
unrestricted number of addition and multiplication operations can be performed,
encompassing any function.

Characteristics of TFHE. TFHE exhibits a unique feature wherein plaintext
data is encoded using bits, and computations are carried out using a Boolean
circuit. When homomorphic operations are performed on ciphertext, noise accu-
mulates due to the computational processes. If the noise level becomes excessive,
decryption may become problematic. To address this challenge, TFHE incorpo-
rates bootstrapping technology, which facilitates noise reduction. As a result,
TFHE enables the decoding of information without significant interference from
noise, even when operations are repeatedly applied within arbitrary functions.

Handling Real Numbers in TFHE: Encoding and Decoding Process.
In TFHE, when a real number is provided as an input value, it undergoes a spe-
cific encoding mechanism. The plaintext representation within TFHE employs
an int32 format, with a fixed bit length of 32. Consequently, only the integer
component of the input value is recognized during the encryption process, while
the fractional portion, denoted by the decimal point, is excluded.

To address this limitation and enable the expression of both the opera-
tions and results as real numbers, we propose a practical and efficient privacy-
preserving PCA method. During the encryption process, the input value is mul-
tiplied by 2length/2 where length refers to the bit length, effectively scaling the

30 H. J. Doh et al.

value. Subsequently, after decryption, the output is divided by 2length/2 to restore
the original real number representation. This procedure ensures that the homo-
morphic operations are performed on appropriately scaled values, allowing for
the accurate handling of real numbers throughout the encryption and decryption
processes.

2.2 Principal Component Analysis (PCA)

A Statistical Approach for Dimensionality Reduction. PCA stands as one
of the widely adopted techniques for dimensionality reduction in machine learn-
ing. It is a statistical method that explores the primary components within data
distributions. When high-dimensional data is provided as input, PCA transforms
it into lower-dimensional data as output. The critical objective lies in reducing
the dimensionality while preserving the inherent structure of the original data
to the greatest extent possible.

To obtain the principal components of the original input matrix, the eigen-
value, and its corresponding eigenvectors are initially computed. The eigenvec-
tors are then arranged in descending order based on the magnitude of their
corresponding eigenvalues. Subsequently, to achieve a dimension reduction to d,
a reduced basis matrix is derived by selecting d eigenvectors in the prescribed
order. This reduced basis matrix serves as the foundation for obtaining a matrix
with reduced dimensions, effectively concluding the PCA procedure.

3 Related Work

PCA Within CKKS Scheme. A work by Panda et al. [13] adopted a CKKS
scheme that supports the approximate computation on complex numbers by
power method. This approach allows vector normalization to be performed using
an iterative algorithm of the inverse square root function. However, since the
CKKS scheme supports approximate arithmetic over encrypted data, the more
homomorphic operation, the accuracy is constrained. Furthermore, the power
method in their work is done by iterative computing, rather than directly com-
puting the covariance matrix transformation. This makes the complexity of the
power method dependent on the size of the dataset rather than the size of the
covariance matrix, thus, the performance is constrained.

4 Our Model

Our proposed model involves a non-interactive two-party computation scenario,
where the client transmits encrypted data to the server for evaluation using the
Boolean-based TFHE scheme. During the evaluation phase, all data undergo
encryption to ensure confidentiality through the security guarantees provided
by the hardness of Learning with Errors (LWE) [14] assumption. The protocol
operates as follows (Fig. 1):

Principal Component Analysis over the Boolean Circuit 31

Fig. 1. An overview of our model. The model assumes two-party computation over
the TFHE scheme. The server evaluates the PCA algorithm over the encrypted data
matrix.

Client. The client encodes the data with a chosen precision (16 or 32-bit) and
proceeds to encrypt the data bit by bit, resulting in an LWE ciphertext. The
encrypted data is then sent to the server.

Server. The server performs the PCA algorithm on the provided LWE cipher-
text using the following steps:

1. Calculation of the mean of the data and centering the data matrix.
2. Computation of the covariance of the centered data.
3. Evaluation of eigenvalues and eigenvectors using the power method and eigen-

shift techniques.
4. Extraction of the dominant eigenvector and deflation of the data matrix.
5. Construction of the reduced basis matrix and the reduced data matrix.
6. Finally, the server sends the resulting processed data back to the client.

Client. The client decrypts and decodes the received result for further analysis
or utilization.

5 PCA over the TFHE Scheme

5.1 Dominant Eigenvector

The primary objective of our research is to derive a reduced matrix possess-
ing diminished dimensions from the original high-dimensional data matrix. To

32 H. J. Doh et al.

accomplish this, the initial step entails acquiring a reduced basis matrix, com-
prising a carefully chosen subset of d eigenvectors. In conventional scenarios, the
computation and solution of equations facilitate the determination of eigenvec-
tors and eigenvalues. However, within the context of TFHE, equation solving
is unattainable without knowledge of the actual numerical values due to the
encryption of numbers. Consequently, an alternative approach known as the
power method was employed to extract the dominant eigenvector in TFHE.

Power Method. The power method represents an iterative technique employed
to approximate the dominant eigenvector by performing consecutive matrix mul-
tiplications. First, an initial vector x0, is utilized, along with the matrix A. Upon
the first iteration, the vector x1 is obtained by multiplying A with x0. Subse-
quently, the vector x2 is computed as x2 = Ax1 = A2x0, wherein A is multiplied
by x1 once more. This process can be further extended, enabling the derivation
of vector value xk at the k-th iteration, calculated as xk = Akx0. Notably, if k
is sufficiently large, the vector value xk serves as an approximation of the dom-
inant eigenvector of matrix A. This iterative approach allows for the gradual
refinement of the eigenvector estimation.

Algorithm 1. Dominant Eigenvector Algorithm
1: procedure Domeigenvector(A, I) � N -by-N Matrix A, iteration I
2: for i = 0, · · · , N − 1 do
3: Zi ← ∑N−1

j=0 Aij

4: end for
5: v ← 1

‖Z‖∞
Z

6: for i = 0, · · · , I − 2 do
7: Z ← A · v
8: v ← 1

‖Z‖∞
Z

9: end for
10: return v � v : Dominant eigenvector
11: end procedure

Algorithm 1 is an iterative method for acquiring a dominant eigenvector.
This procedure involves conducting I iterations of computations on matrix A
to determine the dominant eigenvector. In line 3 of the algorithm, all compo-
nents of the initial eigenvector, referred to as x0, are uniformly initialized to a
value of 1. Subsequently, the vector x1 is obtained by performing matrix mul-
tiplication between matrix A and vector x0. Given that each component in x0

is uniformly set to 1, the i-th component in x1 is calculated as the sum of all
components within the i-th row of matrix A. It is worth noting that, within the
context of homomorphic operations, addition operations are known to exhibit
greater efficiency than multiplication operations, thereby influencing our chosen
implementation strategy.

Principal Component Analysis over the Boolean Circuit 33

Given the constrained numerical range of values that can be represented
within encrypted numbers, it becomes necessary to devise a strategy aimed at
mitigating the numerical magnitude of the matrix resulting from the multiplica-
tion of matrix A and vector v (lines 5 and 8). To achieve this, all components of
vector Z are divided by the maximum value observed among its constituent ele-
ments. This optimization approach serves the purpose of diminishing the overall
size of the resultant matrix, thereby facilitating subsequent computational pro-
cedures.

5.2 Eigen Shift Procedure

The reduced basis matrix is composed of d eigenvectors, specifically those that
correspond to eigenvalues arranged in descending order starting from the largest
value. Within the TFHE framework, prioritizing time efficiency, it is advanta-
geous to sequentially select d dominant eigenvectors rather than computing all
eigenvectors and subsequently selecting from the computed set. To fulfill this
objective, the eigen shift procedure was employed as a viable approach.

Deflated Matrix. After acquiring the dominant eigenvector from matrix A,
the second dominant eigenvector of matrix A can be obtained from the deflated
matrix S. Specifically, the dominant eigenvector within the deflated matrix corre-
sponds to the second dominant eigenvector in matrix A. By iteratively obtaining
the deflated matrix and its dominant eigenvector in this manner, a sequential
set of d dominant eigenvectors can be derived, ultimately resulting in a reduced
basis matrix.

To obtain the deflated matrix, the eigenvector and its corresponding eigen-
value are utilized. Given a vector x that satisfies the condition xTveigen = 1, the
deflated matrix S is obtained by subtracting λeigen · veigenxT from matrix A. To
ensure operational stability, the normalized eigenvector L is employed in place
of the eigenvector as this guarantees LTL = 1.

Eigenvalue. Let v′ represent the dominant eigenvector obtained through I −
1 iterations in matrix S, and let v denote the dominant eigenvector obtained
through I iterations. In conventional approaches, the eigenvalue corresponding
to the dominant eigenvector is determined using the Rayleigh quotient method.
However, in our method, the eigenvalue was computed by dividing the first
component of v′′ = Sv′ = λv′ by the first component of v′, aiming to enhance
computational efficiency. This is justified by the fact that the eigenvalue derived
from any component of the eigenvector is identical, making it more efficient to
obtain it from a single component.

5.3 Details of PCA Algorithm

Algorithm 2 illustrates the comprehensive procedure of PCA within the TFHE
scheme that we provide. We present a detailed line-by-line explanation of the
algorithm, offering insights into its execution as the following:

34 H. J. Doh et al.

Algorithm 2. PCA algorithm
1: procedure PCA(A, I, d) � N -by-M Matrix A, iteration I, dimension d

2: C ← 1
N

∑N−1
i=0 AT

i

3: Z ← A − 1N · CT

4: S ← 1
N ZT · Z � S : covariance matrix of centered data Z

5: for h = 0, · · · , d − 2 do
6: v′ ← Domeigenvector(S, I − 1)
7: v′′ ← S · v′

8: v ← 1
max(|v′′|)v

′′ � eigenvector v

9: Q ← ∑
v2
i

10: L ← 1√
Q

× v � normalized matrix L

11: temp ← v′′
0
v′
0
(L · LT)

12: S ← S − temp � deflated matrix S

13: Bh ← v � h-th column of B = v

14: end for
15: v ← Domeigenvector(S, I) � eigenvector v

16: Bd−1 ← v � reduced basis B

17: return U = AB � U : Reduced Matrix
18: end procedure

– (Lines 2 to 4) The matrix Z represents a centered version of the input data
matrix A, while the matrix S corresponds to the covariance matrix of Z.

– (Lines 6 to 7) The eigenvector denoted as v′ represents the dominant eigenvec-
tor obtained after performing I − 1 iterations on matrix S, while v′′ signifies
the dominant eigenvector obtained by performing one additional iteration
using the product Sv′.

– (Line 11) Subsequently, the eigenvalue is determined by dividing the first
component of the eigenvector v′′ by the corresponding first component of the
eigenvector v′.

– (Line 8) The vector v is obtained by normalizing v′′, dividing it by the max-
imum value among its vector components. It represents the dominant eigen-
vector attained after I iterations in matrix S, which is the desired dominant
eigenvector.

– (Line 13) This computed eigenvector v is then copied into the h-th column
of the reduced basis matrix B.

– (Lines 9 to 12) The deflated matrix S can be obtained by utilizing the nor-
malized eigenvector matrix L derived from the dominant eigenvector v, in
conjunction with the associated eigenvalue. This deflated matrix facilitates
the computation of the subsequent dominant eigenvector.

– (Lines 15 to 16) Finally, the d-th dominant eigenvector is obtained and placed
into the d-th column of matrix B, representing the reduced basis.

Principal Component Analysis over the Boolean Circuit 35

– (Line 17) The reduced matrix U can be attained by performing matrix mul-
tiplication between matrix A and the reduced basis matrix B.

6 Experiment

Environment. Our research was conducted on a system with Intel i7-7700 CPU
working on 3.6 GHz with 8 cores, 48GB RAM, and running Ubuntu 20.04 LTS.
Additionally, we employed version 1.1 of the TFHE library for the implementa-
tion of the PCA algorithm.

Dataset and Parameter. Our dataset comprises 10 randomly generated data
instances, each consisting of 10 features. The small dataset size is a result of the
time-consuming nature of Boolean-based construction.

In our experiments, we set the number of power method iterations to 3 and
extracted 2 dominant eigenvectors. To evaluate time performance, we conducted
measurements using both 16-bit and 32-bit input data encodings.

7 Result

Total Execution Time. The total execution time for PCA is 3.424 h for 16-bit
precision and 12.221 h for 32-bit precision. Note that the total execution time
excludes encryption and decryption time as it is performed from the client side.

Encryption and Decryption Time. The encryption phase (including encod-
ing) involves the conversion of real-valued inputs into ciphertext representation
using a bit format prior to performing PCA. This step was completed rapidly. In
the case of the 16-bit precision, it required 0.0716038 s; for the 32-bit precision,
the encryption process concluded in 0.11249 s.

The decryption (including decoding) involves converting the ciphertext from
its bit format back into real values, producing the resulting decrypted PCA
output. For 16-bit precision, it took 8.0997e−05 s. In the case of 32-bit precision,
the time required was approximately 1.58725e−04 s.

Table 1. Execution Time of PCA within TFHE scheme. The execution time is mea-
sured in hours.

C S v L Bh Bd−1 U Total

16-bit 0.048 1.696 0.410 0.096 0.512 0.410 0.253 3.424
Ratio (%) 1.388 49.540 11.972 2.797 14.953 11.952 7.398 100

32-bit 0.156 5.949 1.474 0.361 1.883 1.476 0.922 12.221
Ratio (%) 1.273 48.683 12.058 2.955 15.404 12.076 7.546 100

36 H. J. Doh et al.

Evaluation Time. The total processing time for the category C in Table 1
amounted to 0.048 h in the case of 16-bit encryption, constituting approximately
1.388% of the overall execution time. Similarly, for the 32-bit encryption scheme,
the total processing time for this step was 0.156 h, accounting for 1.273% of the
total execution time.

S in Table 1 refers to the interval spanning from the computation of matrix
C to the derivation of matrix S, constituting lines 3 and 4 in Algorithm 2.
This phase involves subtracting the matrix C, the average of each row in matrix
A, from A, yielding matrix Z. Subsequently, the transposition of the centered
matrix Z is performed, followed by the operation 1

N ZTZ, resulting in the covari-
ance matrix S of Z. This step takes most of the time since it requires matrix
multiplication taking O(NM2) whereas other steps are linear transformation
with time complexity of O(NM) and inner product with O(M). The total pro-
cessing time for this step amounted to 1.696 h for 16-bit encryption, representing
approximately 49.540% of the overall execution time. For 32-bit encryption, the
total processing time for this step was 5.949 h, accounting for 48.683% of the
total execution time.

v in Table 1 corresponds to lines 6 to 8 in Algorithm 2 and represents the
dominant eigenvector obtained through the I–th iteration of matrix S. The total
processing time for this step was 0.410 h for 16-bit encryption, accounting for
approximately 11.972% of the overall execution time. Similarly, for 32-bit encryp-
tion, the total processing time for this step was 1.474 h, representing 12.058% of
the total execution time.

The category indicated as L in Table 1 corresponds to lines 9 and 10 in
Algorithm 2. Total processing time for this step amounted to 0.096 h for 16-
bit encryption, accounting for approximately 2.797% of the overall execution
time. For 32-bit encryption, the total processing time for this step was 0.361 h,
representing approximately 2.955% of the total execution time.

Bh in Table 1 corresponds to lines 11 to 13 in Algorithm 2. The total pro-
cessing time for this step amounted to 0.512 h for 16-bit encryption, constituting
approximately 14.953% of the overall execution time. Similarly, for 32-bit encryp-
tion, the total processing time for this step was 1.883 h, accounting for 15.404%
of the total execution time.

Bd−1 in Table 1 represent lines 15 and 16 in Algorithm 2. The total processing
time for this step was 0.410 h for 16-bit encryption, representing approximately
11.952% of the overall execution time. For 32-bit encryption, the total processing
time for this step was 1.476 h, accounting for 12.076% of the total execution time.

U in Table 1 corresponds to line 17 in Algorithm 2. The total processing time
for this step amounted to 0.253 h for 16-bit encryption, accounting for approx-
imately 7.398% of the overall execution time. For 32-bit encryption, the total
processing time for this step was 0.922 h, representing approximately 7.546% of
the total execution time.

Principal Component Analysis over the Boolean Circuit 37

8 Discussion and Future Work

8.1 Discussion

Comparative Analysis: Loss of Information in the Encryption-Based
Information Processing of PCA Calculations. A comparative evaluation
was conducted to assess the impact of encrypting input values on the informa-
tion processing performed during PCA calculations. Specifically, the same data
matrix was examined under two conditions: PCA calculation performed in plain
text versus PCA calculation executed with encrypted input values.

The findings reveal that during the process of information processing in
encrypted form, a certain degree of information loss occurs. This loss is attributed
to the precision of the input encoding and the encryption-based operations
employed during PCA calculations. As a result, the transformed data exhibits
variations compared to the original, unencrypted data matrix. This phenomenon
necessitates careful consideration of the potential trade-off between privacy
preservation through encryption and the preservation of information integrity
in the context of PCA calculations.

8.2 Future Work

Improved Computational Efficiency by Modifying Eigenvector Nor-
malization in PCA Algorithm. Within the PCA algorithm, lines 8 and 11
involve the normalization of eigenvectors. It is important to note that while both
normalizations occur, they serve different purposes and adopt different formats.

Line 8 in Algorithm 2 pertains to the derivation of all eigenvectors to be
output. The eigenvector is obtained after I iterations using matrix S. In this
case, to achieve unity, all components of the eigenvector are divided by the
largest component before deriving the result. As a result, the absolute value of
the largest number in the eigenvector becomes 1, while the absolute values of
the remaining components are less than 1. Consequently, the sum of the squares
of these components is greater than 1.

On the other hand, line 11 in Algorithm 2 involves the normalization of
eigenvectors to obtain the deflated matrix. In this step, the goal is to find a
matrix L such that the multiplication of LT and L equals 1. To achieve this,
the eigenvector is divided by the sum of the squares of all its components. As a
result, in this particular case, the absolute value of the largest component is less
than 1, while the sum of the squares of all components equals 1.

It is worth mentioning that if the process in line 8 in Algorithm 2 is eliminated
and only the normalization in lines 9 to 11 is applied to the eigenvectors, it would
lead to a reduction in computational effort and significantly faster execution
of the PCA algorithm. Since multiplication operations in TFHE tend to be
time-consuming, omitting the step of multiplying all (d − 1) eigenvectors by
real numbers can yield substantial time savings. Although the proportionality
uniformity in the derived eigenvectors may be reduced, the resulting values are

38 H. J. Doh et al.

still valid, allowing for the successful acquisition of the reduced matrix even with
the improved execution time.

9 Conclusion

This paper introduces the application of PCA within the TFHE scheme to opti-
mize the execution time of subsequent algorithms. By leveraging the dimen-
sionality reduction capabilities of PCA and designing a dedicated circuit using
TFHE’s homomorphic gates, we address the challenge of slow processing speeds
in high-dimensional data analysis. Additionally, we propose tailored PCA algo-
rithms that utilize the power method and eigen-shift techniques for efficient
computations within the TFHE framework. Future work can explore further
optimizations and applications of PCA within TFHE to enhance its performance
and expand its capabilities.

Acknowledgements. This work was supported by an Institute of Information &
Communications Technology Planning Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2021-0-00558-003, Development of National Statistical Anal-
ysis System using Homomorphic Encryption Technology).

References

1. Abdi, H., Williams, L.: Principal component analysis. Wiley Interdisc. Rev. Com-
put. Stat. 2, 433–459 (2010)

2. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33, 34–91 (2020). https://doi.org/10.
1007/s00145-019-09319-x

3. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

4. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Providing Sound Foundations for Cryp-
tography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 173–201 (2019)

5. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 30

6. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

7. Rivest, R., Adleman, L., Dertouzos, M., et al.: On data banks and privacy homo-
morphisms. Found. Secure Comput. 4, 169–180 (1978)

8. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6, 1–36
(2014)

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/3-540-48910-X_16

Principal Component Analysis over the Boolean Circuit 39

10. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

13. Panda, S.: Principal component analysis using CKKS homomorphic encryption
scheme. Cryptology ePrint Archive (2021)

14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 1–40 (2009)

https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

A Security Analysis on MQ-Sign

Yasuhiko Ikematsu1, Hyungrok Jo2(B), and Takanori Yasuda3

1 Institute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishi-ku,
Fukuoka 819-0395, Japan

ikematsu@imi.kyushu-u.ac.jp
2 Institute of Advanced Sciences, Yokohama National University, 79-7, Tokiwadai,

Hodogaya-ku, Yokohama 240-8501, Japan
jo-hyungrok-xz@ynu.ac.jp

3 Institute for the Advancement of Higher Education, Okayama University of
Science, 1-1, Ridaicho, Kita-ku, Okayama 700-0005, Japan

tyasuda@ous.ac.jp

Abstract. MQ-Sign is a variant of the UOV signature scheme proposed
by Shim et al. It has been suggested as a candidate for the standard-
ization of post-quantum cryptography in Republic of Korea (known as
KpqC). Recently Aulbach et al. proposed a practical key recovery attack
against MQ-Sign-RS and MQ-Sign-SS with a simple secret key S. In this
paper, we propose another attack that is valid for the case of a general
secret key S.

Keywords: Post-quantum cryptography ¨ Multivariate public key
cryptography ¨ KpqC

1 Introduction

Post-Quantum Cryptography (PQC) [2] is a new generation cryptographic sys-
tem that distinguishes itself from conventional cryptographic systems that rely
on the hardness of integer factorization problems, and is globally popular-
ized due to its resistance to attacks by Shor’s quantum algorithm [10]. Cur-
rently, the National Institute of Standards and Technology (NIST) [7] is work-
ing towards the standardization of practical post-quantum cryptography sys-
tems that provide both adequate security and practicality. The ultimate objec-
tive is to promote these cutting-edge cryptographic systems in the near future.
NIST announced the results [8] of its third round of selection in July 2022,
with CRYSTALS-Kyber being chosen for the KEM category, and CRYSTALS-
Dilithium, Falcon, and SPHINCS+ being selected for the signature category.

In February 2022, the Korean Post-Quantum Cryptography Competition
(KpqC, for short)1 was launched in South Korea for the standardization of post-
quantum cryptography. In November 2022, the Round 1 of KpqC was announced,
and 7 candidates (3 Lattice-based, 3 Code-based, and 1 Graph-based) were
1 The Korean Post-Quantum Cryptography Competition, www.kpqc.or.kr.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 40–51, 2024.
https://doi.org/10.1007/978-981-99-8024-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_4&domain=pdf
www.kpqc.or.kr
https://doi.org/10.1007/978-981-99-8024-6_4

A Security Analysis on MQ-Sign 41

selected in the Public Key Encryption/Key-Establishment Algorithms cate-
gory, while 9 candidates (5 Lattice-based, 1 Code-based, 1 Multivariate-based,
1 Isogeny-based, and 1 MPCitH-based) were selected in the Digital Signature
Algorithms category.

In the pursuit of post-quantum digital signature schemes, multivariate cryp-
tography has emerged as a promising candidate. MPKC (Multivariate Public
Key Cryptography) is based on the hardness of the Multivariate Quadratic poly-
nomial problem (MQ problem, for short), which asks to solve a system of multi-
variate quadratic equations over a finite field. MPKC is attractive due to its fast
signature verification and small signature sizes. In particular, UOV [6] and Rain-
bow [5] have been actively researched as leading schemes in the area of MPKC
in recent years. However, it is essential to note that Rainbow scheme [5], which
was a finalist of NIST PQC standardization, has been broken by the attack pro-
posed by Beullens [3]. Therefore, careful selection and analysis of multivariate
signature schemes are necessary to ensure their security in practice.

The MQ-Sign [9] is a UOV-based signature scheme proposed by Shim et al.,
which was submitted to the KpqC competition for the standardization of post-
quantum cryptography in the Republic of Korea. MQ-Sign acquired to reduce
the size of secret key by making the central map of UOV sparse and to improve
signing performance by using the block inversion method. There are 4 types
of MQ-Sign, which are denoted by “MQ-Sign-{R/S}{R/S}” with the suffixes
“R” and “S”. The first slot {R/S} stands for the selection of the Vinegar ˆ
Vinegar quadratic parts using Random polynomials or Sparse polynomials. The
second slot {R/S} stands for the selection of the Oil ˆ Vinegar quadratic parts
using Random polynomials or Sparse polynomials. We note that MQ-Sign-RR
is basically same as the structure of an original UOV scheme. Recently, Aulbach
et al. [1] proposed a practical key recovery attack against MQ-Sign-{R/S}S,
combining the sparsity of the central map with a secret key S having a simple
form. They have checked in [1] that their attack recovered the secret key in a
few second for the proposed parameter of security level 5.

In this paper, we propose another attack against MQ-Sign-{R/S}S which
is valid for the case of a general secret key S. The attack by Aulbach et al. [1]
recovers the secret key by solving a linear system, which is obtained by exploiting
the sparseness of the central map F and assuming that the form of the secret
key S is simple. In contrast, our attack can handle a general secret key S. We
first construct a system of quadratic equations involving the components of S, its
inverse matrix T :“ S´1, and the central map F . To solve this system, we classify
the equations into various subsystems and guess some variables by brute force,
obtaining a system of linear equations. Finally, we recover the secret key S by
solving the linear system in polynomial time. We also provide the experimental
results of our attack, which broke the proposed parameters of security level 1,
3, and 5 in [9] by a usual laptop within about 30min.

This paper is organized as follows. In Sect. 2, we provide the explanation of
the UOV signature scheme and its variant, MQ-Sign(-RS). In Sect. 3, we give
a detailed description of a series of attack methods against MQ-Sign-RS. In

42 Y. Ikematsu et al.

Sect. 4, we demonstrate the results of implementation performed to validate the
effectiveness of our attack. In Sect. 5, we conclude our results.

2 MQ-Sign

In this section, we explain the constructions of the UOV (Unbalanced Oil and
Vinegar) signature scheme and its improved variant, MQ-Sign.

2.1 UOV

Let Fq be a finite field. Here, we briefly recall the construction of the UOV
signature scheme [6]. Let v and o be two positive integers such that v ą o ą 0
and set n :“ v ` o. We use two variable sets xv “ (x1, . . . , xv), and xo “
(xv`1, . . . , xn), and put x “ (xv,xo). We call the first variables xv the vinegar
variables and the second variables xo the oil variables.

Key Generation: Randomly choose o quadratic polynomials in the variables
x in the following form:

f1(x) “ f1(xv,xo) “
v∑

i,j“1

a
(1)
i,j xixj `

v∑

i“1

n∑

j“v`1

a
(1)
i,j xixj ,

... (1)

fo(x) “ fo(xv,xo) “
v∑

i,j“1

a
(o)
i,j xixj `

v∑

i“1

n∑

j“v`1

a
(o)
i,j xixj .

Here, each coefficient a
(k)
i,j is randomly chosen from the finite field Fq. Then,

the set F “ (f1, · · · , fo) is called a central map of the UOV scheme. Once we
randomly choose an invertible linear map S : Fn

q Ñ F
n
q , the public key is given

by the composite P :“ F ˝ S “ {p1, · · · , po}, which is a set of o quadratic
polynomials. Moreover, the secret key is {F ,S}.
Signature Generation: Given a message m “ (m1, . . . ,mo) P F

o
q to be signed,

a signature s is generated as follows. First, randomly choose an element c “
(c1, . . . , cv) P F

v
q . Second, we can easily obtain a solution d P F

o
q to the equations

f1(c,xo) “ m1, · · · , fo(c,xo) “ mo,

since they are o linear equations in oil variables xo from the form of (1). If there
is no solution, we choose another element c. Finally, we compute s “ S´1(c,d) P
F

n
q , which is a solution to P(x) “ m. This s P F

n
q is a signature of the message

m.

Verification: It is performed by checking whether P(s) “ m.

A Security Analysis on MQ-Sign 43

2.2 MQ-Sign-RS

MQ-Sign used here refers specifically to MQ-Sign-RS. MQ-Sign is constructed
by making the central map in (2) sparse as follows.

f1(x) “
v∑

i,j“1

α
(1)
i,j xixj `

v∑

i“1

β
(1)
i xix(i`1´2 (mod o))`v`1,

...

fk(x) “
v∑

i,j“1

α
(k)
i,j xixj `

v∑

i“1

β
(k)
i xix(i`k´2 (mod o))`v`1, (2)

...

fo(x) “
v∑

i,j“1

α
(o)
i,j xixj `

v∑

i“1

β
(o)
i xix(i`o´2 (mod o))`v`1.

Here each β
(k)
i is randomly chosen from Fq̂ . The linear and constant terms are

omitted as they are not relevant in our attack. The signature generation and
verification are identical to those of the original UOV scheme.

3 Our Proposed Attack

In this section, we describe our attack against MQ-Sign-RS. In Sect. 3.1, we
explain the representation of quadratic polynomials. In Sect. 3.2, we describe
the representation of some quadratic polynomials in the central map of MQ-
Sign-RS. In Sects. 3.3, 3.4 and 3.5, we state the idea of our attack and describe
the algorithm to break MQ-Sign-RS.

3.1 Preliminary

We recall a relation between quadratic polynomials and square matrices. For a
homogeneous quadratic polynomial

g(x) “
∑

1ďiďjďn

gijxixj P Fq[x],

we define the upper triangular matrix Gup by

Gup :“

⎛

⎜⎜⎜⎝

g11 g12 · · · g1n

0 g22 · · · g2n

...
...

. . .
...

0 0 · · · gnn

⎞

⎟⎟⎟⎠ P F
nˆn
q .

44 Y. Ikematsu et al.

Then, we obtain the following equality

g(x) “ x ¨ Gup ¨ tx,

where tx denotes the transpose of x. It is clear that the map g ÞÑ Gup is a
bijective map between the set of homogeneous quadratic polynomials in Fq[x]
and the set of upper triangular (square) matrices of size n. Let S be a linear
map on F

n
q and let S be its corresponding matrix of size n. Then, we have

g ˝ S(x) “ x ¨ S ¨ Gup ¨ tS ¨ tx.

However, since S ¨ Gup ¨ tS is not an upper triangular matrix in general, the
corresponding upper triangular matrix of g ˝ S(x) is not equal to S ¨ Gup ¨ tS.

To avoid this inequality, it is necessary to consider symmetric matrices. For
the above quadratic polynomial g(x), we define the following symmetric matrix:

G :“ Gup ` tGup.

Then, the corresponding symmetric matrix of g ˝ S(x) is equal to

S ¨ G ¨ tS.

Thus, if (F1, . . . , Fo) and (P1, . . . , Po) are the corresponding symmetric matrices
of the central map F “ (f1, . . . , fo) and the public key P “ (p1, . . . , po), then
we have

(P1, . . . , Po) “ (
SF1

tS, . . . , SFo
tS

)
,

where S are the corresponding matrices of size n to the secret key S. As a result,
it is considered that the symmetric matrices of the public key P inherit some
properties of the symmetric matrices of the central map F .

Remark 1. Aulbach et al. [1] proposed a practical attack against MQ-Sign-

{R/S}S in the case where S can be written as the secret key S “
(
1v 0
˚ 1o

)
.

3.2 Representation Matrices of the Central Map of MQ-Sign-RS

From the construction of the central map (2) of MQ-Sign-RS, the representation
matrices F1, . . . , Fo have the special form as follows:

A Security Analysis on MQ-Sign 45

F1 “

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˚

β
(1)
1

β
(1)
2

. . .
β
(1)
v´o

β
(1)
v´o`1

. . .
β
(1)
o

β
(1)
o`1

. . .

β
(1)
v

˚ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F2 “

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˚

0 β
(2)
1

. . .
β
(2)
v´o

β
(2)
v´o`1

. . .
β
(2)
o´1

β
(2)
o 0

β
(2)
o`1

. . .
β
(2)
v

˚ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

46 Y. Ikematsu et al.

F3 “

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˚

0 0 β
(3)
1

. . .
β
(3)
v´o

β
(3)
v´o`1

. . .
β
(3)
o´2

β
(3)
o´1 0

β
(3)
o 0

β
(3)
o`1

. . .
β
(3)
v

˚ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F4 “

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˚

0 0 0 β
(4)
1

. . .
β
(4)
v´o

β
(4)
v´o`1

. . .
β
(4)
o´3

β
(4)
o´2 0

β
(4)
o´1 0

β
(4)
o 0

β
(4)
o`1

. . .
β
(4)
v

˚ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We omit F5 and later. We denote the right-hand side of Fi as F ′
i (i “ 1, . . . , o).

3.3 The Idea of Our Attack

Now we describe the idea of our proposed attack. First, our purpose is to find o
linear independent vectors t1, . . . , to P F

n
q such that

tti ¨ Pk ¨ tj “ 0, pk(ti) “ 0 (1 ď i, j, k ď o). (3)

A Security Analysis on MQ-Sign 47

It is well-known that if such vectors are recovered from the public key
{p1, . . . , po}, then any signature can be forged easily.

Next, we utilize the special structure of F1, F2, . . . , Fo as described above.
We set T :“ tS´1, denote by t1, . . . , to the v ` 1, . . . , o-th column vectors in T ,
and put T ′ :“ (

t1 · · · to

)
. Since S is the secret key, we see that these vectors

t1, . . . , to satisfy the above condition (3). Moreover, since Pi “ S ¨ Fi ¨ tS, we
have Pi ¨ T “ S ¨ Fi. From this, we obtain the following relations:

P1 ¨ T ′ “ S ¨ F ′
1, P2 ¨ T ′ “ S ¨ F ′

2, P3 ¨ T ′ “ S ¨ F ′
3,

· · · , Po ¨ T ′ “ S ¨ F ′
o.

(4)

Furthermore, by setting S “ (
s1 · · · sn

) P F
nˆn
q , we have the following rela-

tions using the description in Subsect. 3.2.

P1 ¨ to “ β(1)
o ¨ so, P2 ¨ t1 “ β(2)

o ¨ so, P3 ¨ t2 “ β(3)
o ¨ so,

· · · , Po ¨ to´1 “ β(o)
o ¨ so.

(5)

Similarly, by (4), we have

β(3)
o ¨ P2 ¨ t1 “ β(2)

o ¨ P3 ¨ t2,
β
(4)
o´1 ¨ P3 ¨ t1 “ β

(3)
o´1 ¨ P4 ¨ t2,

β
(5)
o´2 ¨ P4 ¨ t1 “ β

(4)
o´2 ¨ P5 ¨ t2,

...

β
(o)
3 ¨ Po´1 ¨ t1 “ β

(o´1)
2 ¨ Po ¨ t2.

(6)

Remark 2. By (5), we see that the matrix
(
P1 ¨ to P2 ¨ t1 · · · Po ¨ to´1

)
with size

n ˆ o is of rank one, since each column vector is generated by so.

We would like to find t1, . . . , to by solving the Eqs. (5) and (6). Here, note
that if we set t′

i :“ β
(i`1),´1
o ¨ti, then t′

1, . . . , t
′
o also satisfy (3). Thus, it is enough

to find t′
1, . . . , t

′
o to break MQ-Sign-RS. Then, the above relations are rewritten

as follows:

P1 ¨ t′
o “ P2 ¨ t′

1 “ P3 ¨ t′
2 “ · · · “ Po ¨ t′

o´1. (7)

Also,
P2 ¨ t′

1 “ P3 ¨ t′
2,

P3 ¨ t′
1 “ γ(1) ¨ P4 ¨ t′

2,

P4 ¨ t′
1 “ γ(2) ¨ P5 ¨ t′

2,

...

Po´1 ¨ t′
1 “ γ(o´3) ¨ Po ¨ t′

2,

(8)

where γ(i) :“ β
(i`2)
o´i ¨β(i`3),´1

o´i ¨β(3)
o ¨β(2),´1

o (i “ 1, . . . , o´3), which are unknown
for an attacker.

48 Y. Ikematsu et al.

We solve the above linear equations by guessing some γ(i) with brute force.
By doing so, we can obtain the vectors t′

1, . . . , t
′
o that are forgeable with any

signature. In the following subsections, we describe the algorithm to solve the
above Eqs. (7) and (8).

3.4 How to Recover t′
1 and t′

2

First step is to recover to t′
1 and t′

2.

From (8), since
(
t′
1

t′
2

)
is a non-zero element of the right kernel of the following

matrix (
P2 ´P3

P3 ´γ(1) ¨ P4

)
P F

2nˆ2n
q ,

the determinant of this matrix is zero. Since γ(1) is unknown, an attacker must
collect candidates of γ(1). Therefore, we collect γ1 P Fq̂ such that the determinant

of the matrix
(

P2 ´P3

P3 ´γ1 ¨ P4

)
is zero, which gives us the set Γ1 defined as

Γ1 :“
{

γ1 P F
ˆ
q

∣∣∣∣ det
(

P2 ´P3

P3 ´γ1 ¨ P4

)
“ 0

}
.

Next, for such a γ1 P Γ1, we find γ2 P Fq̂ such that the rank of the following
matrix is less than 2n:

⎛

⎝
P2 ´P3

P3 ´γ1 ¨ P4

P4 ´γ2 ¨ P5

⎞

⎠ P F
2nˆ3n
q .

Similarly, we define

Γ2 :“

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(γ1, γ2) P F
ˆ
q ˆ F

ˆ
q

∣∣∣∣∣∣∣∣∣∣

det
(

P2 ´P3

P3 ´γ1 ¨ P4

)
“ 0,

Rank

⎛

⎝
P2 ´P3

P3 ´γ1 ¨ P4

P4 ´γ2 ¨ P5

⎞

⎠ ă 2n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

We construct Γi for i ě 3 in a similar way. When the number of Γi is small for
some i, we compute the right kernel of

⎛

⎜⎜⎜⎝

P2 ´P3

P3 ´γ1 ¨ P4

...
...

Pi`2 ´γi ¨ Pi`3

⎞

⎟⎟⎟⎠

for all (γ1, . . . , γi) P Γi in order to recover (t′
1, t

′
2). It is worth noting that there

exist some candidates of (t′
1, t

′
2) in this step.

A Security Analysis on MQ-Sign 49

3.5 How to Recover the Other Vectors t′
3, . . . , t

′
o

In this subsection, we utilize the possible values of t′
1, t

′
2 obtained in Subsect. 3.4

to deduce the remaining vectors t′
3, . . . , t

′
o. By (7) and (3), we have the following

linear equations regarding t′
3:

P2 ¨ t′
1 ´ P4 ¨ t′

3 “ 0, tt′
1 ¨ Pk ¨ t′

3 “ 0, tt′
2 ¨ Pk ¨ t′

3 “ 0 (k “ 1, . . . , o).

By solving this linear equations, we obtain t′
3.

Similarly, we have the following linear equations regarding t′
� for � “ 4, . . . , o:

P2 ¨ t′
1 ´ P(�`1 (mod o)) ¨ t′

� “ 0, tt′
j ¨ Pk ¨ t′

� “ 0 (j “ 1, . . . , � ´ 1, k “ 1, . . . , o)

Once we obtain t′
1, . . . , t

′
o, we check if those satisfy the condition (3). If not, we

re-select another pair of t′
1 and t′

2.

4 Implementation Results and Complexity Analysis

4.1 Experiments

In this subsection, we report the implementation results of our attack described
in Sect. 3. All experiments in this subsection were conducted on a system with
Apple M1 (8 cores), 16 GB memory, macOS Ventura 13.3 ver. and using Magma
V2.27-8 [4].

We conducted experiments to measure the timings of our attack for three
parameters proposed in the original document [9]. For each parameter, we exe-
cuted 5 experiments. Note that in our experiments we computed only Γ1, Γ2, Γ3

and found the candidates of the pair (t′
1, t

′
2). All experiments were successful. In

Table 1, we present the timings of our attack for each parameter.

4.2 Complexity

From Table 1, we assume that #Γ1 « #Γ2 « · · · « #Γo´3 ď q. To compute
Γ1, we need to perform q ˆ (2n)3 operations. Similarly, to compute Γ2, we need
#Γ1 ˆ q ˆ (2n)3 operations, and so on for Γ3, . . . , Γo´3. The total complexity
to find t′

1, t
′
2 is therefore O(oq2n3). To find t′

3, . . . , t
′
o, we need to solve linear

systems in n variables o´3 times, which results in a complexity of O(on3). Thus,
the overall complexity of our attack is

O(oq2n3).

The complexity of our attack for level 1 is 46 ˆ 216 ˆ 1183 “ 228.4. For level
3, the complexity is 72 ˆ 216 ˆ 1843 “ 229.7, and for level 5, the complexity is
96 ˆ 216 ˆ 2443 “ 230.5.

50 Y. Ikematsu et al.

Table 1. Timings of proposed attack algorithm and the cardinality of Γi (i “ 1, 2, and
3) for the cases of security level 1, 3, and 5.

(q, v, o) #Γ1 #Γ2 #Γ3 Cputime (s)

(28, 72, 46) 19 18 16 96

21 18 16 99

19 18 16 96

19 18 16 95

18 18 16 94

(28, 112, 72) 33 30 28 527

30 30 28 514

29 30 28 505

31 30 28 517

28 30 28 502

(28, 148, 96) 41 42 40 1613

45 42 40 1644

40 42 40 1602

39 41 40 1077

37 42 40 981

5 Conclusion

MQ-Sign is a UOV-based signature scheme proposed by Shim et al. and submit-
ted to the KpqC competition. Recently, Aulbach et al. proposed a practical key
recovery attack against MQ-Sign-{R/S}S for the case where the secret key S
has a simple form. Their attack was proposed by utilizing two properties: (i) Oil
ˆ Vinegar quadratic parts in the central map are sparse, and (ii) the secret key

S has the form of
(
1v 0
˚ 1o

)
. In this paper, we proposed an attack against MQ-

Sign-{R/S}S without property (ii). Due to our experiments, all the proposed
parameters of MQ-Sign-RS can be broken in 30min. Since our attack exploits
only property (i), it can be applied to MQ-Sign-SS without modification. On the
other hand, since MQ-Sign-{S/R}R do not have property (i), our methodology
is not adaptable. As a result, it is considered that MQ-Sign-SR and MQ-Sign-RR
are secure among the four types of MQ-Sign.

Acknowledgements. This research was in part conducted under a contract of
“Research and development on new generation cryptography for secure wireless com-
munication services” among “Research and Development for Expansion of Radio Wave
Resources (JPJ000254)”, which was supported by the Ministry of Internal Affairs and
Communications, Japan. This work was also supported by JSPS KAKENHI Grant
Number JP19K20266, JP22K17889 and JP20K03741, Japan.

A Security Analysis on MQ-Sign 51

References

1. Aulbach, T., Samardjiska, S., Trimoska, M.: Practical key-recovery attack on MQ-
Sign. Cryptology ePrint Archive (2023). https://ia.cr/2023/432

2. Bernstein, D.-J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

3. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 464–479. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15979-4_16

4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

5. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

6. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

7. National Institute of Standards and Technology, Post-Quantum Cryptography
Standardization. https://csrc.nist.gov/projects/post-quantum-cryptography

8. National Institute of Standards and Technology, Post-quantum cryptography,
Round 3 Submission. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions

9. Shim, K.-A., Kim, J., An, Y.: MQ-Sign: a new post-quantum signature scheme
based on multivariate quadratic equations: shorter and faster (2022). https://www.
kpqc.or.kr/images/pdf/MQ-Sign.pdf

10. Shor, P.-W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

https://ia.cr/2023/432
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/3-540-48910-X_15
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf
https://www.kpqc.or.kr/images/pdf/MQ-Sign.pdf

Network and Application Security

Research on Security Threats Using VPN
in Zero Trust Environments

Eunyoung Kim1(B) and Kiwook Sohn2

1 National Security Research Institute, Daejeon 34044, South Korea
eykim@nsr.re.kr

2 Department of Computer Science and Engineering, Seoul National University
of Science and Technology, Seoul 01811, South Korea

kiwook@seoultech.ac.kr

Abstract. The United States issued an executive order requiring all fed-
eral agencies to adopt the Zero Trust security framework, and instructed
each federal government department to devise a plan for its implemen-
tation. This development has generated a great deal of interest in the
Zero Trust security framework in many countries. In Korea, the Min-
istry of Science and ICT and the Korea Internet & Security Agency
(KISA) are actively promoting the establishment of guidelines for the
implementation of Zero Trust in public institutions. Discussions on poli-
cies and models for the introduction of Zero Trust began with the launch
of the Zero Trust security forum on October 26, 2022. Accordingly, this
paper examines and conducts experiments on security threats that may
arise within a Zero Trust environment in the Zero Trust Network Access
(ZTNA) system. Despite the adoption of Zero Trust in many network
environments, existing firewall or VPN devices are still in use. We discuss
potential security threats that Zero Trust environments may encounter
due to vulnerabilities in these existing network devices and propose coun-
termeasures to mitigate such threats.

Keywords: Zero Trust Network Access · Security Threats ·
Vulnerability · VPN · Firmware

1 Introduction

The Biden administration in the United States issued an executive order aimed
at enhancing the country’s cyber security [1]. The order specifically called on
federal agencies and cloud service providers to implement Zero Trust security
policies and comply with the corresponding principles. The COVID-19 pandemic
has prompted countries worldwide to quickly adopt Zero Trust models that are
tailored to their specific environments [4]. The Zero Trust Security model was
initially introduced by John Kindervag of Forrester Research in 2010 [3], and
it has been developed and implemented by industry leaders such as Google’s
Beyond Corp and Microsoft’s AZURE. The CSA (Cloud Security Alliance) is

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 55–66, 2024.
https://doi.org/10.1007/978-981-99-8024-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_5&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_5

56 E. Kim and K. Sohn

also promoting the use of Software Defined Perimeter (SDP) as the best tech-
nology for implementing the Zero Trust framework. In this paper, we will explore
potential scenarios for security threats that may arise in the Zero Trust frame-
work and examine their configuration and attack possibilities. Additionally, we
will outline various security measures that can be employed to mitigate these
threats.

2 Zero Trust 5 Pillars

2.1 Zero Trust Concept

Traditional security frameworks used network segmentation to physically isolate
networks and provide security. However, the concept of Zero Trust which means
“Zero-Trust trust no one, trust nothing” in a network-based security framework,
gained widespread attention after the US federal government announced its tran-
sition to Zero Trust for cybersecurity and digital infrastructure protection in
January 2022 [5–7]. The COVID-19 pandemic has also led to a surge in remote
work environments, making Zero Trust-based remote work environments more
critical and companies are taking swift steps to enhance their work environment
accordingly. In practice, Zero Trust as defined in NIST SP800-207, evaluates the
security level of the five pillars of assets (users, devices, network, application
workload, and data) and establishes new security policies based on them. Zero
Trust also provides a maturity model for each pillar and companies implement
systems based on the Zero Trust maturity model that is appropriate to their
current situation. Then the 5 Pillars of Zero Trust are described.

Identity: This refers to verifying the identity and access control for all users
who attempt to access the company’s IT assets.

Device: This includes all endpoint devices that attempt to access the company’s
network.

Network/Environment This refers to processing all data shared via the net-
work separately from users (Identity) and devices (Device) based on encrypted
communication.

Application Workload: This includes computing management that can be
programmed, such as physical and virtual servers.

Data: This refers to continuously monitoring data access based on user author-
ity, especially for critical data.

We can see that the fundamental principles require all communication to
be secure, regardless of the network location where users connect. Furthermore,
strict authentication procedures should be applied for internal network access
to all resources, including all endpoint devices that users attempt to access. All
organizations must also maintain the integrity and security status of their assets
by monitoring the internal resource status to keep them safe and secure. The
five Pillars of Zero Trust provide a solid foundation for companies and organi-
zations to improve their security posture. However, as Zero Trust is a relatively

Research on Security Threats Using VPN in Zero Trust Environments 57

new concept, there is no one-size-fits-all approach and organizations may choose
to further subdivide the Pillars to better suit their needs. For example, some
organizations may include “data protection” or “application security” as addi-
tional Pillars. Despite these variations, the fundamental principles of Zero Trust
remain the same and companies should focus on ensuring that all communica-
tion is secure. The internal resources are monitored and kept in a secure state
and strict authentication procedures are applied to

2.2 Approaches to Applying Zero Trust to the US DoD

The US Department of Defense (DoD) has recognized the need to adopt Zero
Trust quickly in response to constant external environmental changes [2]. This
includes establishing a new system configuration and budget execution that can
be composed of 3139 with the Zero Trust architecture, adopting and integrat-
ing Zero Trust functionality, technology, solutions, and processes. The person-
nel, education, and expertise development process are also important aspects to
address Zero Trust requirements [9]. The four strategic objectives for implement-
ing Zero Trust in the DoD are: adoption of a Zero Trust culture, protection and
defense of DoD information systems, technology acceleration, and implementa-
tion of Zero Trust. The article also suggests referencing other resources such as
NSA’s Issues Guidance on Zero Trust Security Model, CISA’s Zero Trust Matu-
rity Model, and OMB’s Federal Zero Trust Strategy in addition to the NIST
800-207 and DoD Zero Trust Strategy. Overall, it is clear that the DoD is taking
Zero Trust seriously and is making efforts to implement it as quickly and effec-
tively as possible. This will be crucial for protecting sensitive information and
systems from cyber threats in an ever-changing environment. It is encouraging
to see countries like New Zealand, Singapore, and the UK taking steps to adopt
Zero Trust security measures to protect their critical information infrastructures
from cyber-attacks. The COVID-19 pandemic has accelerated the trend towards
remote work, which has increased the risk of cyber-attacks, making it essen-
tial to implement ZTA. In Singapore, the government’s focus on quick incident
response through the GCSOC (Government Cyber Security Operations Centre)
is commendable. The government’s adoption of Zero Trust security for critical
systems and the implementation of GTBA (Government Trust-Based Architec-
ture) will undoubtedly strengthen application and system security [8]. The UK’s
National Cyber Security Centre has released Zero Trust design principles, which
emphasize the importance of identity and authentication for users and devices
and monitoring of device and service status. However, it is concerning to see that
the adoption of Zero Trust security measures outside the UK is lagging behind.
The adoption of Zero Trust security measures by various governments and orga-
nizations is a positive development. It is critical to continue to educate and train
personnel to understand the importance of Zero Trust security measures and
incorporate them into their security strategies [14].

It’s interesting to see how different countries are approaching the adoption
and implementation of Zero Trust security. New Zealand and Singapore are tak-
ing proactive steps to deploy Zero Trust in response to the changing cybersecurity

58 E. Kim and K. Sohn

landscape, others, like Japan, seem to be lagging behind. It’s important to note
that the adoption and implementation of Zero Trust security is a complex pro-
cess that requires significant investment of resources, including time, money, and
expertise. Therefore, it’s understandable that some countries may be hesitant to
embrace it fully. However, given the increasing sophistication of cyber-attacks
and the high cost of data breaches, it’s becoming increasingly clear that Zero
Trust security is a critical component of any comprehensive cybersecurity strat-
egy.

2.3 Analysis of Published Zero Trust Security Frameworks

In this section, we will describe the Zero Trust model proposed by Google,
Microsoft, and Netflix, which is operated through the Zero Trust framework
system. Figure 1 provides a comparison of the Zero Trust models of Google,
Microsoft and Netflix. Google’s Zero Trust model focuses on protecting data by
implementing strict access control measures and continuously monitoring user
activity. Google’s model also emphasizes the use of strong authentication meth-
ods such as multi-factor authentication to ensure that only authorized users
can access sensitive data. Microsoft’s Zero Trust model, on the other hand,
emphasizes the importance of verifying device health and implementing iden-
tity and access management controls [10]. Microsoft’s model also incorporates
the use of conditional access policies to restrict access based on user context,
such as location and device. Both Google and Microsoft’s Zero Trust models are
designed to provide enhanced security and protect against data breaches. How-
ever, each model has its unique approach and focus. Figure 1 provides a visual
representation of the differences between the three models. It shows that while
Google’s model emphasizes user authentication and access control, Microsoft’s
model places more emphasis on device health and identity management.

Fig. 1. Google Beyond Corp vs. MS Azure vs. Netflix LISA Zero Trust Model Com-
parison

First, We will explain Google’s Zero Trust model. Google’s Zero Trust model
is an approach to enhancing security that assumes untrusted access for all users,
devices, and network traffic. Since this model does not trust the internal network,

Research on Security Threats Using VPN in Zero Trust Environments 59

each user and device must be individually authenticated and granted permission
based on their ID authentication for network requests and data access. These
security rules are based on predefined security policies and access control is
enforced accordingly, with users and devices requiring authentication every time
they connect.

Second, Microsoft’s Zero Trust model in Azure includes Identity and Access
Management (IAM) technology based on Azure Active Directory (AAD) [11].
The Zero Trust model in Azure verifies access to all users, devices, and applica-
tions to enhance data protection for users and businesses. The Azure Zero Trust
model is structured around three main principles. First authentication requests
for all devices, users, and applications. Second only necessary permissions are
granted to each user and device based on the principle of least privilege. Thrid
all access is verified based on the real-time status of users and devices.

Finally, let’s describe Netflix’s Zero Trust model [12]. The LISA (Least-
privilege, Identity, Security, and Automation) Zero Trust model in Netflix is
centered around Identity and Access Management (IAM), which plays a signifi-
cant role in authenticating and verifying users and devices. The LISA model was
proposed taking into account various security aspects and was designed based on
four basic principles: Least-privilege, Identity, Security, and Automation. Table 1
shows the four basic principles of LISA Model.

Table 1. LISA model’s four basic principles

Principle Description

Least-privilege The model minimizes access permissions for users and devices
to prevent unnecessary access permission grants

Identity The LISA model is centered around Identity and Access
Management (IAM) systems that authenticate and verify
users and devices, verifying users’ IDs and passwords and
performing device security verification. IAM systems also
provide additional security verification using various
authentication factors

Security This model uses Transport Layer Security (TLS) to encrypt
data communication to enhance security and applies
additional security technologies to enhance application and
device security

Automation The LISA model enhances security through automated
processes, and uses Continuous Integration/Continuous
Deployment (CI/CD) pipelines to automate application
deployment and updates, protecting internal resources from
security threats

In addition, the LISA model is first and foremost used on a cloud-based
infrastructure by Netflix. Through the LISA model, Netflix is able to protect

60 E. Kim and K. Sohn

its data, ensure the security of customer information, and enhance security in
cloud-based services by verifying users and devices. One of the key differences
between the LISA model and other Zero Trust models is that it has the advantage
of being able to leverage existing firewall or VPN equipment to implement the
Zero Trust framework.

3 Security Threats to ZTNA

In this chapter, we will discuss potential security threats that may arise when
implementing a Zero Trust framework, and describe the experimental results
based on these assumptions. One of the main advantages of the Zero Trust
framework is its ability to protect against various types of cyber threats, includ-
ing phishing attacks, malware infections, and data breaches. However, despite
the implementation of a Zero Trust framework, security threats may still occur.
To confirm this, we conducted simulations using a vulnerability-based attack
scenario, and describe the actual results based on these assumptions.

3.1 Zero Trust Security Threat Scenarios

Most of the proposed models for Zero Trust have primarily focused on access
control for end devices and access data by strengthening user authentication
when accessing the Zero Trust framework. This access control method is in a
situation where there is no prior knowledge of whether the user is a legitimate
or illegitimate user, and which device the user will use to access. Therefore,
network equipment (such as VPN and firewall, which are traditional security
concepts) located at the forefront of the Zero Trust framework must allow all
network access requests made to that domain or IP address. Based on all the user
information that has been accessed, access control for the user’s access status
and the requested data is carried out based on the internal policies of the Zero
Trust model.

After access request through user authentication, Zero Trust’s network is
approached through the concept of “Divide and Rule” to prepare for unexpected
hacking attacks, identifying important assets. The network is divided into “micro-
segments,” and this is used to easily exclude and isolate the network in case of
a security incident. In order to apply the concept of security domains, Google’s
Beyond Corp applies policies based on device information, current status, and
related user information, rather than applying service and data access policies
based on employee’s actual location or connected network. This approach elim-
inates traditional VPN concepts and creates a secure work environment on any
network. On the other hand, Netflix’s LISA (Location Independent Security
Access) places strong authentication and device security as a top priority and
differs from Google’s Zero Trust concept, which excludes VPNs and firewalls.
However, this structure has attracted a lot of attention as a way for many com-
panies to implement Zero Trust without incurring significant costs. In the case
of the aforementioned LISA, it is also an advantage to have the time of existing

Research on Security Threats Using VPN in Zero Trust Environments 61

or VPN equipment, but all security threats that existed prior to the introduc-
tion of exceptional trust are looking at the last point that must be observed.
That is, firewall and VPN network equipment can obtain undisclosed or pub-
licly disclosed vulnerabilities through firmware analysis [13,15,18–21], and it
has been confirmed that remote information collection of such equipment can be
performed through login with administrator privileges. Figure 2 shows a security
threat scenario in a Zero Trust environment utilizing VPN.

Fig. 2. Security Threat Scenario in Zero Trust Environment Using VPN

In this paper, we aim to verify the possibility of various malicious informa-
tion gathering and intrusion through public or private vulnerabilities of existing
network devices such as firewalls and VPNs when implementing Zero Trust using
existing network equipment, similar to the LISA model [14,17].

3.2 Security Vulnerabilities for Zero Trust-Based VPN Equipment

We conducted vulnerability research on the A company VPN equipment, which
is widely used in many public institutions and organizations. As a result, we
identified an undisclosed remote code execution vulnerability that allows remote
system commands to be executed without logging in to the A company VPN
equipment. Although the string ‘/’ cannot be used among the requestable strings,
we circumvented this constraint and conducted an exploit to allow free use of
system commands. As a result, we judged that this vulnerability could be uni-
versally used regardless of library versions or compilation environments if the
same code were created [16].

62 E. Kim and K. Sohn

The A company VPN equipment has a vulnerability that allows system com-
mands to be inserted and executed in the session_***.csp path in the web ser-
vice. However, the file in this path does not exist in the actual equipment’s
file system. Therefore, the functionality processed when requesting the ses-
sion_***.csp is implemented in the mod_***.so file, as shown in Fig. 3. When
the user enters ‘2’ as the type parameter, the process_all_session_***() func-
tion is called during the processing of the page.

Fig. 3. Company A’s weak functions and parameters

After that, the ip parameter value is
utilized in the process_all_session_***() function to generate two file paths,
which are later used in the scp_all_***() function and scp_all_***() function.

Path 1: /etc/runtime/qdb/session_***_[ipAddr].db
Path 2: /etc/runtime/cookie/cookie_***_[ipAddr].tar.gz

However, the first path (/etc/runtime/qdb/session_***_[ipAddr].db) is used
in the qdbm_***() function call when it returns “TRUE”.

The qdbm_open() function creates a file with the specified path entered by
the user and then reopens the created file for use. However, if the input path con-
tains the ‘/’ character, an error occurs during file creation, and the scp_all_***()
and scp_all_***() functions, which have a system command execution vulner-
ability, are not called. The scp_all_***() function requests the cluster daemon
(the daemon on the corresponding device) to execute the command created using
the ip parameter. The snprintf() function generates the command using the ip
parameter. Therefore, if the ip parameter is entered in the format ‘;command;’,
a separate system command can be inserted. Similarly, the scp_all_***() func-
tion requests the cluster daemon to execute the command created using the
input parameters. The snprintf() function generates a command using the ip
parameter. Therefore, if the ip parameter is entered in the format ‘;command;’,
a separate system command can be inserted.

To summarize, if a system command is entered in the format
“type=2&ip=;cmd;” in the session_***.csp path, scp_all_***() function is exe-
cuted 2 times and scp_all_***() function is executed 4 times. However, the path
delimiter character (‘/’) must not be present. The exploit process for this vul-
nerability involves implementing the send_***() function. This function sends

Research on Security Threats Using VPN in Zero Trust Environments 63

the IP address, port number, and system command to the target device, allow-
ing the system command to be executed on the target device. However, the ‘/’
character cannot be used.

The vulnerability allows system commands to be executed but the path sep-
arator character (‘/’) cannot be used. To bypass this limitation, the bind_***()
function was developed as shown in Fig. 4. The bind_***() function was devel-
oped to bypass the constraint that the path separator character (‘/’) cannot be
used in system commands. The function performs the following steps:

1. Outputs the hexadecimal value of the path separator character (0x2f) using
the echo command to create a script file (filename: a).

2. Sends the ‘chmod 777 a’ command to grant execute permission (no path
separator).

3. Sends the ‘sh a’ command to execute the script file.

Fig. 4. Implementation of the bind_***() function

When the generated script is executed, the incorrectly created file and the
script file a are removed by the user-inputted command. Finally, when the IP
address, port number, and system command are sent to the bind_*** function,
the system command is executed on the target device.

The discovered vulnerability allows an attacker to obtain a reverse shell by
executing a command that connects to it. As shown in Fig. 5, the vulnerability
requires three requests to be made to execute a system command. Upon the first
request, a shell script file is created, and on the second request, a temporary file
is created in the /etc/runtime/qdb/ path. Finally, on the third request, the shell

64 E. Kim and K. Sohn

script is executed, and the temporary file is removed, along with the script file.
In addition, since the vulnerability is currently unpatched in the corresponding
firmware version, detailed firmware version information is not disclosed.

Fig. 5. Step-by-step screen for vulnerability execution

3.3 Security Vulnerability Countermeasure Techniques

We have verified and experimented with the possibility of remote access based on
undisclosed vulnerabilities using VPN devices that can operate in a Zero Trust
environment. Then, we describe how to respond to attacks using device-based
vulnerabilities.

Patch Management: We must quickly apply security patches provided by
each network system manufacturer to maintain the latest security status.
Additionally, we should monitor vulnerabilities in our operating systems and
apply patches quickly when vulnerabilities are discovered.

Access Control: Access control policies should be applied to differentiate
access rights between regular users and users with administrator privileges,
and to grant appropriate access rights as needed. In a Zero Trust environment,
there is often no administrator account with full access rights to the system,
as there is no root account with such privileges. Therefore, access to system
resources should be limited to a minimum and appropriate permissions should
only be granted when necessary.

Research on Security Threats Using VPN in Zero Trust Environments 65

Monitoring and Log Analysis: Real-time monitoring and log analysis of the
system should be carried out to detect any abnormal access attempts or
behavior and to take immediate response measures.

Security Awareness Training: Security awareness training should be pro-
vided to all users to enhance their awareness of security threats and their
ability to respond to them.

Integrity Verification: In a Zero Trust environment, the integrity of the sys-
tem should be verified using technologies such as security certificates. Verifi-
cation must be performed to ensure that the system has not been changed or
tampered with.

Backup and Recovery Plan: Backup and recovery plans should be estab-
lished to prepare for system failures or data loss, and these plans should be
reviewed and updated regularly.

Establishing and implementing these security measures is an important factor
in enhancing the security of the system in a Zero Trust environment. However,
it is difficult to establish security measures targeting undisclosed vulnerabilities
in reality. Therefore, if we discover such vulnerabilities in the system, we should
apply the above security measures as a baseline, and enhance real-time monitor-
ing of abnormal user behavior for the possibility of remote access and manipula-
tion of system resources using undisclosed vulnerabilities. In other words, access
to the system with administrator privileges should not be supported remotely as
much as possible. Although ordinary users may not have a significant impact on
the system as a whole even if they are subjected to hacking attacks from external
sources in a Zero Trust environment, vulnerability attacks on users with admin-
istrator privileges can cause many problems throughout the system. Therefore,
in a Zero Trust environment, access control policies should be defined for ordi-
nary users based on the resources of the access area and the data they want to
access, and access control for the access area must be carried out before granting
administrator privileges.

4 Conclusion

In this paper, we conducted experiments and configurations to study the security
threats that may arise through vulnerability research on existing network equip-
ment that can be applied under a Zero Trust environment. Through firmware
analysis of the equipment, we secured a vulnerability that could penetrate the
system with admin privileges and confirmed remote system infiltration and
access through reverse shells. Therefore, when introducing the new Zero Trust
framework proposed in this paper, rather than simply strengthening user authen-
tication with a more robust policy based on the security threats presented in the
paper, real-time monitoring of abnormal user behavior and security measures
should be reviewed for all network equipment.

66 E. Kim and K. Sohn

References

1. Rose, S.: NIST Special Publication 800-207, Zero Trust Architecture (2020)
2. Department of Defense (DoD): Zero Trust Reference Architecture (2022)
3. Kindervag, J.: Build security into your network’s DNA: the zero trust network

architecture, pp. 1–26. Forrester Research Inc. (2010)
4. Sudakshina, M., Khan, D.A., Jain, S.: Cloud-based zero trust access control policy:

an approach to support work-from-home driven by COVID-19 pandemic. New
Gener. Comput. 39, 599–622 (2021). https://doi.org/10.1007/s00354-021-00130-6

5. Kerman, A., Borchert, O., Rose, S., Tan, A.: Implementing a zero trust architec-
ture. Technical report, The MITRE Corporation (2020)

6. Anil, G.: A zero trust security framework for granular insight on blind spot and
comprehensive device protection in the enterprise of Internet of Things (E-IOT).
BMS Institute of Technology (2021)

7. Uttecht, K.D.: Zero Trust (ZT) concepts for federal government architectures. Mas-
sachusetts Institute of Technology, Lexington, United States (2020)

8. CSA Singapore: The Singapore Cybersecurity Strategy 2021 (2021). https://www.
csa.gov.sg/Tips-Resource/publications/2021/singapore-cybersecurity-strategy-
2021

9. CISA USA: Zero Trust Maturity Mode, Pre-decisional Draft (2021). https://www.
cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity
%20Model_Draft.pdf

10. Ward, R., Beyer, B.: BeyondCorp: a new approach to enterprise security (2014)
11. Hwang, M.J.: Microsoft zero trust network strategy and implementation plan.

Microsoft Cyber Security Solutions Group (2020)
12. Zimmer, B.: Location independent security approach (LISA). USENIX Security

(2018)
13. Wright, C., Cowan, C., Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security

module framework. In: Ottawa Linux Symposium, vol. 8032, pp. 6–16 (2002)
14. Kim, S.Y., Jeong, K.H., Hwang, Y.N., Nyang, D.H.: Abnormal behavior detection

for zero trust security model using deep learning. In: Korea Information Processing
Society Collection of Academic Papers, vol. 28, no. 1, pp. 132–135 (2021)

15. Sun, P., et al.: Hybrid firmware analysis for known mobile and IoT security vulnera-
bilities. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE (2020)

16. Rastogi, A., Nygard, K.E.: Software engineering principles and security vulnera-
bilities. In: CATA, pp. 180–190 (2019)

17. Corteggiani, N., Camurati, G., Francillon, A.: Inception: system-wide security test-
ing of real-world embedded systems software. In: Proceedings of the USENIX Secu-
rity Symposium (2018)

18. Chen, D.D., Egele, M., Woo, M., Brumley, D.: Towards automated dynamic anal-
ysis for Linux-based embedded firmware. In: Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS) (2016)

19. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces. In: Proceedings of the ACM on
Asia Conference on Computer and Communications Security (ASIACCS) (2016)

20. Davidson, D., Moench, B., Ristenpart, T., Jha, S.: FIE on firmware: finding vul-
nerabilities in embedded systems using symbolic execution. In: Proceedings of the
USENIX Security Symposium (2013)

21. Abeni, L., Kiraly, C.: Investigating the network performance of a real-time Linux
Kernel. In: Proceedings of the 15th Real Time Linux Workshop (2013)

https://doi.org/10.1007/s00354-021-00130-6
https://www.csa.gov.sg/Tips-Resource/publications/2021/singapore-cybersecurity-strategy-2021
https://www.csa.gov.sg/Tips-Resource/publications/2021/singapore-cybersecurity-strategy-2021
https://www.csa.gov.sg/Tips-Resource/publications/2021/singapore-cybersecurity-strategy-2021
https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf
https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf
https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf

A Blockchain-Based Mobile Crowdsensing
and Its Incentive Mechanism

Yan Zhang1 , Yuhao Bai1 , Soojin Lee1 , Ming Li2 ,
and Seung-Hyun Seo3(B)

1 The Department of Electronic and Electrical Engineering, Hanyang University,
Seoul 04763, Korea

{z2021189899,byh2018,tssn195}@hanyang.ac.kr
2 The Department of computer and information Engineering,
Henan Normal University, Xinxiang 453007, Henan, China

liming@htu.edu.cn
3 School of Electrical Engineering, Hanyang University (ERICA),

Ansan 15588, Korea
seosh77@hanyang.ac.kr

Abstract. Mobile crowdsensing (MCS) has become a crucial paradigm
for the efficient implementation of large-scale sensing tasks in smart
cities. However, untrustworthy mobile users often contribute lower-
quality data and attempt to manipulate reward distributions unfairly.
These problems will indirectly make mobile users more passively par-
ticipate in the sensing task. To address these challenges, we propose a
novel MCS system model that combines the public blockchain and the
consortium blockchain. To provide an effective data quality evaluation,
we introduce an advanced Sybil-resistant account grouping method and
employ an enhanced grouping truth discovery algorithm to evaluate data
quality accurately. Additionally, we suggest an adjustable fair reward dis-
tribution mechanism based on the Shapley value to promote equitable
reward distribution. The proposed model provides a more dependable
and effective means of achieving high-quality services for society.

Keywords: MCS · Blockchain · Quality evaluation · Shapley value ·
Incentive mechanism

1 Introduction

The advancement of Internet of Things (IoT) communication technology and the
widespread use of mobile smart devices have led to innovative approaches in data

This work was supported by the MSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2023-
2018-0-01417) supervised by the IITP (Institute for Information & Communications
Technology Planning & Evaluation)
This work was supported by Science and Technology Research Project of Henan
Province (Grant No. 212102210413).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 67–78, 2024.
https://doi.org/10.1007/978-981-99-8024-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_6&domain=pdf
http://orcid.org/0009-0008-2184-0232
http://orcid.org/0000-0003-0748-6632
http://orcid.org/0000-0003-1690-8577
http://orcid.org/0000-0003-3385-8364
http://orcid.org/0000-0002-1150-7080
https://doi.org/10.1007/978-981-99-8024-6_6

68 Y. Zhang et al.

collection. In the context of large-scale sensing tasks in smart cities, traditional
sensor-based data collection methods pose challenges in terms of cost and system
maintenance [1]. Mobile crowdsensing (MCS) emerges as a solution to address
these challenges by leveraging collaborative sensing using mobile smart devices.
In most existing MCS networks, a centralized platform serves as a trusted third
party, with mobile users playing crucial roles as data requesters and collectors
[2]. Data collectors collect data using mobile smart devices to provide high-level
servers under low infrastructure conditions [3]. However, the reliance on cen-
tralized platforms in MCS networks introduces vulnerabilities such as denial of
service attacks and data leakage [4]. Furthermore, issues of mutual distrust can
arise between the platform, task publishers, and data collectors in centralized
MCS networks. Collusion between the platform and task publishers can result
in unauthorized modifications to task and reward information. Likewise, collu-
sion among data collectors can lead to data duplication and free-riding, where
rewards are obtained through the submission of similar data. Consequently, secu-
rity, trust, and user privacy in centralized MCS networks warrant significant
attention from researchers.

Blockchain technology, with its decentralized, tamper-proof, and pseudony-
mous characteristics, holds promise for the development of secure and reliable
MCS networks. The current MCS system based on a public blockchain faces
challenges of performance and privacy, which can be mitigated by integrating a
consortium blockchain to efficiently handle computationally intensive tasks while
ensuring transaction efficiency and relative privacy. To meet the societal demand
for high-quality services, the MCS platform must attract a sufficient number of
mobile users to participate in sensing tasks. Therefore, a quality-driven incentive
mechanism, leveraging accurate data quality assessment to ensure fair reward,
is crucial to motivate more mobile users to engage in sensing tasks.

This paper presents a hybrid blockchain based MCS system model, aiming
to enhance the security and reliability of the mobile users’ MCS platform. We
propose a quality-driven incentive mechanism that combines an effective quality
evaluation method with a fair reward distribution mechanism. This approach
ensures that the incentive mechanism is aligned with the assessment of data
quality, promoting fairness and encouraging active participation of mobile users.

2 Literature Review

Zou et al. [5] proposed a decentralized hybrid blockchain framework and a loca-
tion privacy-preserving optimization mechanism (LPPOM) to achieve a trade-
off between user privacy and system efficiency. Zhu et al. [6] utilized delegated
proof of stake(DPOS) and practical Byzantine fault tolerance(PBFT) consensus
protocols in the decentralized crowdsourcing platform, which can significantly
improve the transaction verification efficiency and reduce the transaction latency
and energy consumption of the crowdsourcing system. Tong et al. [7] designed a
hybrid blockchain framework and a reputation-based practical Byzantine fault
tolerance (R-PBFT) consensus protocol to improve transaction throughput and

A Blockchain-Based Mobile Crowdsensing and Its Incentive Mechanism 69

fault tolerance of the crowdsourcing platform. Most of the above research work
discusses the application of combined public and private chains to solve pri-
vacy protection and system performance in crowdsourcing. [5–7] utilized hybrid
blockchain to prevent data from being exposed in the public blockchain to pro-
vide user privacy. However, malicious workers may attempt to perform the same
task multiple times and deceitfully receive multiple rewards. Therefore, we apply
a grouping truth discovery algorithm for data quality evaluation, which helps
reduce rewards for similar data submissions.

In the blockchain-based MCS system proposed by Huang et al. [8], temporal
stability and spatial correlation of data are used for outlier data detection. In
addition, truth discovery methods and machine learning methods such as clus-
tering are also often used in data aggregation and outlier detection [9]. Among
them, truth discovery algorithms are potential data integration solutions that
can more accurately identify real information from noisy data. Wang et al. [10]
accurately estimate the truth using a group truth discovery algorithm. But the
accuracy of the group truth discovery algorithm is greatly affected by the inter-
ference of malicious data. Quality detection and evaluation through the data
quality calculation method used in the above literature is the basis of many
quality-driven incentive mechanisms.

Most existing Quality-driven incentive mechanisms are all aimed at the ben-
efit of the platform and social welfare, ignoring the interests of mobile users
as the main influencing factor of high-quality data collection and multi-user
participation in the MCS platform [11–13]. Especially for a decentralized MCS
platform, we should focus on the interests of mobile users and solve the problem
of reward distribution for mobile workers. Table 1 compares the main related
works of blockchain-based mobile crowdsensing model.

Table 1. Comparison of related works for mobile crowdsensing based on blockchain

ref. Main problem perspective Blockchain Consensus
mechanism

Data quality evaluation Privacy
protection

[5] System security, performance and privacy Hybrid POW . O
[6] blockchain performance, privacy Hybrid DPOS, PBFT . O
[7] limited transaction throughtput, task

privacy, low fault-tolerance of pbft
Hybrid R-PBFT . O

[8] centralized platform security, data anomaly Public POW temporal stability, spatial
correlation

X

[9] centralized platform security, verifier’s
computational overhead, data quality
assessment

Public Credit-based
verifier selection

clustering, fuzzy
mathematics

X

[10] centralized platform security, blockchain
performance, inaccurately estimated truth

Public . truth discovery X

Ours system security, performance and data
privacy, data quality evaluation, unfair
reward distribution

Hybrid POW, PBFT truth discovery O

70 Y. Zhang et al.

3 System Model

In this section, we proposed a hybrid blockchain-based mobile crowdsensing
model including a data quality evaluation and a fair reward distribution. The
proposed model is composed of public blockchain and consortium blockchain in
consideration of effective public data collection and privacy of collected data.
The MCS system based on public blockchain offers a means to effectively engage
a large user base and establish a secure environment for information exchange.
There is a consortium blockchain for each type of task and interest, and related
policy makers, institutions, and companies participate as blockchain nodes.
Leveraging the transaction efficiency, relative privacy, and security advantages
offered by the consortium chain, computationally intensive tasks within the sens-
ing process can be efficiently accomplished. Figure 1 depicts the blockchain-based
MCS (BCMCS) model, while a detailed description of the entities involved is
provided below.

Fig. 1. The blockchain-based MCS (BCMCS) model.

(1) Mobile users: Mobile users participate as both data requesters and mobile
workers. Data requesters formulate task requirements and establish data
quality evaluation rules, subsequently transmitting data request informa-
tion to the agent nodes of the relevant consortium chain. Mobile workers
employ mobile devices to conduct data sensing and upload data at desig-
nated locations, earning corresponding rewards upon task completion.

(2) Public chain miners: These transaction verifiers record and permanently
store transactions within the chain. Their primary responsibility is to main-
tain the secure interaction and data consistency of the public chain through
the consensus protocol.

(3) Consortium chain members: In accordance with smart city application sce-
narios, multiple consortium chains can be created, jointly participated in,
and managed by various associated institutions. Consortium chain members
consist of relevant stakeholders, with nodes possessing higher reputation val-
ues included in the transaction verification set. The most reputable nodes

A Blockchain-Based Mobile Crowdsensing and Its Incentive Mechanism 71

are designated as agent nodes. The consortium chain assumes responsibilities
such as releasing sensing tasks, recruiting mobile workers, evaluating data
quality, and distributing rewards. Agent nodes deploy task-related smart
contracts within the consortium chain and collaborate with data requesters
to publish sensing task information and final task reward assignment results
to the public chain. They are responsible to act as a gate way node to
transfer information between public network and consortium network.

4 Proposed Approach

We present a Blockchain-based Mobile Crowdsensing (BCMCS) model com-
prising a blockchain platform and a group of mobile users, denoted as U =
{1, 2, . . . , n}. In this model, data requesters initiate data request messages that
are transmitted to the agent node. After successful verification of the data
request information by the transaction verification set of the consortium chain
within a specified time threshold, the agent node of the consortium chain pub-
lishes the set of sensing tasks T = {T1, T2, . . . , Tm} to the public chain. Mobile
workers participate in sensing tasks by submitting a deposit to the worker
recruitment contract within the consortium chain. Upon completion of several
sensing tasks by worker i, the corresponding sensing data is packaged into a set
Di = {(dij , tij)|τj ∈ Ti} and submitted to the relevant contract for data qual-
ity evaluation. Once all sensing data from the workers is collected, the smart
contract initiates automatic execution and proceeds to calculate the account
grouping results for each user. Subsequently, for each task τj ∈ Ti, the platform
obtains an aggregated result dj using the grouping truth discovery algorithm.
This aggregated result represents the estimated truth for the given task, and
the user’s weight and collected data quality are evaluated based on it. Upon
completion of the data quality evaluation, the reward distribution contract is
triggered, and the distribution of rewards takes place using the task’s budget
deposit and the results of the quality evaluation. The following sections provide
detailed descriptions of the truth-discovery-based data quality assessment and
reward distribution mechanisms.

4.1 Account Grouping Method

Within the mobile crowdsensing (MCS) network, a prevalent issue arises wherein
users create multiple identities. This behavior is exploited by malicious users
who leverage multiple identities to engage in sensing tasks, either by uploading
similar data to obtain excessive rewards or by submitting multiple false data to
manipulate the final data aggregation outcomes. To combat such Sybil attacks,
inspired by Wang’s work [10,15], we utilize a Jensen-Shannon divergence-based
(D-JS) approach to detect accounts exhibiting similar task trajectories, aiming
to identify accounts with high similarity and group them together, assigning a
lower weight to their uploaded data to mitigate the influence of malicious data
on the accuracy of ground truth discovery.

72 Y. Zhang et al.

The calculation equation of the degree of difference based on Jensen-Shannon
(JS) divergence is as follows:
JS(i||j) = (

∑

di∈Di,d
j∈Dj

d
i×log

2di

di + dj
+

∑

di∈Di,d
j∈Dj

d
j×log

2dj

di + dj
)×

1

2(
∑

di∈Di
di +

∑
dj∈Dj

dj)
(1)

Among them, di and dj are data in data sets Di and Dj uploaded by two
accounts i and j, respectively. JS divergence is improved based on Kullback −
Leibler(KL) divergence, and its symmetry is more suitable for calculating the
difference degree of task sets.

4.2 Grouping Truth Discovery Algorithm

To extract truth information from noisy data provided by untrustworthy users,
We use the account grouping method based on JS divergence to group accounts,
and G = {g1, g2, ..., gk, ...} is the grouping result. We then proposed an improved
group truth discovery algorithm (I-GTDA) that can estimate the truth accu-
rately even in the presence of a Sybil attack. The Table 2. explains the symbolic
meanings of the group discovery algorithm.

Table 2. Symbolic explanation in grouped truth discovery algorithms.

Symbol Explanation
n, m Number of users, number of tasks
Di = {(di

j , t
i
j)|τj ∈ Tj} Dataset collected by account i

D = {Di|i ∈ U} Dataset collected by mobile users
τj jth task
di
j The data collected by account i for task τj

G, gk The result of account grouping, the kth group
d̄k
j , wi

j The data mean of group gk corresponds to task τj , and the weight of account i in group gk

d̂k
j , ŵk The data aggregation result of group gk corresponds to task τj , the weight of group gk

d∗
j , wi The true value of the data corresponds to task τj , the weight of account i

e∗
j the last round’s estimated truth for task τj

tij A timestamp of a mobile worker i’s sensing data for task τj

σ, p a small constant real number,an arbitrary positive real number

The data of each task τj is aggregated by the group. The smart contract
calculates the weight of each account in each group gk using Eq. (2).

wi
j =

(|dij − d̄kj | + σ)−p

∑
i∈gk

(|dij − d̄kj | + σ)−p
(2)

The d̂kj is the mean value of data uploaded by accounts in group gk for task τj .
dij is the data collected by account i for task τj . The data aggregation calculation
equation of the kth group gk corresponding to the task τj is as follows:

d̂kj =

∑
i∈gk

wi
jd

i
j

∑
i∈gk

wi
j

(3)

The group weight of the kth group gk corresponding to the task τj is calcu-
lated as follows:

A Blockchain-Based Mobile Crowdsensing and Its Incentive Mechanism 73

ŵk = 1 − |gk|
|Uj | (4)

The |gk| indicates the number of accounts in the group gk, and the |Uj | indicates
the number of accounts participating in the task τj .

Compared with the random initialization of the truth ground of each task in
the traditional truth discovery algorithm, Eq. (5) is used to initialize the truth
ground of each task in the group truth discovery algorithm.

d∗
j =

∑
gk∈G ŵkd̂kj∑
gk∈G ŵk

(5)

Then we will evaluate the weight of each account participating in task τj
using Eq. (6). Using the idea of the inverse distance weighting method, the
weight of the account decreases as the gap between the uploaded data and the
truth ground increases.

wi =
(|dij − e∗

j | + σ)−p

∑
i∈Uj

(|dij − e∗
j | + σ)−p

(6)

The e∗
j denotes the last round’s estimated truth for task τj . The calculation of the

ground truth value of the task τj is jointly determined by the data uploaded by
the account and the account weight of the previous round. The truth evaluation
is calculated as follows:

e∗
j =

∑
i∈Uj

wid
i
j

∑
i∈Uj

wi
(7)

We assume {d∗
j |τj ∈ T} is the ground truth of task τj discovered by the truth

discovery algorithm. To evaluate the quality level of the collected data, we use
distance functions d(•) to calculate the similarity between the collected data dij
and the truth ground d∗

j . The smaller d(dij , d
∗
j), the higher the quality of the data

collected dij . The range of Qi
j is [0,1]. The data quality is calculated as follows:

Qi
j = 1 − d(dij , d

∗
j)∑

i∈U d(dij , d
∗
j) + σ

(8)

4.3 Reward Distribution Mechanism

The mobile workers participating in the task acts as a player in the cooperative
game model. N = {1, 2, · · · , n} is the set of all participants, and S is a coopera-
tive alliance composed of |S| participants. For each cooperative alliance S ⊆ N ,
v(S) represents the utility function of the income obtained from the cooperation
of alliance S, and all cooperative utility values v(S) are greater than the single
user’s utility value v(i), where i ∈ S. The following is the utility function of the
cooperative alliance based on data quality and a fixed total reward budget.

v(S) =
Bj × (|N |h + 10)

∑
i∈S Qi

j

|S|h + 10
(9)

where Bj is the total reward for task τj , and Qi
j is the quality of data collected by

participant i. h is used to adjust the fairness of reward distribution, and h ≥ 0.

74 Y. Zhang et al.

The larger h is, the users with higher data quality will get more rewards, and
users with lower quality will get fewer rewards.

We apply Shapley value [16], which is distribution scheme that distributes
the total surplus generated by the coalition of all players. The distribution result
is decided by how much each individual contributes to the alliance. The reward
distribution calculation θi(v) of each mobile worker i participating in the coop-
erative game is as follows:

θi(v) =
∑

S∈N\{i}
[v(S ∪ {i}) − v(S)]

|S|!(|N | − |S| − 1)!
|N |! (10)

where |S| and |N | are the number of elements in set S and set N respectively,
participant i ∈ N .

5 Experiments and Security Analysis

5.1 Security Analysis

The application of the blockchain eliminates the security threats brought by the
centralized platform and realizes data consistency, tamper-proof, and distributed
data storage in the network. During the operation of the entire system, the
verification nodes of the public chain and the consortium chain are not crossed.
Private information and public information are stored separately, ensuring the
privacy and security of users and data. Also, a malicious user might creates
multiple IDs and submits multiple responses to the same task in an attempt
to receive more rewards. The proposed model uses a grouping truth discovery
algorithm to score the data. Therefore, if one user submits multiple identical
responses, the data quality will be measured as low and get reduced rewards.
Therefore, our model is resistant to Sybil attack.

5.2 Experiment Setup and Performance Metrics

In the experiment of evaluating the account grouping algorithm, we recruited 12
mobile users in our system, among them are 10 legal users and 2 Sybil attackers.
Each legal user has only one account to join the sensing tasks, and each Sybil
attacker has 5 accounts to perform tasks. The percentage of malicious workers is
equal to the percentage of legal accounts. However, the higher the activeness of
the malicious account, the greater the damage to the sensing task. The activeness
of each account i is defined as follows:

αi =
|Ti|
m

(11)

where |Ti| is the number of tasks performed by account i and m is the total
number of tasks. In our experiment, each account has to perform at least two
task, and thus αi ∈ [0.2, 1].

To effectively compare the accuracy of the I-GTDA algorithm and the GTD
algorithm [10], we set two reference variables γ and μ, the difference between
malicious data and normal data, and the participation ratio of Sybil accounts.

A Blockchain-Based Mobile Crowdsensing and Its Incentive Mechanism 75

γ = |d̄kj − d̄mj | (12)

where d̄kj is the average value of data perceived by the normal account for task
τj , and d̄mj is the average value of data collected by the detected Sybil account
for task τj .

μ =
|Un|
|U | (13)

where |Un| is the number of malicious users participating in the task, and |U | is
the number of all users participating in the task.

To demonstrate the usefulness and fairness of the reward distribution pro-
posed in this paper, we use the same data quality or user reputation value
and total reward Bj to compare the weight-based proportional distribution (W-
Proportional), the scheme proposed by Yang et al. (Y-Shapley) [17] and the I-
Shapley scheme proposed in this paper. In our scheme, it is assumed that the data
quality set corresponding to the participating user set N = {a1, a2, a3, a4, a5} is
{Q1 = 0.1, Q2 = 0.15, Q3 = 0.3, Q4 = 0.25, Q5 = 0.2}. The parameter h is set to
0, 1, 1.5 respectively.

The following metrics are used to analyze the performance of the D-JS and
I-GTDA algorithms.

Adjusted rand index (ARI): This is a widely used criterion to evaluate the
performance of clustering algorithms. The range of the ARI value is [−1, 1]. And
the larger the ARI value, the better the clustering effect.

Mean absolute error (MAE) [10]: This is used to measure the error between
the estimated ground truth obtained by the truth discovery algorithm and the
ground data. The smaller the MAE value, the higher the accuracy of the truth
discovery algorithm.

5.3 Result Analysis

Account Grouping Method Evaluation. We use ARI to evaluate the per-
formance of the D-JS method proposed in this paper and compare it with the
AG-TS and AG-TR methods proposed in [15]. Figure 2 shows the ARI values of
the three account grouping methods for different levels of activeness among legal
accounts and Sybil accounts. We fix the activeness of legal users at α = 0.2, 0.5,
or 0.8. The activeness of Sybil attackers varies, with α set to 0.2, 0.5, and 1,
respectively. From Fig. 2, we observe that when the activity level of Sybil attack-
ers ranges from 0.2 to 0.5, the ARI values of all three methods increase as the
activity level of the Sybil attackers increases. However, when the activity level
of Sybil attackers is 1, all Sybil attackers are grouped together, resulting in a
decrease in the ARI value. This is because the three methods are based on task
sets. Nevertheless, this result still allows for the distinction between Sybil attack-
ers and legal users. In Fig. 2(c), it can be seen that when the activity level of
normal users is 0.8, there is a high similarity in task sets among legal users, lead-
ing to a performance degradation of the AG-TS method that relies solely on task
sets. In contrast, the D-JS method based on JS divergence considers the task

76 Y. Zhang et al.

set sequence, time series and collected data set simultaneously, which makes the
difference degree calculation between accounts more accurate. Therefore, even
when the Sybil attackers have lower activity levels, the D-JS method can still
demonstrate better performance.

Fig. 2. ARI comparison of different account grouping methods.

Fig. 3. MAE comparison of different truth discovery algorithms.

Grouping Truth Discovery Algorithm Evaluation. MAE was used to mea-
sure the accuracy of the I-GTDA and the GTD algorithm. As shown in (a) of
Fig. 3, when there is no interference from malicious data, the accuracy of the two
methods is quite high, and then the I-GTDA algorithm outperforms the GTD
algorithm. The (b) and (c) in Fig. 3 show the algorithm evaluation results under
different malicious user participation ratios. When the proportion of malicious
user participation increases or malicious data interference increases, the accuracy
of the GTD algorithm will decrease significantly, but the I-GTDA algorithm has
always maintained a high accuracy. Therefore, the I-GTDA algorithm is more
suitable for realistic scenarios where Sybil attackers exist.

Reward Distribution Mechanism Evaluation. Figure 4 compares the
results of three different reward distribution schemes as the value of h is adjusted.
In Fig. 4(a), when h = 0, the reward distribution results of the I-Shapley scheme
and the W-Proportional scheme are nearly identical. Similarly, in Fig. 4(b), when
h is adjusted to 1, the I-Shapley distribution results closely match the Y-Shapley
results. However, in Fig. 4(c), when h is set to 1.5, the I-Shapley reward distribu-
tion favors users who provide high-quality data, allocating lower rewards to users
who provide low-quality data. When adjusting the h value, it is worth noting

A Blockchain-Based Mobile Crowdsensing and Its Incentive Mechanism 77

that the reward for each user should be no less than 0. For example, it can be
seen from Fig. 5 that when the value of h is greater than or equal to 2, there are
users whose reward is less than 0, so the value of h at this time is inappropri-
ate. As a result, by adjusting the value of h appropriately, the I-Shapley scheme
effectively incentivizes users to submit high-quality data, making it well-suited
for mobile crowdsensing scenarios.

Fig. 4. Comparison of different reward distribution schemes.

Fig. 5. The effect of the change of h value on the user’s reward.

6 Conclusion

In this paper, we propose a BCMCS system model. The application of the public
chain realizes a completely decentralized reward distribution model. The consor-
tium chain ensures the privacy and security of participating users. Furthermore,
to encourage mobile users to join the MCS platform, a quality-driven incen-
tive mechanism is proposed in this paper. By achieving fair reward distribution
based on accurate quality assessment, more mobile users are motivated to join
the perception task. In future work, this paper will conduct further research on
the consensus mechanism of blockchain, the design of benefit distribution, and
the realization of the system.

References

1. Liu, Y., Kong, L., Chen, G.: Data-oriented mobile crowdsensing: a comprehensive
survey. IEEE Commu. Surv. Tutorials 21(3), 2849–2885 (2019). https://doi.org/
10.1109/COMST.2019.2910855

https://doi.org/10.1109/COMST.2019.2910855
https://doi.org/10.1109/COMST.2019.2910855

78 Y. Zhang et al.

2. Zhao, C., Yang, S., Yan, P., Yang, Q., Yang, X., McCann, J.: Data quality guarantee
for credible caching device selection in mobile crowdsensing systems. IEEE Wireless
Commun. 25(3), 58–64 (2018). https://doi.org/10.1109/MWC.2018.1700299

3. Vahdat-Nejad, H., Asani, E., Mahmoodian, Z., Mohseni, M.H.: Context-aware com-
puting for mobile crowd sensing: a survey. Futur. Gener. Comput. Syst. 99, 321–332
(2019)

4. Cheng, X., He, B., Li, G., Cheng, B.: A survey of crowdsensing and privacy pro-
tection in digital city. IEEE Trans. Comput. Soc. Syst. 1–17 (2022). https://doi.
org/10.1109/TCSS.2022.3204635

5. Zou, S., Xi, J., Xu, G., Zhang, M., Lu, Y.: CrowdHB: a decentralized location
privacy-preserving crowdsensing system based on a hybrid blockchain network.
IEEE Internet Things J. 9(16), 14803–14817 (2022). https://doi.org/10.1109/
JIOT.2021.3084937

6. Zhu, S., Cai, Z., Hu, H., Li, Y., Li, W.: zkCrowd: a hybrid blockchain-based crowd-
sourcing platform. IEEE Trans. Ind. Inform. 16(6), 4196–4205 (2020). https://doi.
org/10.1109/TII.2019.2941735

7. Tong, W., Dong, X., Shen, Y., Zhang, Y., Jiang, X., Tian, W.: CHChain: secure
and parallel crowdsourcing driven by hybrid blockchain. Futur. Gener. Comput.
Syst. 131, 279–291 (2022)

8. Huang, J., et al.: Blockchain-based mobile crowd sensing in industrial systems.
IEEE Trans. Ind. Inform. 16(10), 6553–6563 (2020). https://doi.org/10.1109/TII.
2019.2963728

9. An, J., Liang, D., Gui, X., Yang, H., Gui, R., He, X.: Crowdsensing quality control
and grading evaluation based on a two-consensus blockchain. IEEE Internet Things
J. 6(3), 4711–4718 (2019). https://doi.org/10.1109/JIOT.2018.2883835

10. Wang, E., et al.: Trustworthy and efficient crowdsensed data trading on sharding
blockchain. IEEE J. Sel. Areas Commun. 40(12), 3547–3561 (2022). https://doi.
org/10.1109/JSAC.2022.3213331

11. Wen, Y., et al.: Quality-driven auction-based incentive mechanism for mobile crowd
sensing. IEEE Trans. Veh. Technol. 64(9), 4203–4214 (2015). https://doi.org/10.
1109/TVT.2014.2363842

12. Tan, W., Liu, J., Liang, Z., Ding, K.: Based on bid and data quality incentive
mechanisms for mobile crowd sensing systems. In: 2022 IEEE 25th International
Conference on Computer Supported Cooperative Work in Design (CSCWD), pp.
89–94 (2022). https://doi.org/10.1109/CSCWD54268.2022.9776098

13. Li, M., Lin, J., Yang, D., Xue, G., Tang, J.: QUAC: quality-aware contract based
incentive mechanisms for crowdsensing. In: 2017 IEEE 14th International Confer-
ence on Mobile Ad Hoc and Sensor Systems (MASS), pp. 72–80 (2017). https://
doi.org/10.1109/MASS.2017.45

14. Bai, Y., Hu, Q., Seo, S.H., Kang, K., Lee, J.J.: Public participation consortium
blockchain for smart city governance. IEEE Internet Things J. 9(3), 2094–2108
(2022). https://doi.org/10.1109/JIOT.2021.3091151

15. Lin, J., Yang, D., Wu, K., Tang, J., Xue, G.: A sybil-resistant truth discovery
framework for mobile crowdsensing. In: 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS), pp. 871–880 (2019). https://doi.org/
10.1109/ICDCS.2019.00091

16. Shapley, L.S., et al.: A Value For N-person Games, vol. 2, pp. 307–317 (1953)
17. Yang, S., Wu, F., Tang, S., Gao, X., Yang, B., Chen, G.: On designing data

quality-aware truth estimation and surplus sharing method for mobile crowdsens-
ing. IEEE J. Sel. Areas Commun. 35(4), 832–847 (2017). https://doi.org/10.1109/
JSAC.2017.2676898

https://doi.org/10.1109/MWC.2018.1700299
https://doi.org/10.1109/TCSS.2022.3204635
https://doi.org/10.1109/TCSS.2022.3204635
https://doi.org/10.1109/JIOT.2021.3084937
https://doi.org/10.1109/JIOT.2021.3084937
https://doi.org/10.1109/TII.2019.2941735
https://doi.org/10.1109/TII.2019.2941735
https://doi.org/10.1109/TII.2019.2963728
https://doi.org/10.1109/TII.2019.2963728
https://doi.org/10.1109/JIOT.2018.2883835
https://doi.org/10.1109/JSAC.2022.3213331
https://doi.org/10.1109/JSAC.2022.3213331
https://doi.org/10.1109/TVT.2014.2363842
https://doi.org/10.1109/TVT.2014.2363842
https://doi.org/10.1109/CSCWD54268.2022.9776098
https://doi.org/10.1109/MASS.2017.45
https://doi.org/10.1109/MASS.2017.45
https://doi.org/10.1109/JIOT.2021.3091151
https://doi.org/10.1109/ICDCS.2019.00091
https://doi.org/10.1109/ICDCS.2019.00091
https://doi.org/10.1109/JSAC.2017.2676898
https://doi.org/10.1109/JSAC.2017.2676898

A New Frontier in Digital Security:
Verification for NFT Image Using Deep

Learning-Based ConvNeXt Model
in Quantum Blockchain

Aji Teguh Prihatno1 , Naufal Suryanto1 , Harashta Tatimma Larasati1 ,
Yustus Eko Oktian2,3 , Thi-Thu-Huong Le2,3 , and Howon Kim1(B)

1 School of Computer Science and Engineering, Pusan National University,
Busan 609735, Republic of Korea

howonkim@pusan.ac.kr
2 Blockchain Platform Research Center, Pusan National University,

Busan 609735, Republic of Korea
3 IoT Research Center, Pusan National University, Busan 609735, Republic of Korea

Abstract. Non-Fungible Tokens (NFTs) have transformed the digital
asset landscape with unique ownership verification. However, securing
NFT images remains a crucial challenge. This paper proposes a verifica-
tion framework for NFT images in a quantum blockchain environment.
We explore the fundamentals, characteristics, and security challenges
of NFT images. We examine the significance of quantum computing
for digital security, highlighting vulnerabilities in classical encryption.
We discuss existing image verification techniques and their limitations,
leading to our proposed methodology that combines quantum-inspired
approaches with a Deep Learning-based model. Additionally, we investi-
gate the potential of ConvNeXt as a part of Deep Learning methods to
enhance NFT image verification security and trust. Our comprehensive
technique combines the Deep Learning-based method with a quantum
blockchain to ensure the integrity, scalability, and validity of NFT images.
Experimental evaluation demonstrates the feasibility and effectiveness
of our approach. We discuss implications, including comparisons, limita-
tions, and future research areas. This research advances digital security,
providing insights into NFT image verification in the quantum comput-
ing era and laying the foundation for secure NFT ecosystems, promoting
adoption across various domains.

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2023-
2020-0-01797) supervised by the IITP (Institute for Information & Communications
Technology Planning & Evaluation) and also supported by the MSIT (Ministry of
Science and ICT), Korea, under the Convergence security core talent training business
(Pusan National University) support program (IITP-2023-2022-0-01201) supervised
by the IITP (Institute for Information & Communications Technology Planning &
Evaluation).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 79–90, 2024.
https://doi.org/10.1007/978-981-99-8024-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_7&domain=pdf
http://orcid.org/0000-0002-6821-4254
http://orcid.org/0000-0002-0396-5938
http://orcid.org/0000-0001-6143-4134
http://orcid.org/0000-0002-3574-7820
http://orcid.org/0000-0002-8366-9396
http://orcid.org/0000-0001-8475-7294
https://doi.org/10.1007/978-981-99-8024-6_7

80 A. T. Prihatno et al.

Keywords: NFT · quantum blockchain · deep learning · digital
security · ConvNeXt

1 Introduction

The rise of Non-Fungible Tokens (NFTs) has revolutionized the digital asset
landscape, offering a novel approach to verifying the ownership and authen-
ticity of digital content. NFTs have gained significant popularity in various
domains, including art, collectibles, and virtual assets. However, the security
of NFT images remains a critical concern [1], as they are susceptible to tam-
pering, counterfeiting, and unauthorized duplication. Ensuring the integrity and
trustworthiness of NFT images is paramount for maintaining the value and cred-
ibility of these digital assets. Digital security measures have traditionally relied
on classical encryption algorithms to protect sensitive data. However, the advent
of quantum computing poses significant challenges to classical cryptographic
schemes, as quantum computers have the potential to break many of the cur-
rently deployed encryption methods [2]. This vulnerability requires innovative
approaches to secure NFT images in the quantum era.

This paper proposes a verification framework for NFT images in a quan-
tum blockchain environment to address NFT image authenticity and integrity
security concerns. We use quantum computing and blockchain technology to
develop a robust and tamper-resistant verification methodology [3]. Our app-
roach uses quantum-inspired verification techniques to enhance the security and
trustworthiness of NFT images while leveraging blockchain’s decentralized and
immutable nature to ensure transparency and audibility. To establish the foun-
dation for our research, we first delve into the fundamentals of NFT images,
exploring their unique characteristics and the security challenges they face. We
analyze the vulnerabilities of classical encryption algorithms in the context of
quantum computing and discuss the need for quantum-resistant cryptographic
schemes [4]. Additionally, we survey existing image verification techniques and
highlight their limitations in providing comprehensive security for NFT images.
Building upon this background, we introduce our proposed methodology that
combines Deep Learning-based ConvNext model approaches with the power of
quantum blockchain technology [5].

We present a comprehensive technique that ensures the integrity and validity
of NFT images, even in the presence of quantum computing threats. Through
experimental evaluation and analysis, we demonstrate the feasibility and effec-
tiveness of our approach to providing robust security for NFT images. This
research’s findings contribute to the digital security field by addressing the
emerging challenges of NFT image verification in the quantum computing era.
By establishing secure and trustworthy NFT ecosystems, our work promotes the
widespread adoption of NFTs across various domains, fostering confidence and
value in the digital asset landscape. The remaining structure of the paper is as
follows.

Section 2 provides an overview of the related work in NFT image verifi-
cation and quantum blockchain. In Sect. 3, we describe the dataset used for

A New Frontier in Digital Security: Verification for NFT Images 81

conducting our experiments and evaluating the effectiveness of our proposed
methodology. Section 4 presents our methodology for verifying NFT images that
utilize various ConvNeXt models and a concept quantum blockchain. Section 5
describes the proposed design architecture of NFT image verification in a quan-
tum blockchain environment. Section 6 presents the results obtained from apply-
ing our methodology to the NFT image dataset and compares it with the
ConvNeXt-based model. Section 6 comprises a comprehensive discussion and
analysis of the results, highlighting its advantages, limitations, and areas for
further improvement. In the final section, Sect. 7, we summarize the key findings
of our research and provide concluding remarks.

2 Related Work

The use of NFT verification to identify potential con artists has been supported
in a number of papers and methodologies. Galis et al. [6] has proposed a rapid and
creative method for approximating pattern matching for plagiarism detection
utilizing an NDFA-based method that greatly improves performance compared
to other similarity measures already in use. In order to trace partial matches
faster, the suggested approach makes use of local thresholds at the node level
and a sliding window notion. The method is especially useful for platforms and
ecosystems that are NFT-ready and driven by blockchain. However, the method
has a high potential computational cost since it computes every feasible suffix
for each node.

In the context of blockchain-based non-fungible tokens (NFTs), Pungila et al.
[7] employed a novel method to do approximate pattern-matching for plagiarism
detection. The authors combine an NDFA (Non-Deterministic Finite Automa-
ton) method with a sliding window idea and local thresholds at the node level
to trace partial matches more quickly. They tested their method and found that
it acts adequately similarly to other similarity measures currently used in text
mining for plagiarism detection. However, they are precautionary because their
proposed approach might only be appropriate for some plagiarism detection
tasks. It is still being determined how well the authors’ approach will perform
in different circumstances after testing it in a number of real-world scenarios
and with various similarity tests used in plagiarism detection. Furthermore, the
accuracy of the authors’ method needs to be thoroughly analyzed.

3 Datasets

An openly available dataset from Kaggle was used in this study [10]. The dataset
contains 9761 records from the Crypto Coven NFT project, each represented by
a unique folder containing three images: an original size image labeled as os, a
preview version labeled as preview, and a smaller thumbnail version labeled as a
thumbnail. These images are in .png format and were collected via the OpenSea
API. The images don’t fit into any particular genre and instead exhibit a variety
of NFT arts. All images were resized to a uniform 224 by 224 pixels for processing

82 A. T. Prihatno et al.

purposes. Subsequently, the images were divided into training, validation, and
test subsets in the proportion of 60%, 20%, and 20%, respectively. Considering
the complexities and variability in real-world scenarios, augmentation techniques
were applied to increase the robustness and generalizability of the model. These
techniques included random modifications to the input images’ rotation, bright-
ness, shear, horizontal flip, and scale, thus effectively enlarging the sample size
of the training data and allowing the model to learn from a broader range of
instances. This data expansion and variation help the ConvNeXt model to adapt
and generalize across diverse image techniques.

4 Methodology

4.1 NFT Concept

Users can participate in our system by becoming content creators or consumers.
The content creators make the original NFT assets, upload the assets on IPFS,
and store the corresponding metadata on-chain. Before our system successfully
accepts this new NFT mint, our Image Plagiarism Checker (IPC) will validate
the uploaded digital assets using the deep learning-based ConvNeXt method.
Only assets with below 0.3 similarity score can be accepted. On the other side of
the system, consumers browse the NFT on our platform through the available
Application Programming Interface (API), obtain the relevant on-chain meta-
data, make payments, and download the image from the IPFS. Because of the
proposed IPC, consumers can make a safe payment knowing that the NFT they
bought will likely not be a copycat. In the following paragraphs, we describe
each component from our proposals in more detail.

4.2 NFT Image Verification Using ConvNeXt

ConvNeXts, built from common ConvNets (convolutional neural networks) mod-
ules, outperform Transformers in terms of accuracy, scalability, and resilience
across all significant benchmarks. ConvNeXt is incredibly easy to use and main-
tains the effectiveness of regular ConvNets while being completely convolutional
for training and testing [11]. Utilizing grouped convolution with the same num-
ber of groups as channels, ConvNeXt employs depthwise convolution. Depthwise
convolution is comparable to self-weighted attention’s sum operation because
both exclusively combine the information in the spatial dimension and act on a
per-channel basis [12]. Compared to the Swin Transformers model, every trans-
former block produces an inverted bottleneck. Concatenating four blocks results
in an output that quadruples the size of the hidden dimensions. ConvNeXts imi-
tates this concept by creating an inverted bottleneck with a 4-to-1 expansion
ratio. It was discovered that it improves the model’s performance [13].

The ConvNeXt block [11], depicted in Fig. 1, is a fundamental component
within the ConvNeXt architecture, comprising four branches; each encompasses
a 1× 1 convolutional layer generating 96 output channels. Subsequently, a 7× 7

A New Frontier in Digital Security: Verification for NFT Images 83

Fig. 1. ConvNeXt block architecture.

convolutional layer with 96 output channels and a stride of 2 is applied to perform
downsampling. The output feature maps of the four branches are then concate-
nated along the channel dimension, resulting in a feature map with a fourfold
increase in the number of channels compared to the input. This concatenated
feature map is subsequently fed through a sequence of two 1× 1 convolutional
layers. The initial 1× 1 convolutional layer has 384 output channels, while the
subsequent 1× 1 convolutional layer has 96 output channels. Finally, the out-
put of the last 1× 1 convolutional layer is combined with the input feature map
using a residual connection. Furthermore, from the ConvNeXt block architec-
ture, incorporating downsampling layers and residual connections play a vital
role in preserving information from the input feature map and facilitating the
training of deep ConvNeXt networks. By utilizing the gating mechanism within
the ConvNeXt block, the network can selectively integrate information from
different branches, thereby enhancing the network’s representative capacity.

The ConvNeXt block illustrated in Fig. 1 constitutes a straightforward and
efficient building block that can be stacked to construct a deep ConvNeXt net-
work. The specific configuration of the convolutional layers and the gating mech-
anism can be adjusted to optimize the network’s performance for various com-
puter vision tasks. The ConvNeXt block consists of a series of convolutional
layers followed by a gating mechanism. The input feature map is divided into
multiple branches, transforming a distinct convolutional layer set. These trans-
formed feature maps are subsequently merged using a gating function, which
learns to integrate information from the different branches selectively.

4.3 Quantum Blockchain

Quantum blockchain offers Non-Fungible Tokens (NFTs) the benefit of providing
distinctive and genuine tokens by integrating the greatest aspects of blockchain
technology. NFTs are digital assets such as artwork, collectibles, or virtual real
estate that serve as ownership or authenticity proof tokens. By utilizing the
capabilities of quantum computing and communication, quantum blockchain

84 A. T. Prihatno et al.

improves the security and uniqueness of NFTs. Quantum blockchain also pro-
vides computing efficiency, which is essential for Metaverse apps to operate cor-
rectly. Additionally, it uses quantum randomness, which generates random bits
via qubit series, to guard against manipulation by users and programs. This
significantly improves the NFTs’ reliability and dependability in the blockchain-
based Metaverse system.

The NFT platform is built on a blockchain network that is quantum-resistant.
The coming threat of quantum computing, which would make conventional
cryptography obsolete, motivated this strategic choice. We suggest replacing
the present digital signature technique, ECDSA (widely used in blockchain
networks), with the LMS (Leighton-Micali Signature) algorithm [14], a hash-
based signature scheme. The adoption of LMS over alternatives such as XMSS
(eXtended Merkle Signature Scheme) stems from careful technical deliberation
rather than a random choice. Regarding key generation, signing, and verifying
performance, LMS typically surpasses XMSS. This is due to several variables,
including using a Merkle tree with a constant height, simplifying the implemen-
tation, and lowering the stack use. Furthermore, LMS uses a one-time signature
(OTS) method that is less complex than XMSS and requires fewer hash func-
tion evaluations. In addition, LMS uses a more effective technique to compute
the public key, which compresses computation time and uses less memory [15].
The LMS algorithm resists to assaults that take advantage of discrete logarithm
problems and large-number factorization, which present serious vulnerabilities
in quantum computing. Therefore, we can confidently state that our system is
immune to these types of attacks, ensuring its durability and integrity even when
quantum computing becomes widely used in the future.

On top of this blockchain, a smart contract similar to Ethereum Virtual
Machine (EVM) exist to provide fair and deterministic logics for creators and
consumers. This EVM smart contract handles day-to-day NFT tasks such as
minting and transfers following the ERC-721 or ERC-1155 standard.

5 Proposed Approach

The proposed approach initiates at the creator’s side and includes numerous
crucial processes, including image creation, image verification, minting, and ulti-
mately storage in the Quantum Blockchain Network. The creator starts by cre-
ating an original work of digital art that will be issued as a Non-Fungible Token
NFT. Upon finalizing the image, the designer employs a Deep Learning-based
ConvNeXt model known as the Image Plagiarism Checker (IPC) to ensure the
image’s authenticity and originality. IPC works by examining the image’s fea-
tures and comparing them with a simulation database of images. If there are
significant similarities with any image in the database, the image may be flagged
as potential plagiarism. IPC’s output classes can range from ‘original’ to ‘pla-
giarized’ depending on the detected degree of similarity. After verification, the
image flows through the minting process, which turns the digital artwork into an
NFT and encodes essential information, including the artist’s identity, ownership

A New Frontier in Digital Security: Verification for NFT Images 85

information, and the specific characteristics of the artwork. The InterPlanetary
File System (IPFS), a decentralized file storage system, obtains the NFT after
minting, assuring the data’s accessibility and permanence. The NFT is then
safely kept on the Quantum Blockchain Network, a blockchain architecture that
can resist quantum attacks and offers the highest level of security.

On the other hand, the buyer’s side with an API that makes it possible to
interface with the Quantum Blockchain Network in order to search for and get
NFT images offered for sale on the NFT marketplace. Each NFT image that
is for sale is specifically identifiable and traceable on the Quantum Blockchain
Network, and the prospective buyer can choose from a variety of them. After
deciding on a suitable NFT image, the buyer can complete the transaction on
the NFT marketplace, such as OpenSea, CryptoPunks, or Nifty Gateway; then,
the buyer should complete the purchase under the terms of the underlying smart
contract. Once this transaction has been completed, the blockchain ledger will
be updated to reflect the transfer of ownership from the creator to the buyer. A
buyer can reliably purchase authentic NFTs through this secure and transparent
approach.

Figure 2 shows our proposed method Quantum Blockchain network’s NFT
image verification architecture. It is based on the particular that no instrument is
built into the Blockchain to verify that the person minting an NFT is legitimately
entitled to the asset they are minting.

Fig. 2. Proposed architecture for NFT image verification.

86 A. T. Prihatno et al.

6 Experiment Results and Comparison

This study uses the latest CNN-based development, which is part of the deep
learning method, namely the ConvNeXt model [8], from which we compare vari-
ous ConvNeXt variant methods with the same object as a form of the progress of
the author’s previous research [9]. In this paper, NFT image verification is still a
developing issue discussed in a case study with Quantum Blockchain technology.

6.1 Experimental Setup

The hyperparameters must be set to optimal and equivalent values to guarantee
the best results for NFT Images verification. This study established the same
hyperparameters for all ConvNeXt model varieties. The Adam optimizer, also
comprehended as leaky averaging, is a prominent deep-learning training method
that uses exponentially weighted moving averages to regulate the momentum
and second moment of the gradient. This optimizer is more efficient than the
traditional stochastic gradient descent (SGD) method, which omits the impact of
outliers in that it records the relative prediction error of the loss function through
a weighted average. ReLU activation was determined over other activation func-
tions like tanh and sigmoid because it is less computationally expensive and
improves upon the vanishing gradient problem. The default learning rate value
of 0.001 was utilized in most Keras optimizers, and a 128-dimension embedded
dimension was selected. With only 128 bytes per face, this model offered more
precision and was initially utilized for face clustering, verification, and identifica-
tion. Batch size 64 was selected because it is suitable for the volume of data used
in the study, and selecting a mini-batch size with a power of 2 is advised, and
100 epochs have been chosen for the training. Furthermore, triplet semi-hard
loss was chosen as this loss function performs best for verifying image similarity.

6.2 Comparison

In this work, we evaluated the Triplet Semi-Hard Loss model with the variation of
ConvNeXt models to verify NFT images using the same dataset for one threshold
score, which is 0.3 to obtain the best score for analyzing image plagiarism. In
comparison to ConvNeXt Small, ConvNeXt Base, and ConvNeXt Large, the
proposed Deep Learning-based ConvNeXt XLarge with Triplet Semi-Hard Loss
maintains the lowest loss and maximum accuracy, which means that NFT picture
verification may be guaranteed.

ConvNeXt XLarge surpasses the other variations in terms of both training
and validation loss, according to the experimental results of the training and
validation losses across several models. ConvNeXt XLarge has the best learning
and generalization skills among the studied models, with the lowest training loss
of 0.1129 and validation loss of 0.1801. The second-best performance is provided
by ConvNeXt Large, which has a training loss of 0.2565 and a validation loss of
0.3132. ConvNeXt Base follows with a training loss of 0.2895 and a validation
loss of 0.3543. ConvNeXt Small records the largest losses, with training losses of

A New Frontier in Digital Security: Verification for NFT Images 87

0.3267 and validation losses of 0.4857. The pattern found suggests that model size
considerably affects learning ability, with larger models doing better. This might
be explained by the greater model complexity and capability of representation
that come with larger models. The model’s capacity to generalize to new data
would be significantly impacted by overfitting, thus it is imperative to prevent
this from happening as the model size grows. Figure 3 shows the comparison of
training and validation loss from all ConvNeXt models.

Fig. 3. Comparison of training and validation loss across all ConvNeXt models.

We discover that the ConvNeXt XLarge model beats all other models after
examining the experimental results of the training and validation losses at an
image similarity score threshold of 0.3. ConvNeXt XLarge outperforms other
versions in learning and generalization, with a training score of 0.9185 and a val-
idation score of 0.788, showing a greater degree of performance when confirming
NFT images. The ConvNeXt Large model, which reports a training score of
0.7546 and a validation score of 0.6883, displays the second-best performance,
followed by the ConvNeXt Base model, which gives a training score of 0.7134
and a validation score of 0.6307. With a validation score of 0.6109 and a training
score of 0.6945, the ConvNeXt Small model has the lowest ratings. These find-
ings demonstrate that larger models are more efficient at learning complicated
patterns in the data, improving the accuracy of their image verification. This is
due to their higher complexity and representational capacity. To avoid overfitting
and preserve model effectiveness, it’s crucial to find a balance. Figure 4 describes
the comparison of training and validation loss from all ConvNeXt models respect
to the threshold score 0.3.

When comparing the experimental findings for the Precision-Recall Area
Under Curve (AUC) of picture similarity across many models, we can see that
each model-ConvNeXt XLarge, Large, Base, and Small-performed remarkably
well, producing scores that were very close to perfect. The ConvNeXt XLarge

88 A. T. Prihatno et al.

Fig. 4. Comparison of training results among all ConvNeXt models for threshold 0.3.

model, on the other hand, boasts an AUC of 1, which is a flawless score, showing
that this model achieves the ideal balance between recall and precision, hence
offering the most efficient image verification. The scores of the three models, Con-
vNeXt Large (0.9992), ConvNeXt Base (0.9997), and ConvNeXt Small (0.9999),
are interestingly also quite near to 1, indicating that these models perform well
in the task of picture verification. The ConvNeXt model architecture’s ability to
maintain excellent precision and recall balance for this specific task, regardless of
model size, is demonstrated by their nearly equal performance. Figure 5 describes
the comparison of training and validation loss from all ConvNeXt models respect
to Precision-Recall AUC metric.

Fig. 5. Comparison test results among all ConvNeXt models for Precision-Recall AUC.

7 Conclusion

In conclusion, this study has pushed the boundaries of digital security, partic-
ularly in the realm of non-fungible tokens (NFTs), by proposing and validating

A New Frontier in Digital Security: Verification for NFT Images 89

an effective verification process for NFT images utilizing a Deep Learning-based
ConvNeXt model integrated with Quantum Blockchain. The research has con-
vincingly shown that the ConvNeXt XLarge model outperforms its smaller coun-
terparts in learning and generalizing the image verification task. This affirms the
idea that larger models, with their greater complexity and representation power,
can better learn intricate patterns in the data and consequently enhance image
verification accuracy.

The utilization of Quantum Blockchain technology offers an added layer of
security, ensuring the system’s resilience even against the anticipated threats of
quantum computing. This synergy of Deep Learning and Quantum Blockchain
can pave the way for future developments in the secure handling and verification
of digital assets like NFTs. It also highlights the potential of these technologies
to address complex digital security concerns in an increasingly interconnected
and digital world.

Future work could extend to exploring the efficiency and effectiveness of this
model in larger, more diverse datasets, as well as the potential integration of
other post-quantum cryptographic algorithms. This would further ensure the
robustness and adaptability of the model in a dynamic digital landscape, thus
continuing the exploration of new frontiers in digital security.

References

1. Hrenyak, A.: Implications of non-fungible tokens for the online artist (2022)
2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-

toring. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134. Santa Fe, NM, USA (1994). https://doi.org/10.1109/SFCS.
1994.365700

3. Vardhan Singh Rawat, H., Bisht, D., Kumar, S., Dangi, S.: Rise of blockchain-based
non-fungible tokens (NFTs): overview, trends, and future prospects. In: Skala, V.,
Singh, T.P., Choudhury, T., Tomar, R., Abul Bashar, M. (eds.) Machine Intel-
ligence and Data Science Applications. LNDECT, vol. 132, pp. 1–10. Springer,
Singapore (2022). https://doi.org/10.1007/978-981-19-2347-0_1

4. Mattsson, J.P., Smeets, B., Thormarker, E.: Quantum-Resistant Cryptography.
arXiv preprint arXiv:2112.00399 (2021)

5. Guo, X., Zhang, G., Zhang, Y.A.: Comprehensive review of blockchain technology-
enabled smart manufacturing: a framework, challenges and future research direc-
tions. Sensors 23(1), 155 (2023). https://doi.org/10.3390/s23010155

6. Galiş, D., Pungilă, C., Negru, V.: A fast NDFA-based approach to approximate
pattern-matching for plagiarism detection in blockchain-driven NFTs. In: Wrembel,
R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2022. LNCS,
vol. 13428, pp. 53–58. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
12670-3_5

7. Pungila, C., Galis, D., Negru, V.: A new high-performance approach to approxi-
mate pattern-matching for plagiarism detection in blockchain-based non-fungible
tokens (NFTs). ArXiv Preprint ArXiv:2205.14492 (2022)

8. Chollet, F.: Keras Applications. https://keras.io/api/applications/. Accessed 12
June 2023

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-981-19-2347-0_1
http://arxiv.org/abs/2112.00399
https://doi.org/10.3390/s23010155
https://doi.org/10.1007/978-3-031-12670-3_5
https://doi.org/10.1007/978-3-031-12670-3_5
http://arxiv.org/abs/2205.14492
https://keras.io/api/applications/

90 A. T. Prihatno et al.

9. Prihatno, A., Suryanto, N., Oh, S., Le, T., Kim, H., et al.: NFT image plagiarism
check using EfficientNet-based deep neural network with triplet semi-hard loss.
Appl. Sci. 13, 3072 (2023)

10. Wang, H.: Crypto Coven. https://www.kaggle.com/datasets/harrywang/crypto-
coven. Accessed 10 June 2023

11. Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986 (2022)

12. Singh, A.: ConvNext: The Return Of Convolution Networks. https://medium.com/
augmented-startups/convnext-the-return-of-convolution-networks-e70cbe8dabcc.
Accessed 13 June 2023

13. Kinyan, S.: An overview of ConvNeXt. https://www.section.io/engineering-
education/an-overview-of-convnext/. Accessed 13 June 2022

14. Bernstein, D., Lange, T.: Post-quantum cryptography-dealing with the fallout of
physics success. Cryptology EPrint Archive (2017)

15. Campos, F., Kohlstadt, T., Reith, S., Stöttinger, M.: LMS vs XMSS: comparison
of stateful hash-based signature schemes on ARM Cortex-M4. In: International
Conference on Cryptology in Africa, pp. 258–277 (2020)

https://www.kaggle.com/datasets/harrywang/crypto-coven
https://www.kaggle.com/datasets/harrywang/crypto-coven
https://medium.com/augmented-startups/convnext-the-return-of-convolution-networks-e70cbe8dabcc
https://medium.com/augmented-startups/convnext-the-return-of-convolution-networks-e70cbe8dabcc
https://www.section.io/engineering-education/an-overview-of-convnext/
https://www.section.io/engineering-education/an-overview-of-convnext/

AE-LSTM Based Anomaly Detection System
for Communication Over DNP 3.0

Ilhwan Ji , Seungho Jeon , and Jung Taek Seo(B)

Gachon University, Seongnam-daero, 1342 Seongnam-si, Republic of Korea
{ilhwan1013,shjeon90,seojt}@gachon.ac.kr

Abstract. Energy Management System (EMS) communicates with power plants
and substations to maintain the reliability and efficiency of power supplies. EMS
collects and monitors data from these sources and controls power flow through
commands to ensure uninterrupted power supply, frequency and voltage main-
tenance, and power recovery in the event of a power outage. EMS works in a
Distributed Network Protocol (DNP) 3.0-based network environment that is con-
sidered secure due to its unique security features and communication methods.
However, cyberattacks exploiting the vulnerability of the DNP 3.0 protocol can
manipulate the power generation output, resulting in serious consequences such as
facility malfunction and power outages. To address this issue, this paper identifies
security threats in power system networks, including DNP 3.0, and proposes an
AI-based anomaly detection system based on DNP 3.0 network traffic. Existing
network traffic target rule-based detection methods and signature-based detection
methods have defects. We propose an AI-based anomaly detection system to com-
pensate for defects in existing anomaly detection methods and perform efficient
anomaly detection. To evaluate the performance of theAI-based anomaly detection
system proposed in this paper, we used a dataset containing normal network traffic
and nine types of attack network traffic obtained from the DNP 3.0 communica-
tion testbed, and experiments showed 99% accuracy, 98% TPR, and 1.6% FPR,
resulting in 99% F-1 score. By implementing these security measures, power sys-
tem network environments, including EMS, can be better protected against cyber
threats.

Keywords: ICS · SCADA · EMS · AI-based Anomaly Detection System

1 Introduction

The Energy Management System (EMS) communicates with power plants and substa-
tions acquires and monitors data from substations and plants for the stability, continuity,
real-time, and economic efficiency of power supply, and transmits trans-mission and sub-
station system and power output control commands. These functions control the power
flow to perform uninterruptible power supply, frequencymaintenance in a specific range,
voltage maintenance within a particular range, and recovery during a power outage [1].
The power control network that includes EMS is based on Distributed Network Protocol
3.0 (DNP 3.0).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 91–104, 2024.
https://doi.org/10.1007/978-981-99-8024-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_8&domain=pdf
http://orcid.org/0009-0003-9027-1305
http://orcid.org/0000-0002-7116-6062
http://orcid.org/0000-0003-0971-8548
https://doi.org/10.1007/978-981-99-8024-6_8

92 I. Ji et al.

The power control network using the DNP 3.0 communication method was consid-
ered safe thanks to the inherent security of DNP 3.0 and the communication method
that performs communication only by resuming communication of the master device
[2]. Cyberattacks against EMS using vulnerabilities in these DNP 3.0 protocols can
cause financial and physical damage, such as facility malfunction and power outages,
through arbitrary adjustment of the power generation output of the plant. Traditional net-
work traffic target rule-based detection methods and signature-based detection methods
are flawed. For rule-based detection methods, rule update cycles to respond to rapidly
changing attacks cannot keep upwith the rate of change in the attack. For signature-based
detection methods, unknown attacks cannot be detected [3, 4]. An anomaly detection
method using AI is required to compensate for the weaknesses of these existing anomaly
detection methods and effective detection based on the DNP 3.0 packet.

In this paper, we analyze vulnerabilities in the DNP3.0-based power system network
environment, including EMS, and propose an AI-based anomaly detection system to
respond to cyberattacks using these vulnerabilities. The anomaly detection system pre-
sented in this paper consists of DNP 3.0 parser, feature preprocessor, and autoencoder-
based long short-term memory classifier. DNP 3.0 parser produces more than 100 fea-
tures around all properties and time-related data of DNP 3.0, such as source and desti-
nation IP addresses and ports that can be extracted from DNP 3.0 raw traffic collected
from substations and power plants. In addition, it plays a role in converting the derived
flow data into the same format and format for learning classifiers and abnormal detec-
tion. Feature preprocessor performed normalization and label-encoding on feature for
efficient AE-LSTM (Autoencoder - Long Short Term Memory) classifier learning and
abnormal detection using data collected by DNP 3.0 Parser. AE-LSTM classifier clas-
sifies normal data and abnormal data based on the input data. In order to evaluate the
detection performance of an anomaly detection system with the above configuration,
a high performance of 99% accuracy, 98% TPR, 1.6% FPR, and 99% F-1 Score was
derived in this experiment using “DNP3 intrusion detection dataset,” a dataset containing
normal network traffic and nine types of attack network traffic obtained from the DNP
3.0 communication testbed. The contribution of this paper is three-fold:

• We present DNP 3.0 based power system security vulnerabilities and risk analysis,
including EMS.

• We propose abnormal detection system based on AE-LSTM for the EMS communi-
cation section based on DNP 3.0

• For the AE-LSTM-based anomaly detection system presented in this paper, high
performance of 99% accuracy, 98% TPR, 1.6% FPR, and 99% F-1 Score was derived
using “DNP3 intrusion detection data set”, a dataset containing normal network traffic
and nine attack network traffic obtained from the DNP 3.0 communication testbed.

The remainder of this paper is organized as follows. Section 2 introduces research
related to AI-based anomaly detection in DNP 3.0-based Industrial Control Sys-
tem/Supervisory Control and Data Acquisition (ICS/SCADA). Section 3 analyzes the
power system network, including EMS, and analyzes the risks that may occur in the
power system network, including EMS. Section 4 presents an AI-based anomaly detec-
tion system for detection and response to threats. In Sect. 5, the conclusions and future
research directions are presented.

AE-LSTM Based Anomaly Detection System 93

2 Related Works

Radoglou-Grammatikis et al. [5] proposed a network flow-based intrusion and anomaly
detection and prevention technique called DIDEROT that uses supervised and unsuper-
vised machine learning. Network flows are classified by decision tree models trained on
various attacks based on the Rodofile dataset [6] and normal behavior collected from real
substation traffic. The anomaly detection model detects anomalies by enabling autoen-
coders when data flows are classified asmalicious flows. The responsemodule causes the
SDN controller to delete a specific flow if a malicious activity or abnormality is found.
The evaluation results of the abnormal detection model showed that the autoencoder and
decision tree achieved high accuracy and F1-score with 99.7% and 99.1% for decision
trees and 95.1% and 95.3% for autoencoder, respectively.

V. Kelli et al. [7] designed the internal vulnerabilities of DNP3.0 and implemented
the attacks found through nineDNP 3.0 attack scenarios. This paper generated aDNP 3.0
environment normal and cyberattack dataset by implementing nine DNP 3.0 attack sce-
narios. They presented a machine learning-based multi-model cyberattack classification
IDS trained to recognize DNP3 attacks. As a result of the experiment, high accuracy
and f1-score were achieved with 97% accuracy and 88% f1-score in the DNN-based
anomaly detection model.

I. Siniosoglou et al. [8] proposed an Intrusion Detection System (IDS) specifically
designed for smart grid environments using Modbus/TCP (Transmission Control Pro-
tocol) and DNP 3.0 protocols. The proposed IDS, called anoMaly Detection aNd claSi-
ficAction (MENSA), was designed to adopt a new autoencoder-Generative Adversarial
Network (GAN) architecture to detect anomalies and classify cyberattacks on Mod-
bus/TCP and DNP 3.0. As a result of the experiment, MENSA achieved high accuracy
and F1-score with 99% accuracy and 98% F1 score for Rodofile dataset, a DNP 3.0 data
set.

3 Power System Network

3.1 Analysis of Power System Network Communication Method

The communication structure of the power SCADA system, including EMS, is shown
in Fig. 1. Table. 1 presents the components of the power SCADA system. The power
system network comprises a remote terminal unit (RTU), SCC SCADA, RCC SCADA,
and EMS. RTU transmits status information of the power plant and substation to the
upper system and receives commands from the upper system. SCC SCADA monitors
and controls the 154 kV radial power system. It also performs remote operations of
unmanned substations. RCC SCADA controls the 154 kV LOOP power system and
provides a service, monitoring information for the main system operation and power
generation status of substations and power plants, balancing power demand and supply.
If necessary, RCC SCADA adjusts the power generation output of the power plant.
Also, the power system network consists of EMS, which reduces the power loss rate
by maintaining the rated frequency of the substation [1, 10]. DNP 3.0 transmits status
information from substations and plant RTUs to EMS and SCADA and receives control
commands.

94 I. Ji et al.

Fig. 1. Power system network configuration diagram including EMS [9]

Table 1. Describe the main functions of the power system components.

Component Unit Function Key Function

EMS Data Acquisition Obtaining system data for real-time
power plants and substations remotely

Monitoring and Control Displaying the system status, checking
the alarm, and performing remote
control

Automatic power Generation Control Maintaining the rated frequency,
automatically controlling the power
generation output, and minimizing the
power generation fuel cost

Economic Dispatch Allocating generator power
economically and reflecting the cost of
fuel in the middle

Contingency Analysis Analyzing the system status of the
assumed failure and extracting the
violation cases

State Estimation - Estimating the current system state
based on acquisition/model data
- Creating solutions for all system
analyses and DTSs

RCC SCADA Distant monitoring Remotely monitoring the LOOP
power system

(continued)

AE-LSTM Based Anomaly Detection System 95

Table 1. (continued)

Component Unit Function Key Function

Distant control Remotely controlling the LOOP power
system

Distant measurement Displaying key system operation
information

SCC SCADA Distant monitoring Displaying the operation status of
substation facilities

Distant control Remotely operating unmanned
substation facilities

Distant measurement Displaying remote metering
information for substation facilities

Line A of Fig. 1 is where EMS acquires information based on DNP 3.0 for the
substationRTU.EMScollects operational data such as load power, frequency andvoltage
of substations, reserved power, and operational status of transmission and substation
facilities. Based on the collected information, EMS monitors operational status, such as
power loss rate at substations and failure of substation facilities.

Line B of Fig. 1 is a data communicating location based on DNP 3.0 for other power
plants, including the current power plant infrastructure and renewable energy power
plant. EMS acquires and monitors the operational status data of the power plant. Based
on monitoring information, the generator terminal voltage is controlled by telephone to
maintain the safety of the power system, efficient use of reactive power, and customer-
proper voltage.

DNP 3.0 is a widely used protocol in ICS to automate the control and supervision of
production processes in the electrical, oil, and water industries. In particular, DNP 3.0
is used as the SCADA protocol in power plant environments, including smart grids, to
communicate between field devices andmaster stations [11]. The power control network
using the DNP 3.0 communication method was considered safe owing to the inherent
security of DNP 3.0 and the method that performs communication only by resuming
communication of the master device [2]. In critical infrastructure, including power sys-
tems, attacks on theDNP3.0 protocol can have serious consequences, including financial
damage and physical and human casualties.

3.2 Risk Analysis of DNP 3.0-Based Communication Systems

Table 2 presents the security risks that may occur in the environment with the serial DNP
3.0 and lists the vulnerabilities for DNP 3.0 released by ICS-CERT and Digital Bond.
Possible security risks were classified into infringing on confidentiality, availability, and
integrity, and the causes of each risk were presented [12, 13].

Suppose an attacker uses the vulnerability in Table 2 to conduct a cyber-attack on
EMS. In that case, it can result in service suspension of EMS by an unauthorized request
packet of DNP 3.0 and stop the performance of RTU functions of substations or power

96 I. Ji et al.

Table 2. Security risks that may arise in DNP 3.0 communication environments.

Risk Type Description

Points List Scan During the information gathering phase, gather information
about the attackable DNP 3.0 data points
- plaintext communication

Function Code Scan Gathering information about the attackable DNP function
code during the information-gathering phase
- plaintext communication

Disable Unsolicited Responses An attacker could disable unsolicited response functionality
on the field control by setting the application layer function
code to Disable Unsolicited Responses to disrupt alarms and
other key events
- lack of authentication mechanisms and improper behavior
detection

Unauthorized Miscellaneous Unauthorized DNP 3.0 client sends undefined requests
- an absence of an authentication mechanism

Stop Application An attacker can stop an application on the field controller by
sending a packet with the function code of the application
layer set to 0x12 (Stop Application) to the field controller
- lack of authentication mechanisms and improper behavior
detection

Unsolicited
Response Storm

An attacker performs a denial-of-service attack by sending
many response packets with the function code of the
application layer set to 0x82 (Unsolicited Responses) to the
control system server
- lack of authentication mechanisms and improper behavior
detection

Cold Restart An attacker sends a request packet with the application layer
function code set to 0X0D (Cold Restart) to the field
controller, causing the field controller to become out of
service
- lack of authentication mechanisms and improper behavior
detection

Time Change Attempt Change the time information of a field device
- an absence of an authentication mechanism

Warm Restart An attacker can delete configuration initialization and events,
such as removing audit evidence from the field control, by
sending a packet with the application layer function code set
to 0X0E (Warm Restart) to the field control
- an absence of an authentication mechanism

(continued)

AE-LSTM Based Anomaly Detection System 97

Table 2. (continued)

Risk Type Description

Failed Checksum Error Checksum checks are disabled to prevent integrity from being
guaranteed
- lack of authentication mechanism and plaintext
communication

plants through stop application packet transmission to on-site RTU devices and EMS.
When such an attack occurs, the EMS cannot perform efficient power transmission,
reception, and production control. Additionally, arbitrary control, including arbitrary
power generation control, can cause failures and destroy power generation facilitieswhen
performing data forgery attacks bet\ween the attacker’s EMS and the plant using insuf-
ficient mutual authentication. In order to respond to cyber-attacks based on these DNP
3.0 vulnerabilities, it is necessary to identify and respond to cyber-attacks in advance
through the DNP 3.0 packet target anomaly detection system.

4 Proposed AI-Based Anomaly Detection System

Fig. 2. DNP 3.0-based network environment EMS network traffic-based anomaly detection
system application configuration diagram

98 I. Ji et al.

Figure 2 shows the proposed anomaly detection system overview in DNP 3.0-based
network environment EMS. The anomaly detection system is in front of the EMS. It
performs anomaly detection for all DNP 3.0 network packets generated at substations
and power plants and accessed by the EMS. The component of the anomaly detection
system is the DNP 3.0 parser, which converts DNP 3.0 raw traffic into a file in a certain
format for learning the anomaly detection based-on AE-LSTM classifier. In addition,
there are “feature preprocessor” that selects specific feature and preprocesses to increase
the efficiency and accuracy of AE-LSTM-based classifier and AE-LSTM classifier that
classifies normal and abnormal traffic based on input data. The anomaly detection model
is designed based onAE-LSTM to reflect the time series characteristics of network pack-
ets that are continuously generated every certain cycle, and real-time anomaly detection
is performed based on this.

4.1 DNP 3.0 Parser

DNP 3.0 parser is responsible for converting DNP 3.0 raw traffic collected from sub-
stations and plants into a consistent format for classifier learning. The DNP 3.0 parser
collects DNP 3.0 packets and generates traffic data for data contained within a specific
period. DNP 3.0 parser generates traffic consisting of more than 100 features, including
the packet feature and the packet data’s statistical values, such as the source IP address,
destination IP address and port address in the raw traffic.

4.2 Feature Preprocessor

The input value of the AE-LSTM classifier must be numeric data. Therefore, the shape
extracted from the DNP 3.0 parser was converted into an integer type value by applying
label encoding to the non-numeric value of the data. In addition, data normalization was
carried out to prevent deterioration in learning the detection model originating from the
differences in the range of values between features. As the normalizer, the min-max
scaler is applied to change each data to a minimum value of 0 and a maximum value of
1, was applied.

4.3 AE-LSTM Classifier

LSTM is a variant of the recurrent neural network specialized for processing sequential
data such as time series data. LSTM can capture long-term dependencies and patterns
of data by selectively forgetting or remembering information. LSTM is a suitable model
for processing time series data because a combination of input data, memory cells, and
gates can identify long-term temporal dependencies and patterns of data. In addition,
using AI in an anomaly detection system, abnormal behavior can be determined in depth
by learning control system network traffic characteristics (sequences, average values,
temporary-related data). For this reason, we developed an AE-LSTM-based anomaly
detection system. For the anomaly detection model learning the characteristics of the
input data, the encoder is a stacked bidirectional LSTM, and the decoder is designed
as a one-way LSTM model. An encoder takes consecutive packet data as input, and

AE-LSTM Based Anomaly Detection System 99

the decoder is trained to output identical data. The encoder is m-1(x_(t-m) ~ x_(t-1))
consecutive packet data are received as input, and the decoder is trained to output the
same data. For the purpose of learning to detect actual abnormal behavior, the input of
the encoder is used equally. After that, when a difference between the value predicted
by the encoder and the actual observed value of x_t occurs above the threshold, it is
detected as abnormal behavior.

5 Evaluation

5.1 Dataset Description

Table 3. Feature list used to learn and validate anomaly detection models

Feature List

‘flow ID’, ‘source IP’, ‘destination IP’, ‘source port’, ‘destination port’, ‘duration’,
‘TotalFwdPkts’, ‘TotalBwdPkts’, ‘TotLenfwdDL’, ‘TotLenfwdTR’, ‘TotLenfwdAPP’,
‘TotLenbwdDL’, ‘TotLenbwdTR’, ‘TotLenbwdAPP’, ‘DLfwdPktLenMAX’,
‘DLfwdPktLenMIN’, ‘DLfwdPktLenMEAN’, ‘DLfwdPktLenSTD’,
‘TRfwdPktLenMAX’, ‘TRfwdPktLenMIN’, ‘TRfwdPktLenMEAN’,
‘TRfwdPktLenSTD’, ‘APPfwdPktLenMAX’, ‘APPfwdPktLenMIN’,
‘APPfwdPktLenMEAN’, ‘APPfwdPktLenSTD’, ‘DLbwdPktLenMAX’,
‘DLbwdPktLenMIN’, ‘DLbwdPktLenMEAN’, ‘DLbwdPktLenSTD’,
‘TRbwdPktLenMAX’, ‘TRbwdPktLenMIN’, ‘TRbwdPktLenMEAN’,
‘TRbwdPktLenSTD’, ‘APPbwdPktLenMAX’, ‘APPbwdPktLenMIN’,
‘APPbwdPktLenMEAN’, ‘APPbwdPktLenSTD’, ‘DLflowBytes/sec’, ‘TRflowBytes/sec’,
‘APPflowBytes/sec’, ‘FlowPkts/sec’, ‘FlowIAT_MEAN’, ‘FlowIAT_STD’,
‘FlowIAT_MAX’, ‘FlowIAT_MIN’, ‘TotalFwdIAT’, ‘fwdIAT_MEAN’, ‘fwdIAT_STD’,
‘fwdIAT_MAX’, ‘fwdIAT_MIN’, ‘TotalBwdIAT’, ‘bwdIAT_MEAN’, ‘bwdIAT_STD’,
‘bwdIAT_MAX’, ‘bwdIAT_MIN’, ‘DLfwdHdrLen’, ‘TRfwdHdrLen’,
‘APPfwdHdrLen’, ‘DLbwdHdrLen’, ‘TRbwdHdrLen’, ‘APPbwdHdrLen’,
‘fwdPkts/sec’, ‘bwdPkts/sec’, ‘DLpktLenMEAN’, ‘DLpktLenMIN’, ‘DLpktLenMAX’,
‘DLpktLenSTD’, ‘DLpktLenVAR’, ‘TRpktLenMEAN’, ‘TRpktLenMIN’,
‘TRpktLenMAX’, ‘TRpktLenSTD’, ‘TRpktLenVAR’, ‘APPpktLenMEAN’,
‘APPpktLenMIN’, ‘APPpktLenMAX’, ‘APPpktLenSTD’, ‘APPpktLenVAR’,
‘ActiveMEAN’, ‘ActiveSTD’, ‘ActiveMAX’, ‘ActiveMIN’, ‘IdleMEAN’, ‘IdleSTD’,
‘IdleMAX’, ‘IdleMIN’, ‘frameSrc’, ‘frameDst’, ‘TotPktsInFlow’,
‘mostCommonREQ_FUNC_CODE’, ‘mostCommonRESP_FUNC_CODE’,
‘deviceTroubleFragments’, ‘pktsFromMASTER’, ‘pktsFromSLAVE’

The dataset used in this paper is theDNP3.0 intrusion detection dataset [14], which is
related to nineDNP3.0 protocol network attacks (CommonNetworkControl) in theDNP
3.0 environment due to a lack of security risk types and authenticationmechanisms, plain
text communication, and inappropriate behavior detection. The types of attacks included
in the dataset are shown in Table 4. The dataset contains DNP 3.0 flow statistics (CSV
format). In this work, we used data generated by converting packets collected every 45
s among the data provided by the data set into DNP 3.0 flow statistics.

100 I. Ji et al.

Table 4. Attack Types Included in “DNP3 Intrusion Detection Dataset”

Risk Type Description

Disable Unsolicited Message Attack This attack targets a DNP3 outstation/slave, establishing
a connection with it while acting as a master station. The
false master then transmits a packet with the DNP3
Function Code 21, which requests to disable all the
unsolicited messages on the target

Cold Restart Attack The malicious entity acts as a master station and sends a
DNP3 packet that includes the “Cold Restart” function
code. When the target receives this message, it initiates a
complete restart and sends back a reply with the time
window before the restart process

Warm Restart Attack This attack is similar to the “Cold Restart Message” but
aims to trigger a partial restart, re-initiating a DNP3
service on the target outstation

Enumerate Attack This reconnaissance attack aims to discover which
DNP3 services and functional codes are used by the
target system

Info Attack This attack constitutes another reconnaissance attempt,
aggregating various DNP3 diagnostic information
related the DNP3 usage

Initialization Attack This cyberattack is related to Function Code 15
(Initialize Data). It is an unauthorized access attack,
which demands from the slave to reinitialize possible
configurations to their initial values, thus changing
potential values defined by legitimate masters

MITM-DoS Attack In this cyberattack, the cyberattack is placed between a
DNP3 master and a DNP3 slave device, dropping all the
messages coming from the DNP3 master or the DNP3
slave

Replay Attack This cyberattack replays DNP3 packets coming from a
legitimate DNP3 master or DNP3 slave

Stop Application
Attack

This attack is related to Function Code 18 (Stop
Application) and demands the slave stop its function so
that the slave cannot receive messages from the master

Table 3 shows a list of features used in the experiment. The dataset contains 102
functions, including ‘Flow ID,’ ‘Source IP,’ ‘Target IP,’ and ‘Source Port.’ In this work,
correlation analysis was performed using Pearson correlation coefficients for all features
to improve the efficiency and detection rate of the anomaly detection model. Ninety-
five features were used for model learning and verification, excluding features with
low correlation rates and features representing time series. The number of data used in
the training and testing of anomaly detection systems used 10,000 normal data on the

AE-LSTM Based Anomaly Detection System 101

model train, 2,650 normal data for verification, and 300 abnormal data with the same
distribution by attack type. Some intervals were selected within the normal data interval
to insert abnormal data for verification and testing.

5.2 Experimental Setup

The AE-LSTM anomaly detection model designed in this experiment has an Auto-
Encoder structure, including an LSTM layer. Input data first passes through the Convo-
lutional 1D Layer with 512 nodes, passes through the Dense Layer with 128 nodes, and
generates compressed data through the Bidirectional LSTM Layer with 64 nodes for
data reduction. Subsequently, compressed data goes through the LSTM layer with 64
nodes, followed by the Dense Layer with 128 nodes contrary to the input order, and the
Convolutional 1D Layer with 512 nodes. Afterward, the difference between the model-
produced output and observed data is calculated using the mean squared error (MSE).
If the difference value is more than a threshold value (when the precision and recall of
the anomaly detection model are the same), it is detected as an anomaly.

5.3 Performance Index

Accuracy, True Positive Rate (TPR), False Positive Rate (FPR), and F-1 Score were
used as metrics for measuring the performance of the anomaly detection model in this
experiment. Accuracy is an indicator of whether the detection system correctly classifies
normal data from collected data into normal data and abnormal data into abnormal data
by defining the ratio of correctly classified data to the total data. TPR is the ratio of the
number judged above divided by the total number of abnormal data. It is an evaluation
index that evaluates howwell the data to be detected has been found. FPR is an evaluation
index that evaluates the proportion of normal events or behaviors that are misclassified
as abnormal in a system. It is an evaluation index used to measure the overall accuracy
of the F-1 Score model.

5.4 Experiment Result

Figure 3 shows the anomaly detection results over the DNP 3.0 network packet, the blue
points in Fig. 3 mean normal data, and the orange point means anomalies. A straight
red line indicates a threshold for detecting abnormal behavior. The threshold value was
set to the value when the precision and recall of the anomaly detection model were the
same. High precision means low false detection of normal data, and high reproducibility
means low false detection of abnormal data [15]. Since these two performance indicators
are generally in a trade-off relationship, we derived thresholds by considering the two
indicators evenly without bias [16]. Figure 3-(A) is the result of anomaly detection
without applying the moving average to the data, and Fig. 3-(B) is the result of anomaly
detection by applying the moving average to the data. By applying the moving average
to the data, it can be confirmed that abnormal data is highlighted, as shown in Fig. 3-(B),
by smoothing the difference between the data predicted by the model and the observed
data.

102 I. Ji et al.

 (A) (B)

Fig. 3. (A)Anomaly detection resultswhenmoving average is not applied. (B)Anomaly detection
results when moving average is applied.

Table 5. DNP 3.0 Target Classification Performance Comparison with Traditional Methods.

reference dataset method ACC TPR FPR F-1

Radoglou-Grammatikis et al.
[5]

[6] Autoencoder 0.951 1 0.098 0.953

V. Kelli et al. [7] [13] DNN 0.990 0.954 - 0.883

I. Siniosoglou et al. [8] [6] GAN 0.994 0.983 0.003 0.983

Our model [13] AE-LSTM 0.990 0.984 0.016 0.990

Table 5 shows the performance comparison between the AE-LSTM-based anomaly
detection model presented in this paper and the abnormal behavior classification study
targeting DNP 3.0 in the existing ICS/SCADA environment.

As a result of the experiment, the AE-LSTM-based anomaly detection model pre-
sented in this paper derived high performance of 99% accuracy, 98% TPR, 1.6% FPR,
and 99% F-1 Score, and most of the performance is like or higher than that suggested
in previous studies.

6 Conclusions and Future Research

This paper identified the security concerns of the communication over theDNP3.0-based
power systemnetwork, includingEMS, by analyzing the currentDNP3.0-based commu-
nication environment with substations and power plants. To solve this, it was proposed
to apply an AI-based anomaly detection system for EMS communication locations. The
experimental results show that most cyber-attacks using DNP 3.0 protocol vulnerabili-
ties can be detected when applying the anomaly detection system presented in this paper
to EMS communication.

AE-LSTM Based Anomaly Detection System 103

We shall study the application plan and considerations for the AI-based anomaly
detection system for actual power systems in the near future.

Acknowledgements. This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (RS-
2023–00241376, Development of security monitoring technology based network behavior against
encrypted cyber threats in maritime environment).

References

1. Jae-guk, Y.: Energy management system (EMS) operation status and improvement plan.
NARS Pending Rep. 157, 1–141 (2016)

2. Ji Woong, J., Huy Kang, K.: A study on vulnerabilities of serial based DNP in power control
fields. J. Korea Inst. Inf. Secur. Cryptol. 23(6), 1143–1156 (2013)

3. NewMiraiVariantAttacksApacheStrutsVulnerability, https://searchsecurity.techtarget.com/
news/252448779/New-Mirai-variant-attacks-Apache-Struts-vulnerability. Accessed 09 June
2023

4. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and other botnets.
Computer 50(7), 80–84 (2016)

5. Radoglou Grammatikis, P., Sarigiannidis, P., Efstathopoulos, G., Karipidis P., Sarigiannidis,
A.: DIDEROT: an intrusion detection and prevention system for dnp3-based SCADA systems.
In: Proceedings of the 15th International Conference on Availability Reliability and Security,
pp. 1–8, Association for Computing Machinery, Virtual Event Ireland (2020)

6. Rodofile, N., Radke, N., Foo E.: Framework for SCADA cyber-attack dataset creation. In:
Proceedings of the Australasian Computer Science Week Multiconference, Association for
Computing Machinery, USA, pp. 1–10 (2017)

7. Kelli, V.: Attacking and defending DNP3 ICS/SCADA systems. In: 2022 18th International
Conference onDistributedComputing in Sensor Systems (DCOSS), pp. 183–190. IEEE,USA
(2022)

8. Siniosoglou, I., Radoglou-Grammatikis, P., Efstathopoulos, G., Fouliras, P., Sarigiannidis,
P.: A unified deep learning anomaly detection and classification approach for smart grid
environments. IEEE Trans. Netw. Serv. Manage. 18(2), 1137–1151 (2021)

9. Jungwook, K., Eui Young, S., Seung Hyun, K., Joong-Kyum, K., Yongbeum, Y.: 2021/22
KSP policy consultation report Czech republic smart systems resilience 4.0 for the Czech
republic, Korea development institute, Korea (2022)

10. Pil Sung, W., Balho H, K.: Establishment of cyber security countermeasures amenable to the
structure of power monitoring & control systems. Trans. Korean Inst. Electr. Eng. 67(12),
1577–1586 (2018)

11. East, S., Butts, J., Papa, M., Shenoi, S.: A taxonomy of attacks on the dnp3 protocol. In:
Palmer, C., Shenoi, S. (eds.) ICCIP 2009. IAICT, vol. 311, pp. 67–81. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04798-5_5

12. DNP, DNP3 Application Note AN2013–004b Validation of Incoming DNP3 Data (2014)
13. Sungmoon, K., Hyung-uk, Y., Yi Sang, H., Shon, T.S.: DNP3 protocol security and attack

detection method. J. Adv. Navig. Technol. 18(4), 353–358 (2014)
14. Radoglou-Grammatikis, P., Kelli, V., Lagkas, T., Argyriou, V., Sarigiannidis, P.: DNP3

Intrusion Detection Dataset, IEEE Dataport (2022)

https://searchsecurity.techtarget.com/news/252448779/New-Mirai-variant-attacks-Apache-Struts-vulnerability
https://doi.org/10.1007/978-3-642-04798-5_5

104 I. Ji et al.

15. Razib, M., Javeed, D., Khan, M., Alkanhel, R., Muthanna, M.: Cyber Threats detection in
smart environments using SDN-enabled DNN-LSTM hybrid framework. IEEE Access 10,
53015–53026 (2022)

16. Sun, X., Houfeng, W.: Adjusting the precision-recall trade-off with align-and-predict decod-
ing for grammatical error correction. In: Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, pp. 686–693. Computational Linguistics Dublin
(2022)

Privacy and Management

Systematic Evaluation of Robustness
Against Model Inversion Attacks on Split

Learning

Hyunsik Na1 , Yoonju Oh1 , Wonho Lee2 , and Daeseon Choi3(B)

1 Department of Software, Graduate School of Soongsil University,
Seoul 07027, South Korea

{rnrud7932,ohyoonju}@soongsil.ac.kr
2 Department of Software, Under-Graduate School of Soongsil University,

Seoul 07027, South Korea
james020907@naver.com

3 Department of Software, Soongsil University, Seoul 07027, South Korea
sunchoi@ssu.ac.kr

Abstract. Split learning is a new training paradigm that divides a neu-
ral network into two parts and performs operations on the client and
server, respectively. However, it does not directly transmit the client’s
original data to the server, and the intermediate features transmitted by
the client allow an attacker to guess the original data via model inversion
attacks. In this study, we conducted a quantitative evaluation to com-
pare the performances of three existing defense technologies to prevent
such threats to data privacy. For systematic experiments, we used two
datasets and three target classification models and measured how well
previous defenses maintained model accuracy and resisted model inver-
sion attacks. Our results showed that Laplacian noise-based defense has
little practical effect, NoPeekNN has a large performance variation, and
differential privacy is somewhat helpful in defense; however, the larger
the client-side model, the lower the task performance. Finally, further
research is needed to overcome the limitations of previous defenses.

Keywords: Deep Neural Networks · Split Learning · Model Inversion
Attack · Data Privacy Protection

1 Introduction

Society is demanding larger-scale AI owing to the development of 6G networks
and AI industry, as well as the diversification of data and devices. Consequently,
the cost of maintaining data storage and GPUs on a central server owned by
a service provider is increasing exponentially. In addition, the requirement for
network capacity to transmit vast amounts of data from users (or clients) contin-
ues to increase. Moreover, threats to data security may arise while transferring
clients’ data to the server, and infringements of data privacy may occur if the
server uses or spies on the client’s data improperly [2].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 107–118, 2024.
https://doi.org/10.1007/978-981-99-8024-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_9&domain=pdf
http://orcid.org/0000-0002-7123-4467
http://orcid.org/0009-0004-2359-7396
http://orcid.org/0009-0005-7473-743X
http://orcid.org/0000-0002-1438-0265
https://doi.org/10.1007/978-981-99-8024-6_9

108 H. Na et al.

Split learning is one of the solution to the above problems. It divides DNNs
into two parts to form a split neural network, which uses the first few layers as the
client-side model and remaining layers as the server-side model. The client-side
model calculates the data embedded in the local device to provide the server-side
model with intermediate features. Subsequently, the server-side model calculates
and outputs the results of the final task. Because the client and server share only
intermediate features, they do not expose the client’s original data. Moreover,
the service provider’s burden can be eased because the client’s local device sup-
ports part of the model learning. However, some studies [6,9] still emphasize
that data privacy can be compromised even in split learning environments. A
server or client with a malicious intent can attempt a model inversion attack
via intermediate features sent by the client (victim), which can reconstruct the
original data form, thereby damaging the client.

In this study, we conducted quantitative experiments to evaluate the perfor-
mance of previous defense technologies in preventing model inversion attacks in
split learning environments. Most defense technologies experience a certain level
of decline in task performance to protect data privacy and require additional time
and computational costs. In addition, we question whether data privacy can be
sufficiently protected because it still has a similar appearance to the original
data despite the decrease in the quality of the reconstructed image that results
from previous defenses. Therefore, we analyzed their actual effects through a
model inversion attack according to hyperparameters of various defenses in the
same environment under the ability of attackers to be stronger than the origi-
nal papers of previous defense techniques. In addition, we observed whether the
defenses could effectively protect data privacy at a level of model performance
degradation acceptable to the service provider and users.

Contributions. Some studies have attempted to resist model inversion attacks
by injecting noises [1,13] or minimizing distance correlation [14] in split learning
scheme. However, it is not possible to directly compare the results of each defense
approach across datasets and architectures from different studies. Our study
addresses this limitation by performing experiments under equivalent exper-
imental settings. We systematically compared the effects of previous defense
approaches based on various datasets and model architectures. Moreover, we
discuss the limitations of previous defense approaches, which are currently insuf-
ficient to respond to attacks.

2 Background

2.1 Split Learning

A split neural network f has a total of L layers, and the upper part of model f1:l
is set to the client-side model fclient and lower part of model fl:L is set to the
server-side model fserver based on any split point illustrated in Fig. 1(a). When
we train fclient and fserver, the client sends intermediate features Il to the server.

Systematic Evaluation of Robustness Against MIAs on SL 109

Fig. 1. (a): Split learning architecture with two parties. (b): Model inversion attack
architecture.

The server then calculates the loss E between the model output and labels and
provides gradients ∂E/∂Il to the client for back-propagation. In addition, the
client has an arbitrary training dataset Xtrain that is not accessible to the server.
However, the server has sufficient knowledge of the domain, dimension, and size
of the data because it is fully aware of the use of f . Finally, the client queries
the test dataset Xtest to learn f to perform the desired task.

2.2 Model Inversion Attacks

In a split learning scenario, an attacker who can attempt model inversion attacks
may be a malicious server or client if the concept of a federated learning scenario
is added. The attacker can build an inverse network fattack to reconstruct a
computed Il using the victim client’s training or test data as the original data
x ∈ X. fattack has a different structure than fclient, receives a vector of the same
size as Il as an input, and then outputs a vector of the same size and dimension
as x. The attacker has an attack dataset Xattack that is different from Xtrain

and Xtest but similar to their distributions. The attacker can iteratively query
Xattack at fclient and input the intermediate features received from fclient into
fattack to obtain a reconstructed image xrecon. The parameters of fattack are
updated by minimizing the error between Xattack and xrecon, and the attacker
typically uses the L2 distance function as an objective function. Namely, fattack
can be optimized by the following formula:

fattack = minimizefattack

1
m

m∑

i=1

||fattack(fclient(xattacki
)) − xattacki

||22 (1)

An illustration of model inversion attacks is shown in Fig. 1(b).

2.3 Defenses Against Model Inversion Attacks

Approaches to improving resistance against model inversion attacks in split
learning environments can be largely divided into two types: injecting noise
and minimizing distance correlation. Among noise-based defenses, the Lapla-
cian noise-based defense [13] injects noises into the intermediate features before

110 H. Na et al.

sending them to fserver, where the noises are drawn from a Laplacian distribu-
tion. Similarly, Shredder [8] trained a Laplacian noise distribution by using noise
injection as a learning process to reduce the information content of intermedi-
ate features. In addition, some studies [11] have been introduced to learn noise
distributions based on the concept of differential privacy, which minimizes task
performance degradation during gradient operations.

NoPeekNN [14] reduces reconstruction performance by further training a loss
term, which minimizes the distance correlation between the input and intermedi-
ate features. Furthermore, B-SL [10] adds binarized activation within the model,
which minimizes the distance correlation between the input and intermediate fea-
tures as the goal of NoPeekNN. Otherwise, it reduces the computational costs
with memory by applying a sign function to all model weights and adding batch
normalization.

As mentioned above, various studies have aimed to defend against model
inversion attacks in split learning environments; however, some studies have
limitations in preventing vulnerabilities in the training phase. In this study, we
focused on defense technologies that can counter attacks from a malicious server
during the training and test stages and performed systematic evaluations on
three defense technologies: Laplacian noise [13], NoPeekNN [14], and differential
privacy [11].

3 Implementations of Previous Defense Approaches
on Training Phase

3.1 Laplacian Noise

The authors of [13] injected random noise belonging to a Laplacian distribution
before sending intermediate features to the server to counter model inversion
attacks in a split learning environment. They experimented with a Laplacian
distribution average μ of zero and noise scales σ of 0.1, 0.5, and 1.0. We applied
a larger noise scale, such as σ ∈ [1.0 : 6.0], to inject more noise than in the
original study.

3.2 NoPeekNN

The authors of [14] added a distance correlation loss term to the training stage to
induce maximum information on the original data to be left on the intermediate
features when a client provides the vectors. They optimized it simultaneously
with the commonly used cross-entropy loss term as follows:

lossnopeek = α × (DCOR(x, I)) + CCE(ytrue, ypred) (2)

where α represents scalar weights, and the intensity of the attacks may be
adjusted accordingly. We analyzed the effectiveness of the attacks based on
α ∈ [0.1 : 10000.0]. Meanwhile, DCOR is a distance correlation loss term
between x and I, and CCE is a cross-entropy loss of the predicted class and
ground-truth class, i.e., the original classification task loss term.

Systematic Evaluation of Robustness Against MIAs on SL 111

Fig. 2. Architectures of target classification models. The red lines represent split points.

3.3 Differential Privacy

Differential privacy was first introduced in [1]. They proposed differentially pri-
vate stochastic gradient descent (DPSGD), which updates a model by clipping
the gradient of each parameter calculated through a neural network and then
injects some noises drawn from a Gaussian distribution into each clipped gradi-
ent. The gradient clipping and noise injection processes are as follows:

g(x) ← g(x)/max(1,
||g(x)||2

C
)

g̃ ← g(x) + N (0, σ2C2I)
(3)

where g(·), C, and σ denote the gradient calculation, gradient norm bound, and
noise scale, respectively. We fixed C at 1.0 and set σ as 1.3 or 3.0.

4 Experimental Settings

4.1 Datasets

We experimented on a handwritten digit classification task and face recognition
task using the MNIST [3] and Yale-B [4] datasets. MNIST, which consists of ten
classes of gray-scale images of size 28 × 28, contains 60,000 training data and
10,000 test data. Among them, 40,000 were set as training data, 10,000 were
used as the attacker training dataset, and 5,000 were used as the attacker test
dataset.

The Yale-B dataset is a gray-scale facial database of 38 subjects. Among
them, we selected ten subjects and removed images that were so dark that it was
difficult to identify their faces. Additionally, we resized each image to 64 × 64
size to increase the classification performance and doubled it with horizontal
flipping. Subsequently, eight images for each subject were taken as a test dataset
and the remainder as a training dataset, with 582 and 80 images, respectively.
Additionally, some of the remaining data were used as the attacker training and
test datasets with 490 and 100 images, respectively.

112 H. Na et al.

Fig. 3. Architectures of inverse networks. Each model repeated convolution-based lay-
ers (blue square) until the dimension D of the intermediate features obtained by
attacker’s data reached to 1 (Color figure online).

4.2 Target Classification Models

To experiment on the two datasets, we built three types of convolutional neural
networks. Because the sizes of each dataset were 28× 28 and 64× 64, the depth
of each model was stacked deeper in the Yale-B dataset. First, we built a “Basic-
Net” consisting of four convolutional layers, a batch normalization layer, a max
pooling layer, a leaky ReLU activation layer, and a linear layer in the bottom.
Second, we formed a “ResNet”-based model with the addition of a residual block
[5] and added one average pooling layer before the linear layer instead of the
max pooling layers. Third, we modified a VGG-based architecture [12] to build
a “VGGNet” that is deeper than Basicnet, with two additional linear layers.
The architectures of the models are shown in Fig. 2, and their split points are
separated into three parts. In Sect. 5, we denote each model along with its split
points as ‘[model name] [split point]’.

When training the target models, we used an Adam optimizer [7] and set
an initial learning rate of 0.005, which was reduced by 0.8 times for every 10
steps. In addition, the MNIST and Yale-B datasets were trained for 30 and
50 epochs, respectively, and the batch size was set to 64. The cross-entropy
loss was minimized to optimize the model, and the model parameters with the
smallest losses were used for the final trained model. In addition, VGGNet for
classifying the Yale-B dataset was excluded from the experiments because it did
not properly learn.

4.3 Inverse Models

The inverse models fattack used by an attacker have different input values for each
situation because the images in each dataset and intermediate features provided
by the client-side model fclient are unequal in size. Therefore, convolutional
layers were added until the dimension of the input intermediate features reached
1, as shown in Fig. 3, so that the final outputs were vectors of the same size as
the original input images. The inverse models were trained for 100 epochs, and

Systematic Evaluation of Robustness Against MIAs on SL 113

an Adam optimizer with a batch size of 64 was used. It had a learning rate of
0.001, with a reduction by 0.8 times for every 10 steps.

4.4 Evaluation Matrix

In general, defense techniques must satisfy two objectives: (1) maintainability of
task performance and (2) resistance to attacks. In this study, the following eval-
uation indices were used to evaluate the extent to which each defense technique
satisfied the two objectives.

Classification Accuracy. If defenses were applied in the model training and
inference time, task performance was mostly reduced. We measured the classifi-
cation accuracy to assess the ability to maintain task performance by calculating
the cross-entropy, which can be formulated as

Lacc =
1
n

n∑

i=1

CCE(fserver(fclient(xi)), ytrue) (4)

where the lower Lacc is, the better the task is maintained.
L2 Distance. To evaluate the ability of an attacker to reconstruct an input
image, we first measured the Euclidean distance between the original and recon-
structed images:

Ll2 =
1
n

n∑

i=1

(xi − xrecon)2 (5)

where the higher Ll2 is, the better the defensive performance.

Structural Similarity. Structural Similarity (SSIM) [15] is a statistical value
used to measure perceptual quality in terms of human color perception. It is
expressed as

SSIM(A,B) = l(A,B) × c(A,B) × s(A,B) (6)

where A and B are images in the spatial domain, and l, c, and s are the lumi-
nance, contrast, and structure comparisons, respectively. These can be calculated
using the average μ and standard deviation σ of the two images as follows:

l(A,B) =
2μAμB + c1

μ2
A + μ2

B + c2
, c(A,B) =

2σAB + c2
σ2
A + σ2

B + c2
, s(A,B) =

σAB + c3
σAσB + c3

(7)
where c1, c2, and c3 are constraints. The lower LSSIM = 1

n

∑n
i=1

SSIM(xi, xrecon) is, the better the defensive performance.

114 H. Na et al.

Fig. 4. Classification performance of models with each defense technique. The primary
axis is classification accuracy (Color figure online).

Visualization. Finally, qualitative evaluations were performed using visualiza-
tion. The lower the quality of xrecon and the more difficult it is to infer the
original image through it, the better the defense approach. Note that when we
attacked the Yale-B classification models, the number of data points for training
the inverse model held by the attacker was only 490. Therefore, when attempting
an attack, there is a possibility that it will be reconstructed as a person with a
similar appearance (a person existing in the attacker’s dataset), rather than a
person with a complete original image. With reference to this point, we assumed
that some data privacy would be exposed even when a person with a similar
appearance was reconstructed.

5 Experimental Results

5.1 Classification Performance Evaluation

Figure 4 shows the performance results of the original task without defense and
the degree to which the three defense technologies affect the classification. First,
BasicNet, ResNet, and VGGNet achieved classification accuracies of more than
99.10% and 97.50% for the MNIST and Yale-B datasets, respectively, at three

Systematic Evaluation of Robustness Against MIAs on SL 115

split points. We set this as the recommended Maginot Line (green line) for
performance degradation. In addition, we assumed that the minimum Maginot
Line (red line) with no problems performing the classification task was 98.5%
and 95.0%, respectively.

First, it can be confirmed that the Laplacian noise-based defense maintains
the classification accuracy above the green line, even if the noise scale is raised
to 6.0 in the MNIST classification. In other words, there was little damage to
the task performance. In contrast, the Yale-B classification showed a relatively
sensitive performance degradation. The larger the noise scale, the greater the
accuracy reduction. In particular, ResNet responds significantly to noise. Next,
we tested the performance of NoPeekNN on the first split point of the three
models. In general, accuracy decreased as the weight α of the distance correlation
loss increased. When classifying MNIST, BasicNet 1, ResNet 1, and VGGNet
1 fell below the red line when α = 10.0, 1.5, and 2.0 or higher, respectively.
However, a relatively high α could be allowed for the Yale-B classification. When
BasicNet 1 and ResNet 1 had α = 10, 000 and 3.0 or higher, respectively, the
accuracy fell below the red line.

Finally, the greater the noise scale σ, the lower the accuracy when we adopt
differential privacy. In the MNIST classification, the application of σ = 3.0
to the BasicNet 3 model fell short of the minimum Maginot Line of the task,
and ResNet and VGGNet maintained their performance only when the split
point was 1. When applying differential privacy in split learning, the parameters
updated by gradients with added noise were limited to the client-side model. In
other words, when the split point was located at the bottom of the model, the
parameters affected by noise increased significantly. Therefore, we can conclude
that the desired result has been obtained. In addition, we observed that the
application of differential privacy did not significantly affect task performance
in the case of Yale-B classification.

5.2 Data Privacy Evaluation

We evaluated the performance of model inversion attacks for each model based
on the inverse model fattack in Sect. 4.3. In MNIST and Yale-B classifications, we
set 10,000 and 490 attacker training data sizes and tested the attack performance
using 10,000 and 80 test data, respectively. Most importantly, for BasicNet 1,
ResNet 1, and VGGNet 1 (Only MNIST) without defense technology, attacks
on MNIST classification generated reconstructed images with L2 distances of
0.0241, 0.0271, and 0.0251, respectively, and 0.0272 and 0.0319 for the Yale-B
classification. In addition, the SSIM was 0.7999, 0.7627, and 0.7969 for MNIST
classification and 0.3681 and 0.2660 for Yale-B classification. These values are
shown in Fig. 5 as the green line (L2) and red line (SSIM), respectively.

In Fig. 5, the injection of Laplacian noise into all models up to the noise scale
σ 6.0 did not improve L2 or SSIM. That is, it can be confirmed that the defense
performance did not improve for MNIST classification. However, the Yale-B clas-
sification can hinder reconstruction to some extent. In addition, we observed that
a person different from the original image was reconstructed in Fig. 6. NoPeekNN

116 H. Na et al.

Fig. 5. Quality of the reconstructed images for each defense technique. The horizontal
axis represents noise scale or weight for NoPeekNN loss. The primary axis represents
L2 distance, and the auxiliary axis shows the SSIM value.

was able to improve the resistance against attacks in general, except with the
MNIST classification model using BasicNet 1. When NoPeekNN was applied to
the Yale-B classification model, the defense performance according to the weight
α was not enhanced linearly. Because this technology is applied to training loss
and gradually improves robustness according to iterative training, there may
be variations between training. In other words, it is necessary to pay attention
to the training settings, such as the hyperparameter settings. Nevertheless, this
induced difficulty in identifying the subject in the original image, as shown in
Fig. 6 according to some α. Finally, differential privacy did not affect MNIST

Systematic Evaluation of Robustness Against MIAs on SL 117

Fig. 6. Visualization of reconstructed images according to each defense. The square of
solid lines represents BasicNet 1, the square of dotted lines represents ResNet 1, and
the square of double lines represents VGGNet 1.

classification. However, in the Yale-B classification model, the larger the noise
scale, the more positive the defense. Looking at the corresponding reconstructed
images in Fig. 6, when the noise scale σ = 3.0 was applied to each of the two
models, the image was reconstructed as a person different from the original.

6 Conclusion

In this study, we systematically evaluated three approaches to defend against
model inversion attacks in the split learning scheme. As a result, the Laplacian
noise-based method had limitations in responding to attacks, and NoPeekNN had
a very large variation in training and requires careful tuning of the defenders.
In addition, differential privacy is limited because it is difficult to maintain the
model performance depending on the split point. An interesting future work is
to explore an advanced defense mechanism to resolve the limitations of previous
works mentioned in this study.

Acknowledgements. This work was supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No. 2021-0-00511, Robust AI and Distributed Attack Detection
for Edge AI Security).

118 H. Na et al.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 308–
318 (2016)

2. Chang, L., et al.: 6g-enabled edge AI for metaverse: challenges, methods, and future
research directions. J. Commun. Inf. Netw. 7(2), 107–121 (2022)

3. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

4. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. He, Z., Zhang, T., Lee, R.B.: Model inversion attacks against collaborative infer-
ence. In: Proceedings of the 35th Annual Computer Security Applications Confer-
ence, pp. 148–162 (2019)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Mireshghallah, F., Taram, M., Ramrakhyani, P., Jalali, A., Tullsen, D.,
Esmaeilzadeh, H.: Shredder: learning noise distributions to protect inference pri-
vacy. In: Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pp. 3–18 (2020)

9. Pasquini, D., Ateniese, G., Bernaschi, M.: Unleashing the tiger: inference attacks on
split learning. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2113–2129 (2021)

10. Pham, N.D., Abuadbba, A., Gao, Y., Phan, T.K., Chilamkurti, N.: Binarizing split
learning for data privacy enhancement and computation reduction. IEEE Trans.
Inf. Forensics Secur. 18, 3088–3100 (2023)

11. Ryu, J., et al.: Can differential privacy practically protect collaborative deep learn-
ing inference for IoT? Wireless Netw. 1–21 (2022)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

13. Titcombe, T., Hall, A.J., Papadopoulos, P., Romanini, D.: Practical defences
against model inversion attacks for split neural networks. arXiv preprint
arXiv:2104.05743 (2021)

14. Vepakomma, P., Singh, A., Gupta, O., Raskar, R.: NoPeek: information leakage
reduction to share activations in distributed deep learning. In: 2020 International
Conference on Data Mining Workshops (ICDMW), pp. 933–942. IEEE (2020)

15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2104.05743

Vulnerability Assessment Framework Based
on In-The-Wild Exploitability for Prioritizing

Patch Application in Control System

Seong-Su Yoon, Do-Yeon Kim, Ga-Gyeong Kim, and Ieck-Chae Euom(B)

System Security Research Center, Chonnam National University, Gwangju, Republic of Korea
skymoonight@jnu.ac.kr, iceuom@chonnam.ac.kr

Abstract. With the increasing understanding of attackers towards the characteris-
tics of control systems and the growing connectivity with information technology,
security incidents targeting control systems are on the rise. The number of vulner-
abilities related to these incidents are increasing every year, making it impossible
to apply timely patches for all vulnerabilities. The current common vulnerability
assessment framework, which is considered the basis for vulnerability patching,
has limitations in that it does not consider the weaponization after vulnerability
discovery and does not adequately reflect the exploitability in real-world “in-the-
wild” environments. Therefore, in this study, we propose an approach to evalu-
ate the in-the-wild exploitability and risk of vulnerabilities occurring in control
systems based on publicly available data. To achieve this, we define criteria for
classifying attacker skill levels and improve the existing CVSS metrics by intro-
ducing new factors for evaluating exploitability and risk. By applying this evalua-
tion approach, we can identify vulnerabilities in control systems that are likely to
be exploited in real-world scenarios, enabling prioritized patching and proactive
defense against advanced persistent threat (APT) attacks.

Keywords: Vulnerability Assessment · Exploitability · Exploit Code Maturity ·
Ease of Exploit · CVSS · ICS-CERT

1 Introduction

Industrial Control Systems (ICS) are systems that monitor and control the operational
process of critical national infrastructure and industrial processes, widely used in power
generation, electricity, gas, refining, and petrochemical fields. Therefore, timely patch-
ing based on vulnerability risk assessments is crucial to prevent national losses due to
cyberattacks.

However, the current Common Vulnerability Scoring System (CVSS) base score,
which serves as the standard for vulnerability patching, does not consider temporal
factors. As a result, while the post-attack severity is evaluated as an impact index, the
risk of current exploitation is not assessed [1]. The temporal score is only performed
limitedly by the manufacturers of individual digital assets, and the evaluated score tends

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 119–130, 2024.
https://doi.org/10.1007/978-981-99-8024-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_10&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_10

120 S.-S. Yoon et al.

to decrease rather than reflect the urgency by reducing the existing evaluated base score
[2].

Security professionals in IT, OT, and ICS rely on basic vulnerability scores for
patch management. However, these scores overlook the temporal aspect, specifically
the weaponization of vulnerabilities. As a result, the present-time exploitation potential
remains unassessed, despite evaluating the impact after an attack.

ICS plays a critical role in monitoring and controlling operational processes in
national infrastructure facilities and industrial settings. However, maintaining facility
availability poses challenges, making it difficult to promptly address newly disclosed
vulnerabilities or vulnerabilities exploited during operations.

This paper aims to evaluate vulnerability risk within the operational life cycle of
control systems by considering the evolving capabilities and exploitability of attackers.
Furthermore, it proposes a new metric for assessing exploitability based on existing
vulnerability and exploit information sources and suggests a method for combining this
with existing risk assessment metrics.

2 Scoring System of Vulnerability

2.1 Common Vulnerability Scoring System, CVSS

Fig. 1. CVSS scoring method

CVSS provides an open framework for conveying the impact and characteristics of
vulnerabilities [3]. It defines three evaluation groups: the base metric, which represents
the static attribute information of vulnerabilities; the temporal metric, which captures the
characteristics of vulnerabilities that change over time; and the environmental metric,
which reflects the characteristics of vulnerabilities considering the user environment.

The scoring methodology of CVSS follows the structure shown in Fig. 1, where a
risk rating from 0 to 10 is calculated based on exploitability, impact, and scope for the
base score. Depending on the objective, it is possible to calculate a vulnerability severity
score by including the temporal score and environmental score calculation formulas.

However, CVSS evaluates the severity solely based on the attribute information of
vulnerabilities and does not consider the weaponization that occurs after their discovery.
This limitation prevents a comprehensive assessment of exploitability and risk, leading
to an incomplete evaluation.

Vulnerability Assessment Framework 121

2.2 Exploit Prediction Scoring System, EPSS

Fig. 2. EPSS Scores

EPSS (Exploit Prediction Scoring System) is an evaluation framework used to pre-
dict exploitability, aiming to assess the likelihood of a vulnerability being exploited in
advance [4]. It utilizes artificial intelligence technologies to analyze the characteristics
of vulnerabilities, publicly available exploit code, previous attack cases, exploit pat-
terns, and more, quantifying the exploitability for each vulnerability as shown in Fig. 2
and assigning prioritization based on the exploitability. EPSS provides predicted exploit
probabilities for the currently known 204,563 vulnerabilities.

The existing CVSS primarily focuses on evaluating the static elements of discov-
ered vulnerabilities and does not consider post-discovery weaponization information.
Additionally, it fails to adequately reflect detailed exploitability and risk by scoring vul-
nerabilities with generalized metrics, thus lacking the ability to sufficiently represent
real-world exploitability in In-the-wild environments.

EPSS overcomes these limitations of CVSS by considering dynamic exploitability
and predicting exploit probabilities through a combination of real-world data and tech-
nical analysis. It takes into account the evolving nature of vulnerabilities and provides a
more comprehensive assessment of exploitability.

3 Related Works

Several studies have assessed vulnerability severity by utilizing publicly available
vulnerability and exploit information.

Jung et al. [5] defined evaluation criteria for the “exploit code maturity” attribute
of CVSS’s temporal metric using reference URLs and tag information from publicly
available vulnerabilities. They automated the evaluation and prioritized patches based on
scores, aiming to leverage contextual information on exploit ease.However, the evaluated
scores only reduce severity and lack the ability to track vulnerability weaponization
levels.

Singh et al. [6] calculated CVSS’s temporal metric scores using exploit code matu-
rity and patch level information derived from vulnerability data. They used these
scores, along with base metric information, to calculate exploit frequency and estimate
quantitative security risk. However, the criteria for judging exploit code maturity lack
standardization and heavily rely on empirical judgment.

122 S.-S. Yoon et al.

Bulut et al. [1] introduced three attributes - Weaponized Exploit (WX), Utility, and
Opportune - to assess vulnerability exploitability. They evaluated these attributes using
reference links in Exploit DB,Metasploit, GitHub, and expert judgment. These attributes
were included as additional weighting factors in severity score calculation, altering the
severity values. However, relying on expert judgment hinders consistent evaluations
and lacks clear criteria for quantifying risk scores. Moreover, existing studies neglect
vulnerabilities in operational technology (OT) and industrial control system (ICS) envi-
ronments, failing to capture real-world exploitability. Table 1 classifies these studies
based on research characteristics, highlighting their limitations.

Table 1. Characteristics of studies related to vulnerability exploitability evaluation

Paper Evaluation Attribute Domain

Weaponization Level Exploitability IT OT ICS

Jung. B et al. [5] O X O X X

Singh. U.K et al. [6] O X O X X

Bulut et al. [1] O X O X X

4 In-The-Wild Risk Assessment Method for Vulnerabilities

In this study, considering the operational environment of control systems and the limita-
tions of CVSS and existing related research, this study proposes an evaluation approach
to assess the risk of vulnerabilities based on the attacker’s skill level and the likelihood
of exploitation within a specified time frame. Figure 3 illustrates the overall process of
in-the-wild risk score (WRS) assessment study conducted in this research.

4.1 Evaluate Attacker Skill Level and Likelihood of Exploiting In-The-Wild
Vulnerabilities

This study defines classification criteria for assessing the skill level of attackers in con-
trol systems based on exploit code maturity. The relevant evaluation metrics are defined
as ‘Not Defined’, ‘Unproven’, ‘Proof of Concept’, ‘Functional’, and ‘High’, which cor-
respond to the time elements in the existing CVSS. To overcome the lack of consistency
in defining classification criteria across organizations, which results in different assess-
ments, objective criteria based on publicly available data from vulnerability and exploit
sources were established.

Collecting Vulnerability/Exploit Data. The data utilized in this study can be classified
into two categories: vulnerability-related and exploit-related data. Firstly, the vulnera-
bility data consists of Common Vulnerabilities and Exposures (CVE) [7] and Com-
mon Platform Enumeration (CPE) [8] provided by the National Vulnerability Database
(NVD), as well as Common Weakness Enumeration (CWE) [9] and Common Attack

Vulnerability Assessment Framework 123

Fig. 3. In-the-wild risk score (WRS) assessment process

Pattern Enumeration and Classification (CAPEC) [10] provided by MITRE. As stan-
dardized sources of information for vulnerabilities occurring in operational technology
and industrial control system environments, ICS-CERT advisories [11] provided by the
Cybersecurity and Infrastructure Security Agency (CISA) offer insights into vulnerabil-
ity types occurring in these environments and enable the establishment of assessment
approaches considering them.

Secondly, for exploit code maturity classification and severity assessment consider-
ing operational technology and industrial control system environments, the exploit data
includes Exploit-DB [12] and Github [13], which provide information corresponding to
Proof of Concept (PoC) level used in previous studies. For Functional-level information,
CISA provides Known Exploited Vulnerability (KEV) information [14], which offers
details about vulnerabilities that have been actually exploited, and the National Cyber
Awareness System (NCAS) [15] provides information on security issues, vulnerabilities,
and exploits occurring in national-level infrastructure and Advanced Persistent Threat
(APT) groups. Lastly, for High-level information, Rapid7’s Metasploit [16] provides
automated attack module information for vulnerabilities.

Each piece of collected vulnerability information has associations based on specific
attribute information, whereas exploit information is linked to vulnerability information
based on the source vulnerability identifier CVE.

Evaluation of the Exploit Code Maturity (ECM). The maturity of exploit codes,
which is also an evaluation attribute of the existing CVSS temporal score, has been
classified based on each organization’s own criteria without standardized classifica-
tion criteria. In this study, we defined classification criteria from two perspectives: the
collected vulnerability information source and the exploit information source (Fig. 4).

124 S.-S. Yoon et al.

Fig. 4. Exploit Code Maturity Classification Process

Classification Criteria Based on Exploit Sources. The classification criteria of exploit
codematurity based on exploit informationwere defined according to the level of vulner-
ability weaponization information provided, similar to earlier studies. CVE information
included in Metasploit, which provides an automated module for penetration testing, is
classified as ‘High’ among indicators of exploit code maturity, while CVE information
included in CISA’s KEV and NCAS, which provides vulnerability information that has
been exploited in real-world environments, is classified as ‘Functional’. Additionally,
CVE information included in Exploit-DB and Github, which provides PoC informa-
tion for verifying the feasibility of an attack, is classified as ‘Proof of Concept’ among
indicators of attack code maturity. Furthermore, based on the characteristics of indus-
trial control system operation, which considers the vulnerability itself as a risk factor,
ICS-CERT information was included in the ‘Proof of Concept’ classification criteria.
Table 2 shows the defined criteria for classifying exploit information based on the exploit
information source.

Table 2. Classification Criteria Based on Exploit Sources

Exploit Code Maturity Classification Criteria

High {Metasploit}

Functional {KEV | NCAS}

Proof of Concept {ExploitDB | Github | ICS-CERT}

Classification Criteria Based on Vulnerability Sources. The classification criteria based
on vulnerability information were defined to classify the attack code maturity of CVEs

Vulnerability Assessment Framework 125

that do not have any associated exploit information or newly discoveredCVEs. In order to
achieve this, an associated analysis of CVE-Exploit information sources was performed
on the URL and tag information that make up the CVE reference information. The rele-
vant reference information was based on the ‘cve_references’ field information, which
provides URLs containing recommendations, patch information, exploitation informa-
tion, and analysis reports related to vulnerabilities, as well as tag information for each
reference content.

The reference URLs used for the analysis included 13,307 out of a total of 204,563
CVEs, and the corresponding tag information consisted of 18 tags. The CVE-Exploit
association analysis for defining the classification criteria was carried out through statis-
tical analysis of reference URLs and tag frequency for all CVEs and CVEs with existing
exploit information. The existing exploit information for CVEs included 26,329 at the
PoC level, 2,658 at the Functional level, and 4,236 at the High level.

The statistical analysis of URL information is based on URL information included
in CVEs that are mapped to exploit information. The URL information extracted at each
level measures the discovery frequency in the corresponding attack code maturity CVE
group. Next, the tag information statistical analysis is performed with both independent
tags and tag combinations. Exploit information-associated CVEs are extracted for each
attack code maturity level, along with their tags and tag combinations. Then, tag and
tag combination discovery frequencies are measured for each level of CVEs. Based on
the URL analysis results, URLs providing weaponization information with a probability
of 25% or more for each level were selected as classification criteria after eliminating
duplicates. The tag analysis results selected the top discovery frequency independent
tags and tag combinations for each level as classification criteria. Additionally, to clas-
sify common top tags and tag combinations such as ‘Vendor Advisory’ and ‘Third
Party Advisory’, additional URL classification criteria were selected based on connec-
tion information with the CVE Numbering Authority (CNA). Furthermore, considering
operational technology and industrial control system environments, URL information
connected to ‘US Government Resource,’ a unique top tag in PoC level CVEs, was
added as a classification criterion for CNA-LR (CVE Numbering Authority of Last
Resort) [17], which assigns CVE IDs for vulnerabilities in fields beyond the scope of
traditional CNA roles, such as industrial control systems andmedical equipment. Table 3
shows the final vulnerability information-based classification criteria.

Table 3. Classification criteria based on vulnerability information

Exploit Code Maturity Classification Criteria

High {CNA(Vendor/Products, Vulnerability Researcher) Link &
([‘Exploit’, ‘Third Party Advisory’, ‘VDB Entry’] Tag)}

Functional {CNA(Vendor/Products, Vulnerability Researcher) Link &
[‘Third Party Advisory’, ‘VDB Entry’]}|
{‘packetstormsecurity’ Link}

(continued)

126 S.-S. Yoon et al.

Table 3. (continued)

Exploit Code Maturity Classification Criteria

Proof of Concept {CNA-LR & ([‘Exploit’] | ‘US Government Resource’
Tag)}|{‘securityfocus’ | ‘xforce.ibmcloud’ | ‘exploit-db’ |
‘securitytracker’ | ‘secunia.com’ | ‘osvdb.org’ Link}

Unproven Not satisfy any rules above

Undefined Unable to obtain information

4.2 Quantifying Risk of In-The-Wild Vulnerabilities

We evaluated the vulnerability risk by assigning a weight (1–5) across five categories
representing the attacker’s skill level in terms of exploit code maturity. We aimed to
increase the severity score considering both the probabilistic of exploit (PoE) and the
attacker’s skill level. In this calculation, we utilized the EPSS, which takes into account
the risk and urgency of vulnerability exploitation within 30 days, in order to leverage
probabilistic numeric information.

The ease of exploitation (EoE) quantifies the actual exploitability and feasibility by
considering the attacker’s skill level and vulnerability exploitation trends. By integrating
the attacker’s skill level and the probabilistic in-the-wild exploitability, this approach
surpasses the limitations of the existing CVSS, allowing score to exceed the conventional
limit of 10 points. This comprehensive approach provides insights into the actual risk
and urgency of the vulnerabilities, taking into account both the availability of exploits
over time and static and dynamic characteristics of the vulnerabilities.

This paper devised in-the-wild risk score (WRS) calculation formula. The calculation
formula calculates a score between 0 and 15 by applying the exploitability derived in
this paper to the existing CVSS base score formula. In the calculation formula, Imp
indicates the impact score of the base score, Exp denotes the exploitability score of the
base score, and the calculation formulas for EoE and WRS are as follows:

EOE = PoE(cve_id) ∗ ECM (cve_id) (1)

WRS(S=U) = Imp(cve_id) + Exp(cve_id) + EoE (2)

WRS(S=C) = 1.08 ∗ [Imp(cve_id) + Exp(cve_id) + EoE] (3)

4.3 Case Study

Using CVSS(v3.1) scores, we evaluated EoE for 4,180 CVEs available in CISA ICS-
CERT Advisories. Identifying CVEs with CVSS at 7.0 or higher for each percentile
range of EoE values calculated between 1 and 5, 58 CVEs had an EoE score at 1.25
or higher, accounting for about 2% of the total vulnerabilities. This suggests that when
considering the exploitation probability based on the attacker’s skill level, the number of

Vulnerability Assessment Framework 127

actual exploited vulnerabilities is significantly low. Figure 5 illustrates the distribution
of high-risk vulnerabilities subject to exploitation according to EoE ranges. Conse-
quently, instead of establishing patch strategies for numerous vulnerabilities, it enables
an efficient patch strategy for a small number of high-risk vulnerabilities (Table 4).

Table 4. Number of CVEs by Ease of Exploitation (EoE)

Ease of Exploitation (EoE) # of CVE

EoE < 1.25 2,722

1.25 ≤ EoE < 2.5 21

2.5 ≤ EoE < 3.75 14

3.75 ≤ EoE 23

Fig. 5. Common vulnerability scoring system (CVSS) base score-ease of exploitation

We have conducted a WRS assessment that yields scores ranging from 0 to 15 for
all CVEs, and in order to observe changes in score distribution compared to the existing
CVSS, we have standardized the calculatedWRS scores to a range of 0 to 10. Compared
to the CVSS, which was predominantly focused on high scores, the risk stratification
according to the dynamic characteristics of vulnerabilities, such as exploitability levels,
has led to changes in score distribution, as illustrated in Fig. 6.

Additionally, by conducting a comparative analysis of the CVSS and standardized
WRS scores based on the 7.0 assessment criterion for critical infrastructure vulnerabili-
ties,We discovered that the number of previously managed vulnerabilities has decreased
by approximately 98%, from 2,780 to 49.

Furthermore, we discovered that some vulnerabilities with originally low CVSS
scores have higherWRSscores than thosewith high initial CVSS scores, as demonstrated

128 S.-S. Yoon et al.

Fig. 6. Distribution of the common vulnerability scoring system (CVSS) score and in-the-wild
risk score (WRS)

Table 5. Discovered Threat-Related Vulnerabilities

Vulnerability CVSS WRS
(standardized)

Exploited

CVE-2015–7855 6.5 7.5689 O

CVE-2016–2107 5.9 7.1763 X

CVE-2016–0800 5.9 7.1292 O

in Table 5. All three vulnerabilities have CVSS scores lower than the vulnerability
management baseline of 7.0. However, upon standardizing the WRS assessment results,
it was found that they are actually higher than 7.0. This means that, unlike when solely
relying on the existing vulnerability assessment system, the new approach allows for the
identification of novel threats and potential threats.

In fact, among these three vulnerabilities, CVE-2016–0800, which has a CVSS
score of 5.9, is still considered to be dangerous for aging servers and equipment using
vulnerable protocols such as SSLv2 in control system environments. Furthermore, it has
been exploited in campaigns by The Budworm espionage group specifically targeting
government and multinational electronic product control systems.

As depicted in Fig. 7, we compared the effectiveness of CVSS and the proposed
evaluation method WRS for 4180 vulnerabilities disclosed by ICS-CERT. Based on
CISA’s APT analysis report and threat information, 23 vulnerabilities used in exploit
campaigns were identified out of 4180 vulnerabilities. When using CVSS scores 7.0 or
higher as a criterion, only 14 out of 2780 CVEs were identified, yielding a coverage
of about 60% and an identification efficiency of only about 0.5%. Conversely, when
applying WRS normalization with a score of 10 (equivalent to CVSS 7.0), 49 CVEs

Vulnerability Assessment Framework 129

were identified, with 16 being relevant. Coverage increased by about 9% compared to
CVSS, and identification efficiency improved by about 32%.

Fig. 7. Comparison of CVSS and WRS application results in terms of vulnerability exploitation
identification

5 Conclusion

This paper highlights limitations in providing comprehensive severity information for
control system vulnerabilities due to real-world constraints and shortcomings in existing
CVSS and vulnerability assessment research. To address these limitations, we collected
additional data on industrial control system vulnerabilities and APT attack informa-
tion. We proposed a new metric called “ease of exploitation,” which considers only the
attacker’s skill level among the static properties and dynamic characteristics of control
system vulnerabilities that change over time. Furthermore, we have calculated a new
indicator, WRS (in-the-wild risk score), which represents the risk of being exploited
in an in-the-wild environment by combining this new metric with the existing vulnera-
bility risk assessment formula. We applied this assessment to disclosed control system
vulnerabilities and compared them to traditional CVSS-based prioritization strategies to
determine that they can be effective in prioritizing defense against exploits andmitigating
risk.

This study aims not only to identify vulnerabilities with a high likelihood of exploita-
tion but also to consider the unique attributes of the vulnerabilities. By doing so, it enables
defenders to comprehensively assess how easily the vulnerabilities can be exploited and
what impacts they may have on the organization, thereby facilitating the establishment
of effective defense systems.

130 S.-S. Yoon et al.

For future work, we plan to identify the residual threats of vulnerabilities with proac-
tive defense measures by considering patch information for vulnerabilities that are not
currently taken into account. Additionally, we aim to conduct statistical analysis to
address the limitations of the proposed weighting factors and risk assessment calculation
formula, further enhancing the effectiveness of our approach.

References

1. Bulut, M.F., et al.: Vulnerability prioritization: an offensive security approach. arXiv preprint
arXiv:2206.11182 (2022)

2. Yang, H., et al.: Better not to use vulnerability’s reference for exploitability prediction. Appl.
Sci. 10(7), 2555 (2020)

3. FIRST CVSS Documentation. https://www.first.org/cvss/specification-document. Accessed
18 June 2023

4. FIRST EPSS Model. https://www.first.org/epss/model.Accessed 18 June 2023
5. Jung, B., Li, Y., Bechor, T.: CAVP: a context-aware vulnerability prioritization model.

Comput. Secur. 116, 102639 (2022)
6. Singh, U.K., Joshi, C.: Quantitative security risk evaluation usingCVSSmetrics by estimation

of frequency and maturity of exploit. In: Proceedings of the World Congress on Engineering
and Computer Science, vol. 1, pp. 19–21 (2016)

7. NVD CVE. https://nvd.nist.gov/. Accessed 18 June 2023
8. NVD CPE. https://nvd.nist.gov/products/cpe. Accessed 18 June 2023
9. MITRE CWE. https://cwe.mitre.org/. Accessed 18 June 2023
10. NVD CAPEC. https://capec.mitre.org/. Accessed 18 June 2023
11. CISA ICS-CERT Advisories. https://www.cisa.gov/uscert/ics/advisories?items_per_pag

e=All. Accessed 18 June 2023
12. Exploit-DB. https://exploit-db.com. Accessed 18 June 2023
13. Github. https://github.com/nomi-sec/PoC-in-GitHub/. Accessed 18 June 2023
14. CISA. https://www.cisa.gov/known-exploited-vulnerabilities-catalog/. Accessed 18 June

2023
15. CISA. https://www.cisa.gov/uscert/ncas/alerts/. Accessed 18 June 2023
16. Rapid7. https://rapid7.com/. Accessed 18 June 2023
17. MITRE. https://www.cve.org/Program Organization/CNA s. Accessed 18 June 2023

http://arxiv.org/abs/2206.11182
https://www.first.org/cvss/specification-document
https://www.first.org/epss/model
https://nvd.nist.gov/
https://nvd.nist.gov/products/cpe
https://cwe.mitre.org/
https://capec.mitre.org/
https://www.cisa.gov/uscert/ics/advisories?items_per_page=All
https://exploit-db.com
https://github.com/nomi-sec/PoC-in-GitHub/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog/
https://www.cisa.gov/uscert/ncas/alerts/
https://rapid7.com/
https://www.cve.org/Program

Patchman: Firmware Update Delivery
Service Over the Blockchain for IoT

Environment

Yustus Eko Oktian1,2, Uk Jo3, Simon Oh3, Hanho Jeong3, Jaehyun Kim3,
Thi-Thu-Huong Le1,2, and Howon Kim3(B)

1 Blockchain Platform Research Center, Pusan National University,
Busan 609735, Republic of Korea

yustus@islab.re.kr
2 IoT Research Center, Pusan National University,

Busan 609735, Republic of Korea
3 School of Computer Science and Engineering, Pusan National University,

Busan 609735, Republic of Korea
{jouk,simon,hanho,jaehyun}@islab.re.kr, howonkim@pusan.ac.kr

Abstract. This paper proposes Patchman, a firmware binary delivery
service for the Internet of Things ecosystem leveraging blockchain. When
a new firmware patch is available, vendors make a bid in the smart
contract for anyone to join as firmware distributors. For each success-
ful delivery to targeted devices, distributors are rewarded with tokens.
Meanwhile, devices gain a reputation score every time they successfully
install an update. To ensure fairness, we develop secure exchange pro-
tocols using proof-of-delivery and proof-of-installation. Those proofs are
verifiable in the blockchain. Therefore, the firmware update delivery can
be executed safely without centralized third-party control.

Keywords: Firmware Update · Blockchain · IoT

1 Introduction

Providing firmware updates for Internet of Things (IoT) devices is crucial to
prevent previous security attacks (e.g., Mirai [1]) from happening again in the
future. With the sheer number of IoT devices (i.e., expected to reach 29 billion
in 2030 [9]), performing a full-scale firmware update operation becomes even
more challenging. Traditional centralized architecture is vulnerable to failure and
scalability problems. Hence, exploring a distributed solution is always beneficial
for the IoT community going forward.

Some studies suggest using peer-to-peer (P2P) networks such as Gnutella,
BitTorrent, or IPFS as a medium to transmit the binary decentrally. However,
such an approach cannot be executed perfectly out of the box. First, compared
to popular files such as pirated music/movies, firmware binaries will most likely
fail to attract much interest in the P2P community. Few distributors will seed
the files, resulting in a lower upload/download speed. Second, because anyone
can redistribute the binary, malicious adversaries may reverse-engineered it and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 131–142, 2024.
https://doi.org/10.1007/978-981-99-8024-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_11&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_11

132 Y. E. Oktian et al.

share the tampered version with the community. Therefore, it is crucial to (i)
provide incentives so that many people are willing to host the binary files and
(ii) provide an integrity guarantee to the shared binary files.

Solving those mentioned issues fairly without the involvement of centralized
third-party control complicates the challenges. In particular, distributors may
deliver the firmware binary to devices first. But, since distributors and devices
do not trust each other, we cannot guarantee that the devices will pay after
receiving the binary. Similarly, devices may pay the delivery fee in advance.
However, such action cannot guarantee that distributors will send the binary
after receiving payment. This fair exchange problem is usually solved through
an authorized third party as a trusted escrow service. However, we cannot rely
on a single entity to perform this process in a decentralized environment.

In this paper, we tackle those challenges by proposing Patchman, a decentral-
ized firmware binary (or patch) delivery service for the IoT ecosystem leveraging
blockchain. Specifically, we develop secure exchange protocols using key commit-
ment and on-chain encryption to solve the fair exchange problem. Distributors
first encrypt the binary and commit the decryption key in the blockchain. After
receiving encrypted binary from distributors, devices create a proof-of-delivery
and submit it to the blockchain. Successful submission of the proof will reveal
the decryption key for devices and reward the distributors, providing a win-win
solution for both of them. Aside from solving fair exchange, we also develop a
proof-of-installation as a way for vendors to safely track which devices have suc-
cessfully installed given firmware binary, despite not being personally in charge
of the delivery process.

2 Problem Definition

2.1 Trust Model

We set the following trust models in Patchman. First, IoT devices trust their ven-
dors, and they will install any binary that comes from vendors. Second, vendors
and devices are assumed not to collude with one another. Third, brokers do not
trust vendors/devices, and vice versa. Fourth, all parties trust the blockchain
network such that smart contract operations are always hard-to-tamper and
deterministic.

2.2 Security Goals

We design Patchman to satisfy the following security goals.

1. Fair Exchange – Distributors should only get paid if they successfully deliver
the binary to devices. The exchange between firmware binary and money
reward must be performed fairly without any intervention of a centralized
third party.

2. Patch Integrity – Malicious distributors may redistribute fake binaries
instead of the original ones. Thus, we should be able to check if the binary
is altered during the transmission. We should also be able to determine the
source origin of the binary.

Patchman: Firmware Update Over the Blockchain for IoT 133

3. Patch Availability – Devices should be able to download binaries from
multiple sources so that the system has a low probability of downtime while
providing cheaper costs than a centralized cloud.

4. Patch Confidentiality – Despite allowing anyone to redistribute the binary,
only the vendors and devices should know about the firmware binary. Dis-
tributors (and other intermediaries) should not be able to use the binary.

5. Patch Correctness – Vendors should understand whether devices have
received the binary and whether they have successfully installed the firmware
binary.

3 Patchman Delivery Service

The firmware update is performed batch-to-batch, where we split the process
of updating devices only to a few devices at a time. This scheme allows system
developers to employ a customized prioritization strategy. For example, assuming
that developers know the operating location of each IoT device, they can target
specific devices (e.g., those in healthcare) to be prioritized by including their
public keys in the first batch. Alternatively, developers can also prioritize devices
by their role (e.g., devices that serve the role of service providers should get
the update first). The token rewards and update duration can be configured to
stimulate urgency in the distributors (e.g., by giving high rewards on a relatively
small time window) so that they will quickly distribute the binary to devices.

3.1 Components

The followings are the main components of our proposals.

Vendors. IoT vendors are denoted as v. Vendors create IoT devices and are
responsible for maintaining their firmware. Every vendor has the following: (i) a
private/public keys pair (SKv, PKv) and (ii) a list of self-produced IoT devices
public keys {PK1, PK2, ..., PKd..., PKD}. Multiple competing IoT vendors join
the blockchain network and participate in maintaining and generating blocks.

Devices. IoT devices are denoted as d. Devices private/public keys pair
(SKd, PKd) and vendors public key PKv is embedded in devices during manu-
facturing. Devices do not necessarily become blockchain nodes, so getting infor-
mation from the blockchain can be achieved through trusted intermediaries (e.g.,
nearby trusted IoT gateways).

Brokers. Brokers are denoted as b. Anyone can participate to become brokers,
which are untrusted agents to redistribute firmware binaries from vendors. They
have a private/public key pair (SKb, PKb) and become blockchain nodes but do
not generate blocks.

134 Y. E. Oktian et al.

Blockchain. The blockchain is designed to support smart contract SC such
as in Ethereum Virtual Machine (EVM), and use a high-performance consensus
algorithm such as Practical Byzantine Fault Tolerance (PBFT). The blockchain
is a hybrid between permissioned and permissionless. Anyone can connect and
see the information in the blockchain network. However, only vendors are allowed
to create blocks.

3.2 Protocol

The overall protocol can be divided into six big stages: (i) firmware creation, (ii)
firmware download, (iii) firmware redistribution, (iv) complaint (optional), (v)
firmware installation, and (vi) reward distribution.

Firmware Creation. Vendors first prepare the binary file and relevant meta-
data. After that, they will host the binary temporarily in their server and upload
the metadata in the blockchain through Binary Smart Contract BSC (c.f., Algo-
rithm 1). Detailed steps are as follows.

1. Vendors first do:
– Create a binary firmware update file U and intentionally hide a secret

message m inside the binary. This secret is revealed only when devices
successfully install the firmware in this batch.

– Form a hash mid = H(m). The H(·) is a secure cryptographic hash function,
for example, using SHA-256 or KECCAK-256 algorithm.

– Make a random key l = Gen(1λ). The Gen(·) is a secure pseudorandom
generator function, and λ is a security parameter.

– Specify a list of eligible devices D̂ = {PK1, PK2, ..., PKd, ..., PKD} to
be updated in this batch. All devices can be identified by their public key
PKd, with D indicating the total number of devices.

– Encrypt l with devices public key, which is ∀d ∈ D̂, kd = PKEPKd
(l). The

PKE(·) is a secure asymmetric encryption algorithm using ECC encryption.
– Form a list of encrypted keys K̂ = {k1, k2, ..., kd, ..., kD}. Note that the

order of d is the same in D̂ and K̂.
– Make a Merkle Root hash τ = MerkleRoot(D̂, K̂). The MerkleRoot(·) is

a function to generate a Merkle Root.
– Encrypt the binary file Û = El(U). The E(·) is a secure symmetric encryp-

tion such as the AES algorithm.
– Form a hash Û id = H(Û).

2. Vendors deploy new BSC to the blockchain network and put the following
metadata:
– τ,D, Û id,mid from the previous steps.
– The public key of vendors PKv.
– The time limit required for registration Δregis, binary update Δupdate,

and complaint Δcomplain.
– The firmware version Uver and device model U type.

Patchman: Firmware Update Over the Blockchain for IoT 135

Algorithm 1. Binary Smart Contract (BSC)
1: Initialize merkleRoot = τ , totalDevice = D
2: Initialize binaryHash = Û id, secretHash = mid

3: Initialize regisDeadline = now + Δregis

4: Initialize updateDeadline = regisDeadline + Δupdate

5: Initialize complainDeadline = updateDeadline + Δcomplain

6: Initialize firmwareVersion = Uver, deviceType = U type

7: Initialize deliveryReward = Rdelivery, installReward = Rinstall

8: Initialize requiredDeposit = β, owner = PKv

9: Initialize numberOfDelivered = 0, numberOfInstalled = 0
10: Initialize brokers = ∅, devices = ∅ � List of brokers, devices
11: Initialize finalized = False

12: procedure deposit(PKb, Û
url, β′)

13: revert if now > regisDeadline
14: revert if β′ < requiredDeposit
15: brokers[PKb].deposit = β′

16: brokers[PKb].url = Ûurl

17: emit Deposited(PKb, Û
url)

18: procedure submitPoD(PKb, PKd, r, s, kd, τ
path, SignSKd

(αBSC , s, PKb))
19: revert if now > updateDeadline
20: revert if PKb /∈ brokers
21: revert if devices[PKd].delivered = True
22: revert if H(r) �= s
23: revert if VerifyPath(PKd ‖ kd, τ

path, merkleRoot) = False
24: revert if VerPKd(SignSKd

(αBSC , s, PKb), address(this) ‖ s ‖ PKb) = False
25: devices[PKd].delivered = True
26: devices[PKd].broker = PKb

27: emit Delivered(PKb, PKd, r)

28: procedure submitPoI(PKb, PKd, m̂
id, SignSKd

(αBSC , m̂id, PKb))
29: revert if now > updateDeadline
30: revert if PKb �= devices[PKd].broker
31: revert if devices[PKd].delivered = False or devices[PKd].installed = True
32: revert if VerPKd(SignSKd

(αBSC , m̂id, PKb), address(this) ‖ m̂id ‖ PKb) =
False

33: devices[PKd].installed = True
34: devices[PKd].secret = m̂id

35: emit Installed(PKb, PKd)

36: procedure complain(PKd, PKb, Ū , r, s, SignSKb
(Ū id, Û id, s, PKd))

37: revert if now > complainDeadline
38: revert if PKb �= devices[PKd].broker
39: revert if devices[PKd].delivered = False or devices[PKd].installed = True
40: revert if H(r) �= s
41: revert if VerPKb(SignSKb

(Ū id, Û id, s, PKd), H(Ū) ‖ binaryHash ‖ s ‖ PKd) =
False

42: revert if H(decrypt(Ū , r)) = binaryHash
43: brokers[PKb].malicious = True
44: transfers brokers[PKb].deposit to PKv � Deposit is confiscated
45: emit Complained(PKd, PKb)

136 Y. E. Oktian et al.

Algorithm 1. Binary Smart Contract (BSC) continued
1: procedure claimReward(PKb, PKd)
2: revert if now < complainDeadline
3: revert if PKb �= devices[PKd].broker
4: revert if brokers[PKb].malicious = True
5: revert if devices[PKd].delivered = False or devices[PKd].claimed = True
6: deliveryBill = deliveryReward ÷ (totalDevice - numberOfDelivered)
7: deliveryReward = deliveryReward - deliveryBill
8: numberOfDelivered++
9: devices[PKd].claimed = True

10: transfer deliveryBill to PKb

11: emit Claimed(PKb, PKd, deliveryBill)

12: procedure finalize(PKv, m)
13: revert if now < complainDeadline
14: revert if PKv �= owner
15: revert if finalized = True
16: revert if H(m) �= secretHash
17: for all PKd ∈ devices do
18: if devices[PKd].secret = H(m ‖ PKd) then
19: installBill = installReward ÷ (totalDevice - numberOfInstalled)
20: installReward = installReward - installBill
21: numberOfInstalled++
22: transfer installBill to devices[PKd].broker
23: increase PKd reputation score ++
24: increase PKv reputation score ++
25: finalized = True
26: emit Finalized(PKv, address(this))

27: function encrypt(Û , r)
28: return Er(Û)

29: function decrypt(Ū , r)
30: return Dr(Ū)

– The total reward R for all brokers, and split the reward for delivery
Rdelivery and installation Rinstall, where R = Rdelivery + Rinstall.

– The deposit amount requirement for brokers β.
3. Vendors wait until BSC is deployed. After that, vendors save the BSC

address αBSC , which will be used as pointers to collect metadata. Finally,
vendors temporarily host the Û in their server until Δregis ends.

Firmware Download. Brokers make a deposit to smart contracts and down-
load the firmware from vendors. After successful binary and metadata validation,
brokers host the binary for devices. Detailed operations within are described as
follows.

4. Before Δregis ends, interested brokers do:

Patchman: Firmware Update Over the Blockchain for IoT 137

– Make a deposit β′ to BSC (i.e., calling deposit(·) method). The broker
public key PKb and the public URL for redistribution Ûurl will be stored
in BSC.

– Download the firmware binary from vendors’ servers. The vendors may
host several binaries simultaneously, and brokers use αBSC to indicate
which binary they are interested in.

5. Vendors send (Û , D̂, K̂) to brokers.
6. Brokers verify payload:

– Form Û id′
= H(Û).

– Verify that Û id′
= Û id.

– Reconstruct τ ′ = MerkleRoot(D̂, K̂).
– Make sure that τ ′ = τ .
If everything is valid, brokers open the Ûurl to the public so that devices
can begin requesting firmware downloads.

Firmware Redistribution. Brokers begin redistributing the firmware to
devices by re-encrypting the original firmware with random encryption keys.
Devices need to sign the proof-of-delivery (PoD) to obtain the decryption key
from brokers. Brokers submit the signed PoD to the blockchain to claim delivery
rewards later. The following steps are performed within Δupdate.

7. Devices determine whether they need the update. If so, they download the
binary from brokers by sending (αBSC , PKd) to Ûurl. Similar to vendors’
cases, brokers may host multiple different batches of firmware binaries at
the same time. Therefore, αBSC is used as an identifier.

8. Brokers do:
– Check if devices are included in this batch PKd ∈ D̂ = 1.
– Form a Merkle Path τpath = MerklePath(PKd ‖ kd, τ). The

MerklePath(·) is a function to create a path from the leaf to the root.
– Make a random challenge c = Gen(1λ).
– Send (c, τpath, kd) to devices.

9. Devices do:
– Make sure that brokers indeed have the firmware binary and metadata

that they need by performing VerifyPath(PKd ‖ kd, τ
path, τ) = 1. The

VerifyPath(·) checks whether we can make Merkle Root τ from given
leaf PKd ‖ kd and Merkle Path τpath.

– Sign the challenges SignSKd
(c) and send to brokers. The Sign(·) is an

asymmetric digital signature generation function using, e.g., the ECDSA
algorithm.

10. Brokers do:
– Verify VerPKd

(SignSKd
(c), c) = 1. The Ver(·) is an asymmetric digital

signature verification function using, e.g., the ECDSA algorithm.
– Create a random encryption key r = Gen(1λ).
– Form s = H(r).
– Re-encrypt the binary Ū = Er(Û), using encrypt(·) method.
– Form Ū id = H(Ū).

138 Y. E. Oktian et al.

– Send (Ū , s, SignSKb
(Ū id, Û id, s, PKd)) to devices.

11. Devices do:
– Create Ū id = H(Ū).
– Verify Ver(SignSKb

(Ū id, Û id, s, PKd), Ū id ‖ Û id ‖ s ‖ PKd) = 1. Devices
later can use this SignSKb

(Ū id, Û id, s, PKd) to complain in case brokers
lie about the committed decryption key s to devices.

– Send PoD payload SignSKd
(αBSC , s, PKb) to brokers.

12. Brokers upload (PKb, PKd, r, s, kd, τ
path, SignSKd

(αBSC , s, PKb)) to smart
contract using submitPoD(·) method.

Firmware Installation. Devices perform triple decryptions: (i) decrypt the
binary from brokers, (ii) decrypt the secret key, and (iii) decrypt the binary
from vendors. After installing the binary, devices learn about the secret message,
which is then submitted to the blockchain as proof-of-installation (PoI). Details
of these operations can be described as follows.

13. Devices learn the decryption key r from submitPoD(·) transaction that is
submitted in the previous step. Devices then do the following:
– Call the decrypt(·) method and obtain Û = Dr(Ū). The D(·) is a sym-

metric decryption function, counterpart of E(·).
– Form Û id′

= H(Û).
– Verify that Û id′

= Û id.
– Decrypt l = PKDPKd

(kd). The PKD(·) is a asymmetric decryption function,
counterpart of PKE(·).

– Decrypt U = Dl(Û).
– Install U and obtain m.
– Form PoI payload m̂id = H(m ‖ PKd).
– Send (PKd, m̂

id, SignSKd
(αBSC , m̂id, PKb)) to brokers.

14. Brokers upload (PKb, PKd, m̂
id, SignSKd

(αBSC , m̂id, PKb)) to BSC by
calling submitPoI(·) method.

Complaint. Brokers can cheat devices by giving fake decryption keys. Brokers
initially encrypted Û with r, Ū = Er(Û). However, they intentionally generate
a fake decryption key r′ (i.e., r′ �= r), form s′ = H(r′), and send s′ to devices.
At this moment, devices cannot verify if this s′ (and r′ behind it) can actu-
ally decrypt Ū . Devices use an optimistic approach and assume that brokers
are honest. Therefore, devices sign and make PoD. After receiving PoD, brokers
submit PoD and (r′, s′) using the submitPoD(·) method. This transaction is
considered valid, and BSC can process it. However, when r′ is revealed and
devices try to decrypt Ū , they found out that Û ′ �= Û , Û ′ = Dr′(Ū). To solve
this issue, we allow devices to make a complaint request to BSC by submit-
ting PKb, Ū , r, s, SignSKb

(Ū id, Û id, s, PKd) using complain(·) method within
Δcomplain window. If brokers are found to be malicious, BSC will confiscate
brokers’ deposits.

Patchman: Firmware Update Over the Blockchain for IoT 139

Reward Distribution. Rewards are distributed only to honest participants. In
this case, brokers obtain tokens for submissions of the PoD and PoI. Meanwhile,
devices and vendors increase their reputation scores for successfully performing
a firmware update. The details are as follows.

15. Brokers wait until the Δcomplain expires, then do:
– Make a claim transaction (PKb, PKd) using claimReward(·) method.
– Obtain a slice of Rdelivery for successfully processed the PoD.

16. Vendors wait until the Δcomplain expires, then do:
– Terminate the process by uploading (PKv,m) with finalize(·) method.
– Brokers obtain a slice of Rinstall for successfully processed the PoI.
– Devices and vendors’ reputations are increased.

Once the BSC is closed, this batch is completed, and the BSC state can not
be altered anymore. If one or a few devices are not successfully installed on this
batch, they can be included in the next batch.

4 Security Analysis

In this section, we evaluate our proposal and prove it can provide security goals
as described in Sect. 2. This discussion assumes that the underlying cryptography
algorithm and the blockchain network are secure. We also assume that devices
do not leak secrets, such as decrypted firmware binary, encryption keys, and PoI
secret messages, to the public.

Fair Exchange. The economic (and sociological) model plays an important
role in forcing honest behavior from participants. First, devices may not want
to provide PoD payloads for brokers after receiving the binary. However, only
by releasing PoD payloads will devices get the encryption key to decrypt the
received binary. Second, brokers can decide to break the exchange protocol by
not submitting the PoD or PoI payloads to the smart contract. However, they
will lose incentives (Rdelivery, Rinstall) by doing so. Furthermore, devices can try
to make new exchange protocols with other brokers if they find previous brokers
unresponsive. Third, brokers can try to cheat devices by committing (and later
revealing) a fake encryption key during PoD exchanges. However, when devices
detect such action, they can make a complaint, and brokers will lose their deposit
(c.f., complaint stage from Sect. 3 for details).

Patch Integrity. Integrity is enforced by utilizing hash and digital signatures.
The binary firmware is accompanied by cryptographic hash Û id = H(U), which
can be used to prove if there is any tampering during binary transmission. Fur-
thermore, vendors must provide digital signatures when providing transactions
SignSKv

(Tx) to deploy BSC. Devices need to check that creator of BSC is PKd

and Û id is stored in BSC to determine the true source of the transmitted binary.

140 Y. E. Oktian et al.

Table 1. Feature comparison of our proposal with previous works

Research Fair Exchange Integ. Avail. Confi. Corre.

Leiba et al. [6,7] ZKP ✓ ✓ – –
Baza et al. [2] ZKP & ABE ✓ ✓ – –
Puggioni et al. [8] ZKP ✓ ✓ – –
Lee J.H. [5] Key-Commit ✓ ✓ ✓ –
Zhao et al. [11] DAPS & OABS ✓ ✓ – –
Tapas et al. [10] BitTorrent Choking ✓ ✓ – –
Fukuda et al. [4] Access Control ✓ ✓ – –
Patchman On-Chain Encrypt ✓ ✓ ✓ ✓

Legend: (✓) means included, (–) means not included.

Patch Availability. Availability is solved by incentivizing multiple brokers.
Thus, it depends heavily on the number of brokers interested in rehosting the
binary. With attractive incentive models, many brokers will likely participate in
our system to rehost the device binary.

Patch Confidentiality. Confidentiality is achieved through end-to-end encryp-
tion. The binary in the given batch is encrypted with shared key l, which is
Û = El(U). That key is then encrypted with device public key kd = PKEPKd

(l).
Thus, only legitimate devices with SKd can decrypt and obtain original firmware
U . Furthermore, vendors will use different key l′, which l′ �= l, in the next batch
to provide confidentiality between batches.

Patch Correctness. Correctness is realized through PoI. When devices install
the binary, a secret message m will be revealed to the devices. Because the
submission of PoI to BSC only reveals m̂id = H(m ‖ PKd), it prevents devices
from seeing and stealing each other m. Devices also cannot resubmit m̂id from
other devices and claim it as their own since such m̂id is only valid for a specific
device. With these traits, vendors can be confident that only devices whose PoI
are successfully processed on-chain have installed the firmware binary.

Note that since we focus on firmware delivery, the actual scheme to realize
m revelation is beyond the scope of this paper. An idea to achieve this is, for
example, allowing devices to hash small parts of the registry configuration, indi-
cating that the firmware state has been updated. In this case, the resulting hash
will be used as m.

5 Related Work

To our knowledge, Leiba et al. [7] propose the first study about fair exchange
for IoT firmware update by leveraging Zero-Knowledge Contingent Payment
(ZKCP) protocol [3] and smart contract. In their initial [7] and extended work

Patchman: Firmware Update Over the Blockchain for IoT 141

[6], they use Zero-Knowledge Proof (ZKP) to build proof-of-delivery (PoD)
between distributors and devices. Those works inspire many other researchers to
build similar concepts, which results in many variations, each with its own fair
exchange methods and security goals guarantee. A comparison summary can be
seen in Table 1.

Baza et al. [2] use the same ZKP as in [7] for PoD but replace the token
reward with a reputation system and add attribute-based encryption (ABE)
for access control. Puggioni et al. [8] also use ZKP but introduce a new hub
entity to outsource heavy cryptographic operations from devices. Lee J.H. [5]
proposes an on-chain key-commit scheme as PoD, where distributors first commit
the hash of the encryption key in the smart contract, then later submit PoD,
including the correct key, to get the reward. Zhao et al. [11] propose to use
double authentication preventing signature (DAPS) and outsource attribute-
based signature (OABS) for their PoD. Tapas et al. [10] divides the firmware
into multiple parts, and distributors will transfer one part at a time to devices.
Each part delivery is a fair exchange, and devices must pay to get the next part.
If devices do not pay, distributors will choke their traffic from the BitTorrent
network so that they cannot get any parts from other distributors. Fukuda et
al. [4] enforce an access control mechanism to build a fair exchange. Distributors
must send the firmware to devices to get rewards, and devices must sign PoD to
update their firmware state in the smart contract. Failing to do so will result in
losing access to the network.

Patchman is also inspired by the works of Leiba et al. [7]. However, unlike
previous studies, we use an on-chain encryption scheme to enforce fair exchange
in our system. On-chain encryption is relatively more efficient than using ZKP
[2]. Our approach also does not require any trusted setup or specific environment
like if using access control [4], attribute-based cryptography [11], or BitTorrent
choking [10]. More importantly, previous research does not consider patch confi-
dentiality, so distributors can see the binary. Also, they only guarantee delivery
without knowing whether the devices have successfully installed the binary. Only
our works fully support all security goals, as seen in Table 1.

6 Conclusion

We have described Patchman, a decentralized firmware update delivery service
for IoT leveraging blockchain. Entities can register as brokers and help redis-
tribute binary from vendors to devices in exchange for proof-of-delivery incen-
tives. Devices can install the binary and submit the proof-of-installation to gain
a reputation increase. Those proofs are verifiable in the blockchain to guarantee
security and fairness for all participants. Since we share our early design in this
paper, detailing the deposit, reward, and reputation system will be carried out
in the future. Furthermore, implementation and feasibility analysis will also be
our immediate future work.

Acknowledgements. This research was supported by the MSIT(Ministry of Sci-
ence and ICT), Korea, under the Convergence security core talent training busi-

142 Y. E. Oktian et al.

ness(Pusan National University) support program(IITP-2023-2022-0-01201) supervised
by the IITP(Institute for Information & Communications Technology Planning & Eval-
uation) and also supported by the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center) support program(IITP-2023-2020-
0-01797) supervised by the IITP(Institute for Information & Communications Tech-
nology Planning & Evaluation).

References

1. Antonakakis, M., et al.: Understanding the Mirai Botnet. In: 26th USENIX Secu-
rity Symposium (USENIX Security 2017), pp. 1093–1110 (2017)

2. Baza, M., Nabil, M., Lasla, N., Fidan, K., Mahmoud, M., Abdallah, M.: Blockchain-
based firmware update scheme tailored for autonomous vehicles. In: 2019 IEEE
Wireless Communications and Networking Conference (WCNC), pp. 1–7. IEEE
(2019)

3. Bitcoin Wiki: Zero knowledge contingent payment (2020). https://en.bitcoin.it/
wiki/Zero_Knowledge_Contingent_Payment

4. Fukuda, T., Omote, K.: Efficient blockchain-based IoT firmware update consider-
ing distribution incentives. In: 2021 IEEE Conference on Dependable and Secure
Computing (DSC), pp. 1–8. IEEE (2021)

5. Lee, J.: Patch transporter: incentivized, decentralized software patch system for
WSN and IoT environments. Sensors 18(2), 574 (2018)

6. Leiba, O., Bitton, R., Yitzchak, Y., Nadler, A., Kashi, D., Shabtai, A.: IoTPatch-
Pool: Incentivized delivery network of IoT software updates based on proofs-of-
distribution. Pervasive Mob. Comput. 58, 101019 (2019)

7. Leiba, O., Yitzchak, Y., Bitton, R., Nadler, A., Shabtai, A.: Incentivized delivery
network of IoT software updates based on trustless proof-of-distribution. In: 2018
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pp. 29–39. IEEE (2018)

8. Puggioni, E., Shaghaghi, A., Doss, R., Kanhere, S.S.: Towards decentralized IoT
updates delivery leveraging blockchain and zero-knowledge proofs. In: 2020 IEEE
19th International Symposium on Network Computing and Applications (NCA),
pp. 1–10. IEEE (2020)

9. Statista: Number of internet of things (IoT) connected devices worldwide from
2019 to 2021, with forecasts from 2022 to 2030 (2023). https://www.statista.com/
statistics/1183457/iot-connected-devices-worldwide/

10. Tapas, N., Yitzchak, Y., Longo, F., Puliafito, A., Shabtai, A.: P4uiot: pay-per-piece
patch update delivery for IoT using gradual release. Sensors 20(7), 2156 (2020)

11. Zhao, Y., Liu, Y., Tian, A., Yu, Y., Du, X.: Blockchain based privacy-preserving
software updates with proof-of-delivery for internet of things. J. Parallel Distrib.
Comput. 132, 141–149 (2019)

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

Security Risk Indicator for Open Source
Software to Measure Software

Development Status

Hiroki Kuzuno1(B) , Tomohiko Yano2, Kazuki Omo3, Jeroen van der Ham4,
and Toshihiro Yamauchi5

1 Graduate School of Engineering, Kobe University, Kobe, Japan
kuzuno@port.kobe-u.ac.jp

2 Intelligent Systems Laboratory, SECOM CO., LTD, Tokyo, Japan
3 SIOS Technology, Inc., Tokyo, Japan

4 Faculty for Electrical Engineering, Mathematics and Computer Science,
University of Twente, Enschede, The Netherlands

5 Faculty of Environmental, Life, Natural Science and Technology,

Okayama University, Okayama, Japan

Abstract. Recently, open source software (OSS) has become more main-
stream. Therefore, the security of OSS is an important topic in information
systems that use OSS. When vulnerabilities are discovered in OSS, it is
difficult to fix or address for each information system developer or admin-
istrator. Existing security studies propose classifying vulnerabilities, esti-
mating vulnerability risks, and analyzing exploitable vulnerabilities. How-
ever, it is still difficult to understand the threat of exploited vulnerabilities,
and the development status of OSS used in information system operations.
Determining whether vulnerabilities and the OSS development status are
security risks is challenging. In this study, we propose a security risk indi-
cator for OSS to address these problems. The proposed method calculates
security risk indicators by combining vulnerability information with the
development status of OSS. The proposed security risk indicator of OSS is
a criterion for security measures during the operation of information sys-
tems. In the evaluation, we verified whether the proposed security risk indi-
cator can be used to identify the threats of multiple OSS and the calcula-
tion cost of the security risk indicators.

1 Introduction

The use of open source software (OSS) has become mainstream in information
systems. OSS development is often conducted by volunteer developer commu-
nities, and it is difficult for information system operators and developers to
understand OSS development status. It leads to security risks of OSS that are
a low activity of OSS development, and not fixing OSS vulnerabilities, then,
OSS is a new target of cyber attack that exploits security risks to compromise
information systems using OSS [1].

The development status of each OSS may not be known when many OSS are
used in an information system. In addition, it is difficult to determine whether
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 143–156, 2024.
https://doi.org/10.1007/978-981-99-8024-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_12&domain=pdf
http://orcid.org/0000-0003-2686-2541
http://orcid.org/0000-0001-6226-5715
https://doi.org/10.1007/978-981-99-8024-6_12

144 H. Kuzuno et al.

vulnerabilities should be addressed as security measures for OSS as this depends
on the operational environment of the information system and the trend of
attacks that exploit the vulnerabilities.

Several analysis methods for the impact of vulnerabilities have been proposed
in studies on existing software vulnerabilities [2], an assessment of the vulnera-
bilities risk [3,4], and the exploitability of the use of vulnerabilities [5]. Another
analysis method is proposed for each reported vulnerability to determine the
likelihood of its use in an attack [6,7].

In the operation of information systems, the implementation of security mea-
sures against OSS is desirable when the operator judges that immediate updates
or scheduled maintenance are necessary. Therefore, existing methods have the
following issues.

Problem: Understanding the security risks of OSS
Existing methods identify software security threats based on vulnerabilities
reported for OSS and decide whether to update the software as a security
measure. However, to get an indication of the security risk of OSS developed
by third parties, information on the development status of OSS is important;
This is based on whether vulnerabilities are being fixed or not, and whether
the development of OSS is continuing.

In this study, we propose a security risk indicator calculated by linking the
development status and vulnerability information of an OSS. It is a security mea-
sure used to judge whether to take security risks for the OSS used in information
systems. The OSS security risk indicator enables a continuous and comprehensive
understanding of vulnerabilities and the development status, which can be used
as a criterion for updating or scheduled maintenance in information systems.

The objective of the OSS security risk indicator is quickly and continuously
identify the presence or absence of OSS security risks to support updating OSS
and reviewing its use. We collected vulnerability information from the National
Vulnerability Database (NVD) [8], and OSS information from the list of pack-
ages managed by Linux distributions with a GitHub repository to calculate the
proposed security risk indicator. To calculate the security indicator, the software
identification name included in the vulnerability information was used to link
the OSS information. The system then uses the Common Vulnerability Scoring
System (CVSS) to give an indication towards vulnerability risk [9]. Next, the
criticality score, which quantifies the development status of OSS [10], is used to
calculate a security risk indicator for OSS.

We are aware that a CVSS score does not express risk itself, however we feel
that it does provide some first indication that may be helpful for assessing OSS.
The research contributions in this paper are as follows:

1. We propose a security risk indicator for OSS that links vulnerabilities and
OSS information to utilize the indicator in security measures for OSS. We
calculated the security risk indicator of the OSS in Linux distributions and
made it possible to provide a security risk indicator for various OSS.

2. To evaluate the proposed OSS security risk indicator, we verified whether
it is possible to identify the OSS security risk and the impacts of known

Security Risk Indicator for OSS to Measure Software Development Status 145

Table 1. Vulnerabilities Information
Item Description

CVE A list of common identifiers for publicly

known cybersecurity vulnerabilities

CPE A structured naming scheme for systems,

software, and packages

CVSS A characteristics and severity of software

vulnerabilities

KEV A list of active exploitation vulnerabilities

Table 2. OpenSSF Criticality Score [10]
Parameter

(Si)

Description

created

since

Time since the project was

created (in months)

updated

since

Time since the project was last

updated (in months)

contributor

count

Count of project contributors

(with commits)

org count Count of distinct organizations

that contributors belong to

commit

frequency

Average number of commits per

week in the last year

recent

releases count

Number of releases in the last

year

closed

issues count

Number of issues closed in the

last 90 days

updated

issues count

Number of issues updated in the

last 90 days

comment

frequency

Average number of comments per

issue in the last 90 days

dependents

count

Number of project mentions in

the commit messages

vulnerabilities. We also evaluated the computational cost of calculating the
security risk indicators for several packages in a particular Linux distribution.

2 Background

2.1 Vulnerability Information

Vulnerabilities are mis-implementation flaws that affect software behavior and
can be used for attacks. Table 1 lists the vulnerability information used in this
study. Common Vulnerabilities and Exposures (CVE) is the vulnerability iden-
tifier [11], and a unique number is assigned to each vulnerability. Common Plat-
form Enumeration (CPE) is a list of common platforms that indicates the hard-
ware or software versions of vulnerabilities that have been reported [12].

The CVSS was used to quantify vulnerabilities and includes CVSSv2 and
CVSSv3. CVSS were calculated by considering several factors depending on those
necessary for vulnerability exploitation and the threat level [9]. In addition, the
known exploited vulnerabilities catalog (KEV) is used in actual attacks to exploit
vulnerabilities. It is a database of high security risk vulnerabilities that have been
exploited in the wild [13].

2.2 OSS Information

OSS Criticality Score: Many organizations use OSS, operating systems,
libraries, databases, and infrastructure software, such as language processing

146 H. Kuzuno et al.

systems. The development status of each OSS is complicated. The following
formula to quantify the development status of OSS as a criticality score.

Cproject =
1

∑
i αi

∑

i

αi
log(1 + Si)

log(1 + max(Si, Ti))
(1)

where, Cproject is an OSS project, and a weight α1 and a threshold Ti are
defined for each Si parameter in Table 2. The criticality score takes the range
0 ≤ Cproject ≤ 1, where 0 means not critical (least-critical) and 1 means critical
(most-critical). The criticality score can be used to quantify the development
status of an OSS because it changes according to the activity of development.

OSS Package Management: Linux distribution facilitates the introduction
of OSS by considering the dependencies among OSS distribution package man-
agement. Debian GNU/Linux manages and distributes OSS in the deb package
format [14]. The deb package contains changelog includes the package version,
update date and information, and the control comprises architecture and OSS
repository information.

3 Assumed Situation

The model in this study assumes that a high security risk indicator is calculated
from vulnerability information and the development status as OSS information.

Assumed Environment: In the assumed model, the environment in which
security risk indicators can be calculated is as follows:

– OS: OSS managed as a package (e.g., Debian GNU/Linux)
– OSS: Packages are managed by the OS, and developer information can be

referenced (e.g., GitHub repository)
– Vulnerability Information: Vulnerability information with CVE numbers for

the OSS have been released. CVSSv3 numbers can be calculated.
– OSS information: The repository is registered on GitHub, OSS Criticality

Score can be calculated.

Assumed Scenario: As a possible scenario, consider that the security risk indi-
cators of OSS are variable. The development status of OSS may not be constant.
The activity of development is referred in Table 1. In addition to past vulnera-
bilities, new vulnerabilities are expected to be discovered and CVE registrations
and CVSS will be added. Therefore, the development status is delayed that con-
ducts increasing of security risk, because a developer has less motivation, then
does not update OSS.

For example, the frequency of updates to development repositories decreases
for packaged libraries used by many OSS on computers. In addition, a certain
number of past vulnerabilities have been reported, and newly discovered vul-
nerabilities have not been addressed or corrected. The proposed security risk
indicator for OSS assumes that the security risk indicator increases if the OSS
in the assumed model follows the assumed scenario.

Security Risk Indicator for OSS to Measure Software Development Status 147

4 Approach

4.1 Requirement

The proposed measurement enables the calculation of the security risk indica-
tor of OSS based on vulnerability and OSS information by specifying monitor-
ing targets for OSS deployed in computers. We aimed to satisfy the following
requirements:

Requirement: We assume attacks that exploit vulnerabilities in OSS installed
on computers (i.e., privilege escalation attacks and denial of service attacks)
and attacks that exploit the development status of OSS. The vulnerability
and OSS information of the monitored OSS were obtained periodically, and
security risk indicators were calculated.

4.2 Design

An overview of the OSS security risk indicators is shown in Fig. 1 that illustrates
the flow of calculating the security risk indicator for OSS. A list of vulnerability
information and OSS information on the computer to be monitored is maintained
to fulfill these requirements. Vulnerability and OSS information were quantified
and combined to calculate OSS security risk indicators.

Fig. 1. Design overview of OSS security risk indicator calculation

Vulnerability Information: In the proposed security risk indicator for OSS,
the vulnerability information used to identify the vulnerabilities of OSS running
on computers. Vulnerability information uniquely identifies vulnerabilities (e.g.,
CVE), information that identifies vulnerable software (e.g., CPE), and informa-
tion that quantifies vulnerabilities (e.g., CVSS).

148 H. Kuzuno et al.

OSS Information: In the calculation of the proposed OSS security risk indica-
tor, the OSS information used to monitor the development status of OSS running
on computers. OSS information quantifies the development status of the OSS
(e.g., criticality score).

Security Risk Indicator: To regularly assess the risk of OSS, the vulnerability
information and security risk indicators of OSS proposed using OSS information
are calculated as follows.

– Linking vulnerability information to OSS information: Software identifiers
included in vulnerability information are linked to OSS information.

– Calculation of security risk indicator: The security risk indicator is calculated
by combining the harmonic mean of all score values (e.g., CVSS) of vulner-
abilities associated with the OSS information and the score values obtained
from the OSS information (e.g., criticality score).

4.3 Implementation

To monitor the OSS running on computers, the environment assumed for imple-
mentation is the Debian GNU/Linux OS and x86 64 CPU architecture.

In the implementation method, vulnerability information was obtained and
analyzed from the NVD. OSS information was obtained and analyzed from pack-
ages and the GitHub repository. Furthermore, the security risk indicator of the
OSS was calculated from the CVSS and criticality score.

Vulnerability Information Retrieval and Analysis: Vulnerability informa-
tion is periodically acquired on a computer equipped with the implementation
method and analyzed to enable its linking with OSS information. The process
of obtaining and analyzing vulnerability information is as follows:

1. Obtain vulnerability information from NVD (e.g., JSON file or Web API)
2. Analyze all vulnerability information contained in the NVD

(a) For all vulnerabilities, we investigate the software identifier from the CPE
for each CVE. We then created a list of CVEs for the CPE to link to the
OSS information

(b) Survey all CVEs for CVSSv3 and create a list of CVSSv3 for CPEs

Acquisition and Analysis of OSS Information: We periodically retrieved
OSS information and analyzed it to link it to vulnerability information. To
retrieve OSS information from Debian, we used the management function of
the deb package and the description information of the files included in the deb
package. The OSS information acquisition and analysis processes are as follows:

1. The deb package management functionality is used to obtain information on
the list of OSS packages on a computer

Security Risk Indicator for OSS to Measure Software Development Status 149

2. Use the deb package management functionality to obtain the source code of
the deb package for each OSS
(a) Search the control file for all deb packages and get GitHub repository

information
(b) If GitHub repository information exists, calculate and record a criticality

score for each OSS deb package
(c) Generate software identifiers that can be tied to CPEs for each OSS deb

package

Linking Vulnerability Information to OSS Information: Vulnerability
and OSS information are linked for each OSS, and a security risk indicator for
the OSS is calculated from the CVSS and criticality score for OSS.

1. The deb package management functionality was used to obtain information
from a list of OSS packages on the computer

2. Do the following for all deb packages in the following order
(a) Obtain CVE and CVSS lists from CPE using software identifiers that can

be linked to CPE for deb packages
(b) Obtain the list of criticality scores calculated for the deb package
(c) Calculate OSS security risk indicators from the CVS list and the criticality

score list for the deb package

Security Risk Indicators for OSS: To calculate the security risk of OSS,
we use a normalized CVSS list in the range of 0 ≤ cvssi ≤ 0.5. CVSS list
for OSS {cvss1, cvss2, . . . , cvssn}, and criticality score csdate normalized within
0 ≤ csi ≤ 0.5. As OSS, calculate the security risk indicator Soss of the deb
package as follows.

Soss =
∑n

i=1 w1i
∑n

i=1
w1i
cvssi

+ csdate (2)

where, {w11, w12, . . . , w1n} are the weights for each CVSS, and csdate is the
criticality score of the values of the measurement date and time. Let Soss have
the range 0 ≤ Soss ≤ 1, where 0 means no risk and 1 means risky.

The OSS security risk indicator can be used to quantify and capture a com-
posite of the CVSS, which quantifies the vulnerability of the OSS, and the criti-
cality score, which indicates the level of development activity. Moreover, the OSS
security risk indicator can be used as a constant to understand the variation in
the risk associated with OSS.

5 Evaluation

5.1 Purpose and Environment

The evaluation items and their contents were as follows:

150 H. Kuzuno et al.

1. Assessment of security risk indicators for OSS
The proposed OSS security risk indicator was calculated for 142 OSS in 11
programming languages. To evaluate whether it is possible to comprehensively
understand whether OSS is at security risk or not.

2. Exploited vulnerability handling of security risk indicator for OSS
We evaluated whether the OSS security risk indicators were affected by the
vulnerabilities registered in KEV.

3. Time to calculate security risk indicators for OSS
We measured the time required to calculate the proposed OSS security risk
indicator for OSS packages managed in a Linux environment.

Environment: Computer with an Intel(R) Core(TM) i7-12700H CPU
(2.30 GHz, 14 cores) and 16 GB of memory was used as the computing environ-
ment for evaluating security risk indicators for the OSS, and Debian GNU/Linux
12.0 (Linux kernel 5.4.0, x86 64). The calculating security risk indicator of OSS
was implemented in 610 lines in Python. The CVSSv3 included in the NVD is
the numerical value based on Base Score Metrics [8], and the threshold for the
criticality score calculation is the default parameter used [10].

5.2 Assessment of Security Risk Indicators

To evaluate the security risk indicator of OSS, we measured the security risk
indicator of OSS for 142 OSS of 11 programming languages (C, C++, C#,
Java-based, JavaScript-based, PHP, Go, Python, Ruby, Rust, and Shell). These
results are shown in Figs. 2, 3, and 4. The CVE and CVSS for the past year were
used at the date of each criticality score measurement.

Fig. 2. OSS Security Risk Indicators 1
(5 selected from each language)

Fig. 3. OSS Security Risk Indicators
2 (5 selected from each language)

Figures 2, 3, and 4 show that Rails has the highest security risk indicator as
of August 15, 2022, and that their CVSS and criticality score have increased due

Security Risk Indicator for OSS to Measure Software Development Status 151

Fig. 4. OSS Security Risk Indicators 2 (5 selected from
each language)

Table 3. Number of evalu-
ated 142 OSS for KEV

Item # of
software

of vul-
nerabilities

KEV
information

404 914

KEV of
evaluated
OSS

12 27

to vulnerability reports. The OSS with the lowest security risk indicator as of
August 15, 2022, was Oss-fuz, with no vulnerabilities reported in the past year
and no increase in the criticality score. Similar increases or decreases in security
risk indicators can be observed for other OSS.

Using a certain security risk indicator, it is possible to comprehensively survey
multiple OSS and compare the number of vulnerability reports and the develop-
ment status of OSS over a period of time. Therefore, it is possible to determine
the change in dangers related to OSS from the OSS security risk indicator.

5.3 Exploited Vulnerability Handling of Security Risk Indicators

In this evaluation, we investigated whether the registration of vulnerabilities
in KEV affected the security risk indicators of the 142 OSS evaluated. Table 3
shows how many of the 142 OSS evaluated were included in the KEV.

The evaluation results are listed in Table 4. It shows the detailed and affected
results of vulnerabilities of the evaluated 142 OSS are included in KEV.

For the 19 vulnerabilities of nine software packages, the security risk indicator
changed after the vulnerabilities were registered in the KEV. In particular, six
software packages (Linux, Jenkins, phpMyAdmin, Salt, Airflow, and Rails) have
an increased security risk indicator that can be captured because the vulnera-
bility registration and measurement of the security risk indicator were similar.
By contrast, three software packages (OpenSSL, Redis, and Core) decreased the
security risk indicator. This is because vulnerability registration and the fix-
ing are closed dates, and active development is captured. Moreover, the seven
vulnerabilities of Linux and Spark, on the security risk indicator could not be
captured because of the time lag between vulnerability registration.

152 H. Kuzuno et al.

Table 4. KEV of evaluated 142 OSS (↗ is score increased, ↘ is score decreased,—is
out of range)

Software CVE Published Fixed Fluctuation

Linux CVE-2019-13272 2021-12-10 2022-06-10 ↗
Linux CVE-2016-5195 2022-03-03 2022-03-24 ↗
Linux CVE-2021-22600 2022-04-11 2022-05-02 ↗
Linux CVE-2022-0847 2022-04-25 2022-05-16 ↗
Linux CVE-2014-3153 2022-05-25 2022-06-15 ↗
Linux CVE-2013-6282 2022-09-15 2022-10-06 —

Linux CVE-2013-2596 2022-09-15 2022-10-06 —

Linux CVE-2013-2094 2022-09-15 2022-10-06 —

Linux CVE-2021-3493 2022-10-20 2022-11-10 —

Linux CVE-2023-0266 2023-03-30 2023-04-20 —

OpenSSL CVE-2014-0160 2022-05-04 2022-05-25 ↘

Redis CVE-2022-0543 2022-03-28 2022-04-18 ↘

Spark CVE-2022-33891 2023-03-07 2023-03-28 —

Software CVE Published Fixed Fluctuation

Jenkins CVE-2018-1000861 2022-02-10 2022-08-10 ↗
Jenkins CVE-2019-1003030 2022-03-25 2022-04-15 ↗
Jenkins CVE-2019-1003029 2022-04-25 2022-05-16 ↗

Grafana CVE-2021-39226 2022-08-25 2022-09-15 —

Core CVE-2019-6340 2022-03-25 2022-04-15 ↘
Core CVE-2018-7602 2022-04-13 2022-05-04 ↘

phpMyAdmin CVE-2009-1151 2022-03-25 2022-04-15 ↗

Salt CVE-2020-11652 2021-11-03 2022-05-03 ↗
Salt CVE-2020-11651 2021-11-03 2022-05-03 ↗
Salt CVE-2020-16846 2021-11-03 2022-05-03 ↗

Airflow CVE-2020-11978 2022-01-18 2022-07-18 ↗

Rails CVE-2016-0752 2022-03-25 2022-04-15 ↗
Rails CVE-2014-0130 2022-03-25 2022-04-15 ↗

5.4 Calculation Time of Security Risk Indicator

The time required to calculate the proposed OSS security risk indicator was
evaluated by calculating the OSS security risk indicators for 142 Debian pack-
ages. Ten measurements were taken for each OSS, and the average values were
calculated and summed. The NVDs were assumed to have been analyzed, and
the download times for the deb package were not included.

The calculation of the security risk indicator of OSS required a total of 24 min
and 40 s, with an average time of 10.27 s and a median of 6.0 s per deb package.
The OSS that took the longest calculation time was Cataclysm-DDS, which took
2 min and 28 s, and the OSS that required the least time to calculate was Linux,
which required 4 s.

6 Discussion

6.1 Considerations

Evaluation Consideration: To evaluate the proposed OSS security risk indica-
tor, we verified whether it was possible to identify OSS fluctuation from exploited
vulnerabilities. We also evaluated the computational cost of the security risk
indicators for several packages included in a particular Linux distribution.

The calculation results of the security risk indicators for the proposed OSS
showed that the security risk indicators varied for all OSS situations, indicat-
ing that it is possible to identify changes in the disclosed vulnerabilities or OSS
development status. Moreover, we identified that KEV has an impact on the
security risk indicator for OSS. The proposed OSS security risk indicator moni-
tors several OSS on a running computer. It is possible to continuously monitor
the security risks of OSS that are actually used in the information systems.

From the performance evaluation results, the calculation of the OSS security
risk indicator required an average of 10.27 s per package count. Periodically cal-
culating the OSS security risk indicator on a computer may affect the computer’s
performance.

Security Risk Indicator for OSS to Measure Software Development Status 153

However, the main cost is the time required to acquire the package infor-
mation. We believe that if the OSS security risk indicator is calculated on an
ongoing, periodic basis, the direct overhead on the OS and application operations
can be reduced using less computationally demanding calculation time.

Approach Consideration: In the calculation of the proposed security risk
indicator for OSS, the CVSS, which quantifies the risk of vulnerability as vul-
nerability information, and the criticality score obtained from the development
repository as OSS information are used as specific information for OSS. The
proposed security risk indicator for OSS does not identify vulnerabilities. How-
ever, if the existence of vulnerabilities that could be used for attacks is identified
and as development stagnates, the security risk increases, and the possibility of
future attacks is considered to be high.

To continue the operation of information systems using OSS, software for
attack mitigation measures must be developed based on the results of the security
risk indicators. In addition, to use the security risk indicator of OSS as a criterion
for security measures, it is necessary to estimate the risk of OSS running on a
computer. Moreover, we will attempt to develop a framework to further grasp
the vulnerabilities and possibility of attacks for each development status and to
provide information at all times.

6.2 Limitations

OSS Security Risk Indicator: The proposed OSS security risk indicator is
obtained from the package information of each OSS as a starting point. The
criticality score cannot be calculated if the package information does not include
developer information. In the case of OSS introduced from sources other than
package management, it is difficult to supplement the usage status, and investi-
gation and analysis of the executable files of the entire OSS are necessary.

Target OSS: The OSS security risk indicators alone may not reliably capture
the development, modification, and availability status of an OSS. In the future, it
will be important to analyze the source code modification history, bug trackers,
provided patches as the fix status, communication tools such as mailing lists,
and materials in the OSS distribution environment. We plan to consider this
information that can be used to calculate security risk indicators by considering,
the necessity of each piece of OSS to cover the latest OSS threat cases [1].

7 Related Work

Vulnerability Analysis: An analysis method of vulnerabilities classifies the
trends of vulnerabilities used in attacks [15]. The timing of actual attacks has
also been investigated [5], and the exploitable risk of vulnerability and the impact
of using the attack have also been discussed [2,3].

154 H. Kuzuno et al.

Vulnerability Exploit Estimation: Disclosed vulnerabilities have been
quickly used in an attack [16]. VEST tries to analyze the attack likelihood and
disclosure timing of vulnerabilities to mitigate the impact of vulnerabilities [17].
EPSS also analyzes the likelihood of an actual attack on a vulnerability [6,7].

Vulnerability Classification: Deep learning and machine learning methods
have been proposed to analyze the type and summary of vulnerabilities and
automatically classify vulnerabilities [18,19]. In addition, an estimation method
concerning the danger of vulnerabilities and the priority of countermeasures
using CVSS was proposed [4,20].

Vulnerability Management: The timing of vulnerability disclosure, its effects,
and patch provisions have been analyzed [21–23].

8 Conclusion

In this study, we proposed a security risk indicator for OSS that is increasingly
being used in information systems, to handle the security risk of OSS. The
proposed method calculated a security risk indicator for an OSS by combining
the CVSS and quantification of the OSS development status.

The OSS security risk indicator could be referred to as one of the decision
criteria and first indication for security measures because it can continuously
grasp the security risk of OSS based on its vulnerability information and OSS
development status. In the evaluation, we used the security risk indicator for OSS
to verify whether it was possible to determine the security risks for multiple OSS
and the impacts of known vulnerabilities in KEV. We also applied the security
risk indicator to Linux distributions and verified the cost of calculating the OSS.

Acknowledgment. This work was partially supported by the Japan Society for the
Promotion of Science (JSPS) KAKENHI Grant Number JP19H04109, JP22H03592,
JP23K16882, and ROIS NII Open Collaborative Research 2022 (22S0302)/2023
(23S0301).

References

1. Ladisa, P., Plate, H., Martines, M., Barais, O.: SoK: taxonomy of attacks on open-
source software supply chains. In: Proceedings of 2023 IEEE Symposium on Secu-
rity and Privacy, pp. 1509–1526. IEEE (2023). https://doi.ieeecomputersociety.
org/10.1109/SP46215.2023.00010

2. Allodi, L.: Economic factors of vulnerability trade and exploitation. In: Proceedings
of the 24th ACM SIGSAC Conference on Computer and Communications Security,
pp. 1483–1499. ACM (2017). https://doi.org/10.1145/3133956.3133960

3. Allodi, L., Massacci, F.: Security events and vulnerability data for cybersecurity
risk estimation. Risk Anal. 37(8), 1606–1627 (2017). https://doi.org/10.1111/risa.
12864

https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00010
https://doi.org/10.1145/3133956.3133960
https://doi.org/10.1111/risa.12864
https://doi.org/10.1111/risa.12864

Security Risk Indicator for OSS to Measure Software Development Status 155

4. Nikonov, A., Vulfin, A., Vasilyev, V., Kirillova, A., Mikhailov, V.: System for esti-
mation CVSS severity metrics of vulnerability based on text mining technology.
In: Proceedings of the 2021 Information Technology and Nanotechnology, pp. 1–5.
IEEE (2021) https://doi.org/10.1109/ITNT52450.2021.9649232

5. Householder, D, A., Chrabaszcz, J., Warren, D., Spring, M, J.: Historical analysis
of exploit availability timelines. In: Proceedings of the 13th USENIX Workshop on
Cyber Security Experimentation and Test, USENIX (2020)

6. Jacobs, J., Romanosky, S., Adjerid, I., Baker, W.: Improving vulnerability remedi-
ation through better exploit prediction. J. Cybersecurity 6(1) (2020). https://doi.
org/10.1093/cybsec/tyaa015

7. Jacobs, J., Romanosky, S., Edwards, B., Adjerid, I., Roytman, M.: Exploit pre-
diction scoring system. Digital Threats Res. Pract. 2(3), 1–17 (2021). https://doi.
org/10.1145/3436242

8. NIST, National Vulnerability Database. https://nvd.nist.gov/. Accessed 18 Aug
2022

9. FIRST, Common Vulnerability Scoring System SIG. https://www.first.org/cvss/.
Accessed 18 Aug 2022

10. OpenSSF, Open Source Project Criticality Score (Beta). https://github.com/ossf/
criticality score. Accessed 18 Aug 2022

11. MITRE, Common Vulnerabilities and Exposures. https://www.cve.org/. Accessed
18 Aug 2022

12. NIST, Official Common Platform Enumeration Dictionary. https://nvd.nist.gov/
products/cpe. Accessed 18 Aug 2022

13. CISA, Known Exploited Vulnerabilities Catalog. https://www.cisa.gov/known-
exploited-vulnerabilities-catalog. Accessed 8 Apr 2023

14. Debian Project, Debian GNU/Linux (online). https://www.debian.org/. Accessed
18 Aug 2022

15. Williams, M.A., Dey, S., Barranco, C., Naim, M.S., Hossain, S.M., Akbar, M.:
Analyzing evolving trends of vulnerabilities in national vulnerability database. In
Proceedings of 2018 IEEE International Conference on Big Data, pp. 3011–3020.
IEEE (2018). https://doi.org/10.1109/BigData.2018.8622299

16. Martin, H., Jana, K., Elias, B., Pavel, C.: Survey of attack projection, prediction,
and forecasting in cyber security. IEEE Commun. Surv. Tutor. 21(1), 640–660.
IEEE (2018). https://doi.org/10.1109/COMST.2018.2871866

17. Chen, H., Liu, J., Liu, R., Park, N., Subrahmanian, S.V.: VEST: a system for vul-
nerability exploit scoring & timing. In: Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, pp. 6503–6505 (2019). https://
doi.org/10.24963/ijcai.2019/937

18. Minh, L.H.T., et al.: DeepCVA: automated commit-level vulnerability assess-
ment with deep multi-task learning. In: Proceedings of 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 717–729. IEEE (2021).
https://doi.org/10.1109/ASE51524.2021.9678622

19. Siewruk, G., Mazurczyk, W.: Context-aware software vulnerability classification
using machine learning. IEEE Access 9, 88852–88867 (2021). https://doi.org/10.
1109/ACCESS.2021.3075385

20. Walkowski, M., Krakowiak M., Jaroszewski, M., Oko, J., Sujecki, S.: Automatic
CVSS-based vulnerability prioritization and response with context information.
In Proceedings of International Conference on Software, Telecommunications and
Computer Networks, pp. 1–6 (2021). https://doi.org/10.23919/SoftCOM52868.
2021.9559094.559094

https://doi.org/10.1109/ITNT52450.2021.9649232
https://doi.org/10.1093/cybsec/tyaa015
https://doi.org/10.1093/cybsec/tyaa015
https://doi.org/10.1145/3436242
https://doi.org/10.1145/3436242
https://nvd.nist.gov/
https://www.first.org/cvss/
https://github.com/ossf/criticality_score
https://github.com/ossf/criticality_score
https://www.cve.org/
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.debian.org/
https://doi.org/10.1109/BigData.2018.8622299
https://doi.org/10.1109/COMST.2018.2871866
https://doi.org/10.24963/ijcai.2019/937
https://doi.org/10.24963/ijcai.2019/937
https://doi.org/10.1109/ASE51524.2021.9678622
https://doi.org/10.1109/ACCESS.2021.3075385
https://doi.org/10.1109/ACCESS.2021.3075385
https://doi.org/10.23919/SoftCOM52868.2021.9559094.559094
https://doi.org/10.23919/SoftCOM52868.2021.9559094.559094

156 H. Kuzuno et al.

21. Mitra, S., Ransbotham, S.: The effects of vulnerability disclosure policy on the
diffusion of security attacks. Inf. Syst. Res. 26(3), 565–584 (2015). https://doi.
org/10.1287/isre.2015.0587

22. Boechat, F., et al.: Is vulnerability report confidence redundant? pitfalls using
temporal risk scores. IEEE Secur. Priv. 19(4), 44–53 (2021). https://doi.org/10.
1109/MSEC.2021.3070978

23. Walkowski, M., Oko, J., Sujecki, S.: Vulnerability management models using a
common vulnerability scoring system. Appl. Sci. 11, 8735 (2021). https://doi.org/
10.3390/app11188735

https://doi.org/10.1287/isre.2015.0587
https://doi.org/10.1287/isre.2015.0587
https://doi.org/10.1109/MSEC.2021.3070978
https://doi.org/10.1109/MSEC.2021.3070978
https://doi.org/10.3390/app11188735
https://doi.org/10.3390/app11188735

Attacks and Defenses

Defending AirType Against Inference
Attacks Using 3D In-Air Keyboard
Layouts: Design and Evaluation

Hattan Althebeiti, Ran Gedawy, Ahod Alghuried, Daehun Nyang,
and David Mohaisen(B)

University of Central Florida, Orlando, USA

mohaisen@ucf.edu

Abstract. Augmented reality (AR) interaction methods are leaning
towards more natural techniques, such as voice commands, hand ges-
tures, and in-air tapping for input. From a security perspective, however,
recent works have demonstrated that these methods, such as in-air tap-
ping, are vulnerable to inference attacks where an adversary is capable
of reconstructing input in the virtual environment using low-level hand-
tracking data with high accuracy. This paper addresses the defense of
in-air tapping mechanisms against inference attacks by developing and
evaluating a 3D curved keyboard for input. Our design exploits the sym-
metry between the virtual and physical worlds enabling the inference
attack in the first place and increasing the uncertainty of the adversary
by manipulating the geometric aspects of this keyboard plane in 3D.
We evaluate our design through numerous experiments and show it to
be robust against inference attacks, where the adversary’s accuracy in
obtaining the correct input text is reduced to 0% (from 87%) and at
most to just 18% within the top-500 candidate reconstructions.

Keywords: AR/VR · Inference · Privacy · Defense

1 Introduction

The emerging usage of new interaction methods in AR/VR environments is
shown to result in serious privacy and security risks. For example, Shi et al. [21]
developed an eavesdropping attack that analyzed the captured facial movements
from the AR/VR Head Mounted Display’s (HMD) motion sensors and inferred
sensitive speech and speaker information from this low-level sensor data. Meteriz-
Yildiran et al. [19] showed that low-level hand tracking data captured by a
motion sensor could be feasibly used to infer the users typed data, including
sensitive data such as username and passwords, effectively keylogging the vic-
tims’ inputs with up to 87% accuracy. The key insight in the developed attack
by Meteriz-Yildiran et al. is that the projection of the keyboard in the AR envi-
ronment has a fixed structure in a 2D plane that can be estimated using those

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 159–174, 2024.
https://doi.org/10.1007/978-981-99-8024-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_13&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_13

160 H. Althebeiti et al.

low-level tracking data with high accuracy and feasibly due to the relatively lim-
ited set of possibilities for keyboard layouts in 2D. Meteriz-Yildiran et al. also
demonstrated a defense to the attack that “jitters” the keyboard, thus allow-
ing the limited adversary observations from which the adversary could learn
the position of the keyboard. However, this defense is shown to have limited
usability [19].

This work aims to address the latter risk and associated attack on AR IO by
investigating the development of new and advanced text entry methods. Specif-
ically, we examine a tilted 3D QWERTY keyboard and its capability in alle-
viating the input inference attacks utilized by Meteriz-Yildiran et al. [19]. The
key insight exploited in alleviating the impact of the inference attack on AR IO
through a “curved” keyboard is by breaking the symmetry and predictability
of the keyboard structure that allowed the attack to succeed in the first place.
Namely, the curved keyboard is represented by N 2D planes in AR environ-
ment, significantly increasing the search space for the likely keyboard position
in space, and reducing the likelihood of key inference attacks significantly. Our
experiments demonstrate that an adversary will not be able to infer the typed
text with the 3D keyboard as effectively. Namely, the pinpoint accuracy of the
new keyboard using the same inference technique due to Meteriz-Yildiran et
al. ranged from 0% to 18%. Moreover, the maximum pinpoint accuracy was just
33% assuming a very powerful adversary who computed all the possible keyboard
reconstructions, in contrast to a more realistic adversary that is constrained to
estimating the keyboard from the top-k reconstructions (e.g., top-5, top-100, or
even top-500).

Contributions. The key contributions of this paper are as follows. (1) We
present, implement, and demonstrate a new text entry method, a 3D QWERTY
keyboard, in the AR space that is customized to alleviate the input inference
attack on 2D AR keyboards. (2) We customize the inference attack on in-air
tapping keyboards for AR/VR devices proposed by [19] for the 3D keyboard
inference. (3) We evaluate our text entry method using extensive experiments
and show that it significantly alleviates the input inference attacks while being
highly usable.

Organization. The paper is organized as follows. Section 2 discusses the related
work. Section 3 defines the system and threat models. Section 4 is the pro-
posed design and technical details. Section 5 discusses the evaluation and results.
Section 6 is the discussion. Section 7 concludes this paper.

2 Related Work

The most popular method of text entry in virtual environments is by using hard-
ware, such as a hand-held controller. However, this method is characterized by
high error rate and latency. Gupta et al. [11], Chen et al. [9], and Markussen et
al. [18] developed word-gesture text entry methods, each of which uses a planar
keyboard similar to SHARK2 developed by Kristensson and Zhai [15]. The main

Defending AirType Against Inference Attacks 161

idea of SHARK2 is combining regular tapping on a stylus keyboard with gestur-
ing on the stylus keyboard for familiar words. Yanagihara et al. [27] proposed
a cubic keyboard, which is a 3D word-gesture text entry method for virtual
environments where users enter a word by drawing a stroke with the hand-held
controller. Meteriz-Yildiran et al. [29] developed AirType, a 2D in-air tapping
keyboard, on which the main attack discussed in this paper is launched. Yanag-
ihara et al. [28] also proposed another cubic keyboard for virtual environments
but with a curved layout, controlled by the hand-held controller.

Keylogging inference attacks date back over 50 years when Bell Laboratory
researchers discovered that the emanating electromagnetic spikes from a teletype
terminal could be used to decode secure communications [7]. Later on, keylogging
inference attacks became more advanced and powerful. Generally, the related
work in this space is categorized into temporal and spatial: attacks utilizing
temporal information, such as the timing of key press and release events [25,30],
and attacks utilizing spatial information to reveal the location of and distance
between keys on the keyboard [3,17,26]. This work focuses on inference attacks
that utilize spatial information in the AR/VR domain. In this space, Meteriz-
Yildiran et al. [19] showed that low-level hand tracking data captured by a
motion sensor can be used to infer the user’s typed data. Sun et al. [22] proposed
a video-assisted keystroke inference framework that uses video recordings of
tablet backside motion to infer the user’s typed inputs. Jin et al. [12] inferred
users’ typed input through the vibrations of the desk where the keyboard is
placed.

Blocking keylogging inference attacks is inherently difficult due to the dif-
ficulty of analytically describing some physical systems, thus most efforts have
been focused on attack mitigation (alleviation) under specific assumptions. To
this end, the mitigation mechanisms for keylogging inference attacks focused on
three approaches (1) Impedance. Defense mechanisms that impede the adver-
sary from accessing the compromising signal [6,10]. (2) Obfuscation. Mecha-
nisms that obfuscate the side channel, so that even when the signals are still
accessible to the adversary, limited useful information is obtained from the
acquired signals [4,16]. (3) Concealment. Mechanisms that conceal essential
information from the adversary, so that the obtained signals alone will not be
enough for the adversary to successfully launch a keylogging attack [1,5].

Our proposed work falls into the third category, concealment, as the geomet-
ric aspects of our proposed text entry method are concealed from the adversary.

3 System and Threat Model

System Model. Our model includes an in-air tapping keyboard, HMD with
an AR application, and a user. Upon launching the AR application, the user
attaches the keyboard to an arbitrary location in the virtual environment. The
AR HMD then tracks the user’s hand movements and detects the key taps on the
keyboard by checking if a fingertip collides with a key in space. The keyboard
layout can be freely resized by the user.

162 H. Althebeiti et al.

Hand Tracking. Hand tracking is crucial for the AR user and the adversary. For
the user, hand tracking allows typing on the in-air keyboard. For the adversary,
hand tracking facilitates the inference attack. Most AR HMDs [23] have built-in
hand-tracking capabilities, which allows the users to efficiently type on the AR
keyboards. On the other hand, an adversary may obtain the hand-tracking data
by one of a few possible methods, e.g., hand-tracking sensors. Hand tracking
sensors, such as the leap motion controller [24], provide various spatial informa-
tion about hands and fingers, including the tip positions of all fingers and their
pointing directions, the position of the palm center, and the palm normal. This
information is called low-level hand-tracking data.

Threat Model.. Our threat model includes a user typing on an AR keyboard,
and an adversary trying to infer what the user types by exploiting the user’s
hand-tracking data. To gain access to the victim’s hand traces, an adversary
might utilize a number of possible methods, which we cover in the following
scenarios. Scenario 1: Using an AR HMD. The adversary may use an AR
HMD similar to the one used by the user for typing, where the adversary is
expected to sit close to the AR user, put on the AR HMD, and the AR HMD
will record the victim’s hand data as done by the AR HMD of the user. While
efficient, this scenario exposes the adversary as he has to be close enough to
the user to capture accurate hand traces. Scenario 2: Remote collection by
malware. The adversary may embed malicious software (malware) in the user’s
AR HMD. The malware can be then used to record the victim’s hand-tracking
data and send it to the adversary through an API invocation. This scenario
is more stealthy and requires no extra hardware by the adversary, although
more expensive as the adversary has to inject malware into the user’s HMD
beforehand. Scenario 3: Collection using tracking devices In this scenario,
the adversary uses a hand tracker device, such as the leap motion controller [24],
positioned near the victim. The device is small and can be easily hidden by the
adversary, and a recent version of this device can support wireless setup [20],
allowing the adversary to collect hand-tracking data remotely.

4 Design and Methodology

4.1 Design Justification

Why do Inference Attacks on AR Work? By analyzing the work proposed by
Meteriz-Yildiran et al. [19], we concluded that the inference attacks on AR input
mechanisms, and the air-taping keyboards in particular, are highly successful
for the following two reasons. 1. Visibility and exposure. During an AR
typing session, the user’s typing space is typically visible to the adversary. An
adversary can therefore obtain high-level information about the keyboard plane
by only observing the victim’s activity in the physical space to interact with
the virtual space stealthily. 2. Symmetry. Using the QWERTY keyboard in
the AR environment makes the projected keyboard and the virtual hand models
symmetrical to the physical keyboard and the user’s actual hands movements.

Defending AirType Against Inference Attacks 163

An adversary exploits this observation to obtain the specific location of keys on
the keyboard, reconstruct the keyboard as a whole, and infer the user input. By
knowing the keyboard used in the virtual space is a flat 2D QWERTY keyboard,
the adversary has knowledge about the positions of the keys relative to one
another and that the keys are of fixed size. By obtaining just two keys’ positions
and the associated transformations from the victim’s plane, the adversary can
infer the rest of the keys. Therefore, an adversary can map the virtual space
associated with the keyboard to the physical space.

Key Insight: Breaking the Symmetry. The visibility and exposure reason high-
lighted above as a key factor in enabling the attack by allowing adversaries to
collect low-level features for inference is unavoidable for most AR applications.
Limiting exposure and visibility for input would thus be a significant design
challenge. To address the inference attack, we focus on the symmetry aspect.
We believe it is very natural to anticipate that a defense to those attacks should
be focusing on breaking such symmetry. While breaking such symmetry may not
necessarily eliminate the attacks altogether, we anticipate that it will raise the
cost of the attack significantly (i.e., attack alleviation).

There are several possible techniques that could be used for breaking this
symmetry, which we review in the following. (1) Key Shuffling. One such pos-
sibility to break the symmetry is to dynamically shuffle the key positions every
time the virtual keyboard is launched through keyboard refreshing. This app-
roach clearly breaks the symmetry by randomizing the keys positions and making
it infeasible for the adversary to learn the specific position of a key in the vir-
tual space by exploiting the consistent and repeated patterns of key taps that
amplify language characteristics. (2) Keyboard Jittering. Another approach
to break the symmetry is to manipulate the virtual location of the keyboard
through jittering, thus altering the physical location of the key taps.

Shortcomings. While the key shuffling approach is widely used in banking apps,
its use is limited to short inputs, e.g., passwords, and is rarely used as a main
input mechanism for being impractical with poor usability. In particular, given
that the users are familiar with the QWERTY keyboard as a fixed and determin-
istic layout, randomizing the keys would mean that the users would be incon-
venienced, become slower at using the keyboard, and be more likely prone to
errors, all of which are essential usability metrics. Certainly, the usability of this
approach can be improved by exploring the trade-off of between security and
usability through determining the frequency at which the keyboard is random-
ized. Nevertheless, the fundamentals of the attack and the shortcomings in terms
of usability will be manifested in such a trade-off design.

The keyboard approach, while effective at significantly reducing the attack
surface, it has significant usability drawbacks. Namely, the frequent jittering of
the keyboard causes the users to feel dizzy. Similarly, exploiting the trade-off
between security and usability could be a problem but would still maintain the
fundamentals of the attack.

164 H. Althebeiti et al.

4.2 3D AR Keyboard Design

Our Approach. Our approach to breaking the symmetry is to project the
physical QWERTY keyboard on a 3D plane in the virtual space. By using this
technique, the key sizes are no longer consistent across all keys. Moreover, the
transformation angles and positions of the keys will vary widely, which makes it
highlight infeasible for an adversary to obtain an accurate mapping between the
victim’s virtual space and the physical space. On the other hand, and from a
usability standpoint, the same exact structure of the basic QWERTY keyboard
will be utilized, alleviating the issues in the key shuffling approach. Similarly,
this approach employs a fixed keyboard (although in 3D), thus addressing the
shortcomings in the jittering approach. We hypothesize that maintaining the
structure of the keyboard will have favorable usability features that we will
uncover.

General Design. We developed an in-air tapping curved QWERTY keyboard
and used it to evaluate the effectiveness of the inference attack on air-tapping
keyboards. We implemented the curved keyboard using the Unity game engine
and utilized the Magic leap 1 as an HMD. The keyboard surface is bent spheri-
cally inwards towards the user. The keyboard uses a 3D word gesture text entry
method for a more immersive experience when compared with the 2D word ges-
ture text entry methods. Upon launching an AR application, the system shows
the keyboard plane and two hand models as virtual objects. Figure 1 shows the
keyboard in the first user’s view with the hand models.

Keys Selection and Detection. The keys selection is done through the vir-
tual hand models, which mirror the user’s actual hands via the hand tracking
feature of the AR HMDs. The AR HMD detects if a key is selected by check-
ing if the fingertip of the index finger collides with the key in space. The keys
are set to green by default, and when the user’s index fingertip collides with a
key, the key turns into blue and plays a “click” sound, providing the user with
visual/audio cues. Accordingly, a user enters the letters of an intended word by
tapping keys sequentially using their index finger. The typed words are displayed
to the user above the keyboard. The AR keyboard is designed so that the keys
in the center of the keyboard resemble the keys of the basic QWERTY keyboard
in terms of the keys’ transformation, while a transformation angle is applied to
the keys towards the edges of the keyboard. This design ensures the symmetry
between the physical and the virtual keyboards is broken through the transfor-
mation angles of the edge keys while still maintaining high usability through the
remaining keys design.

4.3 Technical Details

We adapted the same attack by Meteriz-Yildiran et al. [19] where the attacker
uses a hand tracking device near the victim to collect the low-level hand tracking
data to infer the typed text. The pipeline input is the low-level hand-tracking
data and the final output is the list of text inferences ordered from best to worst.

Defending AirType Against Inference Attacks 165

Fig. 1. The user’s view of the 3D AR keyboard.

Similarly, the keylogging inference attack consists of keystroke detection and
identification. The keystroke detection consists of (1) deep key tap localization
and (2) key tap localization refinement. The key identification consists of (1)
candidate Key center generation, (2) candidate Keyboard Reconstruction, and
(3) best-to-worst ordering.

Keystroke Detection (1): Deep Key Tap Localization. A Convolutional
Neural Network (CNN) is used to localize the key taps from the input time
domain data stream. We address the change in the input data to sensor proxim-
ity through a pre-processing step, followed by applying the CNN and then local-
ization. In the preprocessing, we ensure that different spatial configurations of
the sensor do not affect the tracking data time-domain data conversion. Namely,
we obtain the following features from the low-level hand tracking data: (1) Fin-
ger tips: The tip position of each finger for the palm center (fp), (2) Direction:
The pointing direction of each finger for the normal vector of the palm (fd), and
(3) Velocity: The velocity of each fingertip (fv). Eventually, the hand features
are represented as X = {xt}Tt=1, where the t-th frame is xt = [fp fd fv]T . A data
segment s(ts, te) is a slice that includes the frames between the start and end.

Network Architecture. We utilize a multi-head CNN to localize the key taps
from the input data stream. The hand tracker sampling rate is 80 frames per
second (fps), each key tap is interpreted as 375 ms (or 30 frames). Each head of
the CNN takes an input sub-segment with the shape of height 5 fingers, width
of 30 frames, and depth of 3 dimensions. The convolution kernel size covers 3
frames with stride 1. In our implementation, we made several modifications to
fit our use case, compared to [19]. First, a single CNN model was used instead of
two, since users tend to use only one hand while typing on the curved keyboard.
Second, some CNN model parameters, including the number of epochs and batch
size, were tuned to decrease the validation loss.

Localization. Segments are generated by sliding a fixed-length window on the
data stream. The multi-head CNN takes the input segments and outputs a con-
fidence score of each segment, determining the confidence a key tap occurred
in that segment. Redundant detection is excluded by applying a non-max sup-
pression to ensure that the most confident predictions are kept and that the

166 H. Althebeiti et al.

kept predictions are all disjoint. We denote the segments and their predicted
confidence scores as P = {(sm, τm)}Mm=1, where τm is the confidence score.
The segments with a confidence score below a certain predefined threshold are
excluded. The key tap points of the remaining segments are estimated by fetch-
ing the position of the index fingertip at the midpoint of the window. Given the
ground truth key tap segments GT, each key tap segment is associated with a
ground truth segment that is closest to the key tap segment in time.

For each association, the intersection over-union (IoU) is measured. For two
segments, S1(t1, t2) and S2(t3, t4), where t1 and t3 are the start time, t2 and t4
are finish time, and t3 > t1, the IoU between S1 and S2 is defined as min(0, t2 −
t3)/(t4 − t1), which takes values in [0, 1]. The result of this step is a set of
associations of segments with ground truth and their IoU values: A = {(sm, gtl
,IoU)}, where sm is the key tap segment, gtl is ground truth segment and IoU
is the intersection over the union between the given segment and the ground
truth segment. The associations with IoU below a predefined IoU threshold are
eliminated, ensuring a key tap segment with a high IoU with a ground truth
segment is kept while inaccurate key tap segments are eliminated.

Metrics. We interpret the segments in A as true positives, P\A as false positives,
GT\A as false negatives, and the remaining segments as true negatives. We set
the classification threshold to 0.5, based on trials for an optimal trade-off.

Keystroke Detection (2): Key Tap Localization Refinement. For a more
accurate localization, the previously obtained key tap points are further refined
through a series of steps. 1. Keyboard plane estimation: A keyboard plane
is estimated from the key tap points, where a plane in 3D is defined by a normal
vector perpendicular to the plane, a point on the plane, and a scalar. Thus, the
fitting plane to the estimated 3D key tap points is obtained using a regression
model that minimizes a linear least square error between the points and the
plane. 2. Reducing the false positives: The trace of the fingertip of each
key tap window is checked and is eliminated if it does not cross the previously
estimated plane, as that means it does not represent any key on the keyboard.
3. Refining the key tap points: To improve the spatial precision of key tap
points, the intersection point where fingertips cross the estimated keyboard plane
is used instead of the midpoint of the key tap window. 4. Dimension reduc-
tion: The estimated 3D key tap points are reduced to 2D by first creating an
orthonormal basis containing the normal of the plane. Then, we change the basis
for the key tap points and obtain 2D key tap points by eliminating the compo-
nent in the direction of the normal vector. This step reduces the complexity of
obtaining a similarity transformation between the points in the virtual and phys-
ical planes. Since all the key tap points lay on the same plane, the dimensionality
reduction causes no loss of information.

Key Identification (1): Candidate Key Center Generation. From the
refined key tap points, candidates for key centers are deduced. The relationship

Defending AirType Against Inference Attacks 167

between the key centers and the key tap points is observed as follows: when each
key center is considered as the cluster centroid of that particular key, each key
tap point will belong to the cluster of the tapped key. Optimally, the number of
clusters should equal the number of unique keys pressed in a session. However,
this number is unknown. As such, cluster groups with different numbers are
generated using a weighted agglomerative (bottom-up) hierarchical clustering.
First, all key tap points are treated as singleton clusters with uniform weights,
then cluster group C is iteratively updated by merging the closest clusters con-
sidering the weights. We use the Euclidean distance to find the closest clusters,
then merge them through weighted vector averaging. Each update to the cluster
group C adds a cluster group to the set of cluster groups G with a different
cluster count. Since the number of unique keys in a session is upper bounded by
the total number of keys, any cluster group with more clusters than the total
number of AR keyboard keys is eliminated. The output of this step is a set of
cluster groups, G, where each cluster group has a different cluster count.

Key Identification (2): Candidate Keyboard Reconstruction. In this
step, the keyboard reconstructions are output by overcoming two challenges,
which we highlight as follows. 1. Adversary/victim coordinates mapping:
Since the user’s coordinates system differs from the adversary’s, the geometric
instances are expressed differently. We consider two pairs of the adversary and
victim plane points to address this issue and compute their similarity transform
T (translation, rotation, uniform scaling). By applying the similarity transform
T to all obtained key tap points from the victim’s plane, the key tap points
are mapped to the corresponding keys on the AR keyboard. 2. Obtaining cor-
responding pairs of points: After obtaining the similarity transform T, the
user’s key tap points K can be easily transformed into the adversary’s keyboard
as K ′ = T (K), associating each key tap position k′ in K ′ with its corresponding
key by checking the key area where the key tap position k′ falls. However, the
adversary lacks two corresponding points from both planes, precluding correct
transformation. Also, the adversary does not know which cluster corresponds
to which key. To resolve this issue, the likelihood of each cluster C belonging
to any unique key j for each cluster group C in the set of cluster groups G was
considered. Candidate keyboard reconstructions are obtained by computing the
transformation using all possible center and key pairs.

Key Identification (3): Best-to-worst Ordering. In this step, inaccurate
reconstructions caused by the incorrect center and key pairings are excluded.
Accurate reconstructions are known to meet certain characteristics measured
using the following inference measurements. 1. Scaling factor. The keyboard
size should not be too large or too small, as too small keyboards will have poor
usability because they will be hard for the users to tap the right keys while too
large keyboards can get out of the range of the HMD frame. 2. Outliers ratio.
Outliers are key tap points falling outside the estimated keyboard area. Ideally,
all key tap points should fall into the area of some key. Although the optimal

168 H. Althebeiti et al.

value for the scaling factor is zero, a small number of outliers are expected and
accepted. Based on the previous description, the scaling factor measures the
ratio of the outliers to all key tap points. 3. Number of clusters. Optimally,
the number of clusters should equal the number of unique keys found after the
transformation. This is achieved if the clustering process is accurate, dividing the
key tap points into clusters of unique keys. Based on the previous description,
this measure quantifies the difference between the number of clusters and the
found keys.

First, some reconstructions are eliminated by enforcing a scaling factor limit.
Then, a linear regression model is utilized to estimate the combined effect of (2)
and (3) on the correctness of the reconstructions. The model takes (2) and (3) as
inputs, and outputs the associated correctness score. We first train the regression
model with the correctness scores measured using the normalized Levenshtein
similarity between the estimated and the ground truth strings. Upon training,
(2) and (3) of each candidate reconstructions are forwarded to it, and the recon-
structions are sorted in decreasing order with respect to their correctness score.
The final output of the pipeline are the sorted reconstructions i.e., the best to
worst ordering of the keyboard reconstructions.

5 Evaluation

We evaluated the end-to-end pipeline of the inference attack on the 3D key-
board design (attack mitigation) and our keyboard’s usability to ensure that
3D structure does not affect performance metrics (effectiveness, efficiency, and
satisfaction).

5.1 User Study

First, we carried out a comparative usability analysis to evaluate the usability
of our developed AR keyboard model. We compared our model against two
text entry methods: the baseline keyboard and AiRType [29]. In the baseline
keyboard, the user moves the cursor through the ray coming out of the controller
to target different keys, then pulls the trigger button to select the keys. In
AiRType, the user selects the key by directly tapping the target key with any
of their fingers. For this evaluation, we measured the usability based on the
standard ISO 9241-11 [2] model of usability.

Usability Study Setup. We collected data from 10 users. The users’ ages (in
years) ranged between 20 and 36, including 7 males and 3 females. None of the
users had any previous experience with AR text entry techniques and none was
trained before performing the experiments. The users were asked to wear Magic
leap 1 HMD and type the same sequence of words (an e-mail of length 105, 5
random strings of length 8, and 3 passwords of lengths 15, 10, and 5).

The ISO usability model defines three metrics: (1) effectiveness, (2) efficiency,
and (3) satisfaction. The effectiveness measures the percentage of incorrect key

Defending AirType Against Inference Attacks 169

Table 1. The average usability test results. The effectiveness is expressed as a per-
centage, the efficiency in terms of cps, and the satisfaction as a percentage

Effectiveness Efficiency Satisfaction

Baseline 8.02 0.604 74.5

AiRType 5.83 0.624 81.5

Our model 7.38 0.381 68.0

taps, the efficiency measures the task completion time by the user, measured
the number of characters typed per second, and the satisfaction represents the
System Usability Scale (SUS) score of the design. We measure the satisfaction
by a standardized system usability questionnaire score [8].

Usability Study Results. The usability test measurements from our key-
board, AiRType, and the baseline keyboard are shown in Table 1. For the effec-
tiveness metric, our curved keyboard model is observed to be more effective than
the baseline keyboard and has a slightly worse effectiveness than the AiRType
keyboard.

For the efficiency metric, the curved keyboard was shown to be less efficient
in terms of the number of typed characters per second. We assume that this
is because the participants in our case were inexperienced and not sufficiently
trained before using the system. Users tend to be more cautious and slow when
using our design, in contrast to the standard flat keyboard design. For the satis-
faction metric, our model achieved average satisfaction. We anticipate that the
efficiency and satisfaction will significantly increase if participants gain more
experience with using the system and dealing with this novel design of key-
boards. We also anticipate that involving a larger number of participants with
different backgrounds related to using AR keyboards can help us in general to
gain better insights into the efficiency of users using the curved keyboard. The
results, however, are promising and can be further viewed alongside the security
provided by the keyboard in mitigating the inference attack.

5.2 End-to-End Pipeline

Experimental Setup. For this set of experiments, we used Magic Leap 1
as the AR HMD, and Leap Motion Controller as the hand tracker. The leap
motion controller can track hands within a 60-cm distance. Hence the adversary
is assumed to implant it close to the victim. With the wireless version of the
leap motion controller, the adversary will be able to obtain hand-tracking data
effortlessly at distance. Magic Leap 1, on the other hand, detects hands within
80 cm distance.

In this experiment, we used five participants, including one female and four
males with ages ranging from 25 to 36.

170 H. Althebeiti et al.

Fig. 2. Comparison of h0, h1 and h2 email, R15, R10, and R5 accuracies between flat
and curved VR keyboard

Evaluation Metrics: We evaluated the accuracy of the text inference using the
normalized Levenshtein similarity. We compute the pinpoint, h-hop, and top-k
accuracy [22]. In the h-hop accuracy, the predicted h-hops from the actual keys
are considered a correct prediction. h0 (or 0-hop accuracy) represents pinpoint
accuracy, h1 represents one key hop from the predicted to the actual key pressed,
and h2 represents two key hops from the actual key pressed.

We use h-hop to show that an adversary will not be able to achieve mean-
ingful predictions even when utilizing the closest key hops. The top-k accuracy
represents the maximum accuracy within k inferences in the best-to-worst order-
ing.

Keystroke Detection. We first collected data from two users while typing 54
random pangrams (108 in total). This data is split into 96 pangrams for training
and 12 pangrams for testing. To create the ground truth, we labeled the key
tap segments from each data sample as 1 and labeled the disjoint background
segments as 0. To train the CNN, we used Adam optimizer [13] with a learning
rate of 0.001, L2 regularization with a penalty of 0.001, and the weighted binary
cross-entropy as our loss function.

Key Identification. We used the same data from training the CNN of the
keystroke detection phase to train the linear regression model for the best-to-
worst ordering.

End-to-End Pipeline. We collected data from 3 other users while typing an
e-mail of length 105, randomly selected from the Enron dataset [14]. We call this
data the Email dataset. We also collected short data sequences while the users
were typing random text, resembling typing passwords, with lengths of 5, 10,
and 15. We call this data the R5, R10, and R15 datasets. In this experiment, we
aim to gauge the ability of the adversary to obtain meaningful long-text inputs,
e.g., writing an e-mail, or short-text scenarios, e.g., login credentials. We feed
the E-mail, R5, R10, and R15 datasets and associated low-level artifacts to the
pipeline, and the output is a set of reconstructions, ordered from best to worst,
for each dataset.

Defending AirType Against Inference Attacks 171

Table 2. The maximum h0, h1, and h2 accuracy for the top 500 reconstructions

Email R15 R10 R5

h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2

User 1 0.14 0.33 0.37 0.18 0.21 0.21 0.05 0.20 0.20 0.00 0.20 0.20

User 2 0.10 0.16 0.16 0.05 0.13 0.26 0.07 0.30 0.30 0.00 0.00 0.00

User 3 0.14 0.30 0.32 0.13 0.13 0.13 0.10 0.30 0.30 0.00 0.20 0.20

Table 3. The maximum h0, h1, and h2 accuracy for the maximum reconstructions.

Email R15 R10 R5

h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2

User 1 0.19 0.26 0.27 0.50 0.69 0.69 0.40 0.40 0.40 0.50 0.60 0.60

User 2 0.27 0.33 0.39 0.38 0.43 0.56 0.36 0.60 0.70 0.31 0.40 0.40

User 3 0.38 0.38 0.38 0.41 0.41 0.41 0.45 0.45 0.45 0.33 0.33 0.33

Experiment Results. Table 2 shows the h0, h1, and h2 accuracies obtained for
the Email, R15, R10, and R5 datasets for each user. These values are obtained
considering the top-500 reconstructions. We also considered a scenario in which
an adversary has sufficient resources and can compute the inferences using the
maximum number of reconstructions that can be obtained. This results in a
huge number of keyboard reconstructions. For user 1, there are 473,850 keyboard
reconstructions for the e-mail data, 31,850, 234,650, and 109,850 keyboard recon-
structions for each sequence in R5, R10, and R15, respectively. The difference in
the number of keyboard reconstructions is due to the number of key taps, which
is upper bounded by the number of centers. Table 3 shows the results of the h0,
h1, and h2 accuracies in the previously described scenario.

Overall, the results show that our model is a highly secure text entry method
against the inference attack in contrast to the two alternatives. The pinpoint
accuracy of inferring the typed text is 0% in most of the cases, and it reaches
just 50% in the worst case when an adversary is able to generate all possible
keyboard reconstructions, which is highly optimistic and impractical in many
real-world scenarios.

The maximum pinpoint accuracy for the top 500 constructions is 15%, 18%,
18%, and 3% for the Email, R15, R10, and R5 data, respectively. Compared to
the 2D keyboard model [19], where the authors achieved a maximum pinpoint
accuracy of 68%, 62%, 87%, and 76% for Email, R15, R10, and R5 data, respec-
tively, our 3D keyboard is resilient. Overall, this experiment shows that our
proposed keyboard model is highly effective in defending against input inference
attacks.

Figure 2 compares the accuracy of text inference from our 3D keyboard model
and the flat keyboard model [19]. In particular, these results show that, without
any exception, the adversary’s inference accuracy on our model is consistently

172 H. Althebeiti et al.

much lower than that of the flat keyboard, which confirms that our model is
significantly more robust against the keylogging inference.

6 Discussion and Limitations

The defense’s success mainly depends on the adversary’s knowledge of the geo-
metric aspects of the text entry method. The following steps of the pipeline
influence that:

Key Tap Localization Refinement–Keyboard Plane Estimation. We assume the
adversary estimates the keyboard plane as a regular 2D plane. This is how almost
all keyboards are represented in the AR environments, replicating the physical
QWERTY keyboard structure, not as a spherical 3D plane. This results in inac-
curate plane estimation.

Candidate Keyboard Reconstructions. For obtaining the relevant keyboard recon-
structions, the adversary has to overcome the problem of mapping the coordi-
nates system from the victim’s plane to his plane. As proposed by [19], this
challenge can be overcome by obtaining two corresponding pairs of points from
both planes. A transformation vector that maps the points from the different
planes is then computed and later used to map each point from the victim’s
to the adversary’s plane. However, this is not applicable in our model, as the
transformation between points is inconsistent across all points. This is because
different points have different rotation angles in the titled 3D space, especially
keys on the sides of the keyboard. Obtaining the transformation vector using
only two pairs of points will not guarantee the accurate transformation of all the
points in the victim’s plane to the physical AR plane because different points
on the 3D plane will have different transformations that need to be accurately
calculated.

Due to the inaccurate estimation of the keyboard plane, in the best-to-
worst ordering step, several reconstructions will be incorrectly excluded. This
is because some of the key tap points of these reconstructions are considered
outliers, as they do not fall in the estimated plane area. This is because the
keyboard plane wasn’t estimated correctly in the first place. If considering the
correct 3D plane, more keyboard reconstructions would be included in the final
output.

Limitations. Our work has the following limitations.

Usability. Although our model proved to be highly robust against input infer-
ence attacks, the usability of the model could still be improved. We anticipate
that the usability can be significantly enhanced if participants had enough train-
ing before using the keyboard. Our model is seen to provide a trade-off between
usability and security. By reducing how the keyboard is bent, the keyboard will
gradually convert to a flat keyboard, and hence the usability will improve but
at the expense of affecting security.

Defending AirType Against Inference Attacks 173

Strong Threat Model. In our future work, we will explore our model’s security
against a stronger threat model. An adversary could obtain more information
about the geometric aspects of our proposed model by observing the victim’s
typing patterns long enough. We will test the security of our model against an
adversary with such a level of knowledge. We anticipate this model’s security to
be lower, although exploring a quantification and contrast with the 2D keyboard
model remains open.

7 Conclusion

This paper presented and evaluated a new keyboard model for text entry in the
AR space. The proposed model is robust against keylogging inference attacks,
specifically attacks exploiting the user’s hand-tracking data based on the obser-
vation that the hands follow specific typing patterns. The maximum keylogging
pinpoint accuracy against this curved keyboard was found to be 18% for the top
500 keyboard reconstructions, making a keylogging attack against this keyboard
is impractical.

References

1. High resolution time level 2. http://web.archive.org/web/2017 1017013909/
(2017). Accessed 17 Oct 2017

2. 9241-11:2018, I.: Ergonomics of human-system interaction. https://www.iso.org/
obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en

3. Ali, K., Liu, A.X., Wang, W., Shahzad, M.: Keystroke recognition using WiFi
signals. In: ACM MobiCom (2015)

4. Anderson, R., Kuhn, M.: Low cost countermeasures against compromising electro-
magnetic computer emanations. US Patent 6,721,423 (2004)

5. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing
channels. In: ACM CCS (2010)

6. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE S&P, pp. 3–11
(2004)

7. Boak, D.G.: A history of us communications security, NSA 1973 (1973)
8. Brooke, J.: SUS-A Quick and Dirty Usability Scale. CRC Press, Boca Raton (1996)
9. Chen, S., Wang, J., Guerra, S., Mittal, N., Prakkamakul, S.: Exploring word-

gesture text entry techniques in virtual reality. In: CHI EA, pp. 1–6 (2019)
10. Chizeck, H.J., Bonaci, T.: Brain-computer interface anonymizer. US Patent App.

14/174,818 (2014)
11. Gupta, A., Ji, C., Yeo, H.S., Quigley, A., Vogel, D.: RotoSwype: word-gesture

typing using a ring. In: ACM CHI (2019)
12. Jin, K., et al.: ViViSnoop: someone is snooping your typing without seeing it! In:

IEEE CNS (2017)
13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,

LeCun, Y. (eds.) ICLR (2015). http://arxiv.org/abs/1412.6980
14. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification

research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 22

http://web.archive.org/web/2017
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-540-30115-8_22

174 H. Althebeiti et al.

15. Kristensson, P.O., Zhai, S.: Shark2:a large vocabulary shorthand writing system
for pen-based computers. In: ACM UIST (2004)

16. Kuhn, M.G., Anderson, R.J.: Soft tempest: hidden data transmission using elec-
tromagnetic emanations. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp.
124–142. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8 10

17. Liu, X., Zhou, Z., Diao, W., Li, Z., Zhang, K.: When good becomes evil: keystroke
inference with smartwatch. In: ACM CCS (2015)

18. Markussen, A., Jakobsen, M.R., Hornbæk, K.: Vulture: a mid-air word-gesture
keyboard. In: ACM CHI (2014)

19. Meteriz-Yidiran, U., Yildiran, N.F., Awad, A., Mohaisen, D.: A keylogging infer-
ence attack on air-tapping keyboards in virtual environments. In: IEEE VR, pp.
765–774 (2022)

20. Nefes: Data kit untethers USB devices for wireless VR setups. https://bit.ly/
3VbqQG8 (2017). Accessed 12 Mar 2020

21. Shi, C., et al.: Face-mic: Inferring live speech and speaker identity via subtle facial
dynamics captured by AR/VR motion sensors. In: ACM MobiCom (2021)

22. Sun, J., Jin, X., Chen, Y., Zhang, J., Zhang, R., Zhang, Y.: Visible: video-assisted
keystroke inference from tablet backside motion. In: NDSS (2016)

23. Sun, K., Wang, W., Liu, A.X., Dai, H.: Depth aware finger tapping on virtual
displays. In: ACM MobiSys (2018)

24. Tracking: Leap motion controller (2021). https://www.ultraleap.com/product/
leap-motion-controller/. Accessed 07 May 2021

25. Vila, P., Kopf, B.: Loophole: timing attacks on shared event loops in chrome. In:
USENIX Security (2017)

26. Wang, H., Lai, T.T.T., Roy Choudhury, R.: Mole: motion leaks through smartwatch
sensors. In: ACM MobiCom (2015)

27. Yanagihara, N., Shizuki, B.: Cubic keyboard for virtual reality. In: ACM SUI (2018)
28. Yanagihara, N., Shizuki, B., Takahashi, S.: Text entry method for immersive virtual

environments using curved keyboard. In: ACM VRST (2019)
29. Yildiran, N.F., Meteriz-Yildiran, U., Mohaisen, D.: AiRType: an air-tapping key-

board for augmented reality environments. In: IEEE VR (2022)
30. Zhang, K., Wang, X.: Peeping tom in the neighborhood: keystroke eavesdropping

on multi-user systems. In: USENIX Security (2009)

https://doi.org/10.1007/3-540-49380-8_10
https://bit.ly/3VbqQG8
https://bit.ly/3VbqQG8
https://www.ultraleap.com/product/leap-motion-controller/
https://www.ultraleap.com/product/leap-motion-controller/

Robust Training for Deepfake Detection
Models Against Disruption-Induced Data

Poisoning

Jaewoo Park, Hong Eun Ahn, Leo Hyun Park, and Taekyoung Kwon(B)

Graduate School of Information, Yonsei University, Seoul, South Korea
{jaewoo1218,ahnhe9227,dofi,taekyoung}@yonsei.ac.kr

http://seclab.yonsei.ac.kr/

Abstract. As Generative Adversarial Networks continue to evolve,
deepfake images have become notably more realistic, escalating societal,
economic, and political threats. Consequently, deepfake detection has
emerged as a crucial research area to deal with these rising threats. Addi-
tionally, deepfake disruption, a method that introduces proactive pertur-
bations to genuine images to thwart deepfake generation, has arisen as
a prospective defense mechanism. While adopting these two strategies
simultaneously seems beneficial in countering deepfakes, this paper first
highlights a concern related to their co-existence: genuine images gath-
ered from the Internet, already imbued with disrupting perturbations,
can lead to data poisoning in the training datasets of deepfake detec-
tion models, thereby severely affecting detection accuracy. This problem,
despite its practical implications, has not been adequately addressed in
previous deepfake detection studies. This paper proposes a novel training
framework to address this problem. Our approach purifies disruptive per-
turbations during model training using a reverse process of the denoising
diffusion probabilistic model. This purification process, faster than the
leading method called DiffPure, enables successful deepfake image gen-
eration for training and significantly curtails accuracy loss in poisoned
datasets. Demonstrating superior performance across detection models,
our framework anticipates broad applicability. Our implementation is
available at https://github.com/seclab-yonsei/Anti-disrupt.

Keywords: Deepfake · Deepfake Detection · Deepfake Disruption ·
Data Poisoning · Adversarial Purification

1 Introduction

Generative Adversarial Networks (GANs) [5] have demonstrated exceptional
performance in the realm of face manipulation. Rapid advancements in GAN-
based deepfake technology [2,13,22] have led to the creation of highly sophisti-
cated deepfake images that are nearly indistinguishable to the human eye. When
exploited in cybercrimes, deepfake videos can inflict substantial political, social,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 175–187, 2024.
https://doi.org/10.1007/978-981-99-8024-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_14&domain=pdf
https://github.com/seclab-yonsei/Anti-disrupt
https://doi.org/10.1007/978-981-99-8024-6_14

176 J. Park et al.

and economic damage, necessitating robust defense strategies. In this context,
two countermeasures are currently under investigation: reactive deepfake detec-
tion and proactive deepfake disruption. Deepfake detection [17,26] is a technol-
ogy that employs deep learning models to discern whether an input image is
authentic or fabricated. Techniques for deepfake detection include spatial-based
detection [23], which seeks visual artifacts; frequency-based detection [30], which
identifies features in the frequency domain; and biological signal-based detec-
tion [4], which leverages biological signals. Conversely, deepfake disruption [24]
aims to obstruct the generation of deepfakes by introducing disruptive pertur-
bations to the authentic image. This method, inspired by existing adversarial
attacks [6,14,19], utilizes a gradient of loss as a perturbation that maximizes
the distortion of the deepfake generator output.

The two defense techniques, each with distinct roles, naturally coexist within
a deepfake environment. However, this prompts a fundamental question: Are
there any complications arising from the simultaneous adoption of both counter-
measures? Due to the divergent objectives of detection and disruption, we have
found that disruption can inadvertently contribute to the issue of data poison-
ing, leading to a substantial decrease in detection model accuracy. Disruption
techniques aim to ensure that images uploaded by users onto the Internet are
safeguarded from use as deepfake images, while detection techniques necessitate
the generation of a training dataset from deepfake images downloaded from the
Internet. Therefore, the training dataset for detectors can potentially be con-
taminated through the inclusion of disrupted images. While these issues may
arise in real-world applications, they have not been previously addressed. To
tackle this problem, it’s crucial to ensure the effective operation of the deepfake
generator. Adversarial defense techniques can be implemented to stabilize the
model’s output. However, existing solutions fail to generate fake images that
are advantageous for the detection model. Adversarial training [24] helps form
robust model parameters but can inadvertently cause model deformations. On
the other hand, adversarial purification effectively eliminates perturbations in
the input. However, the leading method called DiffPure [21] compromises the
semantics of the original input by introducing unnecessary noise.

In this paper, we introduce a detector training framework designed to addres
the problem we first raised above. For the purpose, We employ a diffusion
model [8] to cleanse the perturbations from the distorted real images, with-
out altering the parameters of the deepfake generator responsible for producing
the fake training images. Our approach uses a diffusion model similar to Diff-
Pure [21] but we do not conduct a forward process that introduces noise to the
input. Instead, we perform solely a reverse process to remove perturbations, ren-
dering purification more effective and efficient. We evaluated the performance of
our framework in comparison to DiffPure [21] and adversarially trained StarGAN
(StarGAN AT) [24]. The results of our purification process yield L2 distances
comparable to those of existing purification methods. Furthermore, the distri-
bution of deepfake images produced by our method aligns more closely with

Robust Training for Deepfake Detection Models 177

the original deepfakes compared to existing methods. The contributions of this
paper are as follows:

Fig. 1. Background and motivation of this work. (a) Deepfake detector takes a collec-
tion of images from the Internet to train models and decides whether an input image is
real or fake. (b) Deepfake disruption creates disruptive images by perturbing genuine
images to thwart deepfake generation. (c) The coexistence of two defense mechanisms
can lead to data poisoning in the training dataset of detectors. If disruptive images are
collected from the Internet and used to train the detector, the detection accuracy will
be significantly reduced.

• We first raise a great concern that the coexistence of two countermeasures,
detection and disruption, against deepfakes may inevitably cause their conflict
at training phase of detection (Sect. 2). To highlight this concern, we empir-
ically demonstrate that the accuracy of detection models drops significantly
when their training datasets are poisoned by disrupted images.

• We introduce a robust training method that involves the purification of dis-
ruptive perturbations to mitigate data poisoning in deepfake detection models
(Sect. 3). By capitalizing on the denoising method DDPM and bypassing the
step of adding random noise, our approach decreases both the distortion and
execution time of the generated outputs.

• Through comparative analysis with DiffPure and adversarially trained Star-
GAN, we demonstrate that our framework is successful in generating real
images that result in deepfake images, visually similar to standard fake
images. This similarity is comparable to that achieved by existing meth-
ods (Sect. 4.2). Furthermore, our method significantly outperforms existing
methods in terms of detection accuracy when the training dataset is poisoned
(Sect. 4.3).

178 J. Park et al.

2 Background and Motivation

2.1 Deepfake Defense Methods

Deepfake Detection. Deepfake detection is a technique that primarily uses
DNN models to ascertain whether an input image is a deepfake, as depicted
in Fig. 1-(a). The training dataset for DNN models used in deepfake detection
requires a substantial collection of real data, along with deepfakes generated from
this collected data. In this paper, we select Xception [3] and ResNet [7], which are
widely employed for deepfake detection, as our target models. Both models [15,
23] exploit unnatural artifacts present in the image to detect deepfakes.

Fig. 2. Dectection accuracy. Deepfake detection models are trained on a clean dataset
and a poisoned dataset, respectively. PGD and BIM means adversarial attack methods
used for disruption. From a defender’s perspective, the percentage of poisoned data is
set to 100%, assuming the worst-case scenario.

Disruption. Deepfake disruption introduces a perturbation to the real image,
as depicted in Fig. 1-(b), prompting the deepfake generator to produce an image
significantly different from the typical deepfake image. Although there are var-
ious methods to create perturbations, we focus on the approach that leverages
adversarial attacks [24]. Adversarial attacks generate perturbations using the
gradient of a deep learning model to deviate the output from the correct result.
In this paper, we employ BIM and PGD attacks to generate disrupting pertur-
bations, thereby interrupting deepfake generation. Further details on adversarial
attacks can be found in Sect. 6.

2.2 Threat Model

When deepfake detection and disruption methods coexist, the training data poi-
soning problem occurs, consequently reducing detection accuracy, as illustrated
in Fig. 1-(c). Users who employ disruption may upload their perturbed images
to the Internet to prevent their images from being exploited for deepfake genera-
tion. However, if these disruptive images are inadvertently collected by deepfake

Robust Training for Deepfake Detection Models 179

detectors while sourcing real data from the Internet, the quality of the training
data for detectors suffers. In essence, the training dataset becomes inundated
with disruptive images, as opposed to standard deepfake images. As a result,
vital information about deepfake images fails to reach the detectors, resulting in
a significant decrease in their accuracy. Figure 2 illustrates the detection accuracy
drop observed in our small experiments. Note that deepfake detectors perform
quite accurately when their training data is comprised of clean real images only,
but the detection accuracy severely drops almost by half when training data is
constructed with disruptive real images in the worst-case scenario.

Fig. 3. Overview of our detection model training framework. The disruptive image
with disruption perturbation is purified through diffusion model and put into deepfake
generator to generate deepfake image. Generated deepfake images are used to train
deepfake detection model.

3 System Design

3.1 Overview

Our framework proceeds in a sequence of five steps as shown in Fig. 3: 1© data
collection, 2© purification, 3© deepfake generation, 4© dataset labeling, and 5©
model training. Our approach has two differences from the traditional training
of deepfake detection models in Fig. 1 (c). First, we newly deploy the purification
step to address disruptive real images. Second, we discard the disruptive images
and only consider the purified images from them for the later steps.

In the 1© data collection step, we collect real images, regardless of whether
the images are disruptive. Instead, all collected images are then fed into the
diffusion model during the 2© purification step. The diffusion model outputs
new real images from the disruptive images where perturbations are removed. We
adopt DDPM [8] as the diffusion model structure. In the 3© deepfake generation
step, we feed the output images of the diffusion model into the generative model
instead of the collected real images to get the normal fake images. The generative
model produces results that are almost similar to the output of the normal real
images. We label the purified real images as real and the generated fake images
as fake during the 4© dataset labeling step. Finally, in the 5© training step, we
train the detector using the labeled data (Fig. 4).

180 J. Park et al.

Fig. 4. The difference between our method and DiffPure [21]. DiffPure adds noise to
the image in a forward process up to timestep t∗ and then removes it in a reverse
process. Ours removes the noise using only the reverse process from timestep t∗.

3.2 Diffusion Purification

Basic Idea of DDPM. In the training phase, DDPM takes an input image
x0, transforms it into a completely noisy image xT through a forward process,
and then restores it back to the original image x0 through a reverse process.
The forward process is denoted as q (xt | xt−1). The image xt is generated by
combining the preceding image xt−1 with noise I in a ratio of 1 − βt to βt. This
process creates a noisy image by introducing noise up to the targeted timestep T ,
as dictated by t. Here, t is an integer between 0 and T that represents the level
of noise in the image.

q (xt | xt−1) := N
(
xt;

√
1 − βtxt−1, βtI

)
(1)

The reverse process, denoted as pθ (xt−1 | xt), essentially reverses the forward
process to produce an image x′

0 from the noisy image xT . An image xt−1 at
timestep t − 1 is generated using the mean, μθ (xt, t), and variance, Σθ (xt, t),
derived from the image xt from the previous step.

pθ (xt−1 | xt) := N (xt−1;μθ (xt, t) ,Σθ (xt, t)) (2)

Our Purification Strategy. In our purification method, we only employ the
reverse process of DDPM. Given a clean real image x, let x′ denote the cor-
responding disruptive image. We input x′ into DDPM, specifying the timestep
t = t∗ as the starting point of purification, so xt∗ = x′. In essence, we are assum-
ing that x′ is a real image with added little noise, not the complete noise. Our
reverse process continues until the timestep reaches t = 0 with x0 = x̂ where x̂
represents the purified image.

Technical Difference from DiffPure. Our purification step is designed by
referring to DiffPure. DiffPure also inputs x′ into the diffusion model, but it
employs both forward and reverse processes, starting from t = t0 where x0 = x′.
The objective of DiffPure is to retain only the generalized knowledge of the

Robust Training for Deepfake Detection Models 181

Table 1. Purification performance of defense methods against the disruption. We
measured the distance between the StarGAN output from the disruptive image and the
normal deepfake image in the input (L1 and L2) and feature spaces (FID). Following
the previous work [24], we consider the disruption fails when L2 distance is greater
than or equal to 0.05.

Defense Model PGD BIM

FID L1 L2 FID L1 L2

No Defense 151.6 0.418 0.267 141.62 0.430 0.278

MagNet Reformer [20] 181.8 0.265 0.118 177.7 0.265 0.118

StarGAN AT [24] 33.5 0.080 0.012 34.1 0.081 0.012

DiffPure [21] 30.6 0.072 0.010 31.56 0.073 0.010

Ours 38.3 0.083 0.013 32.3 0.075 0.010

input image, enabling the classification model to correctly classify the image. To
accomplish this, DiffPure adds noise to the image during the forward process
from t = 0 to t = t∗, thereby gradually eliminating the local structures of
adversarial examples. However, our goal differs in that we do not generalize
the image, but restore it precisely to its original form. The more forward process
repeats, the more detail in the original image is destroyed. Therefore, we preserve
more detail in the original image than DiffPure by removing the forward process.

3.3 Timestep for Purification

DiffPure argues that a substantial amount of noise is needed to remove the
local structure, leading them to set the timestep t∗ to a relatively large value
of 300. However, a larger timestep not only introduces more disruption to the
image in both the forward and reverse processes, but it also prolongs the process
due to an increased number of iterations. As the magnitude of the disruption
perturbation is nearly imperceptible to the human eye, there’s no need for a
large t∗. Consequently, we choose a smaller timestep value of t∗ = 10 to enhance
efficiency and resilience. In this scenario, the DDPM’s timestep tT is set to 1000.

4 Evaluation

To evaluate the performance of the proposed framework, we formulated two
research questions and conducted experiments to answer them. RQ1 investi-
gates whether normal deepfake images can be generated from disruptive images
through purification (Sect. 4.2). RQ2 verifies whether a training dataset con-
structed by our purification can uphold the accuracy of the deepfake detector
(Sect. 4.3).

182 J. Park et al.

4.1 Experimental Settings

Deepfake Dataset and Detection Model. We divide the entire CelebA [18]
dataset into three groups. Group A occupies the first 60% of the dataset and is
assumed to be the original image dataset initially owned by the defender. All
defense methods against disruption are trained with Group A images. Group
B occupies the following 30% of the dataset and is used to train the deepfake
detection model. We assume that data poisoning based on disruption occurs for
this group. Group C occupies the last 10% of the dataset and is used to evaluate
the accuracy of detectors. The images in all datasets are cropped to 178× 178
and subsequently resized to 128× 128. Our baseline deepfake detection models
are the Xception [3] model used in FaceForensics++ [23], and the ResNet18 and
ResNet50 [7] models used in the disruption perturbation paper [26].

Parameters for Disruption. The disrupting perturbation is generated to make
the deepfake image gets closer to a black image, targeting StarGAN [2]. We
assume the grey-box disrupter knows the structure and parameters of the Star-
GAN, but not those of the defense model. We use a 10-step BIM and a 10-step
PGD with ε = 0.05 with step size 0.01 for disruption.

Comparison Target Model. Our comparison targets are MagNet
reformer [20], adversarially trained StarGAN with PGD (StarGAN AT) [24], and
DiffPure [21], a SOTA purification technique using DDPM. All defense methods
are trained with the Group A dataset.

Environments. We performed all experiments on a single machine Ubuntu
20.04 environment with two NVIDIA RTX 4090 (24 GB) GPUs.

4.2 Purification Ability for Disruptive Images

From Table 1, we can see that our L2 distance is lower than the disruption
threshold (L2 ≥ 0.05), indicating the successful generation of deepfake images.
For the PGD, our performance is better than the MagNet reformer and similar
to DiffPure and StarGAN AT. Moreover, our method results in the lowest L2

distance alongside DiffPure for the BIM. Figure 5 illustrates the distribution of
deepfake images generated by each defense method against PGD-based disrup-
tion. We found that our method is more effective in terms of the distribution of
defended images. Our distribution in Fig. 5 (d) closely resembles the distribution
of normal deepfake images. This result is better than DiffPure (Fig. 5 (b)) and
StarGAN AT (Fig. 5 (c)) whose distributions are located between the distribu-
tions of normal real and deepfake images. We also found that our method is
faster than DiffPure because of our reverse process alone and fewer timestep.
DiffPure took 0.129 s to purify one image, while ours took 0.119 s, which is a
7.75% reduction in defense time over DiffPure.

Robust Training for Deepfake Detection Models 183

Fig. 5. The distribution of defended deepfake images (in blue) against PGD-based
disruption. Image features were extracted from the ResNet18 model. t-SNE was used
for visualization. Our method was superior in defense even in the worst case scenario.
(Color figure online)

Table 2. Detection accuracy of detectors trained with the poisoned Group B dataset.
Normal real and deepfake images in the Group C dataset are used to measure the
accuracy.

Defense Model Xception ResNet18 ResNet50

PGD BIM PGD BIM PGD BIM

No Attack 97.48 98.19 99.04

No Defense 51.56 49.80 50.15 51.31 50.40 50.05

MagNet Reformer [20] 50.05 50.05 50.05 50.10 54.13 49.95

StarGAN AT [24] 50.05 50.05 49.55 50.00 49.95 50.05

DiffPure [21] 53.53 58.97 53.43 53.83 73.39 85.28

Ours 83.37 95.58 89.37 99.55 90.88 96.52

184 J. Park et al.

4.3 Accuracy of Detection Models Under the Poisoned Dataset

Table 2 presents the accuracy of defense methods for a deepfake detection model
trained by a poisoned dataset with disruptive images. The deepfake detec-
tor trained using our approach exhibits the highest detection accuracy among
defense methods, regardless of the model structure and disruption method. The
MagNet reformer and StarGAN AT still demonstrate severely decreased accu-
racy across all model structures and disruption methods. DiffPure demonstrates
satisfactory accuracy on ResNet50, but it exhibits underwhelming accuracy on
Xception and ResNet18 models. MagNet reformer and StarGAN AT exhibited an
average drop in accuracy of 48.77%p and 48.87%p respectively from the accuracy
without disruption (“No Attack”). DiffPure showed a slight improvement with
a drop of 43.32%p. Our method achieved an average accuracy drop of 7.83%p,
and notably, the accuracy against BIM in ResNet18 was even higher than the
“No Attack” scenario.

5 Discussion

Targeted Deepfake Generation and Detection Models. In this paper, we
focused on StarGAN as the target deepfake generation model, thereby excluding
other deepfake generation techniques such as faceswap. DDPM used in our purifi-
cation is not trained for a specific disruption method or target model. Therefore,
our method is agnostic to disruption methods or deepfake generation meth-
ods. Nevertheless, experimental verification is necessary to confirm our capa-
bility. Furthermore, in this paper, the experiments were conducted specifically
on spatial-based deepfake detection techniques using a DNN model. Additional
experiments are required for other detection methods, including frequency-based
and biological-based ones. We leave the extension of our method as future work.

Poisoning Rate in Training Dataset. In this paper, we assumed a worst-case
scenario, setting the poisoning rate of the training dataset to 100%. However, in
reality, it is challenging to achieve a 100% rate of disrupted data. Furthermore,
the attacker’s knowledge of the target deepfake generator and the capability of
the attacker may be limited in reality. However, from the defender’s perspective,
it is advisable to evaluate the worst-case scenario to prepare an effective defense
method. Therefore, in this paper, we conducted experiments under the fully
poisoned training data where the attacker acquires the knowledge of the deepfake
generation model.

6 Related Work

Deepfake Generation. Various deepfake generation techniques exist for face
generation [13], face conversion [22,31], attribute manipulation [2,27], and
expression conversion [9]. Among them, StarGAN [2], a prominent technique for

Robust Training for Deepfake Detection Models 185

modifying attributes such as gender and age in faces, has been extensively used
for evaluating deepfake detection [1,12,17,26] and disruption methods [1,24–
26]. Therefore, in this paper, we have chosen StarGAN as the target generator
to assess the issues arising when disruption and detection coexist.

Deepfake Detection. Among deepfake detection methods, spatial-based detec-
tion identifies visual artifacts in deepfake images [12,23]. Frequency-based detec-
tion uncovers artifacts in deepfake images within the frequency domain [1,30].
Biological-signal-based detection analyzes natural biological signals exclusive
to real faces [4,10]. Deepfake detection models are predominantly trained on
benchmark deepfake datasets such as Celeb-DF [16], FaceForensics++ [23], and
UADFV [28]. Given that the real images in these datasets are collected from
the Internet, all aforementioned deepfake detection techniques are inevitably
susceptible to poisoning if the collected images are disruptive.

Deepfake Disruption. The early works on deepfake disruption [29] leverage
adversarial attacks [6,14,19] Ruiz et al. [24] added a disrupting perturbation to
the real image along with the gradient of the generative model toward a distorted
deepfake image. Some other works utilize perturbation generators which are
also generative models to disrupt deepfake generators [11,26]. There is a large
chance of the coexistence of deepfake detection and disruption because they
operate at different phases of the deepfake lifetime. Wang et al. were concerned
that disrupted images can spoof the detection models [26]. Although they also
studied the relationship between detection and disruption, we focused more on
the unexpected side effect of the disruption on the training of detectors.

Adversarial Purification. Generative models are frequently employed for
adversarial purification. MagNet [20], for instance, uses an autoencoder to learn
a manifold of normal images. Images situated far from the learned manifold are
rejected, and those close to the manifold are purified. DiffPure harnesses a dif-
fusion model for adversarial purification due to its robust performance in image
generation and noise reduction [21]. We also utilized DDPM [8], a standard
diffusion model. However, unlike previous approaches, we omitted the forward
process and used a smaller timestep.

7 Conclusion

Our framework is tailored to address the training data poisoning problem in
deepfake detection models, the first of its kind in academia. Using the DDPM [8]
denoising model, it minimizes image distortion and cuts defense time by elimi-
nating extra noise introduced by DiffPure [21]. Our approach generates deepfake
images that better resemble normal ones compared to those created by DiffPure
or StarGAN Adversarial Training [24]. Moreover, our method achieves a 7.75%
defense time reduction compared to DiffPure, and when applied to training deep-
fake detection models, it outperforms StarGAN AT and DiffPure in detection
accuracy on Xception [3], ResNet18 [7], and ResNet50 [7] under PGD [19] and
BIM [14] disruption attacks, anticipating widespread applicability.

186 J. Park et al.

Acknowledgments. This work was supported by the Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded by the Korea Gov-
ernment (MSIT) (No.RS-2023-00230337) and by the ITRC (Information Technology
Research Center) support program (IITP-2023-2020-0-01602).

References

1. Asnani, V., Yin, X., Hassner, T., Liu, S., Liu, X.: Proactive image manipulation
detection. In: Proceedings of the CVPR, pp. 15386–15395 (2022)

2. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified
generative adversarial networks for multi-domain image-to-image translation. In:
Proceedings of the CVPR, pp. 8789–8797 (2018)

3. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the CVPR (2017)

4. Ciftci, U.A., Demir, I., Yin, L.: FakeCatcher: detection of synthetic portrait videos
using biological signals. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

5. Goodfellow, I.J., et al.: Generative adversarial networks (2014)
6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572 (2014)
7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: Proceedings of the CVPR, pp. 770–778 (2016)
8. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural.

Inf. Process. Syst. 33, 6840–6851 (2020)
9. Hsu, G.S., Tsai, C.H., Wu, H.Y.: Dual-generator face reenactment. In: Proceedings

of the CVPR, pp. 642–650 (2022)
10. Hu, S., Li, Y., Lyu, S.: Exposing GAN-generated faces using inconsistent corneal

specular highlights. In: Proceedings of the ICASSP, pp. 2500–2504. IEEE (2021)
11. Huang, Q., Zhang, J., Zhou, W., Zhang, W., Yu, N.: Initiative defense against

facial manipulation. In: Proceedings of the AAAI, vol. 35, pp. 1619–1627 (2021)
12. Hulzebosch, N., Ibrahimi, S., Worring, M.: Detecting CNN-generated facial images

in real-world scenarios. In: Proceedings of the CVPR Workshops (2020)
13. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative

adversarial networks. In: Proceedings of the CVPR, pp. 4401–4410 (2019)
14. Lee, K., Kim, J., Chong, S., Shin, J.: Making stochastic neural networks from

deterministic ones (2017)
15. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. arXiv

preprint arXiv:1811.00656 (2018)
16. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging

dataset for deepfake forensics. In: Proceedings of the CVPR, pp. 3207–3216 (2020)
17. Liu, B., Yang, F., Bi, X., Xiao, B., Li, W., Gao, X.: Detecting generated images by

real images. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T.
(eds.) ECCV 2022. LNCS, vol. 13674, pp. 95–110. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-19781-9 6

18. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings OF the ICCV (2015)

19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: Proceedings of the ICLR (2018)

20. Meng, D., Chen, H.: Magnet: a two-pronged defense against adversarial examples.
In: Proceedings of the CCS, pp. 135–147 (2017)

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1811.00656
https://doi.org/10.1007/978-3-031-19781-9_6
https://doi.org/10.1007/978-3-031-19781-9_6

Robust Training for Deepfake Detection Models 187

21. Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., Anandkumar, A.: Diffusion
models for adversarial purification. In: Proceedings of the ICML, pp. 16805–16827.
PMLR (2022)

22. Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: subject agnostic face swapping and
reenactment. In: Proceedings of the ICCV, pp. 7184–7193 (2019)

23. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: learning to detect manipulated facial images. In: Proceedings of the
ICCV, pp. 1–11 (2019)

24. Ruiz, N., Bargal, S.A., Sclaroff, S.: Disrupting deepfakes: adversarial attacks
against conditional image translation networks and facial manipulation systems.
In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 236–251.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5 14

25. Wang, R., Huang, Z., Chen, Z., Liu, L., Chen, J., Wang, L.: Anti-forgery: towards
a stealthy and robust deepfake disruption attack via adversarial perceptual-aware
perturbations. arXiv preprint arXiv:2206.00477 (2022)

26. Wang, X., Huang, J., Ma, S., Nepal, S., Xu, C.: Deepfake disrupter: the detector
of deepfake is my friend. In: Proceedings of the CVPR, pp. 14920–14929 (2022)

27. Xia, W., Yang, Y., Xue, J.H., Wu, B.: TediGAN: text-guided diverse face image
generation and manipulation. In: Proceedings of the CVPR, pp. 2256–2265 (2021)

28. Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In:
Proceedings of the ICASSP, pp. 8261–8265. IEEE (2019)

29. Yeh, C.Y., Chen, H.W., Tsai, S.L., Wang, S.D.: Disrupting image-translation-based
deepfake algorithms with adversarial attacks. In: Proceedings of the WACV Work-
shops, pp. 53–62 (2020)

30. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in GAN
fake images. In: Proceedings of the WIFS, pp. 1–6. IEEE (2019)

31. Zhu, Y., Li, Q., Wang, J., Xu, C.Z., Sun, Z.: One shot face swapping on megapixels.
In: Proceedings of the CVPR, pp. 4834–4844 (2021)

https://doi.org/10.1007/978-3-030-66823-5_14
http://arxiv.org/abs/2206.00477

Multi-class Malware Detection via Deep
Graph Convolutional Networks Using
TF-IDF-Based Attributed Call Graphs

Irshad Khan and Young-Woo Kwon(B)

School of Computer Science and Engineering, Kyungpook National University,
Daegu, South Korea

irshad.cs@knu.ac.kr, ywkown@knu.ac.kr

http://sslab.knu.ac.kr

Abstract. The proliferation of malware in the Android ecosystem poses
significant security risks and financial losses for enterprises and develop-
ers. Malware constantly evolves, exhibiting dynamic behavior and com-
plexity, thus making it challenging to develop robust defense mechanisms.
Traditional methods, such as signature-based and battery-monitoring
approaches, struggle to detect emerging malware variants effectively.
Recent advancements in deep learning have shown promising results in
Android malware detection. However, most existing approaches focus
on binary classification and need more insights into the model’s gen-
erality across different types of malware. This study presents a novel
approach to address Android malware detection by integrating TF-IDF
(Term Frequency-Inverse Document Frequency) features into the call
graph structure. By attributing each node in the call graph with TF-
IDF-based feature vectors extracted from the opcode sequences of each
method using an opcode list, we present a more thorough representation
that encapsulates the complex traits of the malware samples. We employ
state-of-the-art graph-based deep learning models to classify malware
families, including Graph Convolutional Networks (GCN), SAGEConv,
Graph Attention Networks (GAT), and Graph Isomorphism Networks
(GIN). By incorporating high-level structural information from the call
graphs and TF-IDF-based raw features, our approach aims to enhance
the accuracy and generality of the malware detection models. We iden-
tify an optimal model for the Android malware family classification task
through extensive evaluation and comparison of the above-mentioned
models. The findings of this study contribute to advancing the field of
Android malware detection and provide insights into the effectiveness
of graph-based deep learning models for combating evolving malware
threats.

Keywords: Malware · TF-IDF · call graph · graph convolutional
model

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2021R1I1A3043889) and the Ministry of Science and ICT (No.2021R1A5A1021944).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 188–200, 2024.
https://doi.org/10.1007/978-981-99-8024-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_15&domain=pdf
http://orcid.org/0000-0001-6960-2083
http://orcid.org/0000-0003-0625-8232
https://doi.org/10.1007/978-981-99-8024-6_15

Multi-class Malware Detection via Deep Graph 189

1 Introduction

In today’s rapidly growing digital landscape, the usage of smartphones has
become ubiquitous, with an astounding number of over six billion smartphone
users worldwide, as reported by Statista [1]. As the smartphone user base con-
tinues to expand at an unprecedented rate, so does the magnitude of valuable
and sensitive data generated by these devices. Unfortunately, this proliferation
of data also escalates the risk of unauthorized access and data breaches. Mali-
cious actors, often in the form of skilled attackers, exploit vulnerabilities in the
system and employ specially crafted malicious applications to gain unauthorized
access to users’ smartphones. These malicious applications can carry out various
unsafe actions, including the theft of personal information such as passwords,
text messages, or even private photos. Safeguarding user smartphones against
these ever-evolving and pernicious threats has become an arduous task that
requires robust defense mechanisms and proactive security measures.

Android is the most popular mobile platform known for its performance
and open-source nature. Its user-friendly interface and vast app ecosystem have
attracted a large user base. Nevertheless, the popularity of Android has also
made it a target for malicious actors, leading to a rapid increase in Android
malware. Like other software systems, Android is susceptible to the detrimental
effects of malicious applications. According to research, more than three million
malicious Android apps were found in 2019 [2]. These statistics emphasize how
important it is to create strong defenses against the rising tide of Android mal-
ware. While external Android packages (APKs) pose a significant risk, additional
sources of malware, such as pre-installed malware and malicious components
within software development kits (SDKs), further aggravate the challenge [3].
Recently, several detecting tools have been created to distinguish between trust-
worthy (i.e., benign) and malicious software applications [4,5]. While binary
classification, distinguishing between benign and malicious software, remains
the primary focus of malware detection systems, it is increasingly evident that
a deeper understanding of the hazards can lead to more effective mitigation
strategies.

Manual analysis of Android application security and protection is time-
consuming to analyze malicious program patterns and behavior. To overcome
this challenge, statistical methods incorporating data mining and machine learn-
ing have shown promising results. However, the effectiveness of these methods
can be compromised by simple obfuscation techniques that hide the under-
lying data patterns, making it difficult to distinguish malicious programs.
In this context, deep learning techniques have emerged as a powerful tool
to strengthen Android malware defenses, outperforming conventional machine
learning approaches. These techniques have been successfully employed in vari-
ous areas, including malware detection, family attribution, and combating adver-
sarial attacks. While the main objective of the Android malware prevention
system is binary classification to separate malicious software from benign appli-
cations, significant efforts have been dedicated to addressing this fundamental

190 I. Khan and Y.-W. Kwon

challenge. Notably, Droid-Sec, introduced in the research conducted by Yuan et
al. [6], is among the pioneering deep-learning approaches in this field.

Program analysis plays a crucial role by providing valuable insights into
the behavior and characteristics of software without executing it. Raw shallow
features, such as bytecodes, opcodes, and strings, provide granular information
about the inner workings of an application. However, these features also come
with certain limitations that need to be considered. For instance, raw shallow
features may not capture the higher-level structural characteristics of the pro-
gram effectively. On the other hand, high-level structural features have been
recognized for their higher robustness in application analysis. For example, if
a function is renamed, the call graph will still show the calls to that function,
even though the name of the function has changed. As a result, researchers uti-
lized graph-based features like Control Flow Graph (CFG) [7], Function Call
Graph (FCG) [8], and API Dependency Graph (ADG) [5] to characterize the
program. In this context, graph convolutional models are recently proposed for
graph-based data structures [9]. The main idea is to update node information
by propagating information among the graph nodes.

Low-level features offer detailed information, but they are susceptible to
attacks such as code obfuscation, which can hinder their effectiveness. On the
other hand, high-level structural information provides more contextual seman-
tics, but alone may not be sufficient to achieve accurate detection, as structural
attacks can impact the performance of the model. Our approach addresses this
issue by combining both approaches that leverage both low-level and high-level
information, which are capable of capturing a comprehensive understanding of
malware samples. In the literature, only a few manually selected opcodes are
used to provide raw features for node classification. Therefore, in this work, we
extract a unique list of opcodes from a dataset of malware samples, allowing for
a more comprehensive analysis. Rather than providing a binary feature repre-
sentation for each opcode, we utilized a TF-IDF feature set derived from the
opcodes for each method within the application. Our goal is multi-class classifi-
cation because detecting malware families in Android applications has received
little attention.

This study investigates the effectiveness of graph-based deep learning models
for detecting and categorizing Android malware. By integrating TF-IDF features
into the call graph structure, we aim to create a comprehensive representation
that captures the complex traits of malware samples. Our approach utilizes state-
of-the-art graph-based deep learning models to classify malware families. By
incorporating high-level structural information from call graphs and low-level
information from raw features, our approach aims to enhance the accuracy and
generality of the malware detection models. We identify the optimal model for
Android malware family classification through extensive evaluation and compar-
ison. This research contributes to providing multi-class Android malware detec-
tion, incorporating graph-level (function call graphs) and node-level (TF-IDF
of opcodes) information with graph-based deep learning models in combating
malware threats effectively.

Multi-class Malware Detection via Deep Graph 191

The rest of the paper is organized as follows. Section 2 provides related work.
In Sect. 3, we present our proposed work. Section 4 discusses the results, and
Sect. 5 concludes the paper, including future directions.

2 Related Work

In Android malware analysis, three methodologies are commonly used: static,
dynamic, and hybrid analysis [3]. Static techniques extract program features
without executing the APK, using methods like decompiling and examining
call graphs or opcodes [10]. Dynamic analysis observes malware behavior in
a controlled environment, while hybrid analysis combines static and dynamic
approaches [11]. The hybrid analysis offers comprehensive code coverage and
runtime behavior insights but requires advanced computational resources due to
its higher complexity.

Conventional anti-malware solutions primarily rely on signature-based detec-
tion methods. These methods involve analyzing and comparing malware attack
signatures with a predefined list of known signatures [12]. However, these meth-
ods have limitations, such as zero-day malware. In contrast, machine-learning-
based Android malware methods using static and dynamic analysis performed
better when detecting unknown variants of malware [4,13]. In [14], a 15-bit
boolean vector derived from the opcode instructions of the method was utilized
as a node feature in the Feature Control Graph (FCG) model. To enable binary
classification, the authors employed K-mean clustering to extract the k-cluster
center, which served as an input to support vector machines and Naive Bayes
algorithms. Similarly, McLaughlin et al. [15] employed opcode embedding to
train a convolutional neural network (CNN) for classifying malware and benign
Android applications. Unlike previous methods that used a limited number of
opcodes, this approach employed a larger opcode set consisting of 218 opcodes.
Furthermore, the CNN architecture was designed to effectively capture and ana-
lyze local spatial features due to its grid-like structure.

These methods showed promising results and provided good solutions to
detect the malware. However, graph structures in source code analysis for mal-
ware detection provide a robust framework to uncover the code’s inherent design
and behavior. Incorporating neural graph networks and convolutional graph net-
works enhances the detection of intricate patterns and dependencies, thereby
improving the effectiveness and accuracy of malware detection systems. The
exploration of cutting-edge deep learning models and techniques, with a focus
on the use of graph convolutional approaches, has recently increased with the
goal of developing reliable and robust anti-malware solutions. In [16], authors
proposed Grdoid, a graph neural network model that leverages word embed-
ding of API sequences. In MalNet, authors applied graph representation learn-
ing approaches on the FCG dataset to compare models, and the GIN achieved
higher classification results [17].

192 I. Khan and Y.-W. Kwon

3 Proposed Architecture

Our proposed scheme utilizes static analysis techniques to characterize APKs
thoroughly and leverage the capabilities of graph convolutional neural networks
efficiently for categorical classification. The proposed architecture encompasses
multiple stages, which is shown in Fig. 1. The first step is to extract the raw
opcodes from the APKs. We obtain a list of 95 opcodes from this extraction, as
given in List 1.

Fig. 1. Android Malware Detection Framework

List. 1: Opcode name list

’move’, ’-’, ’wide’, ’iget’, ’boolean’, ’sub’, ’int/2addr’, ’div’, ’shr’,
’long/2addr’, ’if’, ’lez’, ’double/2addr’, ’invoke’, ’interface’, ’/’, ’range’,
’double’, ’return’, ’object’, ’const’, ’wide/32’, ’aput’, ’short’, ’float/2addr’,
’or’, ’and’, ’int’, ’from16’, ’gtz’, ’ushr’, ’lit8’, ’sput’, ’char’, ’aget’, ’super’,
’array’, ’length’, ’eq’, ’ne’, ’mul’, ’instance’, ’of’, ’string’, ’xor’, ’long’, ’to’,
’virtual’, ’lit16’, ’float’, ’shl’, ’rem’, ’add’, ’gt’, ’static’, ’byte’, ’nez’, ’mon-
itor’, ’enter’, ’sget’, ’iput’, ’rsub’, ’result’, ’fill’, ’data’, ’sparse’, ’switch’,
’gez’, ’exit’, ’void’, ’le’, ’cmpl’, ’nop’, ’goto/16’, ’neg’, ’goto’, ’new’, ’pay-
load’, ’pack’, ’high16’, ’direct’, ’const/16’, ’const/4’, ’lt’, ’check’, ’cast’,
’ge’, ’class’, ’cmp’, ’cmpg’, ’ltz’, ’throw’, ’eqz’, ’wide/16’, ’exception’

In the second step, we extract a feature vector from each class method and
create a call graph. The feature vector is derived from the opcodes and serves
as the node features for each node in the call graph. This attributed call graph
is then fed as an input into graph convolutional models for classification. By
leveraging the power of graph convolutional models, we can effectively analyze
and classify the given call graph based on the embedded feature vectors derived
from the opcodes. The following subsections provide a detailed description of
our methodology.

Multi-class Malware Detection via Deep Graph 193

3.1 APK Characterization

We utilize Android packages (APKs) as the input source for our static analysis
process. To obtain a comprehensive understanding of the code’s structure and
behavior, we employ the Androguard tool [10] to extract Function Call Graphs
(FCGs) from the Dalvik Executable (dex) code within the APKs. The FCGs
capture the relationships between methods in the application, providing valuable
insights into the caller-callee interactions. While FCGs offer a high-level overview
of the application’s structure, they may need to provide more granularity to
detect malicious apps accurately. To address this limitation, we enhance the
FCGs by attributing the nodes of the extracted graph with node features.

Fig. 2. (a)Complete Function Call Graph of an Android Application (b) and example
of attributed subgraph

For this purpose, we employ a TF-IDF-based approach to enrich the
extracted FCGs with informative features. Specifically, we calculate TF-IDF
scores for the opcode sequences present in each method of the FCG. By apply-
ing TF-IDF, we assign weights to the opcodes based on their frequency within
each method and overall importance in the entire FCGs. This process allows us
to capture the significance of each opcode in distinguishing between different
methods and detecting potentially malicious behavior. The TF-IDF scores serve
as feature vectors that are then associated with the corresponding nodes in the
FCG. Each node in the graph is attributed with the TF-IDF feature vector, pro-
viding valuable contextual information about the opcode usage patterns within
the methods. This attribution of TF-IDF-based feature vectors enhances the
representation of the FCG, enabling more comprehensive analysis and detection
of malicious applications. The attributed FCG now incorporates structural infor-
mation from the graph and opcode-specific features derived from the TF-IDF
analysis.

The TF-IDF method is used to determine the importance of terms in a col-
lection of documents. It considers the frequency of terms within individual doc-
uments and across the entire corpus. The TF-IDF value of a term in a document

194 I. Khan and Y.-W. Kwon

is computed by multiplying its term frequency (TF) by the inverse document
frequency (IDF). This method helps identify frequent terms within a document
but infrequent across the collection, thus providing valuable insights into the
distinguishing characteristics of individual documents [18]. This combined rep-
resentation empowers subsequent analysis techniques, such as graph convolu-
tional models, to leverage the enriched information for improved classification
and detection accuracy [19].

For the comparison purpose, we attributed nodes of the extracted graph with
the raw features, i.e., frequency of opcode sequences for each method in the graph
[14]. Function call graph and its subgraph snippet with frequency attribute are
shown in Fig. 2.

3.2 Classification

We conducted a comparison of four graph convolutional neural networks, namely
GraphConv, SAGEConv, GATConv, and GIN, to identify the optimal models
for Android malware classification.

Fig. 3. Layer architecture of graph convolutional models

Multi-class Malware Detection via Deep Graph 195

GCN: GCN is the most commonly used architecture for graph-based applica-
tions [20]. It consists of Graph Convolutional layer and is defined mathematically
as follows:

hl+1 = σ

⎛
⎝bl +

∑
j∈N(i)

1
cij

hl
jW

l

⎞
⎠ (1)

where cij =
√|N(i)|.√|N(j)|, and N(i) is the set of neighbors of node i, σ is

ReLU activation function, and W and b are the weight and bias matrix. The
graphical representation of a layer is given in Fig. 3a.

SAGEConv: The main idea of SAGEConv is to sample a set of nodes uniformly,
then aggregate the features from the set of neighbors, and graph classification is
performed based on aggregation [21]. SAGEConv layer used inductive learning
and can be defined as,

hl+1
N(i) = aggregate

({
h
(l)
j ,∀j ∈ N(i)

})

hl+1
i = σ

(
W (l).concat

{
h
(l)
j , h

(l+1)
N(i)

})

hl+1
i = norm(hl+1

i)

(2)

Here W(l) is weight, aggregate (mean) combines node representation of neigh-
bor nodes, norm normalizes the node representation, and σ is the ReLU activa-
tion function. Figure 3b visualizes the aggregation of SAGEConv layer.

GATConv: The main idea behind the graph attention network is to use more
information and give attention to neighbors, which are more important than
others [22]. The graph Attention layer is defined as,

hl+1
i =

∑
j∈N(i) αi,jW

lhl
j

αl
i,j = softmax(el

i,j)
el
i,j = LeakyReLU((W lhl

i)
T .(W lhl

i))
(3)

here αi,j is the attention score between nodes i and j and W l is a weight matrix.
GATconv is illustrated in Fig. 3c.

GIN: Unlike other GNN models that rely on specific aggregation functions,
The GIN aggregator is a learnable aggregation function [23]. The aggregator
applies a fully connected layer with a non-linear activation function to the sum
of node features in the neighborhood and then combines the updated features
with the original node features. GIN exhibits graph isomorphism invariance,
generating identical representations for isomorphic graphs. This property enables
GIN to capture structural patterns and generalize effectively to unseen graphs.
The update rule of GIN for a node is as follows,

h
(l+1)
i = fΘ

(
(1 + ε)h(l)

i + aggregate
({

h
(l)
j , j ∈ N(i)

}))

196 I. Khan and Y.-W. Kwon

The function fΘ transforms the input using neural network parameters Θ. The
term h

(l)
i denotes the current representation of node i at layer l. The small

constant ε controls the influence of the previous representation. The aggregate
operation aggregates the representations of neighboring nodes j of node i at
layer l. Figure 3d visualizes the aggregation of GIN.

Models Architecture: Each model in our study employed a three-layer archi-
tecture. To address the issue of overfitting, we incorporated dropout regulariza-
tion. The Adam optimizer was utilized for the learning process.

4 Evaluation

4.1 Experimental Setup

For the purpose of analyzing our case scenarios, we used the MalDroid2020
dataset [24]. Adware, Banking Malware, SMS Malware, Mobile Riskware, and
Benign APKs are among the five classifications of APKs in the dataset. Inside
trustworthy software, adware hides ads. Ads keep popping up and harming the
victim’s device with this infection. Malware for banking is made to look like a
banking program or interface to access the victim’s online banking system. By
sending malicious SMS to the victim’s smartphone, SMS malware obtains data
from the target device. Utilizing normal apps, mobile riskware converts them
into ransomware or adware. Benign applications, on the other hand, belong to
the normal class. We used a balanced dataset of 7000 Android packages for our
evaluation. The dataset was carefully selected to ensure an equal representation
of each class containing different classes of malicious and benign applications.
By maintaining balance, we aim to create a fair and reliable evaluation frame-
work that can accurately assess the performance of our methods and models in
distinguishing between each class [25].

4.2 Performance Measures

Precision (Prec:), recall (Rec:), and F1-score (F1:) measurements are used to
assess the model performance for each class [26]. Precision measures how many of
the correctly predicted positive outcomes. Recall or sensitivity is a measurement
of how many positive occurrences of each class, out of all the positive cases in the
class, a classifier correctly predicted. F1, which combines recall and precision, is
the harmonic mean.

4.3 Results and Discussion

We divided the dataset into train, validate, and test sets, allocating 75%, 5%,
and 20% of the data, respectively. The three models were trained using a super-
vised approach since labels for all classes were available. The test results of
the trained models are presented in Table 1. Among the four models, the GIN
model achieved the highest overall precision, recall, and F1-score of 89.18, 90.43,

Multi-class Malware Detection via Deep Graph 197

Table 1. Test results of the models

Model GraphConv SAGEConv GATConv GIN

Class Prec: Rec : F1: Prec: Rec : F1: Prec: Rec : F1: Prec: Rec : F1:

Adware 62.20 93.95 74.85 87.22 91.58 89.34 91.01 86.51 88.70 87.54 94.47 90.87

Banking 86.66 95.79 91.00 91.58 96.40 93.92 88.05 90.36 89.19 94.15 92.03 93.08

SMS 64.92 60.66 62.72 86.63 86.63 86.63 84.85 88.53 86.65 82.96 91.74 87.13

Riskware 99.35 57.76 73.05 97.45 81.68 88.87 98.20 88.40 93.04 99.07 86.93 92.60

Benign 76.47 83.88 80.00 78.62 86.23 82.25 80.21 87.97 83.91 82.19 86.96 84.51

Overall 77.92 78.41 76.32 88.30 88.50 88.20 88.47 88.35 88.30 89.18 90.43 89.64

and 89.64, respectively. Following closely, the GAT model obtained the second-
highest scores of 88.47, 88.35, and 88.30, indicating its strong performance. The
SAGEConv model also performed well, with a precision of 88.30, recall of 88.50,
and F1-Score of 88.20, showing comparable results to GATConv. In contrast,
the GraphConv model exhibited lower performance across all metrics and classes
compared to the other three models.

Fig. 4. Comparison of Precision, Recall, and F1-Score opcodes frequency and TFIDF
feature set using SAGEConv, GAT, and GIN models

Both GIN and GATConv exhibited strong performance in differentiating
riskware samples, achieving F1-scores of 92.60 and 93.04, respectively. This indi-
cates their effectiveness in identifying instances of riskware. On the other hand,
the SMS and Benign classes demonstrated lower precision, recall, and F1-score
across all models, implying that distinguishing between SMS and benign samples
is more arduous, likely due to attacker-obfuscation techniques and graph-based
structural attacks. Notably, GIN achieved a higher F1-score of 93.08, specifically
for the Banking class. Based on these results, we can rank the models as follows:
GIN, GATConv, SAGEConv, and GraphConv. The observed performance differ-
ences suggest that GIN, GATConv, and SAGEConv are more adept at handling
the intricate challenges presented by the dataset, rendering them suitable choices
for the given classification task.

198 I. Khan and Y.-W. Kwon

We compared the proposed work results with a baseline feature set (i.e.,
opcode frequency). We train and test the top three models, GIN, GAT, and
SAGEConv, in a similar manner. Comparison is visualized using the performance
metrics (precision, recall, and F1-score) for the TF-IDF and opcode frequency
feature sets and models given in Fig. 4. Similar to TF-IDF test performance,
GIN achieved higher scores of 87.81, 87.67, and 87.70. The GAT model trained
on the opcode frequency feature set achieved precision, recall, and F1 scores of
86.10, 85.91, and 85.82, respectively. Similarly, the SAGEConv model trained
on the opcode frequency feature set achieved precision, recall, and F1 scores of
86.43, 83.38, and 84.82, respectively. SAGEConv performed slightly better than
GAT in precision, while GAT had a slightly higher recall and F1-score.

In terms of feature set, the results indicate that the choice of feature set
(TF-IDF or opcode frequency) has a noticeable impact on the performance of
the models. The TF-IDF feature set generally yielded higher precision, recall, and
F1-score results than the opcode frequency feature set. Additionally, while the
scores between the SAGEConv and GAT models are small, SAGEConv tends to
perform slightly better on the opcode frequency feature set, whereas GAT shows
a slight advantage on the TF-IDF feature set. In summary, the TF-IDF feature
set, combined with the GIN or GAT model, could be preferable for the given
task based on their overall higher performance.

5 Conclusion

In this paper, we evaluated four graph neural networks including GIN, GAT-
Conv, SAGEConv, and GraphConv models for multi-class Android malware
detection. We enhanced the models’ understanding of the textual information in
call graphs by incorporating a TF-IDF feature set, which allowed the models to
better differentiate between benign and malicious behavior. The GIN and GAT-
Conv models achieved higher precision, recall, and F1 scores, demonstrating
their effectiveness in distinguishing between different classes of Android mal-
ware. SAGEConv showed competitive performance, particularly in identifying
riskware samples. However, GraphConv performed average across all measures
and classes. Our study highlights the importance of combining high-level struc-
tural features, such as call graphs, with deep neural graph models and TF-IDF
features for Android malware detection. Considering both the structural and
textual aspects improves classification performance.

References

1. “Smartphones-statistics and facts.” https://www.statista.com/topics/840/
smartphones/

2. “Mobile malware evolution report.” https://securelist.com/mobile-malware-
evolution-2019/96280/

3. Qiu, J., et al.: Data-driven android malware intelligence: a survey. In: Chen, X.,
Huang, X., Zhang, J. (eds.) ML4CS 2019. LNCS, vol. 11806, pp. 183–202. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30619-9 14

https://www.statista.com/topics/840/smartphones/
https://www.statista.com/topics/840/smartphones/
https://securelist.com/mobile-malware-evolution-2019/96280/
https://securelist.com/mobile-malware-evolution-2019/96280/
https://doi.org/10.1007/978-3-030-30619-9_14

Multi-class Malware Detection via Deep Graph 199

4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
DREBIN: effective and explainable detection of android malware in your pocket.
In: NDSS, vol. 14, pp. 23–26 (2014)

5. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android malware classi-
fication using weighted contextual API dependency graphs. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pp.
1105–1116 (2014)

6. Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-sec: deep learning in android malware
detection. In: Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 371–
372 (2014)

7. Narayanan, A., Meng, G., Yang, L., Liu, J., Chen, L.: Contextual Weisfeiler-
Lehman graph kernel for malware detection. In: 2016 International Joint Con-
ference on Neural Networks (IJCNN), pp. 4701–4708. IEEE (2016)

8. Hassen, M., Chan, P.K.: Scalable function call graph-based malware classification.
In: Proceedings of the Seventh ACM on Conference on Data and Application Secu-
rity and Privacy, pp. 239–248 (2017)

9. Xu, K., Li, Y., Deng, R.H., Chen, K.: DeepRefiner: multi-layer android malware
detection system applying deep neural networks. In: 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pp. 473–487. IEEE (2018)

10. Androguard. https://androguard.readthedocs.io/en/latest/
11. Tam, K., Fattori, A., Khan, S., Cavallaro, L.: Copperdroid: automatic reconstruc-

tion of android malware behaviors. In: NDSS Symposium 2015, pp. 1–15 (2015)
12. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: a survey.

J. Inf. Secur. 2014 (2014)
13. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.: Significant permission identi-

fication for machine-learning-based android malware detection. IEEE Trans. Ind.
Inf. 14(7), 3216–3225 (2018)

14. Liu, Y., Zhang, L., Huang, X.: Using G features to improve the efficiency of func-
tion call graph based android malware detection. Wireless Pers. Commun. 103(4),
2947–2955 (2018)

15. McLaughlin, N., et al.: Deep android malware detection. In: Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy, pp.
301–308 (2017)

16. Gao, H., Cheng, S., Zhang, W.: GDroid: android malware detection and classifica-
tion with graph convolutional network. Comput. Secur. 106, 102264 (2021)

17. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?.
arXiv preprint arXiv:1810.00826 (2018)

18. Jing, L.P., Huang, H.K., Shi, H.B.: Improved feature selection approach TFIDF in
text mining. In: Proceedings International Conference on Machine Learning and
Cybernetics, vol. 2, pp. 944–946. IEEE (2002)

19. Ozogur, G., Erturk, M.A., Gurkas Aydin, Z., Aydin, M.A.: Android malware detec-
tion in bytecode level using TF-IDF and XGBoost. Comput. J. bxac198 (2023)

20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

21. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

23. Hu, W., et al.: Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265 (2019)

https://androguard.readthedocs.io/en/latest/
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1905.12265

200 I. Khan and Y.-W. Kwon

24. Mahdavifar, S., Kadir, A.F.A., Fatemi, R., Alhadidi, D., Ghorbani, A.:
Dynamic android malware category classification using semi-supervised deep
learning. In: 2020 IEEE International Conference on Dependable, Autonomic
and Secure Computing, International Conference on Pervasive Intelligence
and Computing, International Conference on Cloud and Big Data Comput-
ing, International Conference on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pp. 515–522. IEEE (2020)

25. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets:
a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

26. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F -score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1 25

https://doi.org/10.1007/978-3-540-31865-1_25

OCR Meets the Dark Web: Identifying
the Content Type Regarding Illegal

and Cybercrime

Donghyun Kim1 , Seungho Jeon1 , Jiho Shin2 , and Jung Taek Seo1(B)

1 Gachon University, Seongnam-daero, 1342, Seongnam-si, Korea
{202240222,shjeon90,seojt}@gachon.ac.kr

2 Korean National Police University, Hwangsan-gil, 100-50, Asan-si, Korea
suchme@police.go.kr

Abstract. The darkweb provides features such as encryption and routing changes
to ensure anonymity and make tracking difficult. Cybercrimes exploit the charac-
teristics to gain revenue by distributing illegal and cybercrime content through the
dark web and take a financial benefit as a business strategy. Illegal and cybercrime
content includes drug and arms trafficking, counterfeit documents, malware, and
the sale of personal information. A text crawling system in dark web has been
developed and researched to counter illegal and cybercrime content distribution.
However, because traditional text crawler in the dark web collects all text, identi-
fying the exact data type can be difficult if dark web pages serve different types of
illegal and cybercrime content. In this paper, we propose amethod of using the text
embedded within images to accurately identify the types of illegal and cybercrime
content on the dark web. We conducted the experiments with a combination of
text and texts from both web page and images to accurately identify illegal and
cybercrime content types. We collected keywords for the three types of illegal and
cybercrime content. The distribution and types of illegal and cybercrime content
were identified by calculating whether the collected keywords were included in
dark web pages. Through experiments, we confirmed that using text embedded
within images improves performance. Our proposed method accurately identified
over 90% of dark web pages where drugs were distributed.

Keywords: Dark Web · Crawler · Illegal and Cybercrime Content

1 Introduction

The dark web leverages the Tor network, which ensures anonymity by employing online
encryption that renders traffic analysis and Internet Protocol (IP) address tracking infea-
sible [1]. Initially, the Tor network was utilized by users in many countries with strin-
gent internet regulations to safeguard their privacy [1]. However, malicious parties have
started exploiting the anonymity features of the Tor network to disseminate illegal
and cybercrime content. Notable illegal and cybercrime contents distributed by these
parties encompass malware such as ransomware and botnets, personal information,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 201–212, 2024.
https://doi.org/10.1007/978-981-99-8024-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_16&domain=pdf
http://orcid.org/0009-0007-3025-3219
http://orcid.org/0000-0002-7116-6062
http://orcid.org/0000-0002-2697-8221
http://orcid.org/0000-0003-0971-8548
https://doi.org/10.1007/978-981-99-8024-6_16

202 D. Kim et al.

weapons, drugs, terrorism-related materials, and pornography [2, 3]. By capitalizing
on the attributes of the dark web, Cybercrimes adopt illicit content distribution and
fee-based models as part of their business strategy [4].

To combat the proliferation of illicit and cybercrime content on the dark web, an
investigation into methodologies for effective data harvesting is underway. The primary
focus of this endeavor lies in collecting text data from web pages, which comprise a
significant segment of illegal and cybercrime content. However, ascertaining the exact
nature of the content proves challenging when different forms of data are concurrently
from dark web pages. Moreover, procuring ordinary text becomes complex when dark
web pages present descriptions of illegal activities, cybercrime content, and vendor
information through images [6]. Absent automation in text collection from images,
analysts are tasked with scrutinizing these images manually, subsequently determining
their legality or affiliation with cybercrime activity. The absence of automated systems
inadvertently extends the timeframe for analysis and collection. Consequently, critical
data from dark web with limited uptime may evade collection [7].

This paper proposes a method to address the issues mentioned earlier; it integrates
both the textual content of dark web pages and the text embedded within images to
identify the illegal and cybercrime content disseminated on the dark web. It has been
noted that the proportion of image data significantly surpasses that of text in illicit and
cybercrime content on dark web pages [8]. Information such as descriptions and tags
for image content on the dark web is created by cybercrimes and traders. In addition,
they can insert text related to the illegal and cybercrime content they provide to the
image. Using such user-generated text can enhance the effectiveness of content type
classification [9]. The presence of text embedded within images displayed on the dark
web frequently indicates a piece of related information to the illegal and cyber-crime
content circulated. Text recognition technology may be used to capture the text within
these images. Text recognition technology takes an image file as input and extracts the
text embedded in the image. This study utilizes image text recognition technology to
extract text from images of illegal and cybercrime content distributed on the dark web.
Based on this, we identify illegal and cybercrime content types. An incidental advantage
of applying this technology is its ability to circumvent text anti-crawl mechanisms [5, 7].
Furthermore, the image-embedded text may indicate the type of disseminated content
in identifying illegal and cybercrime content.

Currently, numerous studies focus on collecting text from dark web pages. How-
ever, the utilization of text embedded within images remains limited. Cybercrimes and
traders on the dark web continuously adapt their methods to impede the collection of
illicit and cybercrime text. This paper proposes a text collection method considering
the sophisticated technology employed on the dark web. We implemented a system to
identify illegal and cybercrime content types from the collected text, demonstrating its
performance. The system addresses the limitations of crawling systems and content type
identification systems that solely gather text from dark web pages. This contribution
aids analysts in efficiently identifying illegal and cybercrime content types on the dark
web, leading to time and cost savings. The key contributions of this paper include the
following:

OCR Meets the Dark Web 203

• This paper presents a novel approach to integrate text extracted from dark web pages
and text embedded within images, aiming to effectively enhance the identification of
illegal and cybercrime content types.

• An implemented system leverages texts from dark web pages and text embedded
within images to accurately identify illegal and criminal content types.

• Experimental results demonstrate improved performance when incorporating text
from images in conjunction with text from dark web pages, surpassing the perfor-
mance of methods relying solely on text from dark web pages.

In this paper, Sect. 2 explains related research and background, and Sect. 3 describes
how to collect dark web text through text recognition technology to identify illegal and
cybercrime content types, Sect. 4 describes experiments, Sect. 5 endswith the conclusion
and future research directions.

2 Background and Related Works

2.1 Analysis on Dark Web Content

In the early days of the Internet, privacy was not guaranteed. To address this concern, the
United States Naval Research Laboratory developed Onion Routing to ensure privacy
[1]. This paved the way for the emergence of the dark web, a platform where illegal and
cybercrime content is distributed.

Fig. 1. Dark web drug distribution page

Figure 1 exemplifies the distribution of drugs, illegal and cybercrime content, on the
dark web. The Tor network is vital in ensuring anonymity by employing encryption to
prevent user tracking [1]. Presently, Cybercrimes exploit these characteristics to trade
illicit and cybercrime content, such as drugs, weapons, and counterfeit passports [2, 3].
Ransomware groups like Conti and Lockbit have transitioned from trading illegal and
cybercrime content to activities involving encryption disclosure and theft of personal
information through the dark web. Additionally, intangible items like Distributed Denial
of Service (DDoS) attack services, murder, human trafficking, and financial transactions
are traded as specific content [3]. These illegal and cybercrime contents can be classified
into market-type sites and sites specializing in distributing specific types of content. Due

204 D. Kim et al.

Fig. 2. Examples of text substitution with images on the dark web

to the diversity of text collected when dispersed in a market-like format, there is a risk
of misidentifying illegal and cybercrime content types.

Figure 2 demonstrates an example of information dissemination by replacing text
with images on the dark web. Typically, illegal and cybercrime content conveys informa-
tion through text within dark web pages. However, to prevent text collection, alternative
formats such as images and Cascading Style Sheets (CSS) are utilized as substitutes for
text [5]. Our proposedmethod also considers cases where text providing important infor-
mation is replaced with images. The methods we suggest can ensure that no sensitive
information is left out in dark web investigations and tracking.

2.2 Optical Characteristics Recognition

Table 1. Description of 6 steps of OCR text recognition process

Step Description

Image Acquisition Import images

Pre-Processing This step is to increase the text recognition rate. It includes spatial image
filtering, threshold setting, noise removal, and screw detection/correction
steps starting with binarization

Segmentation Segmentation in the necessary part from the rest of the image includes
page division, character division, image size normalization, and
morpheme processing

Feature Extraction Among the vectors representing the points of each character, only feature
vectors necessary for improving the efficiency and accuracy of object
identification are selected. It includes area specification, Projection
histogram features, Distance profile features, Background directional
distribution, and the combination of various features steps

(continued)

OCR Meets the Dark Web 205

Table 1. (continued)

Step Description

Classification This classification step uses the feature vector obtained in the feature
extraction step. A Probabilistic Neural Network classifier, Support Vector
Machines classifier, and K-Nearest Neighbor classifier can be used

Post Processing Since the result is not 100% accurate if the text is not in standard
language, the accuracy is improved through the Post Processing step

Optical Characteristics Recognition (OCR) is a technology that converts printed doc-
uments into machine-readable documents [10]. Table 1 describes the text recognition
process of a typical OCR in 6 steps [11]. The user first inputs an image to recognize
text. Next, the user can perform pre-processing operations such as converting to binary
data, setting thresholds, and removing noise to increase the success rate. Then, a seg-
mentation process is performed to distinguish the text area from the background, and
features are extracted from the corresponding region of the image. Finally, classification
is accomplished through the extracted features. Performing post-processing is a step to
improve precision. Through this process, the text within the image is recognized. When
Cybercrimes replace text with images to avoid the automated text collection, analysts
can respond through OCR [5].

2.3 Existing Works Related to Dark Web Crawling

Medina, P. B et al. [7] collected text from images by applying Text Spotting techniques to
bypass text crawling prevention techniques on the dark web. The selected connectionist
Text Proposal Network (CPTN) algorithmwas for text detection and used Convolutional
Recurrent Neural Network (CRNN) for the text recognition model. The experiment
confirmed the performance using the TOIC dataset, and the handwritten text confirmed
a slightly better performance than OCR.

Alaidi, A. H. M. et al. [12] implemented a crawling function to collect content
from the dark web and a position to classify the collected web pages by using the text
mining technique for the collected content. The system proceeds with data crawling and
collection, data pre-processing, dataset automatic labeling, classification, and evaluation.
Dark web links were collected using search engines such as Ahmai to perform the
crawling function. The text mining technique utilized term frequency - inverse document
frequency (TF-IDF), support vector classification (SVC), and naïve bayes. Based on this,
illegal and cybercrime data was classified into five types. In this study, the text within
the image is not included in the subject of the collection.

Jeziorowski, S. et al. [13] proposed a data collection method for tracking cybercrime
in a dark web environment where anonymity is guaranteed. This study aims to solve the
problem of needing help to obtain open-source information on the dark web through
images easily. In image metadata, data such as the image’s creator, the date and time
of creation, the device’s location, and the device’s model can be used as cybercrime
evidence. In addition, to save resources, they proposed storing images on the dark web as

206 D. Kim et al.

hashes. Through this study, it is possible to identify cybercrime evidence in the dark web
market. However, responding to illegal and cybercrime-related text crawling prevention
technology is challenging.

Pannu, M. et al. [14] proposed a system for collecting and monitoring illegal and
cybercrime content to remove the anonymity of cybercrimes on the dark web. The pro-
posed method comprises a central server, distributed nodes, and clients. The central
server performs node management, asset parser, database control, and search manage-
ment functions. In the case of the data parser, it targets all <href> tags, text in HTML
documents, and images that exist on the dark web. The purpose of image collection in
the system is to create a histogram through OpenCV, and the text in the image is not
included in the subject of the collection.

In the previous study, in the process of illegal and criminal text collection, a studywas
conducted to classify the text of the dark web page as a target. In addition, a study was
conducted to collect text embeddedwithin images to circumvent text crawling prevention
techniques. However, the text embedded within images was not used to identify illegal
and criminal content types. In this paper, we intend to improve the performance of dark
web text crawling and identify illegal and criminal content types by utilizing the text of
dark web pages and the text embedded within images in images.

3 Methodology

3.1 Overview

Fig. 3. Illegal and Crime Content Type Identify Process

This section provides an overview of the research methodology. This paper aims to
identify illegal and cybercrime content types by collecting text from images on the dark
web usingOCR. Figure 3 illustrates the sequential steps in collecting darkweb pages and
identifying illegal and cybercrime content types. The process starts with collecting dark
web pages where illegal and cybercrime content is circulated. The collected dark web
pages contain both text and images. Extracting text data from dark web pages undergoes
no specific processing, while the images are subjected to text extraction to facilitate
the identification of illegal and cybercrime content. Specific keywords are collected to
identify the presence of illegal and cybercrime content. These keywords are tailored to

OCR Meets the Dark Web 207

the type of illegal and cybercrime content. These extracted texts are then analyzed using
a keyword inclusion rate based on a predetermined threshold to determine the presence
of illegal and cybercrime content. Finally, the process concludes with identifying the
specific type of dark web page.

3.2 Collecting the Dark Web Page

This section describes the method for collecting dark web pages containing illegal and
cybercrime content. The goal is to identify various types of illegal and cybercrime content
circulating on the dark web. To collect these pages, we utilize dark web search engines
specifically designed for accessing the dark web [15]. Unlike the search engines used on
the Surface Web, they cannot be accessed the Dark Web through traditional means [15].
Users need to have the exact addresses of the dark web pages or rely on dedicated search
engines [15]. Users can access dark web pages associated with the desired content by
entering relevant keywords into a dark web search engine. In this paper, we collect the
addresses of dark web pages by inputting illegal and cybercrime terms into Ahmia.fi a
dedicated search engine for the dark web.

3.3 Collecting the Text and Image from the Dark Web Page

This section describes the process of gathering text and images from the addresses of
dark web pages obtained using specialized search engines dedicated to the dark web.
On the Surface Web, data is presented using the Hypertext Markup Language (HTML)
file structure, where tags organize content. Similarly, the dark web employs files with a
comparable structure to the Surface Web [16]. To collect text, specific areas or the entire
text can be captured by leveraging tags within these web file structures. Images can
also be identified and collected by extracting information from the tag, which
contains the path to the image.

3.4 Text Extraction

This section describes the methodology for extracting text from image files on dark
web pages that distribute illegal and cybercrime content. Various techniques exist for
recognizing text embedded within images. In this study, we employ OCR technology to
extract text from the images collected from dark web pages. The text extraction process
encompasses all images from the dark web pages.

3.5 Keyword Collection

This section describes the method for collecting keywords for identifying various illegal
and cybercrime content types. We collect text data from the dark web to conduct our
keyword collection process, which follows the method described in Sect. 3.2. We collect
keywords that are high frequency of use on dark web pages. During the keyword collect
process, we exclude stopwords such as “the, a, an, is, I, my”words commonly used on the
surface web, such as “order”. Additionally, users can independently collect words and

208 D. Kim et al.

slang as keywords, which are highly pertinent to different types of illegal and cybercrime
content. Keyword collection should be done separately by illegal and cybercrime content
types.

3.6 Evaluating Keyword Inclusion

This section describes how to identify whether illegal and cybercrime content is circu-
lating and what type of content it is. After collecting text through HTML files of dark
web pages and collection through images, it is necessary to identify illegal and cyber-
crime content types. We need to use keywords associated with each type of illegal and
cybercrime content to do this. We calculate the inclusion rate of how many collected
keywords are detected in words on dark web pages. The types of illegal and cybercrime
content are identified based on the calculation of the inclusion rate.

4 Experiment

4.1 Dataset Description

This section describes the datasets utilized for identifying illegal and cybercrime content
types.We employ text-based analysis to identify different types of illegal and cybercrime
content. To gather the necessary text data, we initially collect dark web page link that
distributes illegal and cybercrime content using the dark web search engine Ahmia.fi.
We targeted the four types of dark web pages: drug distribution, arms trafficking, sale
of fake document, and financial services. A total of 10 dark web pages are collected for
each type.

Following the collection of dark web pages, we gathered the text and images from
these HTML pages. In addition, we employed OCR technology to extract text from
the images. Specifically, we utilized Google’s Cloud Vision API, a machine learning-
powered service offering advanced image analysis functionalities [17]. We successfully
extracted text from the images through the OCR function provided by the Cloud Vision
API. However, it is worth noting that special newline characters sometimes appearwithin
the text when extracting text from images. To address this, we replaced these newline
characters with blank spaces, resulting in a dataset that would be utilized for identifying
various types of illegal and cybercrime content.

4.2 Setup

This section outlines the preparations to identify the types of content found on dark web
pages where illegal and cybercrime activities occur. We have curated a set of keywords
classified into four types to facilitate the identification of different types of illegal and
cybercrime content. Specifically, for drugs, we included keywords related to the drug
type, unit of measurement, and associated symptoms. Regarding weapons, keywords
encompassed the gun model name, bullet type, accessory details, and explosive types.

OCR Meets the Dark Web 209

Personal information keywords included passport, identification card, social security
number, certificate, license, and corresponding abbreviations.

rate = Keyword count

list of words in Dark web page
(1)

Equation 1 presents the formula for determining the keyword inclusion rate of dark
web pages. This calculation helps identify the types of illegal and cybercrime content on
these pages. In our experiment, a threshold of 5% was set for the keyword inclusion rate
on dark web pages. The threshold may be arbitrarily adjusted according to the quality
of keywords set for each illegal or cybercrime content. If the threshold is exceeded,
it is determined that illegal and cybercrime content related to the keyword is being
distributed. We calculate the inclusion of relevant keywords for each content type and
identify the type with the highest inclusion rate. The type of illegal and cybercrime
content is determined by the type with the highest inclusion rate among the four types.
Rate is determined by counting the number of keywords present in the text of a dark
web page and dividing it by the total number of words in the page’s text. To implement
our system, we utilized Python 3.84 and leveraged open libraries and modules such as
Beautifulsoup and re.

4.3 Experiment and Results

This section describes an experiment that utilized text on darkweb pages and text embed-
ded within images to identify types of illegal and cybercrime content. The experiment
tests three methods. When using text only, experiment with text and text embedded
within images. Next, experiment using text and text embedded within images, giving
text embedded within images more points. We check the performance of illegal and
cybercrime content type identification through four methods.

Table 2. Dark Web Illegal and Cybercrime Content Type Identification Test Results

Type Type Identify by
Text only

Type Identify by
Text and image
text

Type Identify by
Text and image
text * 3

Type Identify by
Text and image
text (keyword)

Drug 9/10 9/10 9/10 9/10

Weapon 8/10 9/10 9/10 9/10

Personal
Information

10/10 10/10 8/10 10/10

Table 2 shows the results of experiments conducted on three types of illegal and
cybercrime content. Among the texts in HTML text and images, using a combination
of keywords showed the highest performance. However, the experimental results also
revealed poor performance when using all the text within an image together. We confirm
that combining all the text within an image is not always the best approach.

210 D. Kim et al.

Table 3. Result of identifying drug content on the dark web

Type Identify by
Text only

Type Identify by
Text and image text

Type Identify by
Text and image text
* 3

Type Identify by
Text and image text
(keyword)

Drug 1 Drug (5.78%) Finance (5.21%) Fail (4.56%) Finance (6.40%)

Drug 2 Drug (6.78%) Drug (6.22%) Drug (5.53%) Drug (8.23%)

Drug 3 Drug (19.35%) Drug (7.69%) Drug (5.01%) Drug (28.21%)

Drug 4 Drug (14.53%) Drug (10.06%) Drug (6.36%) Drug (14.77%)

Drug 5 Drug (10.71%) Drug (11.26%) Drug (12.14%) Drug (13.10%)

Drug 6 Fail (4.83%) Drug (5.09%) Drug (5.46%) Drug (6.54%)

Drug 7 Drug (24.57%) Drug (23.76%) Drug (22.28%) Drug (24.57%)

Drug 8 Drug (6.08%) Drug (6.2%) Drug (6.37%) Drug (7.71%)

Drug 9 Drug (10.69%) Drug (8.6%) Drug (6.18%) Drug (10.55%)

Drug 10 Drug (7.56%) Drug (6.05%) Drug (4.6%) Drug (8.75%)

Table 3 shows a detailed experiment on ten collected drug distribution web pages.
Drug 3, part of the collected drug distribution web pages, showcases a case where anti-
crawling techniques are applied. In this experiment, there are cases where illegal and
cybercrime content distribution is not identified, or the type is misidentified. In cases
where there are multiple types, such as marketplaces, or a high percentage of irrelevant
content, such as product reviews, the identification process becomesmore challenging. A
high percentage of other content type text and irrelevant text makes distribution and type
identification imprecise. Table 3 presents the results of experiments to identify illegal
content types by using a combination of the text embedded within images and text in
HTML, considering these issues. We combined the text in the image with the HTML
text to identify the content type. As a result, we observed an increase in the coverage
ratio, leading to a more accurate identification of related types. However, the coverage
ratio showed significant deviations in some cases, making the results less reliable. To
address this issue, we performed another experiment, focusing solely on the keywords
found within the text of the image. The experiments revealed that using HTML text and
specific keywords text in images got better results than using HTML text alone. Notably,
we observed a significant increase in the inclusion ratewhen dealingwith darkweb pages
equipped with anti-crawl technology. The results suggest that using a combination of
HTML text and text keywords in images is effective when dealing with anti-crawling
dark web pages.

From our experimentation, we checked that using text within an image can be stable
and effective when concentrating on the text corresponding to the keyword rather than
using all the text within the image. Also, the more sophisticated the keywords used to
identify illegal and cybercrimes content, the better the performance.

OCR Meets the Dark Web 211

5 Limitations

In this paper, we confirmed that the performance of identifying illegal and cybercrime
types on the dark web could be improved by extracting text using OCR. However, the
experiment has the following limitations.

• Keywords used to identify illegal and cybercrime content types do not use common
datasets.

• Tested only for keywords of type Illegal and Cybercrime: Drug Trafficking, Arms
Trafficking, Personal Information.

• Use only English in type identification experiments, and challenging to identify if the
keywords are not elaborate.

• Introducing noise into images to impede OCR in dark web illicit and cybercrime
content or the exclusive use of slang by distributors and consumers pose challenges
in identifying illegal content.

6 Conclusion and Future Works

Today, Cybercrimes are exploiting their anonymity and untraceability on the dark web.
By exploiting these characteristics, various illegal and cybercrime contents such as mali-
cious code, drugs, personal information, and weapons are distributed. A crawling system
that collects text has been developed and researched to counter illegal and cybercrime
content distribution. Much research has been done on how to collect the dark web. How
we process the data we collect on the dark web can contribute to determining whether
a crime has occurred. However, it is difficult to identify the exact type when various
types of illegal and cybercrime content are circulated, such as in markets on the dark
web. In addition, existing developed and researched crawling systems did not consider
text prevention techniques. In this paper, to solve these problems, we propose to collect
dark web text through OCR and use it to identify illegal and cybercrime content. The
system can bypass the dark web’s anti-text crawling techniques. Also, text embedded
within images allowed us to collect better data than collecting the full text of dark web
pages. Our experiments found that using HTM/HTML text data from dark web pages
and text embedded within images improves the performance of identifying illegal and
cybercrime content types. The experiment confirmed that the performance was favorable
when combining HTML and keyword text in images.

In future research, we plan to automate the sophisticated collection of keywords
and use it for evidence identification and cybercrime tracking. By doing so, we hope to
contribute to law enforcement agencies fighting cybercrime on the dark web.

Acknowledgement. This work was supported by the Nuclear Safety Research Program through
the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the
Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106058).

References

1. Kaur, S., Randhawa, S.: Dark web: a web of crimes. Wirel. Pers. Commun. 112, 2131–2158
(2020)

212 D. Kim et al.

2. He, S., He, Y., Li,M.: Classification of illegal activities on the darkweb. In: Proceedings of the
2nd International Conference on Information Science and Systems, Tokyo, Japan, pp. 73–78
(2019)

3. Rawat, R., Rajawat, A.S., Mahor, V., Shaw, R.N., Ghosh, A.: Dark web—onion hidden ser-
vice discovery and crawling for profiling morphing, unstructured crime and vulnerabilities
prediction. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds.) Innovations
in Electrical and Electronic Engineering. LNEE, vol. 756, pp. 717–734. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-16-0749-3_57

4. Laferrière, D., Décary-Hétu, D.: Examining the uncharted dark web: trust signalling on single
vendor shops. Deviant Behav. 44(1), 37–56 (2023)

5. Turk, K., Pastrana, S., Collier, B.: A tight scrape: methodological approaches to cybercrime
research data collection in adversarial environments. In: 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, pp. 428–437. IEEE (2020)

6. Faizan, M., Khan, R.A.: Exploring and analyzing the dark web: a new alchemy. First Monday
(2019)

7. Medina, P.B., Fernández, E.F., Gutiérrez, E.A.,AlNabki,M.W.:Detecting textual information
in images from onion domains using text spotting. In: XXXIX Jornadas de Automática: actas,
Badajoz, 5–7 de septiembre de 2018, pp. 975–982. Universidad de Extremadura (2018)

8. Dalvi, A., Paranjpe, S., Amale, R., Kurumkar, S., Kazi, F., Bhirud, S.G.: SpyDark: surface
and dark web crawler. In: 2021 2nd International Conference on Secure Cyber Computing
and Communications (ICSCCC), Jalandhar, India, pp. 45–49. IEEE (2021)

9. Huang, C., Fu, T., Chen, H.: Text-based video content classification for online video-sharing
sites. J. Am. Soc. Inform. Sci. Technol. 61(5), 891–906 (2010)

10. Nguyen, T.T.H., Jatowt, A., Coustaty, M., Doucet, A.: Survey of post-OCR processing
approaches. ACM Comput. Surv. (CSUR) 54(6), 1–37 (2021)

11. Mittal, R., Garg, A.: Text extraction usingOCR: a systematic review. In: 2020 Second Interna-
tional Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore,
India, pp. 357–362. IEEE (2020)

12. Alaidi, A.H.M., Roa’a,M., ALRikabi, H.T.S., Aljazaery, I.A., Abbood, S.H.: Darkweb illegal
activities crawling and classifying using data mining techniques. iJIM 16(10), 123 (2022)

13. Jeziorowski, S., Ismail, M., Siraj, A.: Towards image-based dark vendor profiling: an analysis
of image metadata and image hashing in dark web marketplaces. In: Proceedings of the Sixth
InternationalWorkshop on Security and PrivacyAnalytics, NewOrleans, LA,USA, pp. 15–22
(2020)

14. Pannu, M., Kay, I., Harris, D.: Using dark web crawler to uncover suspicious and malicious
websites. In: Ahram, T.Z., Nicholson, D. (eds.) AHFE 2018. AISC, vol. 782, pp. 108–115.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94782-2_11

15. Kavallieros, D., Myttas, D., Kermitsis, E., Lissaris, E., Giataganas, G., Darra, E.: Under-
standing the dark web. In: Akhgar, B., Gercke, M., Vrochidis, S., Gibson, H. (eds.) Dark
Web Investigation. SILE, pp. 3–26. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-55343-2_1

16. Bergman, J., Popov, O.B.: Exploring dark web crawlers: a systematic literature review of dark
web crawlers and their implementation. IEEE Access (2023)

17. Thammarak, K., Kongkla, P., Sirisathitkul, Y., Intakosum, S.: Comparative analysis of Tesser-
act and Google Cloud Vision for Thai vehicle registration certificate. Int. J. Electr. Comput.
Eng. 12(2), 1849–1858 (2022)

https://doi.org/10.1007/978-981-16-0749-3_57
https://doi.org/10.1007/978-3-319-94782-2_11
https://doi.org/10.1007/978-3-030-55343-2_1

Enriching Vulnerability Reports Through
Automated and Augmented Description

Summarization

Hattan Althebeiti and David Mohaisen(B)

University of Central Florida, Orlando, USA
{hattan.althebeiti,mohaisen}@ucf.edu

Abstract. Security incidents and data breaches are increasing rapidly, and only
a fraction of them is being reported. Public vulnerability databases, e.g., national
vulnerability database (NVD) and common vulnerability and exposure (CVE),
have been leading the effort in documenting vulnerabilities and sharing them
to aid defenses. Both are known for many issues, including brief vulnerability
descriptions. Those descriptions play an important role in communicating the
vulnerability information to security analysts in order to develop the appropriate
countermeasure. Many resources provide additional information about vulnera-
bilities, however, they are not utilized to boost public repositories. In this paper,
we devise a pipeline to augment vulnerability description through third party
reference (hyperlink) scrapping. To normalize the description, we build a nat-
ural language summarization pipeline utilizing a pretrained language model that
is fine-tuned using labeled instances and evaluate its performance against both
human evaluation (golden standard) and computational metrics, showing initial
promising results in terms of summary fluency, completeness, correctness, and
understanding.

Keywords: Vulnerability · NVD · CVE · Natural Language Processing ·
Summarization · Sentence Encoder · Transformer

1 Introduction

Vulnerabilities are weaknesses in systems that render them exposed to any threat or
exploitation. They are prevalent in software and are constantly being discovered and
patched. However, given the rapid development in technologies, discovering a vulnera-
bility and developing a mitigation technique become challenging. Moreover, document-
ing vulnerabilities and keeping track of their development become cumbersome.

The common vulnerability and exposure CVEmanaged byMITRE and the National
vulnerability database NVD managed by NIST are two key resources for reporting
and sharing vulnerabilities. The content of each resource may differ slightly accord-
ing to [8], but they are mostly synchronized and any update to the CVE should appear
eventually in the NVD. However, NVD/CVE descriptions have several shortcomings.
For example, the description might be incomplete, outdated or even contain inaccurate
information which could delay the development and deployment of patches. In 2017
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 213–227, 2024.
https://doi.org/10.1007/978-981-99-8024-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_17&domain=pdf
http://orcid.org/0000-0003-1834-025X
http://orcid.org/0000-0003-3227-2505
https://doi.org/10.1007/978-981-99-8024-6_17

214 H. Althebeiti and D. Mohaisen

Risk Based Security also known as VulbDB reported 7,900 more vulnerabilities than
what was reported by CVE [9,10]. Another concern with the existing framework is that
the description provided for vulnerabilities is often incomplete, brief, or does not carry
sufficient contextual information [3,5].

To address some of these gaps, this work focuses on the linguistic aspects of vul-
nerability description and attempts to improve them by formulating the problem as a
summarization task over augmented initial description. We exploit the existence of third
party reports associated with vulnerabilities, which include more detailed information
about the vulnerabilities that goes beyond the basic description in the CVE. Therefore,
we leverage these additional resources employing a natural language processing (NLP)
pipeline towards that goal, providing informative summaries that cover more details and
perform well on both computational and human metrics.

Contributions. The main contributions of this work are as follows. (1) we present a
pipeline that enriches the description of vulnerabilities by considering semantically
similar contents from various third party resources (reference URLs). (2) In order to
normalize the enriched description and alleviate some of the drawbacks of the augmen-
tation (e.g., redundancy and repetition, largely variable length of description), we build
an NLP pipeline that exploits advances in representation, pretrained language models
that are fine-tuned using the original (short description) as a label, and generate seman-
tically similar summaries of vulnerabilities. (3) We evaluate the performance of the
proposed NLP pipeline on NVD, a popular vulnerability database, with both computa-
tional and human metric evaluations.

2 Related Work

Vulnerabilities are constantly being exploited due to the wide spread of malware and
viruses along with the improper deployment of countermeasures or missing security
updates. Mohaisen et al. [16] proposed AMAL, an automated system to analyze and
classify malware based on its behaviour. AMAL is composed of two components
AutoMal and MaLabel. AutoMal collect information about malware samples based on
their behaviours for monitoring and profiling. On the other hand, MaLabel utilizes the
artifacts generated by AutoMal to build a feature vector representation for malware
samples. Moreover, MaLabel builds multiple classifiers to classify unlabeled malware
samples and to cluster them into separate groups such that each group have malware
samples with similar profiles.

Public repositories provide comprehensive information about vulnerabilities, how-
ever, they still suffer from quality and consistency issues as demonstrated in previ-
ous works [3,8]. Anwar et al. [3] have identified and quantified multiple quality issues
with the NVD and addressed their implications and ramifications. The authors present
a method for each matter to remedy the discovered deficiency and improve the NVD.
Similarly, Anwar et al. [4] studied the impact of vulnerability disclosure on the stock
market and how it affects different industries. They were able to cluster industries into
three categories based on the vulnerabilities impact on the vendor’s return.

Limited prior works studied different characteristics of vulnerabilities and used NLP
based-approach on the task, although NLP has been utilized extensively for other secu-

Enriching Vulnerability Reports Through Automated 215

rity and privacy applications. Alabduljabbar et al. [1] conducted a comprehensive study
to classify privacy policies established by a third party. A pipeline was developed to
classify text segments into a high-level category that correspond to the content of that
segment. Likewise, Alabduljabbar et al. [2] used NLP to conduct a comparative anal-
ysis of privacy policies presented by free and premium content websites. The study
highlighted that premium content websites are more transparent in terms of reporting
their practices with respect to data collection and tracking.

Dong et al. [8] built VIEM, a system to capture inconsistency between CVE/NVD
and third party reports utilizing Named Entity Recognition model (NER) and a Relation
Extractor model (RE). The NER is responsible for identifying the name and version of
vulnerable software based on their semantics and structure within the description and
label each of them accordingly. The RE component utilizes the identified labels and
pairs the appropriate software name and version to predict which software is vulnerable.

Other research focused on studying the relationship between CVE and Common
Attack Pattern Enumeration and Classification (CAPEC) and if it is possible to trace a
CVE description to a particular CAPEC using NLP as in Kanakogi et al. [12]. Simi-
larly, Kanakogi et al. [11] tested a new method for the same task but using Doc2Vec.
Wareus and Hell [22] proposed a method to automatically assigns Common Platform
Enumeration (CPE) to a CVEs from their description using NLP.

This Work. We propose a pipeline for enriching the vulnerability description, and a
pipeline for normalizing description through summarization and associated evaluation.

3 Dataset: Baseline and Data Augmentation

Data Source and Scraping. Our data source is NVD because it is a well-known stan-
dard accepted across the globe, in both industry and academia, with many strengths: (1)
detailed structured information, including the severity score and publication date, (2)
human-readable descriptions, (3) capabilities for reanalysis with updated information,
and (4) powerful API for vulnerability information retrieval.

In our data collection, we limit our timeframe to vulnerabilities reported between
2019 and 2021 (inclusive). Based on our analysis, CVEs reported before 2019 do not
include sufficient hyperlinks with additional text, which is our main source for aug-
mentation. We list all the vulnerabilities reported in this period, and scrap them. For
each vulnerability, we scrap the URLs pointing to the NVD page that hosts a particu-
lar vulnerability. As a result, we obtain 35,657 vulnerabilities with their unique URLs.
Second, we iterate through every URL various data elements. After retrieving the URL,
we scrap the description and the hyperlinks for that vulnerability.

Description Augmentation. To augment the description, we iterate through the
scrapped hyperlinks. Each hyperlink directs us to a page hosted by a third party, which
could be an official page belonging to the vendor or the developer or an unofficial page;
e.g., GitHub issue tracking page. We scrape every paragraph tag in each page separately
and apply various preprocessing steps to the extracted paragraph to clean up the text.
This preprocessing includes removing web links, special characters, white redundant
spaces, phone numbers, and email addresses. We also check the length of the paragraph

216 H. Althebeiti and D. Mohaisen

Fig. 1. Data collection pipeline

and ensure it is more than 20 words after preprocessing. We conjecture that paragraphs
shorter than 20 words will not contribute to our goal.

After cleaning the text and verifying the length, we use a sentence encoder to
encode the semantic for the extracted paragraph and the scrapped description into
low dimensional vector representations (more in Sect. 4.1). To determine the similar-
ity between the vectorized representations, we use the cosine similarity which yields
a value between −1 and 1. For example, let the vector representation of the extracted
paragraph be vp and that of the description be vd, the cosine similarity is defined as:

cos(vp,vd) =
#»vp · #»vd

|| #»vp|| || #»vd|| (1)

If cos(vp,vd) exceeds a predefined threshold, we add/augment the paragraph as the
input text and the description as the summary text. This process is repeated with every
paragraph contained within a page. We repeat this step for every hyperlink by extracting
the page, associated paragraph tags, applying preprocessing, encoding semantic and
measure the similarity with the description. We note that some vulnerabilities may not
be added to our dataset; e.g., if the vulnerability did not have any hyperlinks or if its
associated hyperlinks did not include any paragraph that meets the predefined threshold.
We repeat the process for each URL until we cover all the URLs, upon which dataset is
ready to be presented to the model.

Figure 1 shows our pipeline. The choice of a sentence encoder will affect the dataset
because the inclusion of a paragraph is based on the similarity score between the
vectorized representation of the description and paragraph encoded by the sentence
encoder. To enhance our experiments and provide a better insight into different encoders
and summarization models, we use two sentence encoder choices: Universal Sentence
Encoder (USE) and MPNet sentence encoder. In our analysis, we use the best perform-
ing encoder with respect to the end-goal outcome of our summarization task.

Per Fig. 1, the similarity score must exceed a predefined threshold. From our pre-
liminary assessment of the two encoders, we found that USE is more accurate (sensi-
tive) than MPNet in terms of the similarity score representation, meaning that when the
description and the paragraph are (semantically) similar to one another, USE produces
a higher score than MPNet and vice versa. Considering this insight, we set different
threshold for each encoder. Namely, we set the similarity score for USE to be between
0.60 and 0.90, since the encoder is accurate. On the other hand, since MPNet is less
accurate (sensitive) than USE, we enforce a more restrictive threshold and set it between

Enriching Vulnerability Reports Through Automated 217

0.70 and 0.90. We excluded paragraphs with a similarity score above 0.90 because we
found those paragraphs to be almost identical to the description, thus adding themwould
not serve the main purpose of enriching the description. Those values were picked as
part of our assessment over the two encoders using a small set of vulnerabilities and
following the procedure explained above.

Some hyperlinks analysis took extremely long time. Upon examining the content
of those pages, we found that they contain a history of the software vulnerability with
updates, e.g., over 20,000 paragraph tags in some cases. Moreover, most of them were
not considered by the sentence encoder because they do not meet the threshold. As such,
we consider the first 100 paragraph tag in each hyperlink to speed up the process. We
justify this heuristic by noting that most pages contain the related textual information
at the beginning with subsequent paragraphs being reiteration of information that is
already mentioned earlier. Finally, to only limit our collection to authentic descriptions,
we consider hyperlinks with valid SSL certificate.

Additionally, we curated a third dataset using both and enforcing multiple thresh-
olds on the similarity criterion. For that, we used the same the threshold for the MPNet
as before, and relaxed the threshold for USE to 0.50 to relax an imposed restrictive
setting by possibly excluding otherwise qualified candidate paragraphs.

Table 1. Datasets

CVEs Encoders Vuln.

35,657 USE 9,955

MPNet 8,664

Both 10,766

Given the differences between the two
encoders, we consider a paragraph to be sim-
ilar if the difference between the two similar-
ity scores is at most 0.20; otherwise we con-
sider them dissimilar and discard the paragraph.
Here, we favored the consistency between the
two encoding techniques to conceptually alle-
viate the discrepancy presented from using the
two different encoders. Table 1 shows the datasets. In the next section, we elaborate
about the encoders in more detail.

4 Methodology and Building Blocks

4.1 Sentence Encoders

Among the multiple tried encoders over multiple CVEs along with their similar para-
graphs, we found that the best encoders for our task are the Universal Sentence Encoder
(USE) [6] and MPNet sentence encoder [20], which we explain in the following.

Universal Sentence Encoder. Two architectures are proposed for USE. The first is
a transformer-based model which uses a transformer architecture to compute con-
text aware representation of the words while preserving words’ positions, followed by
embeddings used to compute fixed length sentence encoding using element-wise sum
at each word position. The downside of this architecture is its time and space complex-
ities, i.e., it takes O(n2) and is proportional in space to the sentence length. The second
architecture is much simpler and uses a Deep Averaging Network (DAN). It computes
a sentence initial embedding by averaging words with bi-gram embeddings and passes
this embedding through a feed forward network to produce the final embedding. Unlike

218 H. Althebeiti and D. Mohaisen

the transformer architecture, DAN’s time complexity is O(n) and its space is constant
with respect to the length of the sentence. The trade-off in choosing among those two
architectures is between the high accuracy with intensive computation achieved by the
transformer architecture versus the efficient inference and computation with a reduced
accuracy achieved by the DAN architecture. Given our problem’s characteristics, we
decided to use the DAN architecture because (1) our data will be scraped, and its length
may vary widely, and (2) our data is domain-specific and is limited in its linguistic
scope. We conjecture DAN will produce accurate embedding since the vocabulary size
is limited (i.e., small). Finally, considering that we have over 35,000 Vulnerabilities,
where each has multiple hyperlinks to be scraped, the scalability benefit of DAN out-
weighs the high accuracy of the transformer-based architecture.

MPNet. The second technique we utilize is MPNet. MPNet is a model that leverages
the advantages presented in two famous pretrained models: BERT [7] and XLNET [23].
BERT uses a masked language modeling objective, which masks 15% of the tokens and
the model is trained to predict them. The downside of BERT is that it does not con-
sider the dependency between the masked tokens. On the other hand, XLNET retains
the autoregressive modeling by presenting permuted language modeling objective in
which each token within a sequence considers the permutations of the previous tokens
in the sequence but not after it. However, this causes position discrepancy between the
pretraining and fine-tuning. MPNet unifies the objectives of the two models by consid-
ering dependency among predicted tokens and considering all tokens’ positions to solve
the position discrepancy. Moreover, MPNet sentence transformer is built by fine-tuning
MPNet on 1 billion sentence-pair dataset and uses contrastive learning objective. Given
a sentence from the pair, the model tries to predict which other sentence it was paired
with. This is done by computing the cosine similarity with every other sentence in the
batch and then using the cross-entropy loss with respect to the true pair. In the next
section we explain the pipeline for our summarization models.

4.2 Pretrained Models

The goal of this work is to use pretrained models and fine-tune them on our datasets for
vulnerability summarization and description enrichment. The pretrained models inherit
the architecture of the original transformer [21] with some adjustments to the weights
depending on the task it is performing. The transformer itself constitutes of two major
components: an encoder and a decoder. The encoder’s role is to build a representa-
tion for the input sequence that captures the dependencies between tokens in parallel
without losing positional information of those tokens. The transformer relies on the
attention mechanism to capture interdependency within a sequence, which provides a
context-aware representation for each token. The decoder’s role is to use the built rep-
resentation and map it to a probability distribution over the entire vocabulary to predict
the next word. Figure 2 shows the pipeline of a the encoder-decoder transformer from
the beginning of inputting the raw text to the prediction (decoded into utterances for
sequences generation; i.e., summarization).

The original transformer was developed and is intended for machine translation,
although generalized to other tasks with remarkable results. We note that most mod-
ern pretrained models use a transformer architecture that depends on an encoder only;

Enriching Vulnerability Reports Through Automated 219

Fig. 2. Our summarization pipeline

e.g., BERT [7], a decoder only; e.g., GPT (Generative Pre-trained Transformer) [17],
or both. Each architecture has its own advantages, which allows it to excel in specific
tasks. The summarization task, for example, can be modeled as a seq2seq task where
the model takes an input (long text) and outputs the summary, which naturally makes a
model that constitutes of encoder and decoder ideal for its design. In the NLP literature,
the most performant models for summarization are BART [15], T5 [18], and Pegasus
[24], with BART and T5 being more widely used. BART is a denoising autoencoder
for pretraining seq2seq with an encoder-decoder architecture. The idea of BART is to
use a noising function to corrupt the text and train the model to reconstruct the origi-
nal (uncorrupted) text. In contrast, T5 uses a masked language modelling objective like
BERT for training. Instead of masking a token, T5 masks a span of the original text
as its corruption strategy. The length of the span does not influence the model perfor-
mance unless too many tokens are within that span. Moreover, T5 attempts to define
a framework for many NLP tasks by adding a prefix that identifies the task it tries to
learn. Therefore, one model can support multiple tasks by defining those prefixes in the
training data and adding those prefixes to a sample allows the model to predict for the
task associated with that prefix.

4.3 Pipeline

Next, we discuss the pipeline depicted in Fig. 2 in more details. The major steps of
our pipeline are tokenization of the input text sequence (description), encoding, token
embedding, positional embedding, encoding-decoding (utilizing a fine-tuned pretrained
language model), and prediction. Those steps are elaborated in the following.

Tokenization. The first step for most models is tokenization, which includes breaking
text into individual independent entities and encoding them into numerical representa-
tion. Tokenization could be applied at the word or character level. With word tokeniza-
tion, we will end up with a large vocabulary size that will affect the dimensionality of
the word embedding. To address the dimensionality issue, it is common to limit the
size to the most common 100,000 words in a corpus and encode all unknown words

220 H. Althebeiti and D. Mohaisen

as <UNK>. However, most words morphemes will be encoded as unknown although
they possess very similar meaning to their root. Similarly, character embedding dom-
inant limitation is losing the linguistic structure and considering a text as a stream of
characters. A third type is the subword tokenization, which alleviates the drawbacks
of the two aforementioned tokenization granularities. Subword tokenization splits rare
words into a meaningful unit which helps the model to handle complex words and asso-
ciate their embedding with similar words. This allows the model to associate singular
with plural and relate different morphemes to their root. BART uses Byte-Pair Encoding
(BPE) [19] and T5 uses SentencePiece [13,14] which are both subword tokenizer.

Token Encoding. The tokenized text is transformed into numerical representation using
one-hot encoding with a size equal to the vocabulary size; e.g., 20k–200k tokens.

Token Embedding. The token encodings are then projected into lower dimensional
space that captures the characteristics of each word in a token embedding. However, for
a pretrained model this and the previous step are already done and the token embedding
is already computed during the model training. Those two steps are required if we
plan to build our own transformer from the bottom-up. In practice, each token will
be represented by an id that identifies it with respect to the model.

Each text consists of tokenized words and each token is represented by an input id.
To increase the efficiency of the model, we create a batch of multiple text before feeding
the text into the transformer. However, to create a batch, we must ensure that all texts
have the same size as the longest text in that batch. For that padding is used to pad short
text to meet the length requirements by adding id ‘0’ to the text sequence. Moreover, the
attention mask informs the model to ignore those padding during encoding by assigning
1 to tokens that are part of the original sequence and 0 for padding. Finally, the batch of
texts (with attention masks) is passed to the transformer block. Each model has some
reserved ids that are used for a specific purpose.

Positional Embedding. The transformer uses the attention mechanism to capture the
contextual interdependence between words. However, this method is oblivious to the
words’ positions, and we need a way to inject this information into the word embed-
ding. As with tokenizer, each model has its own way of including this information.
BART uses the same method used in the original transformer where a simple sinusoidal
function is used to create a positional embedding for each token within a sequence. On
the other hand, T5 uses a more sophisticated approach, called the Relative Positional
Encoding (RPE), which uses a multi-headed attention to encode the relative positions
between tokens. The intuition behind RPE stems from the fact that what is most impor-
tant is the surrounding words rather than its exact position, and that is how RPE com-
putes the positional embedding. The token embedding, and the positional embedding
are added together to build the final embedding that will be fed into the transformer.

Transformer. This step consists of an encoder an a decoder. The encoder uses a multi-
headed attention to build a representation that captures the contextual interdependence
relationship between tokens. The encoder uses several layers of self-attention to com-
pute how much attention should be paid by every token with respect to other tokens to
build the final numerical representation. Modern transformers use the scaled dot product
attention which utilizes a query, key, and value computed for each token to produce the

Enriching Vulnerability Reports Through Automated 221

attention score for every token with respect to other tokens in the sequence. A simple
intuition behind applying several attention layers (heads) is that each head may focus
on one aspect of attention, while others may capture a different similarity. By con-
catenating the output of all heads, however, we obtain a more powerful representation
that resembles that sequence. The feed forward network receives every token embed-
ding from the multi-headed attention and processes it independently to produce its final
embedding which is referred to as the hidden states.

As the encoder outputs a representation of the input sequence, the decoder’s objec-
tive is to leverage the hidden states to generate the target words. We note that summa-
rization requires text generation to generate the next token in an autoregressive fashion.
As such, the generation procedure’s objective is to predict the next token given the
previous tokens. This can be achieved using the chain rule to factorize the conditional
probabilities as

P (x(t+1)|x(t), ..., x(1)) =
T∏

t=1

P (x(t+1)|x(t), ..., x(1)) (2)

A numerical instability results from the product of the multiple probabilities as they
become smaller. Thus, it is common to use the log of the conditional probability to
obtain a sum, as

log(P (x(t+1)|x(t), ..., x(1))) =
T∑

t=1

log(P (x(t+1)|x(t), ..., x(1))) (3)

From this objective, there are various methods to select the next token through
decoding with two aspects to consider. (1) The decoding method is done iteratively,
where the next token is chosen based on the sequence at each time step. (2) It is impor-
tant to emphasize certain characteristics of the selected word; e.g., in summarization
we care about the quality of the decoded sequence, compared to storytelling or open
domain conversation where care more about the diversity when generating the next
token.

Decoding. In this work, the beam search is used as decoder, since summarization
emphasizes factual or real information in the text. This method is parameterized by
the number of beams, which defines the number of the most probable next tokens to
be considered in the generated sequence and keep track of the associated sequences by
extending a partial hypothesis to include the next set of probable tokens to be appended
to the sequence until it reaches the end of sequence. The sequences are then ranked
based on their log probabilities, and the sequence with the highest probability is chosen.
It is important to ensure that at each time step, the decoder is conditioned on the current
token and the past output only. This step is crucial to assure the model does not cheat
by accessing future tokens. While the transformer architecture is task-independent, the
classification head is task-specific, and we use a linear layer that produces a logit fol-
lowed by a softmax layer to produce a probability distribution for decoding.

Operational Considerations. Transformers are typically deployed in one of two set-
ting. (1) As a feature extractor, where we compute the hidden states for each word

222 H. Althebeiti and D. Mohaisen

embedding, the model parameters are frozen, and we only train the classification head
on our task. Training using this method is fast and suitable in the absence of resources
to fine tune the whole model. (2) As a fine-tuning setting, where all the model trainable
parameters are fine-tuned for our task. This setting requires time and computational
resources depending on the model size. In our case we use BART and T5 for fine-tuning
and since BART has a smaller number of parameters, its fine-tuning is faster.

5 Evaluations

Statistical Analysis. After assembling the three datasets, we picked the dataset pro-
duced by both encoders, given that it is the largest, for statistical analysis (the results
with other datasets are omitted for the lack of space). The goal of this analysis is to
obtain a better insight over the dataset language characteristics. From this analysis, we
found the number of tokens of most augmented descriptions falls below 1000 tokens, in
contrast to the original summary which is below 200 tokens for the majority of vulnera-
bilities. Therefore, we set the threshold for the augmented description and the summary
to be 1000 and 250 tokens, respectively, in our pipeline.

We collect the word, character, and sentence count of the augmented and original
summary and found a significant difference between them (e.g., (mean, standard devia-
tion) for word, character, and sentence in both cases are: (48, 2086) vs (49, 31), (2939,
12370) vs (279, 186), and (43, 184) vs (7, 5.32). This highlights the need for a summa-
rization to normalize the augmented description.

Next, we perform named entity recognition to understand which entities were pre-
sented across the summary because this is our target in the dataset. We found the fol-
lowing frequent named entities: (XSS, 799), (N/AC 523), (IBMX-Force ID, 463), (N/S,
343), (Cisco, 336), (SQL, 334), (Server, 315), (JavaScript, 267), (WordPress, 264),
(Jenkins, 240), (IBM, 237), (Firefox, 200), (Java, 187), (VirtualBox, 174), (PHP, 164),
(Java SE, 150), and (Android, 148). The common names include organizations, e.g.,
Cisco and IBM, technologies, e.g., JavaScript, and PHP, or vulnerabilities, e.g., XSS.

We further analyze the most frequent trigram across the dataset. We found that the
description trigrams are meaningful, and form the basis for a good summary, in contrast
to the augmented text trigrams that, in general, do not present useful information and
appear to be uninformative. This might be a result of augmenting repeated content,
which highlights certain trigrams based on the frequency. Those initial results highlight
the need for an additional summarization step.

Experimental Settings. We fine-tune both models using two different settings. First,
We split the dataset with %10 reserved for testing. Then, we split the training set with
%10 reserved for validation. Second, based on our preliminary analysis, we set 1000
and 250 tokens as the maximum lengths for augmented descriptions and new summary.

Finally, We set the batch size to 8 and the learning rate to 0.0001 based on various
parameters (results omitted for the lack of space). We use beam search as our decoding
method, with a beam size of 2. We also fix several parameters: length penalty to 8
(which encourages the model to produce longer summary if it is set to a value higher
than 1), and the repetition penalty to 2 (which instructs the model whether to use words
that have already been generated or not). Those values are chosen among various values

Enriching Vulnerability Reports Through Automated 223

Table 2. Results after fine-tuning the models using different hyperparameters (Recall, Precision,
b = number of beams, T = text maximum limit, B = batch size)

Model R P F1 T b B

BART 0.51 0.50 0.49 1000 2 8

0.51 0.46 0.47 1000 5 8

0.52 0.52 0.51 500 2 8

0.53 0.50 0.50 500 5 8

0.50 0.51 0.49 500 2 4

0.51 0.49 0.49 500 5 4

T5 0.46 0.50 0.47 500 2 8

0.47 0.49 0.47 500 5 8

0.47 0.52 0.48 500 2 4

0.47 0.50 0.47 500 5 4

for their best performance, as demonstrated in Table 2. As we stated earlier, we did
extensive experimentation on the mixed dataset that uses both encoders and based on
its result we experimented with other datasets.

ComputationalMetrics and Results.ROUGEmeasures the matching n-gram between
the prediction and the target. For our evaluation, we use ROUGE-1, which measures
the overlapping unigram, and gives an approximation of the overlap based on individ-
ual words. For ROGUE, we use three sub-metrics: recall, precision, and F1 score. The
recall measures the number of matching n-gram between our generated summary and
the target summary, normalized by the number of words in the target summary. In con-
trast, the precision normalizes that quantity by the number of words in the generated
summary. Finally, F1 score is expressed as:

F1−Score = 2× precision× recall

precision+ recall
(4)

Table 3. Models training T� and vali-
dation loss V� over different batch sizes
(B)

Model T� V� B

BART 0.42 0.46 8

0.32 0.46 4

T5 1.96 1.48 8

2.35 1.46 4

Table 2 shows the ROUGE scores after fine-
tuning BART and T5. Multiple experiments
have been conducted using different batch sizes,
text limit, and number of beams. As we can see
in Table 2, when the text limit has shrunk to
500 tokens for the augmented text, all metrics
have improved. We also can see that most met-
rics achieved better score with a smaller num-
ber of beams. This is explained by the beam
search decoding, as we increase the number of
sequences by having a high number of beams,
the risk introduced by considering the wrong
sequence increases.

224 H. Althebeiti and D. Mohaisen

We tested BART with a batch size of 4 and with 500 tokens as the augmented
description limit and it outperformed the model trained with 1000 as text limit. It is
important to notice that as the number of beams increases, the time it takes the model
to generate the summary increases. Considering our initial results from BART and the
resources demand for T5 as it is much larger, we decided to train it on text limited to
500 tokens. However, the results did not align with BART. For example, we found that
batch size of 4 did better than 8 across all three metrics for T5. Moreover, we see that
increasing the number of beams did not help. We point out, however, that the validation
loss varies between the two models as shown in the Table 3. This shows that BART did
better than T5 during training, which is why BART achieved better scores.

Summary Comparison. We compare the target summary with the model generated
summary using the same sentence encoders. We encode both summaries (original and
new) using both encoders and measure the similarity between the target and the predic-
tion. We found that most predictions are very close to the target with the mean of the
distribution around a similarity of 0.75 (the figures are omitted for the lack of space).

We report the computational metrics in Table 4. Although the mixed dataset had
more instances, the models trained on the separate datasets outperformed it. This could
be attributed to the restriction we relaxed for the USE encoder, which allows the pipeline
to include more paragraphs. Moreover, since the two encoders use different architec-
tures, using them together may have a negative effect on the curated dataset. More
experimentation might be needed to find the perfect threshold to use them both.

Table 4. Results after fine-tuning the mod-
els using different single encoder (Precision,
Recall, b = beams, B = batch)

Model Encoder R P F1 b B

BART USE 0.61 0.60 0.59 2 8

MPNet 0.55 0.57 0.55 2 8

T5 USE 0.58 0.62 0.59 2 4

MPNet 0.53 0.59 0.54 2 4

The models trained using USE
dataset outperformed the MPNet dataset.
While the USE dataset is larger, we
believe the results are better due to USE’s
accuracy in encoding text semantic. It
also prove that USE produces a reliable
representation for long text. We reiterate
here that we used the DAN architecture
for USE which is less accurate than the
transformer architecture as we explained
in Sect. 4.1. Therefore, using the trans-
former architecture to build the dataset
could generate a more accurate dataset that is likely to outperform the result in Table 4.

Human Metrics Results. We consider four human metrics: fluency, correctness, com-
pleteness, and understanding. All human metrics are graded on a scale between 1–3 in
which 3 is the best grade and 1 is the worse in terms of the metric definition.

Fluency measures the grammatical structure of the prediction and how coherent the
semantics of the generated summary. The correctnessmeasures how accurate the model
prediction is in terms of capturing the correct vulnerability details. The completeness
measures how complete is the generated summary with respect to details in the original
summary. The understanding measures how easy it is to understand the generated sum-
mary. The human evaluation on the generated summary from both models is done over
100 randomly selected samples where the average is reported in Table 5.

Enriching Vulnerability Reports Through Automated 225

Table 5.Human evaluation: Fluency,
Completeness, Correctness, and
Understanding

Model F Cm Cr U

BART 2.69 2.15 2.16 2.58

T5 2.72 2.07 2.04 2.57

After analyzing both models we observed sim-
ilar behaviors. We found that both models produce
a fluent summary with very few exceptions. Simi-
larly, the generated summaries are mostly easy to
follow and understand. However, in some cases
when the generated summaries are short, they do
not convey much meaning and it becomes hard to
understand the summaries. In contrast, complete-
ness and correctness suffered with both models. We did not anticipate the models to
perform well across those metrics because the dataset was not curated for detecting
such features. Moreover, the dataset is imbalanced with respect to its features in terms
of augmented text length which we believe is the main reason for both models in miss-
ing those two metrics. However, when the augmented text is of certain length, those two
metrics achieve good results. The human evaluation metrics are averaged and shown in
Table 5. We can see that both models are comparable in terms of human metrics when
their generated summary is compared against the corresponding target.

Qualitative Results. Both models experienced unpredictable behaviors by repeating
some sentences multiple times, or by adding unrelated software to the prediction. Both
models also tend to be extractive when the augmented text is of a certain length. For
instance, if the text is short (20 words), both models will tend to make up summriza-
tion that was learned during training by including vulnerability description such as gain
access or code execution, even when none of these were mentioned in augmented text.
On the other hand, when the augmented description is too long, the prediction becomes
repetitive and hard to understand, although it still covers different portions of the target
summary. One possible solution is to ensure a diversity among the augmented sentences
and that no sentence is repeated. However, this could be expensive, as it requires check-
ing every new candidate paragraph against all already augmented paragraphs.

6 Conclusion

We leverage publicly available resources to enhance and enrich vulnerabilities descrip-
tion through data augmentation. Our method relies on public databases for collection of
text data and pass them through multiple filters to extract relevant text that could con-
tribute to our dataset. We fine-tune two pretrained models that excel in summrization
tasks using our curated dataset and report initial and promising result using computa-
tional and human metrics. Data curation is a future direction for improving accuracy.

Acknowledgement. This work was supported in part by NRF under grant number
2016K1A1A2912757 and by CyberFlorida’s Seed Grant.

References

1. Alabduljabbar, A., Abusnaina, A., Meteriz-Yildiran, Ü., Mohaisen, D.: Automated privacy
policy annotation with information highlighting made practical using deep representations.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2378–2380 (2021)

226 H. Althebeiti and D. Mohaisen

2. Alabduljabbar, A., Mohaisen, D.: Measuring the privacy dimension of free content websites
through automated privacy policy analysis and annotation. In: Companion Proceedings of
the Web Conference (2022)

3. Anwar, A., Abusnaina, A., Chen, S., Li, F., Mohaisen, D.: Cleaning the NVD: comprehen-
sive quality assessment, improvements, and analyses. CoRR abs/2006.15074 (2020). https://
arxiv.org/abs/2006.15074

4. Anwar, A., et al.: Measuring the cost of software vulnerabilities. EAI Endorsed Trans. Secur.
Saf. 7(23), e1–e1 (2020)

5. Anwar, A., Khormali, A., Nyang, D.H., Mohaisen, A.: Understanding the hidden cost of
software vulnerabilities: measurements and predictions. In: Beyah, R., Chang, B., Li, Y.,
Zhu, S. (eds.) SecureComm 2018. LNICST, vol. 254, pp. 377–395. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01701-9 21

6. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)
7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-

tional transformers for language understanding. In: 2019 Conference of the North American
Chapter of the Association for Computational Linguistics (2018)

8. Dong, Y., Guo, W., Chen, Y., Xing, X., Zhang, Y., Wang, G.: Towards the detection of incon-
sistencies in public security vulnerability reports. In: 28th USENIX Security Symposium,
pp. 869–885 (2019)

9. Help Net Security: Still relying solely on CVE and NVD for vulnerability tracking? Bad idea
(2018). https://www.helpnetsecurity.com/2018/02/16/cve-nvd-vulnerability-tracking/

10. Information Security Buzz: Why critical vulnerabilities do not get reported in the
CVE/NVD databases and how organisations can mitigate the risks (2018). https://
informationsecuritybuzz.com/articles/why-critical-vulnerabilities/

11. Kanakogi, K., et al.: Tracing CAPEC attack patterns from CVE vulnerability information
using natural language processing technique. In: 54th Hawaii International Conference on
System Sciences (2021)

12. Kanakogi, K., et al.: Tracing CVE vulnerability information to CAPEC attack patterns using
natural language processing techniques. Information 12(8), 298 (2021)

13. Kudo, T.: Subword regularization: improving neural network translation models with multi-
ple subword candidates. arXiv preprint arXiv:1804.10959 (2018)

14. Kudo, T., Richardson, J.: Sentencepiece: a simple and language independent subword tok-
enizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226 (2018)

15. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

16. Mohaisen, A., Alrawi, O., Mohaisen, M.: AMAL: high-fidelity, behavior-based automated
malware analysis and classification. Comput. Secur. 52, 251–266 (2015)

17. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding
by generative pre-training. OpenAI (2018)

18. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683 (2019)

19. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword
units. In: 54th Annual Meeting of the Association for Computational Linguistics (2015)

20. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MPNet: masked and permuted pre-training for
language understanding. In: Advances in Neural Information Processing Systems, vol. 33,
pp. 16857–16867 (2020)

21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems, vol. 30 (2017)

22. Wåreus, E., Hell, M.: Automated CPE labeling of CVE summaries with machine learning.
In: Maurice, C., Bilge, L., Stringhini, G., Neves, N. (eds.) DIMVA 2020. LNCS, vol. 12223,
pp. 3–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52683-2 1

https://arxiv.org/abs/2006.15074
https://arxiv.org/abs/2006.15074
https://doi.org/10.1007/978-3-030-01701-9_21
http://arxiv.org/abs/1803.11175
https://www.helpnetsecurity.com/2018/02/16/cve-nvd-vulnerability-tracking/
https://informationsecuritybuzz.com/articles/why-critical-vulnerabilities/
https://informationsecuritybuzz.com/articles/why-critical-vulnerabilities/
http://arxiv.org/abs/1804.10959
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.10683
https://doi.org/10.1007/978-3-030-52683-2_1

Enriching Vulnerability Reports Through Automated 227

23. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V.: XLNet generalized
autoregressive pretraining for language understanding (2019). https://arxiv.org/abs/1906.
08237. Accessed June 21

24. Zhang, J., Zhao, Y., Saleh, M., Liu, P.: Pegasus: pre-training with extracted gap-sentences for
abstractive summarization. In: International Conference on Machine Learning, pp. 11328–
11339. PMLR (2020)

https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237

Hardware and Software Security

Protecting Kernel Code Integrity
with PMP on RISC-V

Seon Ha and Hyungon Moon(B)

UNIST (Ulsan National Institute of Science and Technology), Ulsan, South Korea
{seonha,hyungon}@unist.ac.kr

Abstract. Kernel code integrity is the foundation of the security of the
entire system. Attackers are motivated to compromise the kernel code
integrity because it gives them the highest possible privilege on the sys-
tem, allowing them to take the full control of it. They can perform the
attack by either modifying the kernel code directly or tricking the kernel
to execute from data pages. Existing kernels and processors are work-
ing together to defeat this threat, but their reliance on the page table
leaves the attackers leeway to bypass the protection. Existing solutions
aiming to tackle this limitation, the reliance on the page table integrity,
are either too expensive or require custom hardware. In this paper, we
present a software-only design of a kernel code integrity protection mech-
anism for RISC-V-based systems that implement the Physical Memory
Protection (PMP). We show that, despite the lack of direct support for
kernel code protection, the kernel and the machine mode firmware can
work together to leverage the PMP to defeat the advanced kernel code
integrity-compromising attacks by dynamically switching the memory
protection policies on user-kernel switches. The performance estimation
using our prototype shows that the proposed mechanisms incur moder-
ate (<24%) overhead on system call latencies. The security evaluation
using synthetic advanced attacks also demonstrates that the proposed
mechanism can effectively prevent the page table-corrupting kernel code
injection attacks.

Keywords: Operating System Kernel · Code Integrity · RISC-V

This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (No. NRF-2022R1F1A1076100) and this work
was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2021-0-00724,
RISC-V based Secure CPU Architecture Design for Embedded System Malware Detec-
tion and Response) and this research was supported by the MSIT(Ministry of Science
and ICT), Korea, under the ITRC(Information Technology Research Center) support
program(IITP-2023-2021-0-01817) supervised by the IITP(Institute for Information &
Communications Technology Planning & Evaluation) and this work was supported by
Samsung Electronics Co., Ltd.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 231–243, 2024.
https://doi.org/10.1007/978-981-99-8024-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_18&domain=pdf
http://orcid.org/0009-0003-6364-9085
http://orcid.org/0000-0002-4513-1034
https://doi.org/10.1007/978-981-99-8024-6_18

232 S. Ha and H. Moon

1 Introduction

Operating system kernels, being the most privileged software components in a
computer system, are responsible for managing resources and enforcing security
protocols. Unfortunately, their inherent complexity makes them vulnerable to
malicious manipulation, potentially enabling attackers to breach the system’s
integrity. At the center of the kernel is its code that specifies how it behaves
under varying situations. This makes the integrity of kernel code a key pillar
of an operating system’s security. Attackers can manipulate the kernel code
in multiple ways including the direct modification and data page execution,
effectively causing the kernel to execute attacker-written code with the kernel’s
privilege.

Existing solutions for protecting kernel code integrity either rely on the page
table integrity [4,5] or custom hardware [6,7,11]. The importance of the kernel
code integrity led to the development and deployment of the dedicated page
table attributes as we explain in Sect. 2. Modern kernels are proactively using
them to ensure that the kernel will execute only the kernel code while in the
privileged mode. Unfortunately, this is only a mitigation not a prevention mech-
anism in that the protection relies fully on the integrity of the page table. When
assuming the attackers exploiting the kernel vulnerabilities, the page tables are
not out the range of their corruption. The page tables must remain writable,
and the attackers can use such writable mappings to first create counterfeit
page table entries and then use them to modify the kernel code or execute data
pages. Existing software-based mechanisms aimed to address this problem by
mediating all page table updates using a trusted software component, but the
approach often comes with substantial performance overheads. This motivated
the development of mechanisms using dedicated hardware [6,7,11]. Hardware-
based approaches are effective in detecting and preventing kernel code integrity-
compromising attacks and efficient in that they do not degrade the software per-
formance significantly. However, the reliance on custom hardware makes them
hard to adopt and could accompany hidden cost in energy, power or area.

This paper presents a mechanism in the middle ground between the software-
based and hardware-based approaches. The mechanism that we propose in this
paper protects the kernel code integrity without relying on the page table.
Instead, it uses the Physical Memory Protection (PMP) feature of the RISC-
V processor that enables it to specify and enforce access control policies at the
physical address level.

The PMP by itself is incapable of protecting the kernel code integrity because
it does not have the notion of the kernel code and does not take the current priv-
ilege mode into account when enforcing the access control policies. To overcome
this challenge, we prepare two concise yet effective sets of access control poli-
cies to be used by during in the kernel and user modes, respectively. We find
that the sophisticated design of the PMP enables us to specify these two policies
without using too many of their configuration registers, which are precious hard-
ware resources, and the kernel can be efficiently hooked to trigger the switches
between the two policies, by invoking the machine mode firmware.

Protecting Kernel Code Integrity with PMP on RISC-V 233

The evaluation using our prototype suggests that the proposed mechanism
incurs moderate performance overhead on system call latencies. We measure
the number and the composition of additional instructions that the kernel and
machine mode firmware must execute, and use the result to emulate the imple-
mentation to estimate the overhead of the proposed mechanism on the system
call latencies. The result shows that the proposed mechanism incurs less than
24% overhead on the system call latencies, making it an acceptable approach for
systems that do not have the custom hardware. We also demonstrate that our
prototype effectively prevents the advanced attacks from manipulating the ker-
nel code using two synthetic attacks. Our prototype successfully prevented these
two attacks that the baseline system fails to even recognize due to its reliance
on the page table.

2 Background and Motivation

Operating system kernel is a cornerstone of a computer system’s security. The
kernel is the most privileged software component in a computer system and it
is responsible for managing the system’s resources and enforcing the system’s
security policies. An attacker who takes control of the kernel by any means can
manipulate the system in any way they want. The inherent complexity of modern
commodity operating system kernels makes them have vulnerabilities that can
be exploited by attackers to gain such control of the kernel.

2.1 Kernel Code Integrity

Kernel code integrity is one of the fundamental properties that should be guar-
anteed to ensure the genuineness of an operating system kernel. An attacker
can manipulate the kernel in many different ways, and they often want the
manipulation to be persistent, for example, by hooking a system call with an
attacker-defined routine. Although it is known that an attacker can craft an
in-kernel hook by stitching gadgets [15], it is often desirable to directly manip-
ulate the kernel code to achieve the same goal due to the inherent complexity
of the gadget stitching technique. For example, jailbreaks for iOS devices often
rely on the manipulation of the kernel code to achieve the goal of escaping the
sandbox [12,14,17].

Kernel code injection refers to the manipulation of the kernel code by inject-
ing attacker-defined code into the kernel. Specifically, an attacker can inject a
piece of code into the kernel by either directly modifying the kernel code pages
or by tricking the kernel to execute the attacker’s code from outside the kernel
code pages. The latter can be done by corrupting the code pointers in the kernel
such as the return address or system call table entries.

2.2 Limitation of Existing Solutions

The importance of kernel code integrity has been recognized for a long time,
leading the development and adoption of page table attributes to protect kernel

234 S. Ha and H. Moon

memory such as Privileged eXecute Never (PXN) [9], Supervisor Mode Execution
Protection (SMEP) [8]. These attributes enable the operating system kernel to
fight against kernel code injection attacks together with the other attributes.
Using these, a kernel can set the kernel code pages to be non-writable and
privileged-executable, and set the others privileged-non-executable. This can be
done, for example, by setting the PXN attribute for all pages except the kernel
code pages.

The weakness of this approach is in its reliance on the page tables. The
attributes are associated with each virtual page and they are stored in the main
memory, which an attacker could corrupt by exploiting kernel vulnerabilities.
Write-protecting the pages containing the attributes, or the page table entries,
is not an option because the kernel has to repeatedly create and manipulate them
during its execution. Note that complete kernel code injection prevention requires
the intervention of all page table entries because all page table entries that do
not map the kernel code region must be marked as privileged-non-executable. As
we show in the evaluation (Sect. 5.2), an attacker can craft a writable mapping
to a kernel code page to bypass the write protection and make a data page
executable similarly.

Existing solutions that help defeat such advanced attackers manipulating
page tables can be classified into two categories. First are the software-based
approaches [4,13] that often protect page table entries to ensure the kernel code
integrity. They devise a more privileged software layer, similar to the machine
mode firmware in our approach, to mediate every single page table update to
ensure that no counterfeit page table entries are actually used by the processor to
translate virtual addresses and examine the memory accesses. The drawback of
these approaches is often in their performance overhead, as we present in Sect. 5.
The second is hardware-based approaches [6,7,11] that devise new hardware fea-
tures tailored for kernel code integrity protection. They all are designed with
different assumptions and goals, resulting in differences in design. What they
share in common is that they often incur negligible or no performance overhead
(i.e., system call latency) because they implement selective permission enforce-
ment at the hardware level. We note that the former, software-based approaches
protecting the entire page table, suffers from substantial performance overhead
of mediating all page table updates, while the latter requires custom hardware
which could come with hidden costs in energy or power as well. This motivated us
to devise a novel software-only mechanism tailored for RISC-V systems where we
can utilize existing hardware feature that enforces access control at the physical
address level.

2.3 RISC-V Physical Memory Protection

RISC-V Physical Memory Protection (PMP) [16] is a hardware feature that
is designed to protect the machine mode firmware’s memory from the other
software components. It specifies a set of configuration register pairs, where
each pair specifies a memory region and the access permissions of the region. Its
sophisticated design allows to specify nearly arbitrarily sized address ranges, as

Protecting Kernel Code Integrity with PMP on RISC-V 235

long as they are size-aligned. One unique characteristic of PMP is that it defines
a strict priority between these pairs, i.e., address ranges so that only one pair
is matched for each memory access. This is not only implementation-friendly
but also allows us to associate permission to non-aligned or even non-contiguous
address ranges, as we do in designing the proposed mechanism (Sect. 4.1).

3 Threat Model

We consider attackers who are aiming to take control of an operation system
kernel in a victim system by exploiting kernel vulnerabilities. To that end, the
attacker may or may not have the power to execute an arbitrary user-level code,
and if they can, they can run such code only as a part of a non-root user-level
process. The attackers are not assumed to have the capability to implant an
arbitrary kernel module. The only way for the attackers to run a piece of their
code with the kernel’s privilege is to exploit a kernel vulnerability to either
compose a gadget chain, modify the kernel code, or trick the kernel to execute
from data pages. We assume that the attackers are in fact motivated to arrive at
the last stage, the kernel code injection, due to the difficulty in persisting their
control only using the gadget chain, as evidenced in the known attacks.

4 Design and Implementation

Overview. The proposed mechanism is composed of two components as Fig. 1
shows. One is two in-kernel hooks that are invoked on every deliberate kernel
entry and exit, and the other is the permission switch services residing in the
machine mode firmware that switches the PMP entries between the policy for
the user mode and the policy for the kernel model.

Fig. 1. Overview of the proposed mechanism

236 S. Ha and H. Moon

Fig. 2. The permissions for PMP entries while in user mode.

Fig. 3. The permissions for PMP entries while in kernel mode.

4.1 PMP Policies for Locking Kernel Code

Our mechanisms use two additional PMP entries for kernel code page protection.
The number of additional PMP entries depends on the number of size-aligned
memory regions composing the kernel code page, and it is 2 in our prototype.
Despite the fact that the remaining pages other than the kernel code are not
aligned at all and must be composed of numerous aligned regions, each can be
specified by PMP. We only need two additional PMP entries thanks to the design
of the RISC-V PMP where a memory access is associated with only one of many
PMP entries and follows the strict priority rule. As introduced in Sect. 2.3, for
each memory access, the PMP specifies that among all entries whose address
range matches the memory access, the policy defined in the one with the least
index is chosen. Leveraging this, we use the two least-indexed entries to match
the kernel code ranges, each with a size-aligned component. The third is set
to match any address so that any address that does not match the earlier two
ranges will be associated with the policy recorded in this entry.

Specifically, we use two sets of policies for the PMP, one for the user-level
execution (Fig. 2) and the other for the kernel-level execution (Fig. 3). In the first
set, we enable the processor to execute from any physical memory because the
data execution prevention for user-level process is the job of the operating system
kernel, which can effectively use the page table attributes. The only additional
assurance that we provide using PMP is the write protection of the kernel code
regions, which is done by clearing the W bit in the first two PMP entries that are

Protecting Kernel Code Integrity with PMP on RISC-V 237

applied to any memory access to the kernel code regions. In the second set, we
use the same permission attributes for the first two entries where R and X are
set. The difference from the first set is in the third entry, where we set R and
W but clear X to prevent any execution from the memory regions that are not
kernel code regions.

4.2 Hooking Kernel Entries and Exits

The next step for ensuring the kernel code integrity is to switch between the
two policies when and only when needed. This requires us to hook all possible
kernel entries and exits. Fortunately, modern processors provide a limited entry
point of each privileged mode execution for various reasons, often as the form of
an exception vector table or exception handler. RISC-V is no exception, and the
Linux kernel for RISC-V contains dedicated assembly routines handling low-level
context switches for the kernel entry and exit. Moreover, the kernel is already
distinguishing which mode the processor was executing in before the exception
was raised because it affects how the exception should be handled, and we can
take advantage of this to determine whether a particular kernel entry is from
the user level or not. Similarly, returning to the user mode also requires the
execution of a particular instruction, with a special register set appropriately.
We locate this kernel exit point and add our hook to invoke the firmware’s
permission switch service. In detail, we let the hook deliver the kernel code
range information to the permission switch service upon its first invocation so
that the service can determine the address range for each PMP entry. Note that
we can further harden this procedure to deliver the kernel range during the boot
time without significant effort.

Called from these hooks are the permission switch services residing in the
machine mode firmware. The kernel for RISC-V already implements a standard
routine for invoking the firmware services, so we utilize it to invoke the two new
services, each switching from and to the kernel-mode PMP policy. The behavior
of the services is straightforward. The service for kernel entry changes the PMP
policy to the kernel-mode policy, and the service for kernel exit changes the
PMP policy to the user-mode policy. Note that in the current prototype, the
machine mode firmware’s memory spaces are not strictly protected from the
kernel- or user-mode code. This is the limitation of our baseline firmware and
can be easily fixed by adding the PMP entries for the firmware memory spaces
and the corresponding permission switch services.

5 Evaluation

We evaluate the performance impact and the effectiveness of the proposed mech-
anism by measuring the system call latencies (Sect. 5.1) and deploying synthetic
attacks (Sect. 5.2).

238 S. Ha and H. Moon

5.1 Performance Overhead

Prototype Implementation. We implement the proposed mechanism by
extending the Linux kernel 5.16.0, and the Berkeley Boot Loader (BBL) [1]
for RISC-V. We add invocations to the permission switching services in the ker-
nel entries and exits, and implement the services as Supervisor Binary Interface
(SBI) calls within the BBL, which also serves as the machine mode firmware.

Experimental Setup. We measure the impact of the proposed mechanism
in two steps. First, we obtain the number and the composition of additional
instructions that the system (i.e., the kernel and the machine mode firmware)
must execute using the default standard instruction set architecture (ISA) sim-
ulator, Spike [2]. However, we do not measure the performance impact of the
proposed mechanism using Spike because it is a functional simulator. Instead,
as the second step, we measure the performance impact using an x86 machine
with an Intel Core i7-8086K CPU and 64GB of RAM, running Ubuntu 18.04.3
LTS with Linux kernel 5.5.7. To emulate the performance impact of the pro-
posed mechanism, we add dummy instructions that are similar to the additional
instructions for our mechanism in terms of the number of instructions and the
composition of the instructions. In particular, the implementation of the pro-
posed mechanism requires the system to execute a substantial number of mem-
ory access instructions, which is expected to affect the performance significantly.
To correctly emulate this, we ensure that the dummy instructions also include a
substantial number of memory access and instructions that are not optimized.

Table 1. The additional instructions that the system must execute to implement the
proposed mechanism.

Action Total Load Store Mode Switch Jumps Others

Enter 178 52 43 2 16 65
Exit 149 42 40 2 11 54

Additional Instructions. Table 1 shows the number of additional instructions
that the system must execute additionally to implement the proposed mechanism
in both parts of the kernel and the machine mode firmware. They each have two
mode switches in common, the entering and the exiting the machine mode. They
also incorporate many loads and stores due to the context switches, potentially
affecting the performance negatively.

Impact on System Call Latency. Table 2 shows the impact of the proposed
mechanism on the system call latency and compares the result with the existing

Protecting Kernel Code Integrity with PMP on RISC-V 239

Table 2. The impact of the proposed mechanism on the system call latency.

Benchmark Baseline
(ms)

Proposed
(ms)

PrivLock Kargos RiskiM perspicuOS SecVisor

Simple
syscall

0.26 0.32
(1.23×)

1.02× 1.09× 1.00× 1.10× 256.00×

Simple
read

0.37 0.44
(1.19×)

0.99× N/A N/A N/A N/A

Simple
write

0.33 0.40
(1.21×)

1.04× N/A N/A N/A N/A

Simple
stat

0.70 0.78
(1.11×)

1.00× N/A 1.01× 1.01× N/A

Simple
fstat

0.40 0.46
(1.15×)

1.00× N/A N/A N/A N/A

Simple
open/close

1.53 1.73
(1.13×)

0.95× 0.99× 1.01× 1.01× N/A

Protection
fault

0.54 0.61
(1.13×)

1.29× 1.00× N/A N/A 110.00×

fork+exit 91.56 90.65
(0.99×)

0.99× 0.99× N/A 2.80× N/A

fork+execve 298.11 299.88
(1.01×)

0.99× 0.99× 1.01× 2.60× N/A

solutions using the results that they reported. We use the LMBench [10] to mea-
sure the system call latencies and compare the result with the hardware- and
software-based existing solutions, PrivLock [6], Kargos [11], RiskiM [7], perspic-
uOS [4], and SecVisor [13]. The experimental result shows that the performance
impact of the proposed mechanism is not negligible and clearly higher than the
two hardware-based solutions, Kargos and RiskiM. However, the overhead is
significantly lower than SecVisor thanks to the help of PMP. When compared
to perspicuOS, which ensures the page table integrity using its nested kernel,
the proposed mechanism slows down the system calls in general while the over-
head of perspicuOS is significantly higher on fork operations where the kernel
substantially modifies the page tables.

5.2 Security Evaluation

To evaluate the correctness and effectiveness of the proposed mechanism and
our prototype, we test the prototype using two synthetic attacks. The baseline
system that we use write-protects the kernel code pages and makes data pages
non-executable, thwarting the direct kernel code modification and data page
execution. Nevertheless, the attacker can bypass this kernel-only defense using
page tables by crafting counterfeit page table entries in two ways, which we
implement to evaluate the effectiveness of the proposed mechanism.

Attack 1: Executing Data Page. The first synthetic attack aims to execute
attacker-written code on the data page. An attacker can craft a memory page

240 S. Ha and H. Moon

containing their payload by exploiting kernel vulnerabilities and directing the
kernel to execute it by modifying code pointers. To further bypass the kernel’s
protection using page tables, the attacker also crafts a counterfeit page table
entry that maps the data page with a kernel-executable page. The baseline sys-
tem failed to detect this attack because the kernel relies fully on the attributes in
the page table. When the proposed mechanism is enabled, the attack generates
a memory access that violates the PMP’s policy because the data page where
the attacker stores their code is outside the range of the kernel code pages in
the physical address, which the attacker cannot change. This leaves the modifi-
cation of the kernel code the only remaining option for the attacker who aims
to perform the kernel code injection.

Attack 2: Corrupting Kernel Code Page. As mentioned earlier, an attacker
can neither modify the kernel code pages using genuine page table entries because
all code pages are marked as non-writable. The synthetic attack that we imple-
mented bypasses this protection by crafting a counterfeit page table entry, similar
to the first attack. As expected, the baseline system is incapable of detecting this
attack because the page table entries, which the kernel fully relies on, are com-
promised. The attack is stopped by the proposed mechanism. When we launch
the attack with our prototype enabled, the attack generates writes to the physi-
cal pages containing the kernel code, and the pages are marked non-writable by
PMP.

5.3 Limitation in Performance Overhead Estimation

In our evaluation, we estimate the performance overhead of the proposed mech-
anism primarily due to the difficulty in obtaining RISC-V based systems. The
estimation itself is likely to be reasonably accurate because the additional latency
on the mode switches, which is accompanied by system calls, is affected only by
the number of additional instructions and their memory access delays. We strive
to make the estimation accurate by considering both the number and the com-
position of instructions.

The only source that could affect the estimated performance overhead is
the fact that PMP policy changes could require Translation Lookaside Buffer
(TLB) flushes on some RISC-V based systems. Unlike the permission checks by
the MMU, the PMP policy checks must be done after the address translation,
potentially increasing either the memory access latency by one cycle or increasing
the critical path delay of the memory interface. For this reason, existing open-
source processors such as the Rocket [3] core gives an option to locate this
PMP policy check at the TLB refill. When handling TLB misses, the page table
walker refers both to the page table entry and the corresponding PMP entry to
determine the exact attribute that the page table entry will have while stored in
the TLB. Consequently, the processor can perform one permission check during
the address translation to effectively enforce the two rules, one from the page
table and the other from the PMP. If this is how a baseline system implements

Protecting Kernel Code Integrity with PMP on RISC-V 241

the PMP, the proposed mechanism must also flush the entire TLB to ensure that
all TLB entries are reflecting the correct, appropriate PMP entry. This adds the
cost of the full TLB flush to the kernel entry and exits, potentially incurring a
substantial performance overhead.

One possible workaround would be possible if the processor uses two transla-
tion tables, one for the kernel and the other for the user, strictly prohibiting the
use of the user’s page table entries in kernel mode. On a system that uses two
translation tables strictly, even without TLB flushes, the processor will use the
kernel page table entries which are correctly examined with the PMP entries for
the kernel mode, and use the user page table entries during in the user mode.

6 Related Work

In this section, we explore various mechanisms established for safeguarding oper-
ating system kernels from potential security threats. The protective measures
typically involve the use of a hypervisor, security domain, or specific hardware
features.

Hypervisor-Based Defenses. Among similar works, SecVisor [13] shares close
proximity with our research objectives as it focuses on preserving kernel code
integrity. Unlike approaches that introduce dedicated hypervisors or modify
hardware, SecVisor provides a lightweight, software-based solution. It ensures
that only authorized code can operate in kernel mode for the entire system’s
lifecycle. Despite its benefits, it incurs a more substantial overhead compared to
our system as shown in Sect. 5.

ARM TrustZone-Based Defenses. ARM processors feature a unique sup-
port for isolated execution environment called TrustZone, which facilitates the
creation of a trusted platform. TrustZone enables the segregation of software
resources such that secure subsystems reside within a Secure World and all
other components exist in a Normal World. An instance of a protective solution
leveraging this functionality is SPROBES [5], which utilizes TrustZone to main-
tain kernel code integrity. In particular, SPROBES mediates page table updates
using software components in the Secure World to ensure that all page table
attributes are set correctly to prevent any kernel code integrity violation.

Hardware-Based Defenses. Hardware-assisted mechanisms can provide addi-
tional fortification for kernel integrity. Both Kargos [11] and RiskiM [7] are anal-
ogous to our proposed system in their abilities to detect attacks compromising
kernel code integrity. They employ hardware monitoring systems to preempt
kernel code injection attacks.

Kargos implements external CPU monitoring to identify malicious behav-
iors. However, a potential issue with this method is the semantic gap problem,

242 S. Ha and H. Moon

where there may be a delay between the actual attack occurrence and when the
monitoring system detects it.

RiskiM, another hardware monitoring system, aims to ensure kernel code
integrity. They address the semantic gap problem with a novel solution, the Pro-
gram Execution Monitoring Interface (PEMI), offering a significant advancement
in hardware-based kernel defense mechanisms.

7 Conclusion

In this paper, we presented a design of kernel code integrity protection mech-
anism for RISC-V based systems using existing hardware support. Despite the
limitations, the existing PMP can be leveraged to dynamically switch the mem-
ory protection policies at the physical address level to effectively prevent the
advanced kernel code injection attacks. The performance estimation using our
prototype implementation on the Spike simulator and emulation on an x86-
based system suggests that the proposed mechanism can be implemented with a
reasonable performance overhead. The security evaluation using two synthetic,
advanced attacks proves that the proposed mechanism can effectively prevent the
advanced kernel code injection attacks. We believe that the proposed mechanism
can be a good starting point for future research on the kernel code integrity pro-
tection on RISC-V based systems, both motivating the adoption of dedicated
hardware support for kernel code protection and the adoption of software-only
mechanisms if the expected overhead is acceptable.

References

1. RISC-V proxy kernel and boot loader (2023). https://github.com/riscv-software-
src/riscv-pk

2. Spike RISC-V ISA simulator (2023). https://github.com/riscv-software-src/riscv-
isa-sim

3. Asanovic, K., et al.: The rocket chip generator. Technical report. UCB/EECS-2016-
17, EECS Department, University of California, Berkeley (2016). http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

4. Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., Adve, V.: Nested kernel:
an operating system architecture for intra-kernel privilege separation. In: Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS 2015, pp. 191–206. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2694344.2694386

5. Ge, X., Vijayakumar, H., Jaeger, T.: SPROBES: enforcing kernel code integrity
on the trustzone architecture. CoRR abs/1410.7747 (2014). http://arxiv.org/abs/
1410.7747

6. Ha, S., Yu, M., Moon, H., Lee, J.: Kernel code integrity protection at the physical
address level on RISC-V. IEEE Access (2023). https://doi.org/10.1109/ACCESS.
2023.3285876

7. Hwang, D., Yang, M., Jeon, S., Lee, Y., Kwon, D., Paek, Y.: RiskiM: toward com-
plete kernel protection with hardware support. In: 2019 Design, Automation Test
in Europe Conference Exhibition (DATE), Germany, pp. 740–745. IEEE (2019).
https://doi.org/10.23919/DATE.2019.8715277

https://github.com/riscv-software-src/riscv-pk
https://github.com/riscv-software-src/riscv-pk
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2694344.2694386
http://arxiv.org/abs/1410.7747
http://arxiv.org/abs/1410.7747
https://doi.org/10.1109/ACCESS.2023.3285876
https://doi.org/10.1109/ACCESS.2023.3285876
https://doi.org/10.23919/DATE.2019.8715277

Protecting Kernel Code Integrity with PMP on RISC-V 243

8. Intel: Intel(r) supervisor mode execution protection (SMEP). https://www.intel.
com/content/www/us/en/developer/articles/technical/intel-sdm.html

9. Lee, J.: ARM: support for the PXN CPU feature on ARMV7 (2014). https://
patchwork.kernel.org/project/linux-arm-kernel/patch/1414259997-9350-1-git-
send-email-js07.lee@gmail.com/

10. McVoy, L., Staelin, C.: LMbench: portable tools for performance analysis. In:
USENIX Annual Technical Conference, ATEC 1996, USA, p. 230. USENIX Asso-
ciation (1996)

11. Moon, H., Lee, J., Hwang, D., Jung, S., Seo, J., Paek, Y.: Architectural supports to
protect OS kernels from code-injection attacks and their applications. ACM Trans.
Des. Autom. Electron. Syst. 23(1) (2017). https://doi.org/10.1145/3110223

12. SauriklT, L.: Cydia substrate (2022). http://www.cydiasubstrate.com/
13. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide

lifetime kernel code integrity for commodity OSes. In: ACM SIGOPS Symposium
on Operating Systems Principles, SOSP 2007, pp. 335–350. Association for Com-
puting Machinery, New York (2007). https://doi.org/10.1145/1294261.1294294

14. Siguza: KTRR (2018). https://blog.siguza.net/KTRR/
15. Vogl, S., Pfoh, J., Kittel, T., Eckert, C.: Persistent data-only malware: function

hooks without code. In: NDSS, USA, pp. 1–16. Internet Society (2014)
16. Waterman, A., Asanovic, K.: The RISC-V Instruction Set Manual Volume II. The

RISC-V Foundation (2017). https://riscv.org/wp-content/uploads/2017/05/riscv-
privileged-v1.10.pdf

17. xerub: Tick (FPU) tock (IRQ) (2017). https://xerub.github.io/ios/kpp/2017/04/
13/tick-tock.html

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://patchwork.kernel.org/project/linux-arm-kernel/patch/1414259997-9350-1-git-send-email-js07.lee@gmail.com/
https://patchwork.kernel.org/project/linux-arm-kernel/patch/1414259997-9350-1-git-send-email-js07.lee@gmail.com/
https://patchwork.kernel.org/project/linux-arm-kernel/patch/1414259997-9350-1-git-send-email-js07.lee@gmail.com/
https://doi.org/10.1145/3110223
http://www.cydiasubstrate.com/
https://doi.org/10.1145/1294261.1294294
https://blog.siguza.net/KTRR/
https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://xerub.github.io/ios/kpp/2017/04/13/tick-tock.html
https://xerub.github.io/ios/kpp/2017/04/13/tick-tock.html

Exploiting Memory Page Management
in KSM for Remote Memory

Deduplication Attack

Seungyeon Bae, Taehun Kim, Woomin Lee, and Youngjoo Shin(B)

School of Cybersecurity, Korea University, Seoul, South Korea
{bsybsy012,taehunk,redcokeb,syoungjoo}@korea.ac.kr

Abstract. In virtualized environments, modern operating systems take
advantage of memory deduplication feature to efficiently manage physical
memory. However, the adoption of this technique has given rise to mem-
ory deduplication attacks that disclose memory pages used by a victim
VM. All these attacks rely on the latency of the memory write operation
to distinguish deduplicated pages from other pages. While performing
such attacks in a cross-VM attack scenario is relatively straightforward,
implementing a remote memory deduplication attack is not trivial due to
the limitations in issuing memory write requests to the desired physical
page on the remote machine. In this paper, we present a novel memory
deduplication attack that exploits the memory page management mech-
anism in Kernel Samepage Merging (KSM). Modern implementation of
KSM enforces the maximum number of shared pages for performance rea-
sons. Therefore, if the number of pages with the same content exceeds the
maximum page limit, they can refer to different physical pages despite
having the same content. We exploit this property by intentionally map-
ping the maximum number of pages, causing two physical pages with
the same content to exist in the physical memory. Unlike the previous
work, our attack measures the latency for the memory unmap operation
to figure out the victim VM’s memory page. This novel type of attack
allows an attacker to infer other applications’ memory pages, such as the
Nginx web server, without relying on the memory write operation.

Keywords: Memory deduplication · Side-channel attack · Linux KSM

1 Introduction

Virtualization technology which is a fundamental component of cloud services
has gained widespread adoption owing to its flexibility and scalability. However,
the increasing number of tenants utilizing cloud services has resulted in a sub-
stantial increase in the data volume that cloud service providers must handle.
As a result, memory pages containing duplicate content have become prevalent
in physical memory. To address these challenges, various operating systems have
introduced memory deduplication techniques, known as page combining in Win-
dows [1], KSM in Linux [2], and TPS (Transparent Page Sharing) in VMWare’s
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 244–256, 2024.
https://doi.org/10.1007/978-981-99-8024-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_19&domain=pdf
https://doi.org/10.1007/978-981-99-8024-6_19

Remote Deduplication Attack 245

ESXi [3]. Memory deduplication is a memory-saving technique that merges iden-
tical physical pages into a single read-only page through Copy-on-Write (CoW)
mapping. However, this technique poses a risk of revealing memory pages used
by other virtual machines due to page faults that occur during write access to the
merged pages. As a result, side-channel attacks that exploit memory deduplica-
tion techniques have recently emerged. These attacks mainly leverage the timing
difference between a deduplicated page and a normal page to infer security-
sensitive information from other VMs. These attacks exploit timing differences
between write accesses to pages merged by memory deduplication techniques to
extract sensitive information from other users.

Previous memory deduplication attacks are primarily performed in cross-
VM [4–7] and remote attack scenarios [8]. In a cross-VM attack, the attacker
can execute local code to create a physical page that will be shared with the
victim VM’s page, allowing them to perform write access to the deduplicated
page. However, in a remote attack, the attacker has no shared resources with the
victim and cannot execute local code. There is only one previous work presenting
remote attacks that overcame this limitation by using in-memory databases.
However, they require a highly constrained attack model due to the assumption
of using in-memory databases.

Therefore, the limitation of current memory deduplication attacks in remote
environments is that they can only target applications with memory write oper-
ation capabilities, such as in-memory databases. To surpass this limitation, this
paper exploits the mechanism of limiting the maximum number of deduplicated
pages in KSM. The implementation of this mechanism takes place within KSM
by utilizing a stable tree structure. Each node in the stable tree has a maxi-
mum number of pages that can be deduplicated. If the deduplication limit is
not exceeded, the node remains a single node in the stable tree; if the limit is
exceeded, it is split into two nodes. The time taken to unmap a single node is
shorter than unmapping two nodes.

In this paper, we exploit the timing difference in memory unmapping between
those two cases to perform a memory deduplication attack that does not require
write access in a cross-VM environment and a remote environment. Specifically,
in the remote attack, the sockets used by the Nginx web server to respond to
client requests can be exploited to learn the victim’s secret information. Unlike
previous research, the attack technique proposed in this paper is not limited to
specific applications that require write access and can be utilized for a general
purpose in remote environments.

The main contributions of our work are as follows:

– We propose a new memory deduplication attack by exploiting the memory
page management mechanism in KSM.

– We present a novel type of remote memory deduplication attack without
relying on write operation.

– We propose a tool to track merged pages through KSM and to verify the
content of merged pages.

246 S. Bae et al.

The remainder of this paper is structured as follows. In Sect. 2, we provide
an introduction to the Linux KSM and a description of memory deduplica-
tion attacks that exploit this technique, and present a comparison and analysis
of memory deduplication attacks proposed in previous research. In Sect. 3, we
describe the building blocks required for the novel memory deduplication attack
proposed in this thesis. We then propose a scenario where the proposed attack
is performed in a remote environment. Finally, we conclude in Sect. 4.

2 Background

In this section, we provide background on the Linux KSM and a description
of memory deduplication attacks that exploit this technique to perform side-
channel attacks.

2.1 Memory Deduplication Attack

The memory deduplication attack is a technique that takes advantage of the
timing difference in memory write access between deduplicated pages and non-
deduplicated pages to extract the memory information of the victim. Unlike non-
deduplicated pages, the pages merged through deduplication have a read-only
status due to the CoW mechanism, which leads to page faults when attempting
to write to them. These page faults introduce latency in the operating system’s
handling process. An attacker can exploit this latency to carry out an attack.

The memory deduplication attack is performed in three stages as follows:

Step 1. The attacker performs the memory mapping to binary files that are
expected to be in the victim’s memory.

Step 2. The attacker tries to write to the mapped page.
Step 3. The attacker can determine whether the mapped page has been

merged with a page existing in the victim’s memory by measuring
the delay after writing access to the mapped page.

Previous research on memory deduplication attacks utilizes the CoW mech-
anism. They cause page faults by attempting to write accesses to pages merged
into a single physical read-only page via CoW mapping. To handle these page
faults, the operating system copies the merged page, allocates a new physical
page, and grants write access. Because of this page fault handling described
above, there is a latency incurred in the write access time for merged pages com-
pared to the write access time for random pages. The previous studies utilizing
the timing differences in memory write access are as follows. An attacker in a
cross-VM environment sharing the same host can perform a memory deduplica-
tion attack against a victim’s VM by executing local code within his VM [4–6].
Proposed a memory deduplication attack using Java Script executed through
a browser in a remote environment that does not share the same host [7]. For
the first time in a remote environment that does not share the same host, we

Remote Deduplication Attack 247

Fig. 1. KSM stable-tree node component that exceeded the maximum deduplication
page count limit, resulting in a chain node

proposed a memory deduplication attack through remote write requests on an
in-memory DB without local code execution [8].

Previous attacks are limited in that they require the attacker to pinpoint the
merged page among the victim’s pages and attempt to write to it. This requires
the attacker to execute local code or use an application such as a shared resource
or in-memory DB to perform write access. To overcome these limitations, this
paper proposes a novel memory deduplication attack that performs memory
unmapping on deduplicated pages.

2.2 Analyzing the KSM Behavior

Overview of KSM Behavior. KSM is a Linux kernel module that periodically
scans anonymous page regions and merges pages with duplicate content into a
single physical page. To manage these deduplicated pages, KSM uses two red-
black trees. The first of the two trees is the stable tree, which manages the
pages merged into a single page by KSM. The stable tree adds one stable node
for each deduplicated page it encounters, and these nodes collectively form the
stable tree.

When KSM scans pages in an anonymous memory region, it first compares
them to the stable tree’s internal merged-pages node to see if they are the same,
and the comparison process is as follows. First, KSM compares the contents of
the physical pages using the memcmp() function to see if they are identical. If
the pages are identical, they are merged into a single physical page. If not, a
checksum is calculated to determine if it is a new page. If it is a new page,
the checksum is updated, and if it is a candidate page that already exists, it is
compared to a node in the second tree.

The second tree is the unstable tree, which manages unmerged candidate
pages. As KSM scans the pages in the anonymous memory region, it records a
32-bit checksum for each page, checks if it has changed, and excludes pages with

248 S. Bae et al.

Table 1. Experiment setup

Type Detail

server CPU Intel i5-11600K

RAM 16 GB

NIC 82599ES 10-Gigabit SFP+

OS Ubuntu 22.04 64bit kernel 5.15.0-58-generic

client CPU AMD EPYC 7282

RAM 16 GB

NIC 82599ES 10-Gigabit SFP+

OS Ubuntu 20.04 64bit kernel 5.15.0-69-generic

changed checksums from the candidate pages. In this paper, we focus on a stable
tree that manages deduplicated pages.

Maximum Page Limit in KSM. The mechanism of limiting the maximum
number of deduplicated pages in KSM was introduced to solve the problem of
unresponsive virtual machines when many pages were merged into one physical
page by KSM. To address this issue, Linux has limited the number of pages that
KSM can deduplicate, starting with Linux kernel version 4.4.0-96.119, under the
name max page sharing [9]. The default setting for max page sharing = 256,
meaning a maximum of 256 virtual pages can be mapped to a single physical
page. If the maximum number of deduplication pages is exceeded, deduplication
is performed by mapping virtual pages to new physical pages.

Figure 1 shows the KSM stable tree node component where a chain node
is created when more than 256 pages are mapped to a stable node. A chain
node is a linked list that manages node dups created by exceeding the maximum
number of deduplicated pages. In this Fig. 1 the stable node does not exceed the
deduplication page count limit because it has two pages mapped to one physical
page. Therefore, the physical pages on the stable node have the same Page Frame
Number (PFN). However, because the chain node has 258 pages mapped to it,
which exceeds the threshold for deduplication pages, the node dups attached to
the chain node have different PFN

3 Remote Memory Deduplication Attack with KSM’s
Memory Page Management Mechanism

3.1 Building Blocks of the Attack

In this section, we want to generalize and discuss the necessary building blocks to
exploit KSM’s memory page management for a memory deduplication attack.
The attacker targets to exploit KSM’s memory page management to disclose
secret values stored in memory pages. KSM implements a mechanism to suggest

Remote Deduplication Attack 249

Fig. 2. Comparison of memory layouts based on the content mapped by the VMattacker

a maximum number of deduplicated pages to manage merged pages efficiently.
The implementation of this mechanism takes place within KSM by utilizing a
stable tree structure. Each node in a stable tree can contain up to n duplicate
pages, depending on the max page sharing = n setting. If a node consists of
exceeding n pages, KSM splits it into two nodes. And the time taken to unmap
a single node is shorter than unmapping two nodes. The attacker utilizes the
timing differences occurring during the unmapping of merged pages in a single
node and the unmapping of merged pages in two divided nodes to create a side
channel Consisting of two building blocks.

The first building block for creating a side channel is to prepare as many
pages as n by copying pages P that the attacker expects to exist in the victim’s
memory. The second building block for creating side channels is a timer to time
the memory unmapping performs. In a cross-VM environment, use RDTSC(). And
in a remote environment, use the hardware timestamp on the network interface
card. In this work, we want to show how this technique can be leveraged to leak
otherwise inaccessible secrets.

Attack Primitives. In this section, we show that VMattacker can leak
VMvictim’s memory information on a page-by-page basis in a cross-VM envi-
ronment using the maximum deduplication page limit mechanism provided by
KSM. The experiments in the cross-VM environment can be categorized into suc-
cessful and unsuccessful attacks based on whether the pages mapped to memory
by VMattacker reside on the chain node or the stable node, as shown in Fig. 2. If
the page mapped to memory by VMattacker exists on the chain node, it corre-
sponds to Case 1 in Fig. 2. This is a case where the memory deduplication attack
on one page of VMvictim’s memory is successful.

If the page mapped to memory by VMattacker exists on the stable node, it
corresponds to Case 2 in Fig. 2. This is a case where the memory deduplication
attack on one page of VMvictim’s memory fails. The attack process is as follows.

250 S. Bae et al.

Fig. 3. Timing distribution graphs for two cases

First, the VMattacker prepares a binary file with a size of n pages that can be
deduplicated by copying the binary for the P page that is expected to exist in
the VMvictim’s memory. As a result, in Case 1 of Fig. 2, the n pages mapped
to memory in VMattacker are the same as the pages in VMvictim’s memory,
exceeding KSM’s maximum deduplication page limit. Therefore, chain nodes
and node dups are created during the deduplication process. Also, in Case 2 of
Fig. 2, the n memory-mapped pages in VMattacker are not the same as the pages
in VMvictim’s memory, so the maximum deduplication page limit of KSM is
not exceeded. Therefore, only stable nodes are created during the deduplication
process. Based on this deduplication page count limit mechanism, we perform
memory unmapping in two cases when the threshold is exceeded and when it
is not exceeded and measure the execution time. By exploiting the difference
in execution time between these two cases, the attacker can perform a memory
deduplication attack without writing access to the pages.

The experiments for each case, the experiment proceeds by repeating step 3
as follows:

Step 1. Memory map the binary file prepared by the VMattacker.
Step 2. Wait for deduplication to be performed by KSM.
Step 3. Perform unmapping on the VMattacker’s mapped pages and measure

the time.

The VMattacker’s Memory unmapping is performed at intervals based on how
often KSM completes a full scan. With KSM settings of sleep millisecs =
1,000 and pages to scan = 250,000 up to 1 GB of pages can be deduplicated
per second. Therefore, with 4 GB of memory allocated to each VM, the scan
completes in 8 s. After memory mapping, wait 8 s, the maximum time for a
KSM scan, and measure the unmapping and performance time.

Experimental Setup. The cross-VM experimental environment was set up
as follows. The server uses an i5-11600K processor and Ubuntu 22.04 (kernel
5.15.0-58-generic). The environment hosts two virtual machines, VMvictim, and

Remote Deduplication Attack 251

VMattacker, via Linux KVM on a server. Table 1 shows the experimental envi-
ronment for the cross-VM attack.

Threat Model. We consider a cross-VM environment where an attacker VM
shares the same host machine with a victim VM. It can be simply achieved by
mounting co-location attacks such as Repttack [10]. We also assume that the
hypervisor uses KSM for efficient memory management and fully isolates each
VM to protect it from the malicious behavior of other VMs. Finally, we assume
that the hypervisor and guest OS have no bugs or known vulnerabilities to breach
the security boundaries. Hence, there is no way for an attacker VM to learn the
victim VM’s security-sensitive data through the known vulnerabilities.

Experiment Result. Figure 3 shows the results of the VMattacker’s 3,000 iter-
ations of memory mapping and unmapping for each case and the distribution
graph of the unmapping time. In the first case, the VMattacker’s memory-mapped
page and the page containing the VMvictim’s secret information are dedupli-
cated. In other words, a chain node is created, and the attack is successful. In
the second case, the VMattacker’s memory-mapped page and the page containing
the VMvictim’s secret information are not deduplicated. In other words, a stable
node is created, and the attack fails. The execution time of memory unmapping
for both cases is measured in CPU cycles.

After the VMattacker repeated the memory unmapping for each case 3,000
times, we found that the number of pages unmapped was the same; however, the
execution time varies depending on whether the VMvictim’s page is deduplicated
or not. By comparing the execution time in each case, we can create a side
channel that identifies whether the VMvictim’s page is deduplicated or not, which
enables the memory deduplication attack. The reason for the overall delay in the
first case compared to the second case is expected to be due to the different nodes
that are looked up in the process of searching and deleting the page in the KSM
stable tree when performing memory unmapping.

3.2 Remote Attack Procedure

Figure 4 shows an attack overview in five steps. The attack procedure is as fol-
lows:

Step 1. The client prepares a binary file containing the target page that is
expected to exist in the server ’s memory and uploads it to the server.
The configuration of the binary file to be uploaded is shown in Eq. (1).

(random page−HTTP response header size) + target page× n (1)

The random page in Equation. (1) is a page with a size of 4,096 KB
consisting of random binary values. HTTP response header size is
the size of the response to the download request. The size of the

252 S. Bae et al.

Fig. 4. Remote memory deduplication attack procedure

header may vary depending on the server ’s configuration, so the
client needs to check the size of the response header after making
an HTTP GET request to the server. For later page alignment, sub-
tract HTTP response header size from the random page and copy
the target page to form n pages. The Nginx web server running on
the server uses two buffers to request responses from the client. The
first buffer records the HTTP response headers that respond to the
client ’s HTTP request. The second buffer records the HTTP content
requested by the client. Because these two buffers are dynamically
allocated with malloc(), they are not sorted on a per-page basis,
making it challenging to deduplicate pages. However, when the two
allocated buffers are merged, written to the socket, and delivered to
the client, they are aligned on a page-by-page basis. So the client
can map the desired page by calculating the length of the response
header.

Step 2. The client requests to download the binary file uploaded to the server
in Step 1. The client ’s download request creates a memory mapping
of the client ’s uploaded binary file in the server ’s memory.

Step 3. The server ’s OS performs page deduplication.
Step 4. The server sends a response for the binary file requested by the client.
Step 5. The client calculates the elapsed time that the server processed the

client ’s download request by taking the difference between the times-
tamp when the client sent the download request and the timestamp
in the server ’s last response.

If the pages of the binary file uploaded by the client in Step 3 are deduplicated
with the server ’s target page. The number of deduplicated pages in KSM is
exceeded, and chain nodes and node dups are created. This causes the server ’s
Nginx web server to experience latency while processing the download request.
The client can perform a memory deduplication attack in a remote environment
by measuring the latency caused by the presence or absence of this deduplication.

Remote Deduplication Attack 253

Fig. 5. Threat model for remote memory deduplication attack

Remote Experimental Environment. The experimental setup consists of
two machines connected through a local network. Each machine is equipped
with a 10-gigabit ethernet supported by an SFP+ direct attach cable. The first
machine, referred to as the server, uses an i5-11600K processor and runs Ubuntu
22.04 (kernel 5.15.0-58-generic). It also hosts VMvictim using Linux KVM. The
second machine, referred to as the client, uses an AMD EPYC 7282 processor
and runs Ubuntu 20.04 (kernel 5.15.0-69-generic).

Remote Threat Model. Figure 5 depicts the threat model for the remote
environment. The victim is a VMvictim hosted via Linux KVM on a server with
KSM enabled and it is running an Nginx version 1.22.1 web server that provides
file upload and download functionality. The client can only make file upload and
download requests to the VMvictim’s web server, i.e., the client and VMvictim

are in a remote environment with no shared resources.

KSM Deduplication Event Tracing Tool to Verify Remote Memory
Deduplication Attack. We utilize the Linux kernel tracepoint [11] to deter-
mine if a memory deduplication attack is being performed according to the
attack procedure described in Sect. 3.2. Currently, there are no tracepoint in the
Linux kernel to trace events that occur in the KSM. Therefore, we will add tra-
cepoint to the KSM. The added tracepoint was then used to implement a tool
in this paper that automatically tracks deduplication events for KSM through
the TRACE EVENT() macro [12].

This paper’s KSM deduplication event tracing tool focuses on the func-
tions that KSM executes to perform deduplication write protect page() and
merge with ksm page(). The write protect page() function performs the
process of changing a page to a read-only page to protect the page being merged
from being modified before it is merged. And the merge with ksm page() func-
tion merges the KSM page existing in the stable tree with the page with the
same content found during the scan once the write protect page() function
has finished changing the deduplication target page to a read-only page. We

254 S. Bae et al.

Fig. 6. KSM page deduplication event logs

added TRACE EVENT() to the two KSM functions described above to log the 32-
bit checksum, PFN (Page Frame Number), and HVA (Host Virtual Address) so
that we can track the deduplication target page. Figure 6 is a log output from the
KSM Deduplication Event Tracker tool. In the output log, you can see that dur-
ing the memory scan, KSM identified memory-mapped pages as deduplication
targets due to client requests for downloads and performed deduplication.

The process of verifying KSM deduplication events is performed in four steps
as follows:

Step 1. To protect the pages identified by KSM as deduplication targets
during the memory scan, change them to read-only pages via the
write protect page() function. Print the physical address and PFN
to identify the target page.

Step 2. The merge with ksm page() function also outputs the checksum,
PFN, and HVA to identify the target page when a page changed
to read-only is merged with a KSM page in the stable tree.

Step 3. On the server, use GNU Debugger (GDB) to access the VMvictim.
Step 4. The HVA accesses the memory-mapped pages in the VMvictim and

verifies the contents of the deduplicated pages.

The client requested to download the page with the string “DEADCAFE” an
easily identifiable magic debug value in hexadecimal, confirming that the attack
procedure described in Sect. 3.2 is being performed. The above step shows that
in a remote environment, a client can prepare a content page that is expected to
exist in the server ’s memory, determine whether the page exists, and leak secret
information.

4 Conclusion

Existing memory deduplication attacks exploit the CoW mechanism to take
advantage of the time difference in execution over in-memory page write accesses.
However, in a remote environment, the attacker’s ability to attempt to write
access to the victim’s merged page is limited because the attacker has no
resources shared with the victim and cannot execute local code. To overcome
these limitations, this paper proposes a new memory deduplication attack that

Remote Deduplication Attack 255

performs memory unmapping and measures the time taken. The memory dedu-
plication attack proposed in this paper exploits the KSM maximum deduplica-
tion page count limit mechanism to exploit the performance time difference for
memory unmapping. The attack can be conducted in various environments due
to the utilization of frequent memory unmapping, a characteristic that frequently
occurs in applications, instead of relying on memory write accesses. Furthermore,
the proposed attack in this paper suggests that it has the potential to be per-
formed in remote environments as well as in cross-VM environments. However,
remote attacks are subject to the constraint that they are vulnerable to network
noise. Therefore, when performing memory unmapping on deduplicated pages,
it is necessary to amplify the latency to increase the delay.

Acknowledgements. This research was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government (MSIT) (No.
2023R1A2C2006).

References

1. phstee: Cache and memory manager improvements. Technical report, Microsoft
(2022). https://learn.microsoft.com/en-us/windows-server/administration/
performance-tuning/subsystem/cache-memory-management/improvements-in-
windows-server

2. Arcangeli, A., Eidus, I., Wright, C.: Increasing memory density by using KSM. In:
Proceedings of the Linux Symposium, pp. 19–28. Citeseer (2009)

3. VMware vsphere product documentation “memory sharing”. Technical
report, VMware (2022). https://docs.vmware.com/en/VMware-vSphere/
7.0/com.vmware.vsphere.resmgmt.doc/GUID-FEAC3A43-C57E-49A2-8303-
B06DBC9054C5.html

4. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory deduplication as a threat to the
guest OS. In: Proceedings of the Fourth European Workshop on System Security,
EUROSEC 2011. Association for Computing Machinery (2011)

5. Lindemann, J., Fischer, M.: A memory-deduplication side-channel attack to detect
applications in co-resident virtual machines. In: SAC 2018, pp. 183–192. Associa-
tion for Computing Machinery (2018)

6. Kim, T., Kim, T., Shin, Y.: Breaking KASLR using memory deduplication in
virtualized environments. Electronics 10(17) (2021)

7. Gruss, D., Bidner, D., Mangard, S.: Practical memory deduplication attacks
in sandboxed Javascript. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9326, pp. 108–122. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24174-6 6

8. Schwarzl, M., Kraft, E., Lipp, M., Gruss, D.: Remote memory-deduplication
attacks. In: NDSS 2022 (2022). Network and Distributed System Security Sym-
posium

9. Bader, S.: Ubuntu Linux package, “Linux 4.4.0-96.119 source package in
ubuntu”. Technical report, Canonical (2017). https://launchpad.net/ubuntu/
+source/linux/4.4.0-96.119

10. Fang, C., et al.: REPTTACK: exploiting cloud schedulers to guide co-location
attacks. In: NDSS 2021 (2021). Network and Distributed System Security Sympo-
sium

https://learn.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/improvements-in-windows-server
https://learn.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/improvements-in-windows-server
https://learn.microsoft.com/en-us/windows-server/administration/performance-tuning/subsystem/cache-memory-management/improvements-in-windows-server
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-FEAC3A43-C57E-49A2-8303-B06DBC9054C5.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-FEAC3A43-C57E-49A2-8303-B06DBC9054C5.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-FEAC3A43-C57E-49A2-8303-B06DBC9054C5.html
https://doi.org/10.1007/978-3-319-24174-6_6
https://doi.org/10.1007/978-3-319-24174-6_6
https://launchpad.net/ubuntu/+source/linux/4.4.0-96.119
https://launchpad.net/ubuntu/+source/linux/4.4.0-96.119

256 S. Bae et al.

11. Rostedt, S.: lwn.net, “using the trace event() macro (part 1)”. Technical report,
Eklektix (2010). https://lwn.net/Articles/379903

12. Rostedt, S.: lwn.net, “using the trace event() macro (part 3)”. Technical report,
Eklektix (2010). https://lwn.net/Articles/383362

https://lwn.net/Articles/379903
https://lwn.net/Articles/383362

Mutation Methods for Structured Input
to Enhance Path Coverage of Fuzzers

Yonggon Park , Youngjoo Ko , and Jong Kim(B)

Department of Computer Science and Engineering, Pohang University of Science
and Technology (POSTECH), Pohang, South Korea

{nanimdo,y0108009,jkim}@postech.ac.kr

Abstract. Existing mutation methods used in coverage-based grey-box
fuzzing (CGF), such as those employed by AFL and AFL++, can lead
to biased testing for structured inputs. While fuzzing, certain input sec-
tions of structured input may receive fewer mutations, resulting in less
testing of the code that handles those sections, which leads to lower path
coverage in those code parts.

In this paper, we propose two mutation methods for the structured
input to address the unbalanced problem and improve path coverage. The
first method, Uniform Mutation, involves conducting additional muta-
tions in input sections that trigger less testing, thereby achieving a more
balanced path coverage across the target program. However, this method
requires prior knowledge of the input format, which reduces its usability
when the format of the target program changes. To overcome the limita-
tion, we propose the second method, Format-agnostic Mutation, which
automatically partitions the input into sections based on coverage feed-
back. This method redistributes the number of mutations and resizes the
sections to improve path coverage without knowing the input format.

We evaluate the effectiveness of these methods using two real-world
programs (Xpdf and libxml2) and compare them with AFL. The experi-
mental results demonstrate that Uniform and Format-agnostic mutations
(weight and resizing) outperform AFL regarding path coverage explo-
ration.

Keywords: Fuzzing · Mutation · Structured Input · Path Coverage ·
AFL

1 Introduction

Fuzzing can be classified as black-box, white-box, or grey-box, depending on
the level of awareness about the program structure. Grey-box fuzzing meth-
ods [5,6,23] employ lightweight instrumentation techniques to gather informa-
tion about the program. This instrumentation introduces minimal overhead com-
pared to the analysis techniques used in white-box fuzzing [7,9,10]. By leverag-
ing the obtained information, grey-box fuzzing methods can generate inputs

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 257–268, 2024.
https://doi.org/10.1007/978-981-99-8024-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_20&domain=pdf
http://orcid.org/0009-0008-6085-9200
http://orcid.org/0000-0002-8774-7697
http://orcid.org/0000-0002-0484-0790
https://doi.org/10.1007/978-981-99-8024-6_20

258 Y. Park et al.

Fig. 1. The mutation method in AFL [23]

that are more effective at triggering bugs than inputs generated by black-box
fuzzing [4,8,19].

Coverage-based grey-box fuzzing (CGF) is a widely used technique in the
field of grey-box testing for detecting security vulnerabilities in real-world pro-
grams. CGF leverages metrics such as path or code coverage, acquired through
lightweight instrumentation, to generate test inputs. Its primary objective is to
enhance the chances of triggering vulnerabilities that may be present in less
frequently executed or unexplored paths within the target program. Typically,
CGF involves several key components, including seed selection, power schedule,
mutation, execution, and seed evaluation with feedback. Initially, CGF selects
a seed from a set of initial inputs and generates multiple test cases by applying
mutations to the selected seed. The power schedule then determines the number
of test cases created from each seed. Subsequently, CGF executes the program
with the generated test cases and collects coverage information. If a test case
executes previously unexplored code locations, CGF identifies it as a new seed to
explore in the subsequent fuzzing iteration cycle. This iterative process enables
CGF to systematically explore different paths of the program and increase the
likelihood of uncovering vulnerabilities.

Representative fuzzers, such as AFL, AFL++, and VUzzer, employ the muta-
tion method illustrated in Fig. 1, which involves modifying inputs from the begin-
ning to the end while treating all input parts equally. This mutation process
typically employs predetermined bitflips and additions as the modifying oper-
ations. The mutation methods employed by these fuzzers generally operate in
three stages: deterministic, havoc, and splicing. In the deterministic stage, all
input positions are mutated using the predetermined operations. In the havoc
stage, positions for mutation are randomly selected from the input. Occasionally,
an input is mutated through a crossover operation in the splicing stage. These
stages collectively enable the fuzzers to systematically modify inputs and explore
different paths, increasing the likelihood of triggering bugs or vulnerabilities in
the target program.

However, we have observed that existing mutation methods exhibit a bias
towards specific input sections, often neglecting others. This approach may not
be optimal for programs that rely on structured inputs, where different input
sections dictate the execution of different code segments. For example, consider
the case of PDF file inputs, which consist of distinct sections such as the header,
data, cross-reference table, and trailer (depicted in Fig. 2). Each section is pro-

Mutation Methods 259

cessed by different code segments within the program, making their comprehen-
sive coverage essential. To evaluate the impact of existing mutation methods
on path coverage exploration for PDF inputs, we conducted a 24-hour fuzzing
experiment using 30 randomly selected PDF files. The distribution of mutations
applied to each section during the fuzzing process is depicted in Fig. 3. The
results revealed a significant disparity in the distribution of mutations. Approx-
imately 90% of the mutations were applied to the data section, while the header
and cross-reference table sections received less than 3% of the mutations. This
observation indicates that the mutation process primarily focused on the larger
data section, disregarding smaller sections like the header. Consequently, it fails
to consider crucial information about the most effective locations in the input for
effective fuzzing. Consequently, certain input parts, such as the header section or
less frequently accessed sections, may have fewer mutations, potentially leading
to lower path coverage in those areas. This biased mutation approach limits the
exploration of specific regions within the input and may hinder the detection of
vulnerabilities or bugs associated with those neglected sections.

Fig. 2. The structure of PDF file Fig. 3. Mutation rate of each section of
PDF by AFL

We propose two primary mutation methods to address the problem and
achieve high path coverage. The first method, Uniform mutation, tackles the
issue by introducing additional mutations in input sections that have triggered
fewer tests for a particular part of the target program. Its goal is to achieve a
more balanced path coverage across the entire program. However, a prerequisite
for utilizing this method is prior knowledge of the input format, which may limit
its applicability. Furthermore, implementing this method requires extra effort
whenever there are changes in the input format or the corresponding part of the
target program. To overcome this limitation, we introduce the second method,
Format-agnostic mutation. This method automatically divides the input into
sections based on feedback obtained from coverage analysis. By partitioning the
input, it redistributes the number of mutations and adjusts the sizes of sections
to enhance path coverage. The Format-agnostic mutation method eliminates
the need for explicit knowledge of the input format and ensures adaptability to
changes in the input structure and target program.

260 Y. Park et al.

The effectiveness of these methods is evaluated by measuring their perfor-
mance on real-world programs (Xpdf and libxml2) and comparing them with
AFL, a popular fuzzer. The evaluation clearly demonstrates that the proposed
methods outperform AFL regarding path coverage exploration. This research
offers the following key contributions:

– We introduce novel Uniform and Format-agnostic mutation methods.
– We demonstrate the efficiency of the Uniform mutation method in increasing

path coverage.
– We effectively partition the input into sections, leading to higher path cover-

age compared to conventional fuzzers like AFL, while still maintaining usabil-
ity.

2 Background

2.1 Coverage-Based Grey-Box Fuzzing

Coverage-based grey-box fuzzing has been widely used and detected many vul-
nerabilities in real-world programs. It generates testing inputs by leveraging
lightweight instrumentation that extracts the coverage information, such as path
and code coverage. The coverage information helps to explore the program’s deep
paths and detect bugs and vulnerabilities [1,5,6,11–13,15,21,23].

Grey-box fuzzing follows a typical workflow that includes seed selection,
power schedule for energy assignment, seed mutation, execution feedback, and
seed evaluation. Allow us to provide a brief description of the grey-box fuzzing
workflow: The process begins with selecting a seed from the seed pool. The initial
seed pool consists of regular inputs known as seeds. This seed selection process
determines which seed from the pool is used to generate test cases, which serve
as input for testing the target program. The power schedule plays a crucial role
in determining the number of test cases, referred to as energy (E), that will be
generated from the selected seed. The fuzzer applies mutation techniques to the
seed based on the energy, creating new test cases. The target program executes
each test case, which provides feedback during execution. This feedback typ-
ically includes coverage information, highlighting which code paths, branches,
or functions were traversed. Leveraging this feedback, the fuzzer evaluates the
input and identifies cases that increase coverage or exhibit abnormal behav-
iors. These interesting inputs are considered valuable and are added to the seed
pool for further exploration in subsequent iterations. The fuzzing process contin-
ues iteratively, generating new test cases, executing them, and evaluating their
impact based on the coverage feedback collected. Once all seeds in the seed pool
are selected, the fuzzer selects seeds again from the beginning so they can be
selected multiple times.

2.2 Mutation Method

We explain the mutation method used in AFL (shown in Fig. 1) because many
coverage-based fuzzers have been implemented based on AFL and have adopted

Mutation Methods 261

Fig. 4. The workflow of Uniform mutation. The yellow stage, section havoc, is the
mutation stage that we newly added. (Color figure online)

a similar mutation method. This method consists of several stages, including
deterministic, havoc, and occasionally splicing. Let us delve into each stage:

– Deterministic stage. AFL applies predetermined mutation operations to
the input data in a systematic manner. These operations are typically per-
formed on every bit or byte of the input. The deterministic stage encompasses
mutation operators such as bit flips, byte flips, arithmetic increments/decre-
ments, and other simple transformations.

– Havoc stage. In the havoc stage, randomness is introduced into the mutation
process. AFL randomly selects positions by offsets within the input data and
modifies the bytes or bits at those positions. These modifications can involve
altering values, flipping bits, or applying arithmetic operations.

– Splicing stage. The splicing stage combines portions of two or more different
inputs to generate new test cases. It is important to note that this stage is
occasionally conducted.

While most mutations in AFL primarily occur in the deterministic and havoc
stages, it is noteworthy that these mutation stages lack information regarding
which positions in the input are particularly effective for fuzzing.

3 The Proposed Mutation Methods

3.1 Uniform Mutation

The first proposed mutation method, Uniform mutation, aims to tackle the
inequality problem present in existing mutation methods by introducing addi-
tional mutations in input sections that have triggered less testing within the
target program. Figure 4 illustrates the workflow of Uniform mutation with the
newly added component, the section havoc stage. The fuzzer needs prior knowl-
edge of the section structure of the input to facilitate fuzzing with the boundaries
and divisions of different sections within the input. The mutation algorithm fol-
lows the standard execution of the deterministic and havoc stages. Upon com-
pleting the existing mutation stage, the fuzzer keeps track of the number of

262 Y. Park et al.

Fig. 5. Format-agnostic mutation with control of weight

mutations performed in each input section during the deterministic and havoc
stages. This allows comparing the number of mutations across sections to iden-
tify those that have undergone less testing. To address the imbalance problem,
we incorporate the section havoc stage into the fuzzer, wherein random positions
within the sections requiring additional mutations are selected. Random offsets
are chosen like the existing havoc stage, and additional mutations are applied
at these positions. By integrating the section havoc stage into the mutation
method, Uniform mutation ensures a more equitable distribution of mutations
across input sections. This approach helps mitigate coverage imbalances and
increases the likelihood of exploring new paths in the target program that have
received less testing.

3.2 Format-Agnostic Mutation

The second mutation method, Format-agnostic mutation, aims to increase the
usability of the prior Uniform mutation by allowing arbitrary division of the
input into sections when there is no prior knowledge of the input format struc-
ture. We propose two versions of Format-agnostic mutation, as shown in Figs. 5
and 6.

The first version is the Format-agnostic mutation with weight, depicted in
Fig. 5. This method divides the input into sections with equal size and weight,
which might be not consistent with the actual section structure. Subsequently, it
applies existing mutation methods to each section, according to the weight given
to each section. Throughout this process, the fuzzer keeps track of the number
of discovered paths for each section, serving it as a measure of path coverage.
Based on this information, the fuzzer calculates a distinct weight for each section.
The weight calculation is adjustable and determines the weight ratio using the
following heuristic: Sections in the top one-third of path coverage receive a weight
increase of 20%, while sections in the bottom one-third experience a weight
decrease of 20%. We repeated above process 10 times, to form more precise and
useful section information. In Fig. 5, the blue part corresponds to the top one-
third, indicating a weight increase, while the red part corresponds to the bottom
one-third, reflecting a weight decrease.

Mutation Methods 263

Fig. 6. Format-agnostic mutation with control of section size

The second version is the Format-agnostic mutation with resized sections,
illustrated in Fig. 6. Similar to the previous version, it evenly divides the input
into sections and applies existing mutation methods to each section. Each
section’s path coverage is evaluated like the Format-agnostic mutation with
weight approach. Sections within the top one-third of path coverage undergo
resizing by dividing them in half. Conversely, sections within the bottom one-
third of path coverage are merged with adjacent sections exhibiting low path
coverage. Following the resizing of sections, the fuzzer once again proceeds with
the mutation algorithm, targeting the resized sections. In Fig. 6, the blue sec-
tions, which have discovered 20 and 25 paths, are divided, while the red sections,
with only one and three paths, are merged with neighboring low-coverage sec-
tions.

4 Evaluation

Prototypes of the Uniform mutation and two versions of the Format-agnostic
mutation (weight and resizing sections) are implemented on AFL as part of
our research. The experiments are conducted using Xpdf and libxml2 as the
target programs. The performance of the Uniform and Format-agnostic mutation
methods was compared to that of AFL. The primary focus of the evaluation was
to assess the path coverage achieved by each method. Our evaluation aims to
address the following research questions:

RQ1. Does the Uniform mutation approach, which targets input sections with
knowing the input structure, enhance the coverage exploration capabilities of
fuzzing?

RQ2. Can we attain high path coverage by automatically dividing the input into
sections without knowing the input structure?

By conducting comprehensive experiments and analyzing the results, we provide
insightful answers to these research questions, shedding light on the benefits and
potential of the Uniform and Format-agnostic mutation methods in improving
coverage exploration during fuzzing.

264 Y. Park et al.

4.1 Experiment Setup

All of our evaluations were performed on an AMD Ryzen 7 6800H with Radeon
Graphics @ 3.20 GHz (4 MB cache) machine with 8 GB of RAM. The O.S. is
Ubuntu 20.04 with Linux 5.15.0-72-generic 64-bit. We tested Xpdf and libxml2
for six hours.

4.2 The Result of Uniform Mutation

Table 1 shows the number of paths found by AFL and the Uniform mutation
method. The experiment was conducted multiple times (five times) on the Xpdf
benchmark for six hours to ensure fairness. The average results showed that the
Uniform mutation method explored 9.64% more paths than AFL.

Table 1. The # of paths found by AFL and Uniform mutation on Xpdf.

Test Number AFL (path) Uniform (path)

#1 4011 4769

#2 4705 4754

#3 4083 4744

#4 4745 4722

#5 4052 4689

Avg 4319.2 4735.6

AFL’s performance demonstrates inconsistency, whereas the Uniform muta-
tion method consistently produces stable results. This inconsistency in AFL’s
performance can be attributed to the imbalance of mutations. AFL mutates the
input by flipping all positions in the input one by one (deterministic stage) or
randomly selecting positions with offsets to modify bytes or bits (havoc stage)
without considering the input section. As a result, the code handling each input
section is not tested with an equal chance. In contrast, the Uniform mutation
method achieves stable results and higher path coverage by focusing on the
exploration of smaller sections (such as the header and the cross-ref) based on
the input section format. By uniformly applying mutations based on the input
sections, this method achieves enhanced coverage and maintains stable fuzzing
performance across multiple experimental attempts. These results clearly demon-
strate the advantages of the Uniform mutation method over AFL in terms of path
coverage and stability in fuzzing performance.

4.3 The Result of Format-Agnostic Mutation

Table 2 displays the path coverage results obtained from AFL, Uniform mutation,
and the Format-agnostic mutations (weight and resize strategies) on the Xpdf

Mutation Methods 265

benchmark. The experiment was repeated five times, with each run lasting six
hours. On average, the Format-agnostic mutations (weight and resize strategies)
revealed 7.0% and 6.4% more paths, respectively, compared to AFL. However,
they still exhibited lower path coverage when compared to the Uniform mutation
method, which has prior knowledge of the input format. These findings highlight
that while the format-agnostic mutations achieved some improvements in path
coverage compared to AFL, the Uniform mutation approach, benefiting from its
understanding of the input format, outperformed the other methods by achieving
higher path coverage.

Table 2. The # of paths found by AFL and Format-agnostic mutation on Xpdf.

Test Number AFL Uniform mutation Format-agnostic (weight) Format-agnostic (resize)

#1 4011 4769 4660 4665

#2 4705 4754 4654 4517

#3 4083 4744 4659 4525

#4 4745 4722 4567 4629

#5 4052 4689 4559 4647

Avg 4319.2 4735.6 4619.8 4596.6

The Format-agnostic mutation method is proposed as a solution for cases
where prior knowledge of the input structure is unavailable. We observed that
this method effectively divides the input into sections, resulting in only a slight
difference in performance compared to the Uniform mutation method. When
comparing the two versions (weight and resize strategies) of the Format-agnostic
mutation method applied to the PDF input, the weight strategy shows similar
performance to the resize strategy. This can be attributed to the PDF input’s
simple section structure, which aligns well with the divided sections determined
by the Format-agnostic mutation method. Furthermore, since there is a separate
code segment in the target program that handles each section of the PDF input,
conducting additional mutations on sections with low weight, as facilitated by
the weight strategy, contributes to exploring paths associated with the specific
code segment.

Table 3 provides a detailed overview of the path coverage results of AFL
and the Format-agnostic mutations (weight and resize strategies) on the libxml2
benchmark. The experiment was repeated five times, with each run lasting six
hours. In the evaluation of AFL and Format-agnostic mutations for the libxml2
benchmark, which employs XML format inputs—a more intricate structure than
PDF, the Uniform mutation method was not applied due to the complexity of
XML syntax, including the presence of user-defined tags and attributes. On
average, the Format-agnostic mutations (weight and resize strategies) achieved
101% and 105.4% higher path coverage, respectively, compared to AFL. These
results highlight the effectiveness of the Format-agnostic mutation method in
exploring path coverage by partitioning the input and applying varying numbers

266 Y. Park et al.

of mutations to each section, even for inputs with complex formats like XML.
Notably, the resize strategy outperformed the weight strategy in the case of
XML. This can be attributed to the densely sized sections present in XML inputs,
and the resizing strategy adeptly divides the input to accommodate these dense
sections, thereby contributing to improved path coverage.

Table 3. The # of paths found by AFL and Format-agnostic mutation on libxml2.

Test Number AFL Format-agnostic (weight) Format-agnostic (resize)

#1 1533 3447 3150

#2 1697 3249 3654

#3 2073 3686 3556

#4 1519 3219 3434

#5 1593 3314 3490

Avg 1683 3383 3456.8

Overall, the results demonstrate that the Uniform and Format-agnostic muta-
tion methods offer significant advantages over AFL regarding path coverage. The
Uniform mutation method, leveraging its prior knowledge of the input format
structure, outperforms the other methods in achieving higher path coverage.
However, the Format-agnostic mutation methods also exhibit notable path cov-
erage by dynamically partitioning the input into sections based on coverage
feedback, even without prior knowledge of the input format structure, regard-
less of its structure complexity. This highlights their effectiveness in adapting to
different input scenarios and achieving satisfactory path coverage.

5 Related Work

Mutation-Based Fuzzing. Mutation-based fuzzing has been proposed to gen-
erate inputs by randomly modifying valid inputs. Some studies leverage heuris-
tics to guide mutation. AFL [23], Angora [2], CollAFL [6], and Mopt [11] utilize
coverage for the guidance, and MemFuzz [3] and MemLock [18] leverage memory
access and memory usage. Mutation-based fuzzing shows high speed to gener-
ate inputs but, it is less effective for programs that use structured inputs. For
example, fuzzers like Angora [2] and Qsym [22] rely on program context (e.g.,
branches), not the file context, there may still exist codes that are less tested for
a given time.

Structured Input Fuzzing. Several approaches have been proposed to per-
form mutations based on grammar or specification to generate structured inputs.
Squirrel [24], Superion [17], SD-Gen [14] leverage the AST based on input spec-
ifications and the grammar to generate the valid inputs. On the other hand,
JANUS [20] and AFLTurbo [16] apply mutations on the metadata dimension
intensively. They focus only on a specific segment of the structured input rather
than the overall input segments.

Mutation Methods 267

6 Conclusion

In this paper, we have tackled the bias issue present in existing mutation meth-
ods utilized in coverage-based grey-box fuzzing. We introduced new mutation
methods for structured input, namely Uniform and Format-agnostic. The Uni-
form mutation method addresses the bias by conducting additional mutations on
the input sections that invoke less testing for the code segments in the target pro-
gram responsible for handling those corresponding input sections. This method
ensures more balanced path coverage across the target program. On the other
hand, the Format-agnostic mutation method automatically divides the input into
sections based on coverage feedback. Then it adjusts the number of mutations
or section sizes according to the adopted strategy. Unlike the Uniform mutation
method, the Format-agnostic mutation method does not rely on explicit format
knowledge, making it more versatile for inputs with complex structures.

To evaluate the effectiveness of our proposed methods, we conducted exper-
iments using two real-world programs (Xpdf and libxml2) and compared the
results with AFL. The experimental outcomes demonstrated that our approaches
surpassed AFL regarding path coverage exploration. The Uniform mutation
method consistently achieved stable results with higher path coverage com-
pared to AFL. Meanwhile, the Format-agnostic mutation method effectively
partitioned the input into sections and successfully explored paths within target
programs even when dealing with inputs featuring complex structural formats.
Our proposed approaches effectively address the bias problem inherent in exist-
ing mutation methods, leading to improved path coverage while maintaining
usability.

Acknowledgements. This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2023-2018-0-01441) supervised by the IITP (Institute for Information
& Communications Technology Planning & Evaluation).

References

1. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45(5), 489–506 (2017)

2. Chen, P., Chen, H.: Angora: efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 711–725. IEEE (2018)

3. Coppik, N., Schwahn, O., Suri, N.: MemFuzz: using memory accesses to guide
fuzzing. In: 2019 12th IEEE Conference on Software Testing, Validation and Veri-
fication (ICST), pp. 48–58. IEEE (2019)

4. Fan, R., Chang, Y.: Machine learning for black-box fuzzing of network protocols. In:
Qing, S., Mitchell, C., Chen, L., Liu, D. (eds.) ICICS 2017. LNCS, vol. 10631, pp.
621–632. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89500-0 53

5. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: {AFL++}: combining incremental
steps of fuzzing research. In: 14th USENIX Workshop on Offensive Technologies
(WOOT 2020) (2020)

https://doi.org/10.1007/978-3-319-89500-0_53

268 Y. Park et al.

6. Gan, S., et al.: CollAFL: path sensitive fuzzing. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 679–696. IEEE (2018)

7. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: 2009
IEEE 31st International Conference on Software Engineering, pp. 474–484. IEEE
(2009)

8. Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., Rieck, K.: Pulsar: stateful
black-box fuzzing of proprietary network protocols. In: Thuraisingham, B., Wang,
X.F., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp. 330–347.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28865-9 18

9. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 206–215 (2008)

10. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing.
Commun. ACM 55(3), 40–44 (2012)

11. Lyu, C., et al.: MOPT: optimized mutation scheduling for fuzzers. In: 28th USENIX
Security Symposium (USENIX Security 2019), pp. 1949–1966 (2019)

12. Peng, H., Shoshitaishvili, Y., Payer, M.: T-fuzz: fuzzing by program transformation.
In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 697–710. IEEE (2018)

13. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
application-aware evolutionary fuzzing. In: NDSS, vol. 17, pp. 1–14 (2017)

14. Sargsyan, S., Kurmangaleev, S., Mehrabyan, M., Mishechkin, M., Ghukasyan,
T., Asryan, S.: Grammar-based fuzzing. In: 2018 Ivannikov Memorial Workshop
(IVMEM), pp. 32–35. IEEE (2018)

15. Serebryany, K.: {OSS-Fuzz}-Google’s continuous fuzzing service for open source
software (2017)

16. Sun, L., Li, X., Qu, H., Zhang, X.: AFLTurbo: speed up path discovery for grey-
box fuzzing. In: 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), pp. 81–91. IEEE (2020)

17. Wang, J., Chen, B., Wei, L., Liu, Y.: Superion: grammar-aware greybox fuzzing. In:
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 724–735. IEEE (2019)

18. Wen, C., et al.: MemLock: memory usage guided fuzzing. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp. 765–777
(2020)

19. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational
fuzzing. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pp. 511–522 (2013)

20. Xu, W., Moon, H., Kashyap, S., Tseng, P.N., Kim, T.: Fuzzing file systems via
two-dimensional input space exploration. In: 2019 IEEE Symposium on Security
and Privacy (SP), pp. 818–834. IEEE (2019)

21. Yue, T., et al.: {EcoFuzz}: adaptive {Energy-Saving} greybox fuzzing as a variant
of the adversarial {Multi-Armed} bandit. In: 29th USENIX Security Symposium
(USENIX Security 2020), pp. 2307–2324 (2020)

22. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: {QSYM}: a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 2018), pp. 745–761 (2018)

23. Zalewski, M.: American fuzzy lop (2020). https://lcamtuf.coredump.cx/afl/
24. Zhong, R., Chen, Y., Hu, H., Zhang, H., Lee, W., Wu, D.: SQUIRREL: testing

database management systems with language validity and coverage feedback. In:
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 955–970 (2020)

https://doi.org/10.1007/978-3-319-28865-9_18
https://lcamtuf.coredump.cx/afl/

Improved Differential-Linear Cryptanalysis
of Reduced Rounds of ChaCha

Ryo Watanabe, Nasratullah Ghafoori(B) , and Atsuko Miyaji

Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka, Japan
{watanabe,ghafoori}@cy2sec.comm.eng.osaka-u.ac.jp,

miyaji@comm.eng.osaka-u.ac.jp

Abstract. ChaCha is a stream cipher introduced by Daniel Bernstein
as a variant of Salsa20. Since the release of ChaCha, it has received the
attention of many researchers as it has been widely deployed. In this
study, we derive a new linear approximation for ChaCha with a higher
probability bias. In addition, we found a combination of input/output
differences corresponding to a new linear relationship. Furthermore, we
proved that the proposed bias can be used to attack 7-round ChaCha
with a reduced computational complexity from 2221.95 to 2120.9.

Keywords: symmetric-key cryptography · stream ciphers · ChaCha ·
differential linear analysis

1 Introduction

Symmetric key cryptography is widely used in the modern computing era. It
ensures secure information exchange. ChaCha [5] is a stream cipher based on
ARX. It’s important to assess its security due to its deployment, especially in
TLS and DTLS protocols [5,16]. While ChaCha is generally resilient against
attacks, it shows some weakness in the first few rounds against Differential and
Differential Linear Cryptanalysis, making those the primary attack methods.
Aumasson [1] proposed a significant cryptanalysis method to attack ChaCha.
One of the notable research studies in this area is based on the notion of proba-
bilistic neutral bits (PNBs). Aumasson divides secret key bits into two subsets,
significant key bits “m” and non-significant key bits “n” which is the fundamen-
tal idea behind PNB (Probabilistic Neutral Bits). Aumasson reported attacks
on ChaCha7 and ChaCha6 with the complexity of 2248, and 2139 respectively.
Almost all subsequent attacks on the mentioned ciphers improved Aumasson’s
method. In 2012, Zhenqing Shi [21] introduced the concept called (column and
row) chaining distinguishers. Shi published attack on ChaCha7 with complexity
of 2246.5 and ChaCha6 with complexity of 2136. In due course, Maitra [17] pre-
sented the chosen IV attack on Salsa20 and ChaCha. Maitra reported attacks
on ChaCha7 with the complexity of 2239. Following that, Choudhuri [7] intro-
duced the differential linear adversary model on Salsa20 and ChaCha. Choud-
huri reported report biases for 4/4.5/5 rounds of ChaCha. The proposed attack
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 269–281, 2024.
https://doi.org/10.1007/978-981-99-8024-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_21&domain=pdf
http://orcid.org/0000-0002-9557-5389
http://orcid.org/0000-0001-8822-5287
https://doi.org/10.1007/978-981-99-8024-6_21

270 R. Watanabe et al.

resulted in ChaCha7 with 2233 operations. Later, in 2017 Dey [13] studied the
proposed technique to construct a PNB set. The author reported attacks on
ChaCha7 with a 2235.2 complexity. In 2020 Coutinho [8] improved the method
introduced by Choudhuri and provided new linear approximations that increase
the efficiency of attack on ChaCha stream cipher. Coutinho introduced an attack
on ChaCha7 with 2231.9 operation and 250 data complexity. In 2020 Beierle [2]
improved the framework of differential-linear attacks with a special focus on
ARX ciphers and attacked ChaCha7 with 2230.86 operations and 248.83 data com-
plexity. Miyashita [19] in 2021 worked on PNB-focused differential cryptanalysis
on ChaCha7 and introduced an attack with a time complexity of 2231.63. Dey
[12] presented Revamped Differential-Linear Cryptanalysis on ChaCha7 with
2221.95 operations. Zhongfeng [20] in 2022 reported improved differential-linear
distinguisher for ChaCha4. In 2022, Coutinho [10] introduced a 2214 operation
differential-linear attack on ChaCha7. In 2023, Dey [11] introduced attack with
299.48 operations attack on ChaCha6. Later in 2022, Ghafoori [14] and Miyaji
comprehensively analyzed the neutrality measure of Salsa20 keybits and pro-
posed an attack with a complexity of 2144.75. In 2023, Bellini1 [4] presented a
key recovery attack on chaCha7 and a distinguisher on ChaCha7.5 with com-
plexity of 2206.8 and 2251.54 respectively. In this study, we present an analysis of
the differential linear attack on ChaCha7. First, we show a new linear approx-
imation for ChaCha by combining existing linear approximations. The compu-
tational complexity of the existing studies is listed in Table 1. Table 2 describes
the notation used in the following sections and its meaning.

2 Preliminary

ChaCha stream cipher consists of the following three steps to generate a
keystream block of 16 words, where each word size is 32 bits:

Step 1. To generate 512 bits key stream, ChaCha initial state matrix X(0)

of order 4 × 4 is initialized from a 256-bit secret key k = (k0, k1, . . . , k7),
a 96-bit nonce v = (v0, v1, v2), a 32-bit block counter t0, and four 32-bit
constants c = (c0, c1, c2, c3), such as c0 = 0x61707865, c1 = 0x3320646e,
c2 = 0x79622d32, and c3 = 0x6b206574. After initialization, we obtain the
following initial state matrix:

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

⎞
⎟⎟⎠ .

Step 2. The round function of ChaCha comprises four simultaneous compu-
tations of the quarterround function. According to the procedure, a vector

Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha 271

Table 1. Comparison of analysis results of existing studies and this study for ChaCha

Attack Type Target Rounds Time Complexity Data Complexity Reference

Distinguisher 4 26 26 [7]
Distinguisher 5 216 216 [7]
Key Recovery 6 2139 230 [1]
Key Recovery 6 2127.5 237.5 [7]
Key Recovery 6 277.4 258 [3]
Distinguisher 6 2116 2116 [7]
Distinguisher 6 251 251 [9]
Key Recovery 7 2248 227 [1]
Key Recovery 7 2237.7 296 [7]
Key Recovery 7 2230.86 248.8 [3]
Key Recovery 7 2221.95 248.83 [12]
Key Recovery 7 2221.95 248.83 [12]
Distinguisher 7 2224 2224 [9]
Distinguisher 7 2214 2214 [10]
Key Recovery 7 2206.8 2110.81 [4]
Distinguisher 7.5 2251.54 2251.54 [4]
Distinguisher 7 2120.9 2120.9 This work

(x(r)
a , x

(r)
b , x

(r)
c , x

(r)
d) in the internal state matrix X(r) is updated by sequen-

tially computing the following:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
(r)
a′ = x(r)

a + x
(r)
b

x
(r)
d′ = x

(r)
d ⊕ x

(r)
a′

x
(r)
d′′ = x

(r)
d′ ≪ 16

x
(r)
c′ = x(r)

c + x
(r)
d′′

x
(r)
b′ = x

(r)
b ⊕ x

(r)
c′

x
(r)
b′′ = x

(r)
b′ ≪ 12

x(r+1)
a = x

(r)
a′ + x

(r)
b′′

x
(r)
d′′′ = x

(r)
d′′ ⊕ x(r+1)

a

x
(r+1)
d = x

(r)
d′′′ ≪ 8

x(r+1)
c = x

(r)
c′ + x

(r+1)
d

x
(r)
b′′′ = x

(r)
b′′ ⊕ x(r+1)

c

x
(r+1)
b = x

(r)
b′′′ ≪ 7

(1)

The symbols “+”, “⊕”, and “≪” represent wordwise modular addition,
bitwise XOR, and bitwise left rotation, respectively. For odd-numbered
rounds, which are called columnrounds, the quarterround function is applied to
the following four column vectors: (x(r)

0 , x
(r)
4 , x

(r)
8 , x

(r)
12), (x

(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13),

(x(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14), and (x(r)

3 , x
(r)
7 , x

(r)
11 , x

(r)
15). For even-numbered rounds,

which are called diagonalrounds, the quarterround function is applied to the
following four diagonal vectors: (x(r)

0 , x
(r)
5 , x

(r)
10 , x

(r)
15), (x(r)

1 , x
(r)
6 , x

(r)
11 , x

(r)
12),

(x(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13), and (x(r)

3 , x
(r)
4 , x

(r)
9 , x

(r)
14).

272 R. Watanabe et al.

Table 2. Notation in this paper

Notation Description

X The ChaCha matrix of 4 × 4 with 16 words of 32 bit each
X(0) The initial state matrix of ChaCha
X

′(0) The associate matrix with a single bit difference at xi,j position
X(R) The matrix after ChaCha R rounds
X(r) The matrix after ChaCha r rounds where R > r (internal round)
x
(R)
i The ith word of state matrix X(R)

x
(R)
i,j The jth bit of ith word of matrix X(R)

x + y The word-wise addition of word x and y modulo 232

x
⊕

y Bit-wise XOR operation of the word x and y

x ≪ n The left rotation of word x by n bits
Δx The XOR difference of word x and x′ defined as Δx = x

⊕
x′

εe, εl The forward bias and linear correlation of ChaCha respectively

Step 3. A 512-bit keystream block is computed as Z = X(0) + X(R), where R
is the final round. The original version of ChaCha has R = 20 rounds, and
the ChaCha20/R denotes the reduced-round version of ChaCha.

3 Differential-Linear Cryptanalysis

In this section, we explain Differential-Linear Cryptanalysis as the adversary
model of this paper. Differential analysis was proposed by Eli Biham et al. [6] in
1990, Linear Cryptanalysis was introduced by Matsui [18]. Langford [15] intro-
duced the idea of Differential-Linear Cryptanalysis. Let E represent the cipher,
we write E = E2·E1 covering the l and m round of cipher respectively. We apply
differential cryptanalysis on sub cipher E1. Let X(0) be the initial state and we
introduce an input difference ID denoted as ΔX(0) in X(0) and get output dif-
ference OD denoted as ΔX(m) after m rounds X(m). Next, we apply Linear
Cryptanalysis on E2 sub cipher. We use Γm and Γout to obtain a linear approx-
imation of the remaining l round of the cipher E. This adversary model covers
the m + l round of the cipher E. We use the differential linear distinguisher
of m + l to attack cipher E with higher efficiency. Let ΔX(r) = X(r) ⊕ X ′(r)

be the differential of matrices X(r) and X ′(r), and Δ
(0)
i [j] = x

(0)
i [j] ⊕ x

′(0)
i [j]

be the difference of individual words at j-th word of i-th bit after r internal
rounds. Let J be the set of bits and σ and σ′ be the linear combination of bits
in the set J . Precisely, σ =

(⊕
(i,[j])∈J x

(r)
i,[j]

)
and σ′ =

(⊕
(i,[j])∈J x

′(r)
i,[j]

)
, let

ΔX =
(⊕

(i,[j])∈J Δx
(r)
i,[j]

)
be the linear combination of σ and σ′. The differen-

tial bias εd is computed as Pr
[
Δσ = 0|ΔX(0)

]
= 1

2 (1 + εd). We can use linear
cryptanalysis to move forward and get new relationships between the initial state

Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha 273

and the state after the target round R > r. Let ρ =
(⊕

(i,[j])∈J x
(R)
i,[j]

)
and ρ′ =(⊕

(i,[j])∈J x
′(R)
i,[j]

)
. Let Δρ =

(⊕
(i,[j])∈J Δx

(R)
i,[j]

)
be the linear combination of ρ

and ρ′. Pr [σ = ρ] = 1
2 (1 + εL) where εL denotes the linear correlation. The dif-

ferential linear correlation is computed as the Pr
[
Δρ = 0|ΔX(0)

]
= 1

2 (1+εd ·ε2L)
where εd · ε2L denote the differential linear bias. The distinguisher complexity is
computed as O

(
1

ε2d·ε2L

)
. Typically, a minimum of O

(
1

pq2

)
samples is needed to

discern between two events, with one event having a probability of p and the
other event having a substantially smaller probability of q. For the proof one
may refer to [7].

Lemma 1 (Lemma 3 of [7]). Let

ΔA(m) = Δx
(m)
α,0 ⊕ Δx

(m)
β,7 ⊕ Δx

(m)
β,19 ⊕ Δx

(m)
γ,12 ⊕ Δx

(m)
δ,0 ,

ΔB(m) = Δx
(m)
β,19 ⊕ Δx

(m)
γ,0 ⊕ Δx

(m)
γ,12 ⊕ Δx

(m)
δ,0 ,

ΔC(m) = Δx
(m)
δ,0 ⊕ Δx

(m)
γ,7 ⊕ Δx

(m)
δ,8 ⊕ Δx

(m)
α,0 , and

ΔD(m) = Δx
(m)
δ,24 ⊕ Δx

(m)
α,16 ⊕ Δx

(m)
α,0 ⊕ Δx

(m)
γ,0 ⊕ Δx

(m)
β,7 .

Then, the following equations for four biases hold:

∣
∣
∣ε(A(m))

∣
∣
∣ =

∣
∣
∣
∣
ε
(x

(m−1)
α [0])

∣
∣
∣
∣
,
∣
∣
∣ε(B(m))

∣
∣
∣ =

∣
∣
∣
∣
∣
ε
(x

(m−1)
β

[0])

∣
∣
∣
∣
∣
,
∣
∣
∣ε(C(m))

∣
∣
∣ =

∣
∣
∣
∣
ε
(x

(m−1)
γ [0])

∣
∣
∣
∣
, and

∣
∣
∣ε(D(m))

∣
∣
∣

=

∣
∣
∣
∣
ε
(x

(m−1)
δ

[0])

∣
∣
∣
∣
.

where these relations are divided into two cases depending on m,

1. If m is odd number:

(α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)},

2. If m is even number:

(α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

Lemma 2 (Lemma 9 of [7]). For a single input bit in m−1 rounds and multiple
output bits in m rounds, the following relationship holds.

x
(m−1)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i−1, w.p.

1

2

(
1 +

1

2

)
,

x
(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+6,

w.p.
1

2

(
1 +

1

24

)
,

x
(m−1)
c,i = x

(m)
d,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i+8 ⊕ x

(m)
a,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
d,i−1, w.p.

1

2

(
1 +

1

22

)
,

x
(m−1)
d,i = x

(m)
d,i+24 ⊕ x

(m)
a,i+16 ⊕ x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i−1 ⊕ x

(m)
b,i+6, w.p.

1

2

(
1 +

1

2

)
.

274 R. Watanabe et al.

Coutinho et al. [9] proposed an improved linear approximation with a larger
bias, using the results of [7].

L(m)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i

L(m)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i

L(m)
c,i = x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i ⊕ x

(m)
d,i+8

L(m)
d,i = x

(m)
a,i ⊕ x

(m)
a,i+16 ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕ x

(m)
d,i+24

Lemma 3 (Lemma 6 of [9]). For i > 0,

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1

is satisfied with probability 1
2

(
1 + 1

23

)
.

Lemma 4 (Lemma 7 of [9]). Linear approximation between two input bits
in m − 1 rounds and multiple output bits in m rounds x

(m−1)
λ,i ⊕ x

(m−1)
λ,i−1 =

L(m)
λ,i ⊕ L(m)

λ,i−1 is satisfied with probability 1
2

(
1 + 1

2σ

)
, where (λ, σ) ∈

{(a, 3), (b, 1), (c, 2), (d, 1)} for i>0.

Lemma 5 (Eq. 19 and 25 in Lemma 9 of [9] respectively). The following linear
approximations between multiple input bits of m − 1 rounds and multiple output
bits of m rounds hold with the following probability.

x
(m−1)
b,i ⊕ x

(m−1)
c,i = L(m)

b,i ⊕ L(m)
c,i ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 w.p.

1

2

(

1 +
1

2

)

for i > 0, (2)

x
(m−1)
a,i−1 ⊕ x

(m−1)
a,i ⊕ x

(m−1)
c,i = L(m)

a,i−1 ⊕ L(m)
a,i ⊕ L(m)

c,i ⊕ x
(m)
d,i−2 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7

w.p.
1

2

(

1 +
1

24

)

for i > 1. (3)

4 Improved Differential-Linear Analysis on ChaCha

This section presents our approach which greatly reduced the ChaCha 7 com-
putational complexity in Differential-Linear analysis.

4.1 Our Strategy

The Differential-Linear Cryptanalysis bias is computed as Pr
[
Δρ = 0|ΔX(0)

]
=

1
2 (1+εd ·ε2L). The linear bias is crucial for reducing the overall attack complexity.
To get a higher bias, we focused on two strategies: First, improving the linear
component bias by reducing the number of rounds. Specifically, we focus on four
rounds for the differential part and three rounds for the linear part. Second, we
focus on a single bit active bit in linear approximation. Adopting this approach
helped us to reduce the distinguisher for ChaCha7.

Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha 275

4.2 Linear Part

In this section, we introduce a new linear approximation.

Lemma 6. The following linear approximation holds between a single bit in the
4th round and multiple bits in the 6th round.

x
(4)
3,0 = x

(6)
0 [0, 16] ⊕ x

(6)
1 [11, 12] ⊕ x

(6)
3,0 ⊕ x

(6)
4 [7, 19] ⊕ x

(6)
5,7 ⊕ x

(6)
7 [6, 26] ⊕ x

(6)
8 [7, 31]

⊕ x
(6)
9,12 ⊕ x

(6)
10,0 ⊕ x

(6)
11,12 ⊕ x

(6)
12 [11, 12, 19, 20] ⊕ x

(6)
13 [6, 7, 18, 19] ⊕ x

(6)
14,0 ⊕ x

(6)
15,24

w.p.
1

2

(

1 +
1

24

)

.

Proof. Applying Lemma 1 to the input bit x
(4)
3,0, we obtain the following linear

approximation,

x
(4)
3,0 = x

(5)
3,0 ⊕ x

(5)
7,7 ⊕ x

(5)
7,19 ⊕ x

(5)
11,12 ⊕ x

(5)
15,0 w.p.1.

Furthermore, for each bit on the right-hand side of this equation, we apply
Lemma 2 as follows:

x
(5)
3,0 = x

(6)
3,0 ⊕ x

(6)
4,7 ⊕ x

(6)
4,19 ⊕ x

(6)
9,12 ⊕ x

(6)
14,0 w.p.1 (Lemma 1),

x
(5)
15,0 = x

(6)
0,0 ⊕ x

(6)
0,16 ⊕ x

(6)
5,7 ⊕ x

(6)
10,0 ⊕ x

(6)
15,24 w.p.1 (Lemma 1),

x
(5)
7,7 = x

(6)
7,26 ⊕ x

(6)
8,7 ⊕ x

(6)
8,19 ⊕ x

(6)
13,7 ⊕ x

(6)
13,6 w.p.

1

2

(
1 +

1

2

)
(Lemma 2),

x
(5)
7,19 = x

(6)
7,6 ⊕ x

(6)
8,19 ⊕ x

(6)
8,31 ⊕ x

(6)
13,19 ⊕ x

(6)
13,18 w.p.

1

2

(
1 +

1

2

)
(Lemma 2),

x
(5)
11,12 = x

(6)
1,12 ⊕ x

(6)
11,12 ⊕ x

(6)
12,12 ⊕ x

(6)
12,20 ⊕ x

(6)
1,11 ⊕ x

(6)
12,19 ⊕ x

(6)
12,11 w.p.

1

2

(
1 +

1

22

)
(4)

Then, Lemma 6 follows by combining the above equations. The bias is expressed
as the product of each biases in each equation. In addition, we will show Lemma 7
that extends the number of rounds between the input and output of Lemma 6.

Lemma 7. The following linear approximation holds between a single bit in the
4th round and multiple bits in the 7th round.

x
(4)
3,0 = x

(7)
0 [0, 3, 4, 6, 7, 11, 12, 16, 19, 20, 27, 28, 30, 31] ⊕ x

(7)
1 [2, 3, 6, 7, 18, 19, 22, 23]

⊕ x
(7)
2,16 ⊕ x

(7)
3 [0, 8, 11, 12, 24] ⊕ x

(7)
4 [2, 3, 6, 7, 18, 22, 23, 27]

⊕ x
(7)
5 [13, 14, 18, 19, 25, 30, 31] ⊕ x

(7)
6,7 ⊕ x

(7)
7 [7, 13, 19, 25, 30, 31] ⊕ x

(7)
8 [11, 19, 20, 27, 28]

⊕ x
(7)
9 [6, 12, 18, 23, 24] ⊕ x

(7)
11 [18, 23, 24, 26] ⊕ x

(7)
12 [0, 3, 4, 6, 7, 11, 12, 14, 16, 18, 19, 30, 31]

⊕ x
(7)
13 [6, 7, 19, 20, 30, 31] ⊕ x

(7)
14 [0, 8, 24] ⊕ x

(7)
15 [0, 5, 6, 11, 12, 16, 19, 20, 25, 26]

w.p.
1

2

(
1 +

1

225

)
.

276 R. Watanabe et al.

Proof. The formula expansion for rounds 4 through 6 is the same as in Lemma 6.
The expansion from round 6 to round 7 is done by dividing the right-hand side
of the Lemma 6 into four groups and expanding each of them as follows.

G1: x
(6)
0 [0, 16], x(6)

4 [7, 19], x(6)
8 [7, 31], x(6)

12 [11, 12, 19, 20]
G2: x

(6)
1 [11, 12], x(6)

5,7, x
(6)
9,12, x

(6)
13 [6, 7, 18, 19]

G3: x
(6)
10,0, x

(6)
14,0

G4: x
(6)
3,0, x

(6)
7 [6, 26], x(6)

11,12, x
(6)
15,24

Thereafter, each group will expand to 7 rounds. For G1, the equation is expanded
as follows.

x
(6)
0,0 = x

(7)
0,0 ⊕ x

(7)
4 [7, 19] ⊕ x

(7)
8,12 ⊕ x

(7)
12,0 w.p.1 (Lemma 1),

x
(6)
4,7 ⊕ x

(6)
8,7 = x

(7)
0 [6, 7] ⊕ x

(7)
4,26 ⊕ x

(7)
8,19 ⊕ x

(7)
12 [14, 15] w.p.

1

2

(
1 +

1

2

)
(Eq. (2)),

x
(6)
12,11 ⊕ x

(6)
12,12 = x

(7)
0 [11, 12, 27, 28] ⊕ x

(7)
4 [18, 19] ⊕ x

(7)
8 [11, 12] ⊕ x

(7)
12 [3, 4]

w.p.
1

2

(
1 +

1

2

)
(Lemma 4),

x
(6)
12,19 ⊕ x

(6)
12,20 = x

(7)
0 [3, 4, 19, 20] ⊕ x

(7)
4 [26, 27] ⊕ x

(7)
8 [19, 20] ⊕ x

(7)
12 [11, 12]

w.p.
1

2

(
1 +

1

2

)
(Lemma 4),

x
(6)
0,16 = x

(7)
0,16 ⊕ x

(7)
4 [2, 3, 22, 23] ⊕ x

(7)
8 [27, 28] ⊕ x

(7)
12 [15, 16]

w.p.
1

2

(
1 +

1

23

)
(Lemma 3),

x
(6)
4,19 = x

(7)
4,6 ⊕ x

(7)
8 [19, 31] ⊕ x

(7)
12 [18, 19] w.p.

1

2

(
1 +

1

2

)
(Lemma 2),

x
(6)
8,31 = x

(7)
0 [30, 31] ⊕ x

(7)
8,31 ⊕ x

(7)
12 [6, 7, 30, 31] w.p.

1

2

(
1 +

1

22

)
(Lemma 2).

Therefore, we get

x
(6)
0 [0, 16] ⊕ x

(6)
4 [7, 19] ⊕ x

(6)
8 [7, 31] ⊕ x

(6)
12 [11, 12, 19, 20]

= x
(7)
0 [0, 3, 4, 6, 7, 11, 12, 16, 19, 20, 27, 28, 30, 31]

⊕ x
(7)
4 [2, 3, 6, 7, 18, 22, 23, 27] ⊕ x

(7)
8 [11, 19, 20, 27, 28]

⊕ x
(7)
12 [0, 3, 4, 6, 7, 11, 12, 14, 16, 18, 19, 30, 31]

w.p.
1
2

(
1 +

1
29

)
. (5)

Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha 277

For G2, the equation is expanded as follows.

x
(6)
1,11 ⊕ x

(6)
1,12 ⊕ x

(6)
9,12 = x

(7)
5 [18, 19, 30, 31] ⊕ x

(7)
9 [12, 23, 24] ⊕ x

(7)
13 [10, 11, 19, 20]

w.p.
1

2

(

1 +
1

24

)

(Eq. (3)),

x
(6)
13,6 ⊕ x

(6)
13,7 = x

(7)
1 [6, 7, 22, 23] ⊕ x

(7)
5 [13, 14] ⊕ x

(7)
9 [6, 7] ⊕ x

(7)
13 [30, 31]

w.p.
1

2

(

1 +
1

2

)

(Lemma 4),

x
(6)
13,18 ⊕ x

(6)
13,19 = x

(7)
1 [2, 3, 18, 19] ⊕ x

(7)
5 [25, 26] ⊕ x

(7)
9 [18, 19] ⊕ x

(7)
13 [10, 11]

w.p.
1

2

(

1 +
1

2

)

(Lemma 4),

x
(6)
5,7 = x

(7)
5,26 ⊕ x

(7)
9 [7, 19] ⊕ x

(7)
13 [6, 7] w.p.

1

2

(

1 +
1

2

)

(Lemma 2).

(6)

As a result, we obtain.

x
(6)
1 [11, 12] ⊕ x

(6)
5,7 ⊕ x

(6)
9,12 ⊕ x

(6)
13 [6, 7, 18, 19] = x

(7)
1 [2, 3, 6, 718, 19, 22, 23]

⊕ x
(7)
5 [13, 14, 18, 19, 25, 30, 31]

⊕ x
(7)
9 [6, 12, 18, 23, 24] ⊕ x

(7)
13 [6, 7, 19, 20, 30, 31] w.p.

1
2

(
1 +

1
27

) (7)

For G3, the equation is expanded as follows.

x
(6)
10,0 = x

(7)
2,0 ⊕ x

(7)
10,0 ⊕ x

(7)
14 [0, 8] w.p.1 (Lemma 1),

x
(6)
14,0 = x

(7)
2 [0, 16] ⊕ x

(7)
6,7 ⊕ x

(7)
10,0 ⊕ x

(7)
14,24 w.p.1 (Lemma 1).

Therefore, we get

x
(6)
10,0 ⊕ x

(6)
14,0 = x

(7)
2,16 ⊕ x

(7)
6,7 ⊕ x

(7)
14 [0, 8, 24] w.p.1. (8)

For G4, each equation is expanded as follows.

x
(6)
3,0 = x

(7)
3,0 ⊕ x

(7)
7 [7, 19] ⊕ x

(7)
11,12 ⊕ x

(7)
15,0 w.p.1 (Lemma 1),

x
(6)
7,6 = x

(7)
7,25 ⊕ x

(7)
11 [6, 18] ⊕ x

(7)
15 [5, 6] w.p.

1

2

(

1 +
1

2

)

(Lemma 2),

x
(6)
7,26 = x

(7)
7,13 ⊕ x

(7)
11 [6, 26] ⊕ x

(7)
15 [25, 26] w.p.

1

2

(

1 +
1

2

)

(Lemma 2),

x
(6)
11,12 = x

(7)
3 [11, 12] ⊕ x

(7)
11,12 ⊕ x

(7)
15 [11, 12, 19, 20] w.p.

1

2

(

1 +
1

22

)

(Lemma 2),

x
(6)
15,24 = x

(7)
3 [8, 24] ⊕ x

(7)
7 [30, 31] ⊕ x

(7)
11 [23, 24] ⊕ x

(7)
15,16 w.p.

1

2

(

1 +
1

2

)

(Lemma 2).

278 R. Watanabe et al.

Consequently, we obtain.

x
(6)
3,0 ⊕ x

(6)
7 [6, 26] ⊕ x

(6)
11,12 ⊕ x

(6)
15,24 = x

(7)
3 [0, 8, 11, 12, 24]

⊕ x
(7)
7 [7, 13, 19, 25, 30, 31] ⊕ x

(7)
11 [18, 23, 24, 26]

⊕ x
(7)
15 [0, 5, 6, 11, 12, 16, 19, 20, 25, 26] w.p.

1
2

(
1 +

1
25

)
.

(9)

From the above Eqs. (5), (7), (8), (9) and Lemma 6, we get Lemma 7. The
bias of this linear approximation, 2−(4+9+7+0+5)=2−25

, immediately follows.

4.3 Differential Part

In this section, we focus on the differential part. We aim to find input differentials
ID position that results in a higher bias at OD. The ID candidates are x12,
x13, x14, x15 with 128 possible positions. We selected (12, 0) as the ID position
to investigate the differential bias. To calculate the bias1, we ran the experiment
with a total complexity of 240, involving 210 key trials and 230 samples of IVs.
The median bias was computed based on the 210 key trials.

Pr
(
Δx

(4)
3,0|Δx

(0)
12,0

)
= 0.00002, εd = 2−15.6.

Considering the median bias, 232.2 samples are enough to distinguish between
two events.

4.4 Computational Complexity

We use the results in Subsects. 4.2 and 4.3 to compute the computational com-
plexity of the attack using our analysis. First, we conducted the following exper-
iments on the bias of Lemma 6.

Computational Result 1. Experiments with a linear approximation of the
Lemma 6 for 230 random samples yielded the probabilities as εL0 = 2−3.5849.
Next, we conduct the following experiments on the bias of the Lemma 7.

Computational Result 2. We experimented with a linear approximation of
Lemma 7 on a random sample of 230. We experiment separately with Eqs. (5),
(7), (8), and (9), which are linear approximations of each group within Lemma 7.
Letting each bias be εL1 , εL2 , εL3 , and εL4 , we obtain εL1 = 2−7.5979, εL2 =
2−6.6622, εL3 = 1, εL4 = 2−4.5855.

The computational complexity of Differential-Linear analysis for ChaCha is
obtained by O

(
1

ε2dε4L

)
. Now, since εd = 2−15.6 and εL is εL = εL0εL1εL2εL3εL4 =

2−(3.5849+7.5979+6.6622+0+4.5855) = 2−22.4304. We get εdε
2
L = 2−60.4. Therefore,

the computational complexity of the analysis in this study is 2120.9.
1 We conducted the differential bias experiment on an Intel(R) Xeon(R) CPU E7-4830

v4 @ 2.00GHz machine with Ubuntu 21.0 OS. In addition, we used the Maximum
Length Sequence Random Number Generator.

Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha 279

Table 3. Number of rounds for the differential and linear part in this study and in [9].

differential part linear part

[9] 3 4
this work 4 3

Table 4. ID/OD of the differential part in this study and in [9].

ID OD

[9] Δx
(0)
14,6 Δx

(3)
3,0 ⊕ Δx

(3)
4,0

this work Δx
(0)
12,0 Δx

(4)
3,0

5 A Comparative Analysis of Our Research Findings
and Existing Studies

In this section, our results are compared with the existing study [9]. The number
of rounds for the differential part and the linear part were as shown in Table 3.
In this study, we adopted a form with one more round of the differential part
and one less round of the linear part than the one used in [9]. The ID and OD
in the differential part are as shown in Table 4. The bias in Differential-Linear
analysis can be increased by setting the output differential to 2 bits, as in [9]. In
fact, in [9], the 3-round OD is expanded to a 5-round linear approximation as in
Eq. (10).

x
(3)
3,0 ⊕ x

(3)
4,0 = x

(5)
1,0 ⊕ x

(5)
3,0 ⊕ x

(5)
4,26 ⊕ x

(5)
7,7 ⊕ x

(5)
7,19 ⊕ x

(5)
8,7 ⊕ x

(5)
8,19 ⊕ x

(5)
9,0 ⊕ x

(5)
11,12

⊕ x
(5)
12,6 ⊕ x

(5)
12,7 ⊕ x

(5)
13,0 ⊕ x

(5)
13,8 ⊕ x

(5)
15,0 w.p.

1
2

(
1 +

1
2

)
.

(10)
On the other hand, differential analysis with multiple bits of OD may result

in a smaller bias than when the OD is a single bit (Table 5).

Table 5. Bias of each part in this study and in the [9]

εd εL

[9] 2−11.02 2−111.86

this work 2−15.6 2−22.4304

6 Conclusion

In this study, we used Differential-Linear Cryptanalysis to attack the 7-
round ChaCha, significantly reducing computational complexity. Our new linear
approximation from 4 to 7 rounds was experimentally confirmed, along with
biases.

280 R. Watanabe et al.

Acknowledgement. This work is partially supported by JSPS KAKENHI Grant
Number JP21H03443 and SECOM Science and Technology Foundation.

References

1. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-71039-4_30

2. Beierle, C., Broll, M., Canale, F., David, N., Flórez-Gutiérrez, A., Leander, G.,
Naya-Plasencia, M., Todo, Y.: Improved differential-linear attacks with appli-
cations to ARX ciphers. J. Cryptol. 35(4), 29 (2022). https://doi.org/10.1007/
s00145-022-09437-z

3. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with appli-
cations to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020,
Part III. LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56877-1_12

4. Bellini, E., Gerault, D., Grados, J., Makarim, R.H., Peyrin, T.: Boosting
differential-linear cryptanalysis of ChaCha7 with MILP. ToSC 2023(2), 189–223
(2023)

5. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, pp.
1–6 (2008)

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

7. Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for
reduced round salsa and ChaCha. IACR Trans. Symmetric Cryptol. 2016(2), 261–
287 (2016)

8. Coutinho, M., Neto, T.: New multi-bit differentials to improve attacks against
ChaCha. IACR Cryptology ePrint Archive 2020/350 (2020)

9. Coutinho, M., Souza Neto, T.C.: Improved linear approximations to ARX ciphers
and attacks against ChaCha. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021, Part I. LNCS, vol. 12696, pp. 711–740. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5_25

10. Coutinho, M., Passos, I., Grados Vásquez, J.C., de Mendonça, F.L., de Sousa Jr,
R.T., Borges, F.: Latin dances reloaded: improved cryptanalysis against salsa and
ChaCha, and the proposal of Forró. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT
2022, Part I. LNCS, vol. 13791, pp. 256–286. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-22963-3_9

11. Dey, S., Garai, H.K., Maitra, S.: Cryptanalysis of reduced round ChaCha-new
attack and deeper analysis. Cryptology ePrint Archive (2023)

12. Dey, S., Garai, H.K., Sarkar, S., Sharma, N.K.: Revamped differential-linear crypt-
analysis on reduced round ChaCha. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 86–114. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07082-2_4

13. Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and ChaCha. Dis-
crete Appl. Math. 227, 58–69 (2017)

14. Ghafoori, N., Miyaji, A.: Differential cryptanalysis of Salsa20 based on compre-
hensive analysis of PNBs. In: Su, C., Gritzalis, D., Piuri, V. (eds.) ISPEC 2022.
LNCS, vol. 13620, pp. 520–536. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-21280-2_29

https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/s00145-022-09437-z
https://doi.org/10.1007/s00145-022-09437-z
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/978-3-030-77870-5_25
https://doi.org/10.1007/978-3-031-22963-3_9
https://doi.org/10.1007/978-3-031-22963-3_9
https://doi.org/10.1007/978-3-031-07082-2_4
https://doi.org/10.1007/978-3-031-21280-2_29
https://doi.org/10.1007/978-3-031-21280-2_29

Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha 281

15. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5_3

16. Langley, A., Chang, W., Mavrogiannopoulos, N., Strombergson, J., Josefsson, S.:
ChaCha20-Poly1305 cipher suites for transport layer security (TLS). Technical
report (2016)

17. Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discrete
Appl. Math. 208, 88–97 (2016)

18. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7_33

19. Miyashita, S., Ito, R., Miyaji, A.: PNB-focused differential cryptanalysis of ChaCha
stream cipher. Cryptology ePrint Archive, Report 2021/1537 (2021). https://ia.cr/
2021/1537

20. Niu, Z., Sun, S., Liu, Y., Li, C.: Rotational differential-linear distinguishers of
ARX ciphers with arbitrary output linear masks. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 3–32. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15802-5_1

21. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-
round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37682-5_24

https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/3-540-48285-7_33
https://ia.cr/2021/1537
https://ia.cr/2021/1537
https://doi.org/10.1007/978-3-031-15802-5_1
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-642-37682-5_24

SP-Fuzz: Fuzzing Soft PLC
with Semi-automated Harness Synthesis

Seungho Jeon and Jung Taek Seo(B)

Gachon University, Seongnam-daero 1342, Seongnam-si, Republic of Korea
{shjeon90,seojt}@gachon.ac.kr

Abstract. A programmable logic controller (PLC) is an essential component to
automatically control field devices in the industrial control system (ICS). Before
the PLC is deployed in the field, vulnerabilities should be removed in advance by
sufficiently testing the runtime. However, commercial soft PLCs have a closed-
source ecosystem, and it is difficult to find vulnerabilities using fuzzing due to
the non-stop operational characteristics. To address this problem, several studies
have been presented for testing the soft PLCs with a fuzz harness, a small code
snippet replicating the target. Unfortunately, most of them are not clearly show
how to synthesize the harness and rely on extreme reverse engineering. In this
paper, we propose SP-Fuzz, a toolkit for fuzzing soft PLCs by overcoming these
challenges. SP-Fuzz provides a semi-automated method to create a fuzz harness
based on collecting context information during the execution of PLC runtime. The
fuzzer uncovers potential vulnerabilities by testing synthesized harnesses without
directly testing the PLC runtime. In an evaluation with known vulnerabilities,
SP-Fuzz successfully synthesized the harness and reproduced the vulnerabilities.

Keywords: Soft PLC · Fuzzing · Dynamic tracking · Harness generation

1 Introduction

A programmable logic controller (PLC) is an essential component that automatically
controls industrial control systems (ICS) processes. PLCs are largely divided into hard
PLCs [1] and soft PLCs [2]. Hard PLCs provide high reliability for process control
by using dedicated hardware to execute the control logic and strictly adhering to cycle
times for instruction execution. On the other hand, soft PLCs use a runtime implemented
as software to execute the control logic. Also, a real-time operating system (RTOS) is
adopted to ensure response time for process control. Soft PLCs are used even though
they provide lower reliability than hard PLCs because they are cost-effective and, in
some cases, the runtime can be customized.

Soft PLC is structurally similar to a general embedded system equipped with an
operating system, andPLC runtime operates as a single program.Therefore, if an attacker
exploits a runtime’s vulnerability, the assets related to the PLC will be significantly
affected. Therefore, security vulnerabilities should be removed in advance by sufficiently
testing the runtime before the PLC is deployed in the field [3].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 282–293, 2024.
https://doi.org/10.1007/978-981-99-8024-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_22&domain=pdf
http://orcid.org/0000-0002-7116-6062
http://orcid.org/0000-0003-0971-8548
https://doi.org/10.1007/978-981-99-8024-6_22

SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis 283

Fuzzing is a popular security testing method. The target program is executed with ill-
formed input values randomly generated by the fuzzer, and the fuzzer observes the testing
results [4]. Although fuzzing is a lightweight and scalable testingmethod, there are some
challenges to testing the PLC runtime. 1) Fuzzer quickly and repeatedly tests a target.
However, fuzz testing is difficult to efficiently test the PLC runtime because the PLC
runtime continuously executes the control logic without termination. 2) PLC runtime
includes various functionalities such as control logic execution, command sending-and-
receiving, and scheduling. Testing all the functionalities simultaneously can make it
difficult to reproduce the crash, even if the fuzzer found one. 3) Most modern fuzzers
use the target’s source code to conduct coverage-guided fuzzing. However, soft PLCs
are mostly commercial products, making securing source codes challenging.

We focus on the first two of the presented challenges. A popular method to solve
them is to write a harness (or fuzz driver) and use it for fuzzing [5–7]. A harness is a small
piece of code that implements a simplified implementation of the target’s functionality.
However, most of the studies on automating the harness writing target open-source
projects, so they are not suitable for testing soft PLCs [6, 7]. WINNIE [5] presented
a method for automatically synthesizing harnesses for closed source programs, but it
is aimed at the Windows environment, so it cannot be applied to soft PLCs that are
generally based on Linux. Some studies have been presented to test the soft PLCs with
the harness and successfully discovered the vulnerabilities [8, 9].

In this paper, we overcome the above challenges and propose a testing framework,
SP-Fuzz, for the runtime of soft PLCs. SP-Fuzz consists of two major components:
A semi-automated harness generator and a fuzzer. In order to create a reliable harness
reflecting the semantics of the PLC runtime, the runtime tracer executes the PLC runtime.
It collects various information, such as invoked functions and their arguments. Based
on information collected through runtime tracer and reverse engineering, a harness is
manually synthesized by rebuilding the PLC runtime’s control and data flow. Finally,
the fuzzer runs the generated harness to find bugs or potential vulnerabilities. Several
evaluations were conducted to evaluate the SP-Fuzz. Through a comparative study, we
confirmed that SP-Fuzz is more suitable for PLC runtime testing than existing fuzzers.
Next, unit tests were run on several simple library functions, and SP-Fuzz successfully
found bugs in all functions.We conducted a case studywith previously reportedCVEs for
evaluating the effectiveness of SP-Fuzz. SP-Fuzz successfully synthesized the harnesses
and reproduces the vulnerabilities. The contributions of this paper are as follows.

• We implemented a runtime tracer working on ARM processor to collect context
information during the execution of soft PLC.

• We wrote a fuzz harness using information collected through the runtime tracer and
reverse engineering.

• We implemented SP-Fuzz, a toolkit that semi-automates the above process. In addi-
tion, through evaluationwith knownvulnerabilities, itwas shown that SP-Fuzz reveals
its effectiveness for security testing for soft PLCs.

The remainder of this paper is organized as follows. Section 2 presents studies related
to fuzzing for soft PLCs. In Sect. 3, we describe the architecture of a typical soft PLC.
Section 4 describes the details of the proposed SP-Fuzz, and Sect. 5 comprehensively

284 S. Jeon and J. T. Seo

evaluates the performance of the SP-Fuzz. Finally, we discuss some limitations of SP-
Fuzz in Sect. 6 and summarize this paper in Sect. 7.

2 Related Research

American fuzzy lop (AFL) is one of the most successful coverage-guided fuzzers and
has been adopted in various studies [4, 10, 11]. AFL inserts instruments into the target
program’s source code while compiling it and receives coverage information about the
test case during testing. By utilizing test cases with high coverage in the next fuzzing
loop, AFL can test the target effectively. This grey-box fuzzing strategy is adopted by
various modern fuzzers [12, 13]. Fuzz testing is applied to testing devices used in ICS,
including PLC.

Although the grey-box fuzzing reveals its efficiency, most commercial software has
a closed-source ecosystem. So, fuzzers cannot insert the instruments into the source
code. To overcome this limitation, the fuzz harness can be adopted to efficiently test
the closed-source programs [5]. The fuzz harness is synthesized based on the contextual
information of the target, then fuzzers run the harness to find vulnerabilities, instead of
directly run the target.

Recently, above strategy has been employed to test devices in ICS environment.
IFFSET presented various toolsets for fuzzing the PLC runtime using the QEMU emu-
lator [8]. However, IFFSET showed its inefficiency in the fuzzing process because the
instrument could not be used during the fuzzing process. ICSFuzz, a follow-up study of
IFFSET, implemented an instrument using a binary patch to overcome this limitation [9].
ICSFuzz measures code coverage and enables more efficient fuzz testing. Both IFFSET
and ICSFuzz have succeeded in finding crashes in the PLC runtime but rely solely on
reverse engineering the harness writing.

3 Preliminary

The soft PLC’s software stack consists of several layers: hardware layer, operating
system layer, library layer, PLC runtime layer, and service layer. The hardware layer
consists of several components, but the most important components are the processor
and the input/output ports. Soft PLC products generally use ARM-based processors and
general-purpose input/output ports (GPIOs).With these hardware specifications, the soft
PLC uses a Linux-based RTOS to ensure a fast response time. Common Linux binaries
and services such as coreutils operate on the OS, and various libraries are included.
The soft PLC provides libraries to implement functions as a PLC, and the functions
provided by these libraries are used to write PLC runtime and control logic. Most PLC
runtimes runningonLinux-basedRTOSare in theELF-formattedfile andprovide various
services such as driving control logic and interacting with users. A service (or task) in
the PLC runtime usually operates as a thread. The control logic written in structure text
or ladder diagram is called an application, and the main task executes this application.
Web server task supports web-based monitoring service for PLC. In addition, it provides
communication-related primitives or OPC-UA-related functions.

SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis 285

4 Fuzzing Soft PLC with Harness

4.1 Overview

Figure 1 shows an overview of SP-Fuzz. SP-Fuzz consists of two parts: a semi-automated
harness generator (Sect. 4.2) and a fuzzer (Sect. 4.3). The harness generator selects one
of the tasks running in PLC runtime as a target. We introduce a dynamic execution
tracer to collect context information during the execution of a target task. Then, we
reconstruct the control-and-data flow of the target task by combining the information
from the execution tracer and reverse engineering. Based on the reconstructed control-
and-data flow, we manually write the harness. Finally, the synthesized harness is tested
by the fuzzer, and if a crash is found during this process, it is reported along with the
test case that caused the crash.

Fig. 1. Overview of SP-Fuzz.

4.2 Semi-automated Harness Generator

The semi-automated harness synthesis proceeds in three stages: target selection, collect-
ing context, and control-and-data flow reconstruction. In this section, we describe each
step-in detail.

Target Selection. We select the test target among the running tasks of the PLC runtime.
The selection of the fuzzing target is largely composed of two steps. First, it identifies
both the thread names and thread ids (TID) of all tasks running as threads in the PLC
runtime. This includes themain task, web server, or communication service, as described
in Sect. 3. Second, we choose a fuzzing target from among the identified tasks. At this
time, the fuzzing target should be able to receive user input. User input includes network
and file inputs.We can identify the tasks that allows these inputs through the brief reverse
engineering of the PLC runtime. In this way, the crash found by fuzzing the harness can
be reproduced in the actual PLC runtime.

286 S. Jeon and J. T. Seo

Fig. 2. Collecting context with the execution tracer.

Algorithm 1. Algorithm for collecting dynamic context using execution tracer.
Inputs: PID of PLC runtime, TID of the task to be traced.
Outputs: A basic block list Β, A function list Π.
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Β ← empty list;
Π ← empty list;
attach to the target task of the PLC runtime using PID and TID;
While not stopping criteria do

addr, inst ← get one instruction and its address specified by PC;
If inst is the first instruction of a basic block then
Β ← Β ∪ {(addr, inst)};

end
If inst is the instruction calling a function then

fname, args ← parse the name and arguments of the function;
Π ← Π ∪ {(addr, inst, fname, args)};

end
PC ← calculate the next PC;

end

Collecting Context. Once the target task to be fuzzed is selected, the context informa-
tion for this task should be gathered. We utilize dynamic analysis to gather this context
information. Typically, dynamic taint analysis [14, 15] can be used for this purpose.
However, the PLC runtime runs on ARM architecture and lacks reliable taint analysis
tools in the ARM environment. Therefore, we implemented a dynamic analysis tool, an
execution tracer, using a debugging technique [16]. The execution tracer collects infor-
mation about executed instructions, the order of functions called, function arguments,
and return addresses from target tasks (see Fig. 2). In a program implemented in the
C language, function arguments can be largely values, pointers, and structures (or a
combination of them). We use the ARM architecture’s calling convention [17] to iden-
tify function arguments. Then, we determine the type of each function argument. For
functions in the PLC library, application programming interfaces (APIs) specifications
provided by the manufacturer can be adopted to find the type of arguments. Otherwise,
if a function not included in the PLC APIs is observed, the type is inferred according to
the following rules. First, if an argument has a value other than an address, it is simply
considered a value. Second, if the argument’s value is included in a valid address space,

SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis 287

the argument is identified as a pointer type. In the case of pointer-type arguments, they
are again classified into simple values, arrays/delimiters, and strings.

Algorithm 1 is an algorithm that collects context information during execution from
target tasks in PLC runtime using the execution tracer. This algorithm takes the process
ID (PID) of the PLC runtime and the target task’s thread ID (TID). The execution tracer
attaches to a PLC runtime process/task based on this information. Then, this algorithm
repeatedly performs the following process for every instruction until the target task is
terminated or context collection is stopped. First, the tracer gets the instruction inst and
the address addr pointed to by the current PC register. If inst is the first instruction of
a basic block, it is recorded in the list B of the executed basic block. Next, we check
if inst is an instruction that calls a function, and if so, we parse the name fname of the
called function and its arguments args. The aforementioned method is used to identify
the argument list. The identified fname and args are kept in the list � of functions called
with addr and inst. When context collection ends, this algorithm returns B and �.

Fig. 3. Reconstructing the control-and-data flow.

Control-and-Data FlowReconstruction. The execution tracer makes it easy to collect
context information during the execution of a target task. However, since only executed
control flows can be observed, information, such as unexecuted branches, is easy tomiss.
Therefore, when the execution path and called function are specified using the execution
tracer, the correct control flow is restored through reverse engineering. In this process,
branch statements or loop statements are imported into the control flow, and to reduce
the complexity of the harness to be synthesized, we made branches not observed by
the execution tracer end with normal termination (e.g., exit(0)). Once the control flow
is restored, data flow is restored using function arguments collected by the execution
tracer. Also, by identifying variables and arguments affected by external input, we can
specify where to deliver the test cases generated by the fuzzer. Figure 3 is an example of

288 S. Jeon and J. T. Seo

a control-and-data flow reconstructed through the above process1. Finally, we manually
write the harness using the reconstructed control and data flow.

4.3 Fuzzing the Harness

SP-Fuzz tests the PLC runtime using the harness generated in the previous step. Most
modern fuzzers have adopted the grey-box fuzzing strategy, inserting instruments while
compiling the source code. However, obviously, we cannot obtain the source code of
the PLC runtime because we have to test the off-the-shelf PLC runtime. So, instead of
a grey-box fuzzing strategy, we test the harness in a black-box setting. If SP-Fuzz finds
a crash while testing the harness, it reports the crash along with a test case.

5 Evaluation

In this section,wedescribe the implementation details and experimental setup of SP-Fuzz
proposed in Sect. 4. Then, we evaluate the effectiveness of SP-Fuzz through published
vulnerabilities for several PLC runtimes.

5.1 Implementation

We implemented the prototype of SP-Fuzz proposed in Sect. 4. Currently, SP-Fuzz
can only test PLC runtimes running in Linux-based operating systems on ARM 32-
bit processors. SP-Fuzz consists of the harness generator and fuzzer. The execution
tracer, the core component of the harness generator, is written in 1.6K lines of code
(LoC) in C code. The execution tracer attaches to a target task and uses ptrace [16] to
trace all executed instructions. However, the single-stepping (PTRACE_SINGLESTEP)
option is unavailable in Linux on ARM 32-bit processors, so we implemented single-
stepping using software breakpoints. In addition, in order to insert a breakpoint at the
correct location, the address of the next instruction to be executed should be accurately
predicted. We implemented a handler for instructions that change PC registers.

Next, we adopted AFL-2.52b [4] to test the synthesized harness. Note that AFL
should be compiled with gcc or clang for ARM 32-bit. Also, typically, AFL receives
coverage information by inserting an instrument while compiling the source code of the
target program using afl-gcc. However, since the source code for the off-the-shelf PLC
runtime is unavailable, and the use of afl-gcc is limited in the ARM 32-bit environment,
we run AFM in dumb mode instead of grey-box fuzzing.

Last but not least, we developed a simple framework that makes it easy to write
harness from contextual information gathered through execution tracers and reverse
engineering. This framework was implemented inspired by LLVM [18]’s libFuzzer [19].
In other words, if we simply write a function(test_one_input)2 that takes the test case
from the fuzzer and passes it to the code to be tested, the harness program is compiled
by the framework.

1 Figure 3 shows the simplified control and data flow of one part of the PLC runtime. The function
names and arguments used in this figure are slightly different from those used in actual PLC
runtime.

2 This simple function is designed to do the same thing as libFuzzer’s LLVMFuzzerTestOneInput.

SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis 289

5.2 Experimental Setup

In this experiment, we adopted WAGO PFC100 as the testing target to verify the effec-
tiveness of SP-Fuzz. TheWAGO PFC100 is one of the popular soft PLCs equipped with
the PLC Runtime developed by Codesys (hereafter Codesys Runtime). We can connect
to WAGO PLC through protocols like SSH, but Codesys runtime testing is difficult
because there is no compiler, debugger, or fuzzer in the PLC’s firmware. Therefore,
we evaluated the performance of SP-Fuzz by importing Codesys runtime binaries and
related shared libraries onRaspbian, an operating systemusing anARM32-bit processor.
In addition, for easy configuration of the experimental environment, a lower versioned
Codesys runtime was adopted for evaluation.

5.3 Comparative Study

Weconducted a comparative study between the fuzzers on the following four key features
for closed-source PLC runtimes (see Table 1). ‘Coverage feedback’ indicateswhether the
fuzzer receives coverage information from the target during fuzzing campaign. ‘Harness
automation’ checks fully or partially automating harness synthesis. ‘Native run’ means
testing without the aid of an emulator like QEMU. ‘ARM base’ indicates whether the
ARM-based process can be tested.As a result of comparative analysis,AFLandWINNIE
are not suitable for testing PLC runtimes in terms of processor architecture or harness
synthesis. IFFSET and ICSFuzz originally target programs on soft PLCs. However,
IFFSET is difficult to efficiently do fuzzing the PLC runtimes. ICSFuzz is not scalable
because it relies purely on human efforts for harness synthesis. In contrast, SP-Fuzz has
features other than coverage feedback, so its efficiency is somewhat lower, but it has
higher scalability than ICSFuzz.

Table 1. Comparison between the fuzzers for closed-source PLC runtimes.

Fuzzer Coverage feedback Harness automation Native run ARM base

AFL X X O O

WINNIE O O O X

IFFSET X X X O

ICSFuzz O X O O

SP-Fuzz X O O O

5.4 Unit Test

We performed unit tests on several library functions used in the Codesys runtime. SP-
Fuzz observes the execution flow of Codesys runtime and synthesizes harnesses based
on contextual information at the time library functions are called. Table 2 shows the unit
test results for the four functions. The Codesys runtime often uses these functions to

290 S. Jeon and J. T. Seo

take external inputs. We run each harness for an hour, and SP-Fuzz successfully found
crashes for all functions. All crasheswere related to a buffer overflow.However, since the
Codesys runtime strictly limits the values assigned to the parameters of these functions,
the discovered crashes are difficult to reproduce in the Codesys runtime.

Table 2. Fuzzing results for library functions.

Function Description Crashes3

SysSockRecv Receiving data through TCP communication 1

SysSockSend Sending data through TCP communication 1

SysComRead Reading data from the given file descriptor 1

SysComWrite Writing data to the given file descriptor 1

5.5 Case Study

We conducted a case study using several known vulnerabilities (CVEs) to evaluate the
effectiveness of SP-Fuzz. The CVEs used in this evaluation were selected as related
to memory corruption bugs that are easy for fuzzer to find. In addition, one relatively
simple vulnerability and one complex vulnerability were each selected. Based on these
criteria, we conducted a case study on CVE-2020-7052 [20] and CVE-2020-10245 [21].

5.5.1 CVE-2020-7052

Listing 1. Fuzz harness snippet for CVE-2020-7052.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// filename is the path to test case generated by fuzzer
// base_addr is the base address of shared library
int test_one_input (const char* filename, void* base_addr) {

int buffer_size, max_channels, tmp;
char *ptr1, *ptr2;
// read one testcase from filename
// skip the code getting the address of functions
SettgGetIntValue(…, &buffer_size);
SettgGetIntValue(…, &max_channels);
if (max_channels <= 0) exit(0);
else tmp = 2* max_channels;
// skip the complicated code
ptr1 = SysMemAllocData(…);
ptr2 = SysMemAllocData(…);
if (ptr1 == NULL || ptr2 == NULL) abort();

}

3 We deduplicated the discovered crashes.

SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis 291

Listing 1 is a code snippet of the harness created through the context information that
SP-Fuzz’s harness generator collects from CmpChannelServer, which manages commu-
nication channels among Codesys runtime components. Originally, CmpChannelServer
reads the values of BufferSize and MaxChannels in signed integer type from the con-
figuration file using the SettgGetValue function. This harness assigns fuzzer-generated
values to these variables instead of reading them fromaconfigurationfile. These variables
intervene in dynamically allocating heap memory through a complex operation process.
If a large positive number is assigned to BufferSize or MaxChannels, or a value, which
becomes a negative value by multiplying an appropriate integer due to integer over-
flow, is assigned, the SemMemAllocData function may fail to allocate heap memory,
causing a bug. This bug leads to a denial-of-service vulnerability and was reported as
CVE-2020-7052 [20].

5.5.2 CVE-2020-10245

Listing 2. Fuzz harness snippet for CmpWebServer regarding CVE-2020-10245.
1
2
3
4
5
6
7
8
9
10
11

// filename is the path to z
// base_addr is the base address of shared library
int test_one_input (const char* filename, void* base_addr) {

// read one testcase from filename
// skip the code getting the address of functions
// set payload for WEB_CLIENT_OPENCONNECTION
WebServerHandler();
// set payload for WEB_CLIENT_RUN_SERVICE
WebServerHandler();
// skip writing data to allocated memory

}

Listing 2 is the harness of the code that CmpWebServer processes HTTP pack-
ets. CmpWebServer is a web server of Codesys runtime and serves as a web-based
human-machine interface (HMI) and some kind of representational state transfer (REST)
API server. WebServerHandler parses request (inputs) in a specific format to per-
form designated functions. Instead of listening for HTTP requests, this harness passes
fuzzer-generated test cases as input to WebServerHandler. First, this harness passes the
WEB_CLIENT_OPENCONNECTION message to open a connection and requests the
memory size to be allocated dynamically. Then, the WEB_CLIENT_RUN_SERVICE
message is passed, and the heap chunk is allocated. The heap chunk size for allocat-
ing memory is the heap size requested with the WEB_CLIENT_OPENCONNECTION
message plus a small integer. This triggers an integer overflow bug, so very little mem-
ory could be allocated despite requesting a large heap chunk. When writing data to the
allocated memory, a heap-based buffer overflow occurs. This vulnerability was reported
as CVE-2020-10245 [21], and several similar vulnerabilities have been reported.

292 S. Jeon and J. T. Seo

6 Limitations

Despite the competitive performance of SP-Fuzz shown by the series of experiments,
there are still some limitations:

• The biggest challenge in implementing the tracer is to handle system calls. Most
system calls in Linux work intuitively like ordinal library functions, but some system
calls are not intuitive. These system calls have side effects on the memory, which
makes it difficult to collect the exact execution context.

• Many parts have been automated to synthesize the harnesses for fuzzing off-the-shelf
PLC runtime, but the harnesses are still written manually. This is because there is no
effective means to lift the low-level instructions collected by the tracer into a high-
level language such as C. The lifting functionality of tools like Ghidra or IDA pro
can help in part to overcome this limitation.

• Currently, SP-Fuzzwrites only the path observed by the execution tracer as harnesses.
This enables testing of only a very narrow area of the PLC runtime. To deal with
this, we can expand the call-graph by automatically exploring the binary around the
observed path.

• Currently, SP-Fuzz adopts a black-box fuzzing strategy, so the instrument cannot
be used. Accordingly, testing is inefficient because coverage information cannot be
utilized during the fuzzing process.

7 Conclusion

In this paper, we proposed SP-Fuzz to test the runtime of soft PLC. SP-Fuzz consists of
the harness generator and fuzzer. The harness generator targets one of the PLC runtime’s
tasks, observes the execution path and context, and synthesizes the harness. AFL tests
the generated harness. We verified the effectiveness of SP-Fuzz using Codesys runtime,
and as a result of a series of experiments, SP-Fuzz showed competitive performance.
Especially, with the known vulnerabilities, SP-Fuzz successfully synthesized the har-
nesses from the PLC runtime and found the vulnerabilities. With this SP-Fuzz’s such
capability, we can report the vulnerabilities found in the test before deploying the soft
PLC in the field or use other security devices to filter out input values that cause the
vulnerabilities. By doing this, the ICS system can be operated more safely. Also, we
discussed some limitations of SP-Fuzz. Finally, although Codesys runtime was used to
evaluate SP-Fuzz in this paper, the proposed fuzzing process can be sufficiently applied
to other soft PLCs with similar software stacks to Codesys runtime.

Acknowledgement. This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2021-0-00493, 5GMassive Next Generation Cyber Attack Deception Technology Development).

References

1. SIEMENS. https://www.siemens.com/global/en.html. Accessed 22 May 2023

https://www.siemens.com/global/en.html

SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis 293

2. CODESYS GmbH. https://www.codesys.com/. Accessed 22 May 2023
3. Bytes, A., et al.: FieldFuzz: stateful fuzzing of proprietary industrial controllers using injected

ghosts. arXiv:2204.13499 (2022)
4. Zalewski, M.: American fuzzy lop. https://lcamtuf.coredump.cx/afl/. Accessed 22 May 2023
5. Jung, J., Tong, S., Hu, H., Lim, J., Jin, Y., Kim, T.: WINNIE: fuzzing windows applications

with harness synthesis and fast cloning. In: Proceedings of the 2021 Network and Distributed
System Security Symposium (2021)

6. Babić, D., et al.: FUDGE: fuzz driver generation at scale. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (2019)

7. Ispoglou, K.K., Austin, D., Mohan, V., Payer, M.: FuzzGen: automatic fuzzer generation. In:
Proceedings on the 29th USENIX Security Symposium (2020)

8. Tychalas, D., Maniatakos, M.: IFFSET: in-field fuzzing of industrial control systems using
system emulation. In: 2020 Design, Automation & Test in Europe Conference & Exhibition
(2020)

9. Tychalas, D., Benkraouda, H., Maniatakos, M.: ICSFuzz: manipulating I/Os and repurposing
binary code to enable instrumented fuzzing in ICS control applications. In: USENIX Security
Symposium (2021)

10. Böhme, M., Pham, V.-T., Roychoudhury, A.: Coverage-based greybox fuzzing as Markov
chain. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security (2016)

11. Jeon, S., Moon, J.: Dr.PathFinder: hybrid fuzzing with deep reinforcement concolic execution
toward deeper path-first search. Neural Comput. Appl. 34, 10731–10750 (2022). https://doi.
org/10.1007/s00521-022-07008-8

12. honggfuzz. https://honggfuzz.dev/. Accessed 22 May 2023
13. OSS-Fuzz. https://google.github.io/oss-fuzz/. Accessed 22 May 2023
14. Luk, C.-K., et al.: Pin: building customized program analysis tools with dynamic instrumen-

tation. ACM SIGPLAN Not. 40(6), 190–200 (2005)
15. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instru-

mentation. ACM SIGPLAN Not. 42(6), 89–100 (2007)
16. Ptrace(2)-Linux manual page. https://man7.org/linux/man-pages/man2/ptrace.2.html.

Accessed 22 May 2023
17. ARM developer: ARM Cortex-A Series Programmer’s Guide for ARMv7-A. https://develo

per.arm.com/documentation/den0013/d/Application-Binary-Interfaces/Procedure-Call-Sta
ndard. Accessed 22 May 2023

18. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis &
transformation. In: International Symposium on Code Generation and Optimization (GGO)
(2004)

19. libFuzzer. https://llvm.org/docs/LibFuzzer.html. Accessed 22 May 2023
20. CVE-2020-7052. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7052.

Accessed 22 May 2023
21. CVE-2020-10245. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10245.

Accessed 22 May 2023

https://www.codesys.com/
http://arxiv.org/abs/2204.13499
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1007/s00521-022-07008-8
https://honggfuzz.dev/
https://google.github.io/oss-fuzz/
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://developer.arm.com/documentation/den0013/d/Application-Binary-Interfaces/Procedure-Call-Standard
https://llvm.org/docs/LibFuzzer.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7052
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10245

Post-Quantum Cryptography
and Quantum Cryptanalysis

Quantum Circuit Designs of Point
Doubling Operation for Binary Elliptic

Curves

Harashta Tatimma Larasati and Howon Kim(B)

School of Computer Science and Engineering, Pusan National University, Busan
609735, Republic of Korea
howonkim@pusan.ac.kr

Abstract. In the past years, research on Shor’s algorithm for solving the
elliptic curve discrete logarithm problem (Shor’s ECDLP) as the basis
for cracking elliptic curve-based cryptosystems (ECC) has started to gar-
ner significant interest. To achieve this, existing works put their focus on
quantum point addition subroutines to realize the double scalar multi-
plication circuit essential to Shor’s ECDLP. In contrast, the quantum
point doubling subroutines have often been overlooked. In this paper,
we bridge this gap by investigating the quantum point doubling oper-
ation to be used for the stricter assumption of Shor’s algorithm, i.e.,
when doubling a point should also be taken into consideration. In partic-
ular, we analyze the challenges on implementing the circuit and provide
the probable solution. Subsequently, we design and optimize the corre-
sponding quantum circuit, then analyze the high-level quantum resource
cost. Additionally, we discuss the implications of our findings, including
the concerns for its integration with point addition for a complete dou-
ble scalar multiplication circuit and the potential opportunities resulting
from its implementation. Our work lays the foundation for advancing the
evaluation of Shor’s ECDLP.

Keywords: Elliptic curve discrete logarithm problem · Point
doubling · Quantum circuit · Quantum cryptanalysis · Shor’s algorithm

1 Introduction

Over the decade, there has been a growing interest in Shor’s algorithm for solv-
ing the elliptic curve discrete logarithm problem (i.e., Shor’s ECDLP) [17,18].

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under
the Convergence security core talent training business (Pusan National University)
support program (IITP-2023-2022-0-01201) supervised by the IITP (Institute for Infor-
mation & Communications Technology Planning & Evaluation), and by the Institute
for Information & Communications Technology Planning & Evaluation (IITP) grant
funded by the Korean Government (MSIT) (No. 2019-0-00033, Study on Quantum
Security Evaluation of Cryptography based on Computational Quantum Complexity,
50%).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 297–309, 2024.
https://doi.org/10.1007/978-981-99-8024-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_23&domain=pdf
http://orcid.org/0000-0001-6143-4134
http://orcid.org/0000-0001-8475-7294
https://doi.org/10.1007/978-981-99-8024-6_23

298 H. T. Larasati and H. Kim

Acknowledged to render existing elliptic curve-based cryptosystems (ECC)
breakable in polynomial time [16], this algorithm has the potential to accom-
plish its objective of cracking existing public-key cryptography (PKC) sooner
than its more popular counterpart, i.e., Shor’s factoring algorithm for cracking
RSA, due to its lower quantum resource requirement for the same security level
[9,14]. In particular, the advantage of lower key size in ECC is—ironically—the
reason why it becomes in graver danger in the presence of a quantum computer,
considering the current development of quantum computing that is still in the
early stage, which often favors the number of qubits as the most essential metric.

To date, several works have discussed how to concretely realize Shor’s ECDLP
for quantum cryptanalysis purposes [1,3,5,11,16], with heavily-referenced state-
of-the-art works [1,5,16] primarily assessing the implementation for the super-
conducting qubits architecture as arguably the most prominent quantum hard-
ware platform. Starting from the works by Roetteler et al. [16] and perfected by
Haner et al. [5], which both consider prime curves implementation, the landscape
then extends to binary elliptic curves through the work by Banegas et al. [1].

All those advancements are based on the pioneering efforts of Proos and Zalka
[14], one of the earliest works to translate the high-level Shor’s ECDLP algorithm
into the description of their possible quantum circuit derivation. Over time, their
paper has established itself as the standard reference for subsequent papers that
aims to optimize the quantum circuit implementation of Shor’s ECDLP, which
has been made easier for testing, verification, and concretely estimating the quan-
tum resource requirement by leveraging reversible circuit and quantum comput-
ing simulators emerging in the past decade (e.g., RevKit, LIQUi |〉, and the more
recent ProjectQ, Qiskit, Microsoft QDK/Azure Quantum, and Q-Crypton).

From our observation, these papers preserve the scope provided by Proos
and Zalka [14]. That is, for cracking ECC via Shor’s ECDLP, the rule can be
simplified by considering only the generic case (i.e., for points P+R where P,R �=
O, and P �= ±R) for the elliptic curve group operation [14]. In other words, to
achieve the desired double scalar multiplication as the essential component (see
Fig. 1), computation will be done solely by a series of point addition operations.
Meanwhile, the complementing subroutine to perform a more special case where
P = R, namely the point doubling operation, is set aside. The authors of [14]
argued that the expected loss of fidelity from its absence would still be negligible,
which was also agreed upon by succeeding papers, e.g., [8].

Nevertheless, when considering the stricter assumption where the occurrence
of P = R is more probable during computation and minimum fidelity loss is
expected from the design, the point doubling will also hold considerable signifi-
cance. In this case, exploring the point doubling operation, including its quantum
circuit construction and the analysis of its quantum resource, will be very ben-
eficial and insightful for a more complete resource estimation of Shor’s ECDLP.

In this study, we examine the point doubling operation as required for the
less relaxed case of Shor’s ECDLP, i.e., when the points to be computed happen
to be the same two points. To the best of our knowledge, this subject, including
the corresponding quantum circuit implementation, has so far been absent in
state-of-the-art works in quantum cryptanalysis. For this initial work, we focus

Quantum Circuit Designs of Point Doubling for Binary Elliptic Curves 299

Fig. 1. Quantum circuit of Shor’s algorithm for solving the elliptic curve discrete log-
arithm problem (ECDLP). Figures adapted from [10,16].

on point doubling circuit for binary elliptic curves, whose inherent characteristics
make it simpler for tinkering and constructing the operation compared to the
prime curves counterpart. To highlight our contributions, we start by analyzing
the point-doubling formula and identifying the challenges in its construction with
their possible solution. Subsequently, we design the quantum circuits for elliptic
curve point doubling to suit several scenarios and analyze its quantum resource
cost in a high-level view. Furthermore, we also provide a more detailed discussion
of the aspects related to prime curves and the concerns when incorporating the
circuit for use in Shor’s algorithm.

The contribution of this paper can be summarized as follows:

– We examine the elliptic curve point doubling operation, which is rarely
explored in literature. In particular, we discuss the challenges, analyze the for-
mula and the implementation possibility of point doubling circuits for binary
elliptic curves.

– We design the corresponding quantum circuit, incorporate several optimiza-
tion and address the uncomputation, then analyze the high-level quantum
resource cost of the circuit.

– We provide an in-depth discussion of our findings and other aspects relevant
to point doubling, the concerns when incorporating the circuit with point
addition for a complete double scalar multiplication circuit, as well as the
open possibilities arising from point doubling implementation.

2 Preliminaries

2.1 Shor’s ECDLP

The security of elliptic curve cryptography (ECC) is based on the hardness of
the elliptic curve discrete logarithm problem (ECDLP). In this problem, given
two points P and Q on an elliptic curve of order r, it is easy to compute the
point multiplication Q = kP when the scalar k and the base point P are known.

300 H. T. Larasati and H. Kim

In contrast, the reverse problem of finding the scalar k given both points P and
Q is computationally intensive [16] and considered classically intractable.

How It Works. Shor’s algorithm for solving elliptic curve discrete logarithm
problem (Shor’s ECDLP) works by essentially running a brute-force attack of
computing the scalar multiplication of all states, but intelligently utilizing quan-
tum interference to boost the likelihood of obtaining the desired result while
suppressing the undesired value via quantum Fourier transform (QFT). As illus-
trated in Fig. 1, the algorithm consists of three registers with two n + 1-sized
quantum registers initialized in the state |0〉 appended with the Walsh-Hadamard
(i.e., Hadamard gate on each qubit), which yields the state 1

2n+1

∑2n+1−1
k,l=0 k, l.

Subsequently, conditional to the state of the register containing k or l, the cor-
responding multiple of points P and Q are added to the third register of size
2n (also called as the accumulator) via the double scalar multiplication circuit,
performing the mapping as in Eq. 1 [16],

1
2n+1

2n+1−1∑

k,l=0

k, l �→
2n+1−1∑

k,l=0

k, l |[k]P + [l]Q〉 (1)

before appending QFT and measuring the result of the first and second regis-
ters. Finally, classical post-processing is performed, which theoretically can yield
the sought value with high probability. Consequently, this algorithm enables an
adversary with a large-scale, full-fledged quantum computer to obtain the value
of k by running the algorithm a few times.

Quantum Scalar Multiplication Circuit. In existing works, as previously
shown in Fig. 1, the quantum double scalar multiplication circuit comprises solely
of (controlled) point addition subroutines and simplifies the operation by making
the added point fixed. However, the use of point addition alone does not cover
the case when the appended points and the existing state in the accumulator
register are the exact same point, therefore may yield incorrect result when
doubling the points [14]. Even though the fidelity loss from this is argued to
be small, the stricter case will require the point-doubling circuit as well, which
helps to provide a more complete quantum resource analysis for Shor’s ECDLP.

2.2 Binary Elliptic Curves in the Quantum Realm

From a quantum cryptanalysis perspective, an ordinary binary elliptic curve
is often considered instead of other stronger variants such as supersingular [1].
Here, we first describe the theoretical concept of binary elliptic curves. The
Weierstrass equation for an ordinary binary elliptic curve is described in Eq. 2,

y2 + xy = x3 + ax2 + b (2)

where a ∈ F2 and b ∈ F
∗
2m (the extension field). Then, the points on this elliptic

curve, P = (x, y) ∈ F
2
2m , form a set of points that can be computed under

the elliptic curve group law [1] comprising point addition and point doubling

Quantum Circuit Designs of Point Doubling for Binary Elliptic Curves 301

operations. In particular, point addition, e.g., P1 + P2 = P3, with P1 = (x1, y1),
P2 = (x2, y2) �= ±P1, and P3 = (x3, y3), can be computed by following Eqs. 3–5.

x3 = λ2 + λ + x1 + x2 + a (3)
y3 = λ(x1 + x3) + x3 + y1 (4)

λ =
y1 + y2
x1 + x2

(5)

Meanwhile, the point doubling calculation is as shown in Eqs. 6 to 8 [6,13].

x3 = λ2 + λ + a = x1
2 +

b

x1
2

(6)

y3 = x1
2 + (λ + 1)x3 (7)

λ = x1 + y1/x1 (8)

Constructing the Quantum Circuit. From the group law formula above,
the corresponding quantum circuit can be composed1. Regarding the quantum
point addition circuit, the recent concrete construction is by Banegas et al. [1],
which is presented in Fig. 2. As inferred from the figure, the circuit requires three
registers of size n in which two serve as input/output registers and one as a clean
ancilla register, plus one qubit serving as the control—which in the full scheme
of Shor’s ECDLP circuit will be associated with the qubit in the upper regis-
ters (the ones appended by Walsh-Hadamard). Additionally, the circuit utilizes
two multiplications (M), two divisions (D), and two squaring (S)—all of which
are conditionally controlled, linked to the control qubit and other associated
register—and several (controlled) additions and addition by a constant.

Quantum Resource Cost. Regarding the exact resource count, however, it will
greatly depend on the underlying subroutines since the aforementioned circuit
is still a high-level architecture that will be broken down into its finer-grained
components. For instance, choosing to use between two different inversion tech-
niques: greatest common divisor (GCD) [1] or Fermat’s Little Theorem (FLT)
[1,10,19] for the division subroutines, or between Schoolbook [21] and Karatsuba
multiplication [2,7,15,20] will yield quite different performance metrics, includ-
ing in terms of the total number of qubits (i.e., qubit count or circuit width),
circuit depth (i.e., the longest path for the quantum operations to run on the
quantum hardware, gate count (i.e., the total number of quantum gates), as well
as the more specific terms like Toffoli depth and Toffoli count [4,22].

1 All classical computation can be simulated on a quantum computer by reversible
gates, e.g., Toffoli (the most common), Fredkin, or Barenco gates [23]. However, how
to efficiently perform the operation is a whole different topic pursued by researchers.

302 H. T. Larasati and H. Kim

Fig. 2. Point addition circuit for binary elliptic curves by Banegas et al. [1].

3 Quantum Circuit Designs of Point Doubling Operation
for Binary Elliptic Curves

In this section, we start by elaborating on the challenges in constructing point-
doubling operations. Furthermore, we provide three circuits for point doubling
to suit different design considerations.

3.1 Challenges on Quantum Point Doubling Construction

Before going into detail about the point-doubling circuit itself, it would be better
to start with the differences between point addition and point doubling from the
quantum perspective that we are able to identify. Constructing a point-doubling
circuit poses relatively more difficulties than a point-addition circuit. Firstly, to
implement point addition, previous works [14] proposed simplification by making
one of the two points constant, which is added conditionally depending on the
state of the control qubit (i.e., the state of each qubit after being appended by
Hadamard gates in the upper registers, see Fig. 1).

With this, the point to be added (i.e., P2(x2, y2)) is appended conditionally
as a constant; hence can be pre-set and precomputed classically. Furthermore,
by making the point a constant, the uncomputation process can be performed
with ease since the added point can be immediately subtracted or uncomputed
as soon as they are no longer needed in the calculation, making it practical and
more efficient. Secondly, as mentioned in [14] and then elaborated in [16], look-
ing further at the point addition formulas (Eqs. 3 to 5), the value of λ in point
addition has a direct, clear relation with both x1 and x3, as well as y1 and y3.
That is, x3 can be obtained from appending x2 and λ to x1 (with other relevant
operations to yield Eq. 3), and similarly, y3 can be obtained from appending
y1 and λ to y1 (with other relevant operations to yield Eq. 4). Here, we say
that the initial state of x1 and y1 can be “consumed” to obtain the final desired
computation. Then, by intelligently arranging the circuit, we can straightfor-
wardly transform the initial state (x1, y1) to the subsequent state (x3, y3). As
a result, an efficient computation (and uncomputation) can be achieved, and a
clear reversibility relationship can be maintained.

On the other hand, the construction of point doubling is relatively trickier.
Examining the point doubling formula in Eqs. 6 to 8, to obtain x3 from x1 and
y3 from y1 is not as straightforward. The term x1 does not directly evolve into
x3, and similarly for y1 and y3. In detail, as inferred from Eq. 6, obtaining x3

Quantum Circuit Designs of Point Doubling for Binary Elliptic Curves 303

from x1 requires “copying” x1 to be squared and then appended (i.e., x2
1 +

b
x2
1
),

while obtaining it from λ does not require any form of x1. Hence, we say that
it does not “consume” the initial state, and similarly for y3 as obtaining it does
not make use of y1 at all. As a consequence, the initial value of y1 may need to
be preserved in the circuit as it can not be erased, hence requiring a placeholder
(such as an ancilla register) to hold its value. Moreover, due to both input points
being quantum and the operations being conditionally dependent on the state of
a controlled qubit q, many of the operations will ultimately require “elevation”:
CNOT becomes CCNOT (controlled-controlled NOT gate a.k.a. Toffoli gate),
CCNOT becomes CCCNOT (triple/multi-controlled Toffoli gate), and so on,
in which these complex operations leads to higher resource requirement. As a
result, it becomes a challenge to devise an efficient design for the quantum circuit
implementation.

3.2 Proposed Quantum Circuits

Despite the challenges, there are still opportunities from the point-doubling for-
mula that we can leverage to implement the circuit rather efficiently. We observe
that there exists an indirect relation that can be taken advantage of. In partic-
ular, notice that x1 has a direct relation to y3, while y1 has a direct relation
to x3. By utilizing this correlation, it is possible to transform x1 and y1 into y3
and x3, respectively. Thereby, a relatively efficient circuit can still be obtained,
albeit with a “twisted” input-output relation (i.e., where x1 maps to y3 and y1
maps to x3 instead of the aligned mapping of x1 to x3 and y1 to y3).

Fundamentally, there is no requirement for the input and the output to be
aligned. However, considering the conditional nature of the computation (i.e.,
if the control qubit q is in the state zero, the doubling does not occur and the
value remains as x1 instead of being transformed into y3) and the fact that the
circuit will be integrated with point addition to fit a larger scheme of scalar
multiplication, a direct alignment will be helpful for clarity of the operations,
which can be done simply by appending (controlled) swap gates.

Nevertheless, as previously described, the construction of point doubling may
necessitate more space (i.e., ancilla registers) than that of point addition. While
the latter, as proposed by Banegas et al. [1], requires one ancilla register used
as a placeholder for division operation (see Fig. 2), two auxiliary registers will
be required for performing point doubling. Below, we provide three schemes of
point-doubling circuits to suit different implementation preferences.

The proposed circuits for performing point doubling are illustrated in Fig. 3.
These circuits consist of two n-sized input/output registers, a control qubit q,
and two n-sized ancilla registers to store intermediate results. Additionally, the
readers may notice the presence of triple-controlled gates (i.e., in the last divi-
sion subroutine of Fig. 3c and the first multiplication subroutine of all circuits)
absent from the point addition counterpart. This is required to maintain a cor-
rect relation for the point doubling equations as in Eqs. 6 to 8.

The state change corresponding to these circuits is presented in Table 1. In
detail, the complete steps (up to line 15) are for the third scenario (Fig. 3c), while

304 H. T. Larasati and H. Kim

Fig. 3. Our proposed point doubling circuits for binary elliptic curves: (a) balanced
version that clears one ancilla register, and two alternatives of (b) without uncompu-
tation for lower depth and lower gate count, and (c) full uncomputation when control
qubit q = 0, and with a garbage ancilla in state λ when q = 1.

the second scenario (Fig. 3b) and the first scenario (Fig. 3a) terminate at lines
10 and 12, respectively. It is important to highlight that our proposal focuses on
the high-level structure of the circuit arrangement, whereas the underlying field
operations and subroutines (e.g., multiplication, squaring) may employ existing
techniques such as Schoolbook or Karatsuba multiplication as proposed in [1,7,
15], with necessary adjustments made to accommodate the required number of
qubits on each construction.

In the first circuit (Fig. 3a), we propose a balanced approach that strikes a
tradeoff between the number of operations and the need to clear the ancillas.
While this construction involves a relatively smaller number of operations, it
requires an additional multiplication circuit for performing uncomputation upon

Quantum Circuit Designs of Point Doubling for Binary Elliptic Curves 305

Table 1. Point Doubling State Change

Step q = 1 q = 0

1 anc1 = y1
x1

anc1 = y1
x1

2 y = 0 y = y1

3 anc1 = y1
x1

+ x1 = λ anc1 = y1
x1

+ x1 = λ

4 y = λ2 y = y1

5 y = λ2 + λ y = y1

6 y = λ2 + λ + a = x3 y = y1

7 anc1 = λ + 1 anc1 = λ + 1

8 anc2 = (λ + 1)x3 anc2 = (λ + 1)y1

9 x = x1
2 x = x1

10 x = x1
2 + (λ + 1)x3 = y3 x = x1

11 anc2 = 0 anc2 = 0

12 swap : x = x3, y = y3 none : x = x1, y = y1

13 anc1 = (λ + 1)− 1 = λ anc1 = λ

14 anc1 = λ anc1 = λ − x1 = y1
x1

15 anc1 = λ anc1 = 0

one of the ancilla registers. As a result, we obtain one clean ancilla register that
can be used for subsequent computations, and one dirty (i.e., does not revert to
its initial state after use) ancilla register in the state (λ+1). This is our favored
version because we can secure one clean register with relatively minimal effort.

Alternatively, if circuit depth and gate count take precedence over qubit
count, the more suitable circuit would be as illustrated in Fig. 3b. Here, the
circuit only performs the expected point doubling operation without considering
any uncomputation for ancilla registers. This minimizes depth and the number
of subroutines, but we are left with two dirty ancilla registers.

Regarding the third case, our initial goal was to clear all ancilla registers.
However, we have not found a more efficient method to fully uncompute them
for all possible states of the control qubit (|0〉 or |1〉). A complete uncompu-
tation can be achieved when q = 0, but the state of λ remains a dirty ancilla
when q = 1. Note that λ from the previous state (i.e., x1 + y1

x1
) may not be

in the same value as λ in the subsequent operation (i.e., x3 + y3
x3

); due to this
potential differences in value, we should not uncompute it by utilizing x3 and
y3 when q = 1. Had it been the same, it would allow us to obtain two perfectly-
uncomputed, clean ancilla registers. This can be done by appending another
controlled multiplication circuit and Toffoli gate targeting that ancilla register.

Nevertheless, this third construction is still useful; Evidently, at the time
when q = 0 indicates that the point doubling does not occur—meaning that
most likely a point addition is taking place. This register can be temporarily
repurposed using a clever arrangement to substitute the ancilla register in the
point addition circuit (i.e., the one for performing division operation in Fig. 2).

306 H. T. Larasati and H. Kim

The uncomputation itself can be performed by appending a series of Toffoli gates,
a multi-controlled and negative-controlled division operation, and an addition
by a constant. This circuit serves as a beneficial alternative construction when
circuit width or qubit utilization is the most prioritized quantum resource.

The high-level resource cost of the proposed circuits can be summarized as
follows. Compared to point addition, point doubling construction employs one
more ancilla register and significantly more controlled and multi-controlled oper-
ations. In detail, for the first scenario (balanced), a total of one division, three
multiplications (including multi-controlled version), two squarings (one multi-
controlled), one controlled swap (i.e., Fredkin gate), as well as several (controlled
and multi-controlled) additions are employed, with one clean ancilla registers and
one dirty ancilla register. For the second scenario, one less multiplication is uti-
lized, with the tradeoff of having both ancilla registers dirty. Next, regarding
the last alternative of having two clean ancilla registers when the control qubit
state is zero, it requires additional subroutines of one negative-control Toffoli
series (elevated control from CNOT gates for addition operation), one nega-
tive multi-controlled division, and one addition by a constant. Note that we do
not elaborate further on the exact resource since the presence of multi-controlled
operations requires a more complex circuit decomposition. Nevertheless, we plan
to investigate it further on a quantum simulator in our future work to obtain a
more concrete resource estimation.

4 Discussions and Limitations

In this study, we delve into the topic of elliptic curve point doubling circuits,
which has yet to be further examined in the literature. After presenting the
design and description of our approach in the previous section, we now provide
discussions related to the broader implications of our proposal.

Transforming to Prime Curves. We begin our study from the binary elliptic
curves, which are relatively simpler than prime curves. In the case of prime
curves, the quantum circuit will be more complicated because it cannot make
use of the simplicity of field operation in binary curves. For instance, an addition
in the prime fields requires a full adder, whereas binary fields only necessitate one
Toffoli gate for each bit. Additionally, FLT-based inversion, which is comparable
in performance to GCD-based inversion in quantum binary elliptic curves, has
also not been considered to date for its use on prime curves due to the high
resource requirements. Similarly, squaring operations are favorable in the binary
case due to their relatively efficient construction (i.e., by leveraging a simple LUP
decomposition), which are not applicable to prime curves. Even though there is
an advantage in prime curves in terms of intuitive verification due to their nature
of resembling decimal calculation, it requires more space and operations that are
arguably more complicated and resource-intensive.

Relation to Scalar Multiplication. To realize a quantum elliptic curve
scalar multiplication, existing methods rely upon a series of point addition
circuits as the sole components. Therefore, the computation is in the form of

Quantum Circuit Designs of Point Doubling for Binary Elliptic Curves 307

Q = kP = P + P + . . . + P for k times. Considering a more general implemen-
tation without limiting its use to Shor’s algorithm, performing scalar multipli-
cation by incorporating point doubling alongside point addition can potentially
reduce the depth of the circuit and the number of operations. Moreover, the
availability of designs for both point addition and point doubling opens up the
opportunity to explore various classical elliptic curve point/scalar multiplication
(ECPM) techniques (e.g., signed digit method, M-ary method) to be explored
in the quantum realm in search of more efficient circuits.

For Use in Shor’s ECDLP. In order to create a more theoretically accurate
and complete Shor’s ECDLP circuit, point doubling will need to be integrated
into the existing double scalar multiplication (that currently consists entirely
of point addition subroutines) to cover the cases when the doubling of points
occurs. Note that for this algorithm, the input comes from the Walsh-Hadamard
so that the circuit is expected to cater computation for all possible cases (i.e.,
any combination of zero and one within the circuit). More importantly, the con-
stant value k is unknown. For this reason, a more thorough conditional mecha-
nism is required to control whether point doubling or point addition is in effect
during the certain computation phase, resulting in more complex multi-control
operations on the circuit. Additionally, in scenarios where both points of inter-
est are quantum values, a checking mechanism within the circuit will need to
be employed to determine whether both values are identical. Note that for the
specific use in Shor’s ECDLP, both point addition and point doubling will be
incorporated to cover all cases, and other implementation requirements (e.g.,
unique representation for history independence [5], uncomputing garbage out-
puts to prevent unwanted interference [12]) may need to be taken into account,
which are interesting research problems.

Limitations. Even though this paper has provided an initial step to delve into
point doubling, there are still various aspects requiring further investigation.
This includes how to correctly integrate it with the point addition circuit and
whether the previous assumptions taken for Shor’s ECDLP regarding the double
scalar multiplication still stand in this case, which we will explore in the future.

5 Conclusions and Future Work

In this study, we have examined the point-doubling operation for binary elliptic
curves, which are required in the stricter case of Shor’s algorithm. We began
by analyzing the point doubling formula, identifying the inherent challenges in
its construction, and presenting a possible solution. Subsequently, we designed
quantum circuits for elliptic curve point doubling to cater to different scenarios,
which shows the need for one more ancilla register compared to point addition,
and while they may be comparable in terms of the number of subroutines, more
complex multi-controlled operations are required than that of point addition. In
addition, we provide a more in-depth discussion of the implications and concerns
in incorporating the circuit into Shor’s algorithm. To obtain a more detailed
resource estimation for point doubling and complete double scalar multiplication

308 H. T. Larasati and H. Kim

for Shor’s algorithm, we plan to construct the circuit in the existing quantum
computing simulators and run the resource analysis as our future work.

References

1. Banegas, G., Bernstein, D.J., van Hoof, I., Lange, T.: Concrete quantum crypt-
analysis of binary elliptic curves. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021(1), 451–472 (2021)

2. Gidney, C.: Asymptotically efficient quantum Karatsuba multiplication. arXiv
preprint arXiv:1904.07356 (2019)

3. Gouzien, É., Ruiz, D., Régent, F.M.L., Guillaud, J., Sangouard, N.: Computing
256-bit elliptic curve logarithm in 9 hours with 126133 cat qubits. arXiv preprint
arXiv:2302.06639 (2023)

4. Gyongyosi, L., Imre, S.: Circuit depth reduction for gate-model quantum comput-
ers. Sci. Rep. 10(1), 11229 (2020)

5. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quan-
tum circuits for elliptic curve discrete logarithms. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 425–444. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1_23

6. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2006). https://doi.org/10.1007/b97644

7. Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H.: Optimized implementation
of quantum binary field multiplication with toffoli depth one. In: You, I., Youn,
T.Y. (eds.) WISA 2022. LNCS, vol. 13720, pp. 251–264. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-25659-2_18

8. Kaye, P.: Optimized quantum implementation of elliptic curve arithmetic over
binary fields. Quantum Inf. Comput. 5(6), 474–491 (2005)

9. Kirsch, Z., Chow, M.: Quantum computing: the risk to existing encryption methods
(2015). http://www.cs.tufts.edu/comp/116/archive/fall2015/zkirsch.pdf

10. Larasati, H.T., Putranto, D.S.C., Wardhani, R.W., Park, J., Kim, H.: Depth opti-
mization of FLT-based quantum inversion circuit. IEEE Access 11, 54910–54927
(2023)

11. Liu, J., Wang, H., Ma, Z., Duan, Q., Fei, Y., Meng, X.: Quantum circuit optimiza-
tion for solving discrete logarithm of binary elliptic curves obeying the nearest-
neighbor constrained. Entropy 24(7), 955 (2022)

12. Orts, F., Ortega, G., Combarro, E.F., Garzón, E.M.: A review on reversible quan-
tum adders. J. Netw. Comput. Appl. 170, 102810 (2020)

13. Pornin, T.: Efficient and complete formulas for binary curves. Cryptology ePrint
Archive (2022)

14. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
arXiv preprint quant-ph/0301141 (2003)

15. Putranto, D.S.C., Wardhani, R.W., Larasati, H.T., Ji, J., Kim, H.: Depth-
optimization of quantum cryptanalysis on binary elliptic curves. IEEE Access 11,
45083–45097 (2023)

16. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9_9

http://arxiv.org/abs/1904.07356
http://arxiv.org/abs/2302.06639
https://doi.org/10.1007/978-3-030-44223-1_23
https://doi.org/10.1007/978-3-030-44223-1_23
https://doi.org/10.1007/b97644
https://doi.org/10.1007/978-3-031-25659-2_18
http://www.cs.tufts.edu/comp/116/archive/fall2015/zkirsch.pdf
https://doi.org/10.1007/978-3-319-70697-9_9

Quantum Circuit Designs of Point Doubling for Binary Elliptic Curves 309

17. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134. IEEE (1994)

18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

19. Taguchi, R., Takayasu, A.: Concrete quantum cryptanalysis of binary elliptic curves
via addition chain. In: Rosulek, M. (ed.) CT-RSA 2023. LNCS, vol. 13871, pp. 57–
83. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30872-7_3

20. Van Hoof, I.: Space-efficient quantum multiplication of polynomials for binary
finite fields with sub-quadratic Toffoli gate count. arXiv preprint arXiv:1910.02849
(2019)

21. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic
operations. Phys. Rev. A 54(1), 147 (1996)

22. Whaley, B., Karasik, R.: Circuits, randomized computation, deferred measure-
ments (2007). https://inst.eecs.berkeley.edu/~cs191/fa07/lectures/lecture9_fa07.
pdf

23. Williams, C.P.: Explorations in Quantum Computing. Springer, London (2010).
https://doi.org/10.1007/978-1-84628-887-6

https://doi.org/10.1007/978-3-031-30872-7_3
http://arxiv.org/abs/1910.02849
https://inst.eecs.berkeley.edu/~cs191/fa07/lectures/lecture9_fa07.pdf
https://inst.eecs.berkeley.edu/~cs191/fa07/lectures/lecture9_fa07.pdf
https://doi.org/10.1007/978-1-84628-887-6

PQ-DPoL: An Efficient Post-Quantum
Blockchain Consensus Algorithm

Wonwoong Kim1 , Yeajun Kang1 , Hyunji Kim2 , Kyungbae Jang1 ,
and Hwajeong Seo3(B)

1 Department of IT Convergence Engineering, Hansung University,
Seoul 02876, South Korea

2 Department of Information Computer Engineering, Hansung University,
Seoul 02876, South Korea

3 Department of Convergence Security, Hansung University,
Seoul 02876, South Korea

hwajeong84@gmail.com

Abstract. The advancement of quantum computers and the potential
polynomial-time solution of Elliptic Curve Cryptography (ECC) using
the Shor algorithm pose a significant threat to blockchain security.

This paper presents an efficient quantum-secure blockchain with
our novel consensus algorithm. We integrate a post-quantum signa-
ture scheme into the transaction signing and verification process of our
blockchain, ensuring its resistance against quantum attacks. Concretely,
we adopt the Dilithium signature scheme, which is one of the selected
algorithms in the NIST Post-Quantum Cryptography (PQC) standard-
ization.

Not surprisingly, the incorporation of a post-quantum signature
scheme leads to a reduction in the number of Transactions Per Second
(TPS) processed by our blockchain. To mitigate this performance degra-
dation, we introduce a new consensus algorithm that effectively combines
the Proof of Luck (PoL) mechanism with a delegated approach.

We strive to build an efficient and secure blockchain for the post-
quantum era by benchmarking our blockchain, adjusting the security
parameters of Dilithium, and refining the components of the consensus
algorithm.

Keywords: Consensus Algorithm · Blockchain · Post-Quantum
Security · Dilithium · TEE

1 Introduction

The ECC-based signature scheme is commonly adopted in blockchains for trans-
action signing and verification, thanks to its efficiency. However, the following
two factors prompt us to consider replacing ECC with PQC:

1. Shor’s algorithm [1] efficiently models discrete logarithm problems on elliptic
curves and provides polynomial-time solutions.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 310–323, 2024.
https://doi.org/10.1007/978-981-99-8024-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_24&domain=pdf
http://orcid.org/0009-0002-6245-8044
http://orcid.org/0009-0007-4005-8505
http://orcid.org/0000-0001-9828-3894
http://orcid.org/0000-0001-5963-7127
http://orcid.org/0000-0003-0069-9061
https://doi.org/10.1007/978-981-99-8024-6_24

PQ-DPoL 311

2. The emergence of quantum computers capable of running Shor’s algorithm is
anticipated in the near future.

Grover’s algorithm [2] also poses a threat to the security of hash functions
by reducing the search complexity by a square root. However, there is an off-
the-shelf countermeasure that increases the output size of hash functions. Fur-
thermore, due to the significant quantum circuit depth required by Grover’s
algorithm [3–5], launching attacks becomes more challenging compared to Shor’s
algorithm [6]. For these reasons, we focus on the threat posed by Shor’s algorithm
rather than Grover’s algorithm throughout this paper.

To achieve a quantum-secure blockchain, it is crucial to adopt signature
schemes that are resistant to quantum attacks, such as those posed by Shor’s
algorithm. However, it is widely recognized that post-quantum cryptography
faces performance-related challenges, including large signature sizes and slow
signing/verification speeds. These challenges are particularly significant for
blockchain applications due to the nature of their consensus algorithm.

Inspired by this concern, we propose Post-Quantum Delegated Proof of Luck
(PQ-DPoL), an efficient and quantum-secure blockchain consensus algorithm.
PQ-DPoL utilizes the post-quantum signature scheme Dilithium [7], which is
one of the recently standardized signature schemes in NIST’s PQC standardiza-
tion1.

It is important to note that utilizing post-quantum signatures in a blockchain
will inevitably lead to performance degradation. To address this issue, we intro-
duce a novel combination of consensus primitives: Proof of Luck (PoL) with a
delegated approach.

Our Contribution

This paper makes several contributions, which can be summarized as follows:

1. Post-quantum Blockchain with PQC Scheme. After carefully consider-
ing our blockchain components, including the targeted device and consensus
algorithm, we adopt the Dilithium PQC scheme. This decision ensures the
security of our blockchain against potential quantum attacks.

2. New Consensus Algorithm for an Efficient Blockchain. For the first
time, we present the DPoL consensus algorithm, which combines PoL with
a delegated approach. DPoL algorithm enhances block generation speed by
simplifying the consensus process within a TEE. With the implementation of
DPoL algorithm, we achieve satisfactory performance even when utilizing a
PQC scheme.

3. Diversifying Configurations and Benchmarks. We provide various
benchmarks to ensure compatibility and optimal performance in different
environments as we build our blockchain with various options (such as adjust-
ing the number of nodes or security parameters of Dilithium).

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-
2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

312 W. Kim et al.

2 Preliminaries

2.1 Blockchain Consensus Algorithm

Blockchain is a distributed ledger technology in which nodes within a network
communicate in a Peer-to-Peer (P2P) to share ledger. Blockchain is a decentral-
ized method in which nodes each own a ledger. Therefore, nodes directly create
blocks and verify transactions.

The consensus algorithm is used by nodes on the blockchain to ensure data
integrity through specific procedures and to make the same decision. Each con-
sensus algorithm has a block producer and validator. The block producer creates
a block containing transactions and sends it to a validator. Validators verify that
the header of a block is valid. Also, the validator performs verification by check-
ing the signature of the transaction contained in the block. There are many types
of consensus algorithms. Representatively, there are Proof of Work (PoW) used
in Bitcoin and Proof of Stake (PoS) used in Ethereum. There is also Delegated
Proof of Stake (DPoS), which adds delegation to PoS. In addition to this, there
are Proof of Luck (PoL) and Proof of Elapsed Time (PoET) based on TEE.

In PoW, a node must perform mining to become a block producer. However,
PoW has a limitation in that it consumes excessive energy during the mining
process. PoS can solve the power consumption problem of PoW [8]. In PoS, nodes
with sufficient stake become block producers. However, this causes a problem of
the rich getting richer and the poor getting poorer, as nodes without stakes
cannot create blocks.

DPoS is a consensus algorithm based on PoS [9]. In DPoS, delegates are
elected through voting. These delegates perform the PoS consensus algorithm
among themselves. As a result, TPS is improved, and the problem of PoS can
be overcome. However, if the number of delegates is small compared to the size
of the network, centralization issues can arise.

In PoET, the node that completes its assigned wait time first becomes the
block producer [10]. Verification can be performed at high speed because it
verifies whether the waiting time has actually been achieved through TEE. PoET
provides equal opportunities to all nodes. Also, it does not cause the computing
resource consumption problem that occurs in PoW.

2.2 Evaluation Metrics for Blockchain Performance

Blockchain has various elements such as network structure and consensus algo-
rithm. Because of this, it is not easy to evaluate the performance of a blockchain
using a single metric. For fair evaluation, several works have been conducted on
the evaluation of blockchain performance [11,12]. Representative metrics that
are mainly used include TPS and latency. In addition, there are other metrics:
block verification time, decentralized level, and power consumption.

These metrics are affected by various factors of the blockchain (e.g., block
size, the number of nodes and digital signature algorithm). This section describes
these evaluation metrics of blockchain.

PQ-DPoL 313

TPS. TPS means how many transactions can be processed in one second. In
other words, it is the number of transactions that can be confirmed in one sec-
ond. TPS is the most common metric of blockchain performance currently used
and represents the speed of the blockchain. Many recent blockchains are being
designed in a structure that can achieve high TPS. However, TPS should not
be used as the only evaluation metric of a blockchain. If TPS is improved with-
out considering other evaluation metrics, TPS may increase, but problems (e.g.
lower scalability of the blockchain) may occur. Bitcoin, the most famous cryp-
tocurrency, has 7 TPS, Ethereum has 20 TPS, and EOS has 3000 TPS. However,
since EOS is close to a centralized system. Therefore, the decentralization char-
acteristic of blockchain is not satisfied.

Latency. Latency is the time it takes from the time a transaction appears on
the network until it is verified. If the latency is high, it means that a lot of time is
required to process one transaction. Therefore, high latency causes performance
degradation of the blockchain. Bitcoin’s latency is 10 min, which is very large,
and Ethereum’s is 0.22 min. Also, Ripple, which aims for low latency, has a
latency of about 4 s.

2.3 CRYSTALS-DILITHIUM

CRYSTALS-DILITHIUM2 is a post-quantum cryptography selected by NIST as
an algorithm to be standardized. Dilithium is a lattice-based cipher based on
the Shortest Vector Problem (SVP). The SVP problem is that it is difficult to
find the vector closest to an arbitrary position on the lattice in polynomial time
(even on quantum computers).

Table 1 presents the sizes of Dilithium public keys and signatures (in bytes),
Dilithium is divided into Dilithium-2,3,5 depending on the level of security.
The size of Dilithium public key ranges from 1,312 to 2,592 bytes, private key
ranges from 2,528 to 4,864 bytes, and the size of the signature ranges from
2,420 to 4,595 bytes. Compared to other PQCs, Dilithium has larger key and
signature sizes but offers faster computational speed [13].

Table 1. Details of Dilithium.

Scheme NIST level Public key Private key Signature

Dilithium-2 2 1,312 2,528 2,420

Dilithium-3 3 1,952 4,000 3,293

Dilithium-5 5 2,592 4,864 4,595

2 https://pq-crystals.org/index.shtml.

https://pq-crystals.org/index.shtml

314 W. Kim et al.

2.4 Trusted Execution Environment

TEE (Trusted Execution Environment) means the security area of the main
processor. The security area ensures that code and data inside the processor
can be protected in terms of confidentiality and integrity. There are various
unique techniques for this. For example, Trusted Time, Monotonic Counter,
Random Number Generation, and Attestation are representative. Representative
platforms of TEE include Intel SGX, ARM TrustZone, RISC-V MultiZone, and
AMD SEE.

Trusted Time. TEE provides PRTC (Protected Real-Time Clock) based timer
for trusted time service [14]. This Trusted Time Service can be used to measure
the elapsed time since reading the previous timer. Timer Source Epoch can be
used to detect discontinuities between Read Time points. Discontinuity means
that the PRTC has been reset due to an event such as a battery replacement,
or the timer has been paired with a different PRTC due to an unexpected event
such as a software attack. In this case, the user MUST NOT trust the calculated
period between the two Timer Readings and handle the error condition appro-
priately. It can be used through sgx get trusted time(), a library API function
of the Intel SGX SDK.

Monotonic Counter. Users can use a monotonic counter with ID, which is a
unique identifier [14]. The user can create a monotonic counter through the Intel
SGX SDK, increase the value, read or delete the value.

Attestation. There are cases in which different TEEs must cooperate for var-
ious reasons such as communication. At this time, a function to prove each
other’s reliability is provided, which is called Attestation. Attestation is divided
into local attestation and remote attestation. If two TEE areas exist on the
same CPU, verification is possible through local attestation, and if they exist on
different CPUs, verification must be performed through remote attestation.

Random Number Generation. TEE can generate a random value from an
Intel on-chip hardware random number generator seeded by an on-chip entropy
source through a command called RDRAND.

3 PQ-DPoL

This section presents various methodologies gathered to construct our PQ-DPoL,
an efficient post-quantum blockchain consensus algorithm.

Before presenting our methodologies, we provide the following remarks on
the key aspects/considerations for post-quantum blockchain:

PQ-DPoL 315

– Key Sizes When considering the use of Internet of Things (IoT) devices for
blockchain, it is advisable to adopt PQC (Post-Quantum Cryptography) with
small public and private keys.

– Signature Size Blockchain transactions involve user signatures. To increase
the number of transactions that can be included in a block, it is recommended
to adopt PQC with small signature sizes.

– Execution Speed PQC scheme should process a large number of transac-
tions per second, allowing for high-speed blockchain operation.

– Computational Complexity While fast execution is desirable, it is impor-
tant to consider the computational complexity. A PQC scheme may execute
quickly on certain hardware but be slower on others, so a balance needs to
be struck between computational complexity, execution time, and supported
hardware devices.

– Power Consumption Power consumption is a concern for energy-intensive
blockchains like Bitcoin. Factors such as hardware, communication trans-
actions, and security schemes contribute to energy usage. Therefore, PQC
schemes should aim for efficient energy consumption.

3.1 Post-Quantum Blockchain Using Dilithium

The Dilithium scheme provides the advantage of faster signing and verification
speeds compared to many other PQC signature schemes. However, this advan-
tage comes at the cost of large key and signature sizes (PQC schemes often
involve this trade-off).

As noted earlier (Sect. 3), when considering IoT devices, it is recommended
to use PQC schemes with small key sizes for blockchain. However, the devices
targeted for our blockchain are CPUs that support TEE for the PoL consensus
algorithm. This indicates that our blockchain is capable of accommodating PQC
with large key sizes. Thus, the large key sizes of Dilithium do not present any
issues for our blockchain, and we can benefit from its fast signing and verification
speeds. In this regard, Dilithium is well-suited for our blockchain.

However, the large signature size of Dilithium leads to an increased trans-
action size. Consequently, the capacity for including transactions in a block is
reduced, resulting in lower TPS.

In Sect. 3.3, we will present how to increase the lowered TPS using the pro-
posed consensus algorithm, DPoL.

3.2 Construction of Trusted Execution Environment

In this work, the system is designed based on Intel SGX, one of the TEEs.
TEE enforces correct operation of an algorithm or critical operation process.
Representatively, in order to vote for delegation or to be elected as a delegate who
can be qualified to create a block, a random value generation process through
TEE is required. A monotonic counter is used to prevent concurrent invocation
or a remote attestation to verify operation. Also, the Trusted Time Service (TTS)

316 W. Kim et al.

provides a reliable verification method for whether a certain amount of waiting
time has been passed.

For these reasons, TEE is required to participate in the blockchain network.
In addition, even if we have a large number of CPUs with TEEs, malicious actions
such as controlling the network with the majority of TEEs in the network are
close to impossible due to the price of TEEs.

However, in our current implementation, the actual TEE is not used and is
implemented in the form of an interface. Measuring performance by applying
real TEE remains a follow-up study. The details of the functions of the TEE
used are as follows.

Trusted Time. TEE has a reliable time service. This allows reliable elapsed
time measurements. Set the time at which the consensus algorithm starts
through TEE as round time. Sleep for as much time as round time to let the
time pass. After that, it verifies the block of this round and whether the time
passed as much as round time.

Through this process, nodes have a deterministic block verification time,
so that block creation time can be synchronized without additional operation.
Because sleep is busy-wait, other work is available during this time, so time and
energy are not wasted. Also, if another luckier chain is broadcasted while busy
waiting, it can be changed to that chain. In NS-33, this function can be provided
by giving the Delay of Schedule as much as round time.

After verifying the block of the previous round, it is verified whether the
round time has passed during the verification process. Through this process,
nodes have a deterministic block verification time, so that block creation time
can be synchronized without additional operation. By doing busy-wait, sleep is
performed during the round time, and other tasks are possible during this time,
so time and energy are not wasted.

Monotonic Counter. A malicious user may try to gain an unfair advantage by
running an algorithm concurrently on a single CPU. If the value of TEE mono-
tonic counter is increased every time, concurrent invocation can be prevented.
To do this, the monotonic counter value is stored at the time of starting the algo-
rithm. After that, it is compared with the value of the monotonic counter when
verifying the block. If the two monotonic counter values are different, it means
that the algorithm was executed in parallel on the same CPU. In this case, the
monotonic counter verification fails and the node cannot create a block.

Remote Attestation. Algorithm 1 shows the remote attestation function.
Remote Attestation is the process of generating a proof, a value that

nodes can verify with each other. Proof is used as a record of whether an algo-
rithm or data has been manipulated. Because of attestation, the operation pro-
cess and data in TEE cannot be manipulated.
3 https://www.nsnam.org/.

https://www.nsnam.org/

PQ-DPoL 317

Algorithm 1. Remote Attestation.
1: function RemoteAttestation(nonce, luck)
2: input ← nonce || luck
3: proof ← Base58-Encoding(input)
4: return proof
5: end function

Proof is a value generated by Base58-Encoding the concatenated data of
nonce, which is a hash value of the block header to be generated, and luck, which
is a random value generated through RDRAND of TEE. It is included in the
block and broadcast at the end of the consensus algorithm process. The node
extracts the nonce and luck by Base58-decoding the proof contained in the
broadcast block. Through the extracted data, it is verified whether the value of
proof has been tampered with or whether it is a value generated from the correct
nonce and luck.

As a result, it is possible to prove that no block or transaction has been
manipulated. It also allows nodes to communicate with each other even if they
do not have a trust relationship.

Random Number Generation. TEE can produce reliable random numbers,
which an attacker cannot influence. A reliable random value is generated using
RDRAND of Intel SGX and used as the luck value in the algorithm. This luck
value is used as a value for voting or when deciding who will be the block
generator in the consensus algorithm. The node with the block with the highest
luck value is selected as the block producer.

3.3 Proof of Luck with Delegated Approach

PQ-DPoL, a post-quantum consensus algorithm proposed in this work, consists
of a delegation phase and a consensus phase. Figure 1 shows the overview of
PQ-DPoL.

In the delegation phase, the delegated node to be the delegate is selected
through the voting of all nodes in the blockchain. In the consensus phase, del-
egated nodes take turns generating blocks. Here, the transactions included in
the generated block include the signature and public key of Dilithium. Finally,
after delegated nodes verify the block, the verified block is added to the chain.

Delegation. Figure 2 shows the delegation phase of PQ-DPoL. The details of
the delegation process are as follows:

1. Random Number Generation Each node generates a random number.
This random number is used as a vote value.

2. Vote Each node broadcasts a voting transaction. A voting transaction con-
tains a random number (vote) and the signature and public key of Dilithium.

318 W. Kim et al.

Fig. 1. Overview of PQ-DPoL.

3. Verification Each node receives voting transactions of other nodes and ver-
ifies the voting transaction with Dilithium. If the signature verification suc-
ceeds, the voting transaction is considered valid, indicating a valid vote. If
the signature verification fails, it means that the transaction has been manip-
ulated (i.e., the vote is invalid).

4. Delegation The number of votes received is summed up. The top n nodes
with the most votes are then selected as delegated nodes.

Since we apply Dilithium, the TPS decreases because of the large signature
size, leading to fewer transactions that can be included in one block. However, in
the delegation approach, only some nodes in the blockchain perform consensus.
In other words, since the number of nodes participating in the consensus is
reduced, the time taken for all nodes to verify is reduced. As a result, the time
required for consensus is reduced.

Thanks to the delegation phase we overcome the degraded TPS due to
Dilithium. Further, there is the advantage of improving scalability [15], which
is another important factor of blockchain.

Consensus with TEE. Figure 3 shows the consensus phase of PQ-DPoL. The
details of the consensus process are as follows:

1. Block Generation In order to generate a block, the integrity of the block
must be verified. Also, PoL verifies that round time has passed and that
the monotonic counter has not changed. If the current time is greater than
round time + consensus start time, then round time has passed. And, if the
monotonic counter set based on the TEE and the current monotonic counter
called in the consensus process are not the same, verification is failed. After
verification is completed, luck (random number) is generated using TEE, and
proof is generated in the Remote Attestation process. Finally, the block
is broadcast to other delegated nodes.

PQ-DPoL 319

Fig. 2. Delegation phase of PQ-DPoL.

Fig. 3. Consensus phase of PQ-DPoL.

2. Block Verification In the block verification process, verification of nonce,
the previous hash, and proof are performed. It must be verified that the Nonce
generated by hashing the header of the block to be created is the same as the
nonce extracted from proof (note that the nonce is the hash of the header of
the current block). This process ensures the integrity of nonce.
To verify the proof, the proof contained in the received block is compared
with the proof’ (new proof) generated in the consensus process. Here, proof’
is a string encoded after concatenating luck and nonce of the block. In other
words, it means verifying that the received proof is actually created from
luck and nonce. Finally, the block verification process is completed by com-
paring the previous hash with the previous hash included in the block to be
generated.

3. Transaction Verification
Finally, verification for the transactions contained in the block must be per-
formed. Delegated nodes verify the signature of transactions included in
the received block. In this process, as mentioned in the delegation phase
(Sect. 3.3), the signature verification process using Dilithium is performed.

In this way, TEE-based verification is performed in the consensus phase. In
other words, this consensus phase is a process of verifying the values of the
elements included in the block (such as luck, nonce, and proof) to ensure that

320 W. Kim et al.

a legitimate block is generated. As noted earlier, the number of transactions
included in a block can be decreased due to Dilithium for transaction verifica-
tion. However, since only delegated nodes participate in consensus, the consensus
time can be reduced. Thus, by using post-quantum lightweight consensus, we can
ensure security while mitigating the decrease in TPS due to the large signature
size.

4 Benchmark

4.1 Environment and Evaluation Metrics

Environment. C++ language and an Intel i5-8295U CPU with 16GB RAM on
Ubuntu 20.04.6 LTS are used in our experiment. To build an environment close
to a real blockchain network, we use NS-3, an open-source network simulator.

Performance. This section presents the execution speed and performance
(TPS, Latency) using ECDSA (P-256) and Dilithium. We use TPS and latency
as performance metrics. TPS is measured identically during delegation and con-
sensus (TPSD, TPSC). However, latency is defined in delegation and consensus
respectively. Here are the details. Delegation latency (LD) refers to the time
from transaction generation to transaction verification. Consensus latency (LC)
is the time it takes for delegated nodes to complete block verification after a
block containing a transaction is generated. We measure TPSD, TPSC , LD,
and LC depending on the size of the blockchain network (the number of nodes
is represented by 2n) and the type of Dilithium applied.

Table 2. Execution speed comparison of ECDSA (P-256) and Dilithium.

Algorithm Key Gen Sig Gen Sig Verify

ECDSA (P-256) 0.000400 0.000670 0.000350

Dilithium-2 0.000027 0.000100 0.000026

Dilithium-3 0.000047 0.000160 0.000043

Dilithium-5 0.000073 0.000200 0.000065

block size: 25 KB, unit: second, n = 1

– Execution speed comparison of ECDSA and Dilithium Table 2 shows the
performance of the signature scheme in the blockchain network. Key genera-
tion time, signature generation time, and signature verification time of ECDSA
and Dilithium-2/3/5 are measured. Dilithium is faster than ECDSA. How-
ever, when the block size is 25KB, the number of transactions included in one
block is 100 and 6/4/3 in ECDSA and Dilithium-2/3/5, respectively. This is
because Dilithium has a large key size and signature size as described in
Sect. 2.3.

PQ-DPoL 321

Table 3. TPS of DPoL.

n 1 2 3 4 5 6 7

ECDSA 713.5797 122.5398 29.8184 6.9522 0.9468 0.2341 0.1030

Dilithium-2 88.8721 21.0373 5.1244 1.2515 0.3302 0.0776 0.0171

Dilithium-3 48.4901 11.7897 2.8879 0.7128 0.1815 0.0446 0.0104

Dilithium-5 30.8097 7.4470 1.8600 0.4526 0.1203 0.0291 0.0066

block size: 25 KB, unit: second

– TPS Despite the faster signing speed, the performance of Dilithium in terms
of TPS is relatively low compared to ECDSA due to the large size of Dilithium.
As a result, the time is delayed because more transactions are included in the
block to which ECDSA is applied, but the TPS is measured higher due to a
large number of transactions.

Table 4. Latency of DPoL.

n 1 2 3 4 5 6 7

ECDSA 0.1401 0.8160 3.3536 14.3838 105.6131 427.1180 970.0098

Dilithium-2 0.0675 0.2852 1.1708 4.7940 18.1667 77.2573 350.8609

Dilithium-3 0.0824 0.3392 1.3850 5.6116 22.0333 89.5175 383.3946

Dilithium-5 0.0973 0.4028 1.6128 6.6277 24.9267 103.0436 454.1221

block size: 25 KB, unit: second

– Latency It is observed that the TPS decreases as the number of nodes
increases (see Tables 3 and 4). Due to the limitations of the hardware envi-
ronment, the performance when the number of nodes is 512 can not be mea-
sured, but based on the previous measurement results, it can be assumed
that the TPS will decrease. Thus, the delegate is applied to solve the prob-
lem related to the size of Dilithium and the decrease in TPS as the number of
nodes increases. The delegated performance measurement result is the same
as Tables 3 and 4. By reducing the number of nodes with a delegated app-
roach, the time required for consensus is decreased (i.e., TPS increases).

5 Conclusion

In this work, we gather multiple contributions, including a post-quantum signa-
ture scheme and a novel consensus algorithm, to construct an efficient quantum-
secure blockchain. Additionally, we make a detailed attempt to ensure compati-
bility and optimal performance for diverse environments.

322 W. Kim et al.

In summary of our experimental results, the TPS of DPoL applied with
Dillithium is lower than that of ECDSA (since larger key and signature sizes).
To improve the degraded performance, we propose DPoL, a new consensus algo-
rithm that combines PoL and a delegation approach. Certainly, when employing
Dillithium as the signature scheme in DPoL, although its performance may be
lower than that of ECDSA, it still provides reasonable performance.

Finding/Adopting various methods to improve TPS can be considered for the
future works. It would be advisable to replace various PQC signature schemes
and conduct comparative analyses with other consensus algorithms.

Acknowledgements. This work was supported by Institute for Information & com-
munications Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2018-0-00264, Research on Blockchain Security Technology for IoT Ser-
vices, 50%) and this work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No. 2022-0-00627, Development of Lightweight BIoT technology for Highly
Constrained Devices, 50%).

References

1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

3. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 18

4. Lee, J., Lee, S., Lee, Y.-S., Choi, D.: T-depth reduction method for efficient SHA-
256 quantum circuit construction. IET Inf. Secur. 17(1), 46–65 (2023)

5. Lee, W.-K., Jang, K., Song, G., Kim, H., Hwang, S.O., Seo, H.: Efficient imple-
mentation of lightweight hash functions on GPU and quantum computers for IoT
applications. IEEE Access 10, 59661–59674 (2022)

6. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

7. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embedded Syst. 2018, 238–268 (2018)

8. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

9. Yang, F., Zhou, W., Wu, Q., Long, R., Xiong, N.N., Zhou, M.: Delegated proof of
stake with downgrade: a secure and efficient blockchain consensus algorithm with
downgrade mechanism. IEEE Access 7, 118541–118555 (2019)

10. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-
of-elapsed-time (PoET). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol.
10616, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69084-1 19

https://doi.org/10.1007/978-3-319-69453-5_18
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-319-69084-1_19
https://doi.org/10.1007/978-3-319-69084-1_19

PQ-DPoL 323

11. Bamakan, S.M.H., Motavali, A., Bondarti, A.B.: A survey of blockchain consensus
algorithms performance evaluation criteria. Expert Syst. Appl. 154, 113385 (2020)

12. Salimitari, M., Chatterjee, M.: A survey on consensus protocols in blockchain for
IoT networks. arXiv preprint arXiv:1809.05613 (2018)

13. Raavi, M., Chandramouli, P., Wuthier, S., Zhou, X., Chang, S.-Y.: Performance
characterization of post-quantum digital certificates. In: 2021 International Con-
ference on Computer Communications and Networks (ICCCN), pp. 1–9. IEEE
(2021)

14. Cen, S., Zhang, B.: Trusted time and monotonic counters with intel software
guard extensions platform services. https://software.intel.com/sites/default/files/
managed/1b/a2/Intel-SGX-Platform-Services.pdf (2017)

15. Sanka, A.I., Cheung, R.C.: A systematic review of blockchain scalability: issues,
solutions, analysis and future research. J. Netw. Comput. Appl. 195, 103232 (2021)

http://arxiv.org/abs/1809.05613
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services. pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services. pdf

Efficient Implementation of the Classic
McEliece on ARMv8 Processors

Minjoo Sim1 , Hyeokdong Kwon1 , Siwoo Eum1 , Gyeongju Song1 ,
Minwoo Lee2 , and Hwajeong Seo2(B)

1 Department of Information Computer Engineering, Hansung University,
Seoul 02876, South Korea

2 Department of Convergence Security, Hansung University,
Seoul 02876, South Korea

hwajeong84@gmail.com

Abstract. Classic McEliece is a Code-based Key Encapsulation Mech-
anisms (KEM) and one of the candidate algorithms in the NIST PQC
competition. Based on the McEliece cryptosystem developed in 1978,
this system relies on the Niederreiter variant of McEliece. It consists
of three phases: Key Generation, Encapsulation, and Decapsulation. In
this paper, we propose an optimized implementation of the internal mul-
tiplication operations of Classic McEliece on the ARMv8 processor. We
utilize parallel computing techniques using vector registers and vector
instructions of the ARMv8 processor. We specifically focus on optimizing
the multiplication operation, which is a major contributor to the overall
execution time of the Classic McEliece algorithm, by leveraging the com-
mutative property and implementing an parallelization technique. As a
result, our approach achieves a maximum performance improvement of
2.82× compared to the reference implementation in the multiplication
operation.

Keywords: 64-bit ARMv8 Processors · Classic McEliece ·
Post-quantum Cryptography · Parallel implementation · KEM ·
Software implementation

1 Introduction

Due to the rapid advancement of quantum computers, conventional modern
Cryptography algorithms are facing threats. In preparation for this, efforts are
underway to transition existing modern Cryptography algorithms into quantum-
resistant Cryptography before the practical realization of quantum computers.
Recognizing the need for robust Cryptography solutions, the National Institute
of Standards and Technology (NIST) initiated the Post-Quantum Cryptography
(PQC) Competition in 2017. The objective of this competition is to identify
and standardize quantum-resistant Cryptography algorithms [1]. As part of the
NIST PQC standards, CRYSTALS-KYBER [2], CRYSTALS-DILITHIUM [3],
SPHINCS+ [4], and FALCON [5] have been selected. Optimal implementation
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 324–337, 2024.
https://doi.org/10.1007/978-981-99-8024-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_25&domain=pdf
http://orcid.org/0000-0001-5242-214X
http://orcid.org/0000-0002-9173-512X
http://orcid.org/0000-0002-9583-5427
http://orcid.org/0000-0002-4337-1843
http://orcid.org/0000-0002-2356-3055
http://orcid.org/0000-0003-0069-9061
https://doi.org/10.1007/978-981-99-8024-6_25

Efficient Implementation of the Classic McEliece on ARMv8 Processors 325

research for the algorithm selected as a NIST PQC standard is being actively
conducted on ARMv8 [6–11]. Classic McEliece was selected as one of the Round
4 candidate algorithms [12]. Classic McEliece is a code-based key encapsulation
mechanisms. The basic structure is based on the McEliece [13] cryptosystem in
1978, and its stability has been verified through long-term research. In addi-
tion, the German Federal Office for Information Security recommends Classic
McEliece as long-term security along with FrodoKEM. In this paper, we propose
an efficient implementation of Classic McEliece on a 64-bit ARMv8 processor.

The remainder of this paper is structured as follows. The Sect. 2 describes
the Classic McEliece, the target 64-bit ARMv8 processor, and related works.
The Sect. 3 describes the proposed method. The Sect. 4 shows a performance
comparison. Finally, the Sect. 5 describes the conclusion of this document and
future work.

1.1 Contribution

-Multiplication with Parallel Operations of the Classic McEliece on
ARMv8 Processors. We propose an efficient parallel multiplication imple-
mentation using Classic McEliece’s parallel operation on ARMv8 processors.
The implementation utilizes 128-bit vector registers of the ARMv8 architecture
and NEON vector instructions. Our proposed parallel multiplication leverages
the commutative property of XOR operation to rearrange internal operations,
enabling simultaneous computation of four values within the internal structure.
As a result, we observed a maximum performance improvement of approxi-
mately 2.82× compared to the reference code (C code) provided by PQ-Clean
project [14].

-First Implementation of the Classic McEliece Multiplier on 64-Bit
ARMv8 Processors Using Vector Registers. To the best of our knowledge,
this paper presents the first implementation of the Classic McEliece multiplier
utilizing vector registers supported by 64-bit ARM processors. We believe that
our work can serve as a valuable resource for researchers to assess the perfor-
mance of the Classic McEliece algorithm.

2 Preliminaries

2.1 Classic McEliece

Classic McEliece is designed to combine the advantages of McEliece and Nieder-
reiter. The existing McEliece uses a Generator Matrix (G) for the public key,
whereas Classic McEliece uses the Parity Check Matrix (H) used as the public
key in Niederreiter. Classic McEliece is designed with a simple matrix multiplica-
tion process for Encapsulation and Decapsulation, allowing for fast computation.
It also has the advantage of having a shorter Ciphertext compared to the existing
Ciphertext. On the other hand, the length of the public key is very long and the

326 M. Sim et al.

key generation process takes a long time. The length of the public key is 256 KB
to 1.3 MB, using it difficult to use on low-end devices with small memory space.
Classic McEliece parameters are shown in Table 1.

Table 1. Parameters of Classic McEliece; m is log2q (q is the size of the field used); n
is length of code, and t is the sizes of guaranteed error-correction capability;

Algorithm m n t security level Public key Secret key

Mceliece 348864 12 3,488 64 1 261,120 6,492

Mceliece 460896 13 4,608 96 3 524,160 13,608

Mceliece 6688128 13 6,688 128 5 1,044,992 13,932

Mceliece 6960119 13 6,960 119 5 1,047,319 13,948

Mceliece 8192128 13 8,192 128 5 1,357,824 14,120

Classic McEliece algorithm can be divided into three processes: a key gener-
ation process, an encryption process (Encapsulation), and a decryption process
(Decapsulation).

– Key Generation In the Key Generation process, first, g(x) of degree t
required for Goppa code generation and L called a support set are gener-
ated. Generate H (parity check matrix) using g(x) and L. The generated H
is converted to binary form and converted to systematic form by performing
Gaussian elimination. That is, it is converted to the form H = (In−k|T), and
after removing In−k (Identity Matrix), the remaining T matrix is used as a
public key. The private key consists of g(x) and L, which are used to generate
the Goppa code, and a randomly generated s. In conclusion, the public key
is T and the private keys are g(x), L, and s.

– Encapsulation In the Encapsulation process, a random vector (e) with
weight t is first generated. A syndrome (C0) is generated using the gener-
ated e and the public key (T). It uses the value of e and the number 2 to
generate a hash value (C1 = Hash(2, e)) and combines the two values (C =
C0|C1) to finally produce the ciphertext (C). Finally, for the session key, the
hash value of the number 1, e, C will be the session key (K = Hash(1, e, C)).

– Decapsulation In the Decapsulation process, Decapsulation is performed
using the delivered value of C and the owned private key. The value of e
(error matrix) can be obtained by performing syndrome decoding with the
syndrome (C0) included in C (ciphertext) and the private key. It is determined
whether there is an error by comparing the hash value with the number 2 in
front of the e value obtained through syndrome decoding and the C1 value
included in the transmitted C (ciphertext). If the two values are the same,
the hash value of the numbers 1, e, and C is computed to obtain the session
key.

Efficient Implementation of the Classic McEliece on ARMv8 Processors 327

Fig. 1. Register packing of vector registers.

2.2 ARMv8 Processor

ARM is an ISA (Instruction Set Architecture) high-performance embedded pro-
cessor. ARMv8-A supports both 32-bit AArch32 and 64-bit AArch64 architec-
tures for backward compatibility. ARMv8-A provides 31 64-bit general-purpose
registers from x0 to x30 and 32 128-bit vector registers from v0 to v31. In this
case, the general purpose registers can also be used as 32-bit registers from w0 to
w30. The vector registers can be processed by dividing stored values into specific
units. There are four types of units supported: byte (8-bit), half word (16-bit),
single word (32-bit), and double word (64-bit). Figure 1 shows register packing
of vector registers. A vector instructions (called ASIMD or NEON) is used for
the vector register to perform parallel operation. Table 2 shows that instruction
lists for proposed implementations [15].

2.3 Related Works

Becker et al. implemented an optimization for Barrett multiplication using the
64-bit ARM Cortex-A NEON vector instruction [7]. They are the combination
of Montgomery multiplication and Barrett reduction resulting in Barrett mul-
tiplication which allows particularly efficient modular one-known-factor multi-
plication using the NEON vector instructions. And proposed novel techniques
combined with fast two-unknown-factor Montgomery multiplication, Barrett
reduction sequences, and interleaved multi-stage butterflies result in significantly
faster code. As a result, in the Saber, NTTs are far superior to Toom-Cook mul-
tiplication on the ARMv8-A architecture, outrunning the matrix-to-vector poly-
nomial multiplication by 2.0×. On the Apple M1, the matrix-vector products
run 2.1× and 1.9× faster for Kyber and Saber respectively.

Sanal et al. implemented CRYSTAL-Kyber encryption on 64-bit ARM
Cortex-A and Apple A12 processors [8]. They improved the performance of noise
sampling, Number Theoretic Transform (NTT), and symmetric function imple-
mentations based on an AES accelerator. As the result, the proposed Kyber512
implementation on ARM64 improved the previous work by 1.72×, 1.88×, and
2.29× for key generation, encapsulation, and decapsulation, respectively. And,
the proposed Kyber512-90 s implementation (using AES accelerator) is improved
by 8.57×, 6.94×, and 8.26× for key generation, encapsulation, and decapsula-
tion, respectively.

328 M. Sim et al.

Table 2. Summarized instruction set of ARMv8 for Classic McEliece multiplier imple-
mentation; Xd, Vd: destination register (general, vector), Xn, Vn, Vm: source register
(general, vector, vector), Vt: transferred vector register.

asm Operands Description Operation

ADD Vd.T, Vn.T, Vm.T Add Vd ← Vn + Vm

AND Vd.T, Vn.T, Vm.T Bitwise AND Vd ← Vn & Vm

EOR Vd.T, Vn.T, Vm.T Bitwise Exclusive OR Vd ← Vn ⊕ Vm

LD1 Vt.T, [Xn] Load multiple single-

element structures

Vt ← [Xn]

LD1R Vt.T, [Xn] Load single 1-element

structure and replicate to

all lanes (of one register).

Vt.T ← [Xn]

MOV Xd, #imm Move (immediate) Xd ← #imm

MOV Vd.T, Vn.T Move (vector) Vd ← Vn

MOV Vd.Ts[index1], Vn.Ts[index2] Move vector element to

another vector element

Vd ← Vn

MOVI Vt.T, #imm Move immediate (vector) Vt ← #imm

MUL Xd, Xn, Xm Multiply Xd ← Xn × Xm

RET {Xn} Return from subroutine Return

SHL Vd.T, Vn.T, #shift Shift Left immediate (vec-

tor)

Vd ← Vn << #shift

SRI Vd.T, Vn.T, #shift Shift Right and immediate

(vector)

Vd ← Vn >>#shift

ST1 Vt.T, [Xn] Store multiple single-

element structures from

one, two, three, or four

registers

[Xn] ← Vt

SUB Xd, Xn, #imm Subtract immediate Xd ← Xn - #imm

REV32 Vd.T, Vn.T Reverse elements in 32-bit

words

Vd ← Vn of Reverse

CBNZ Wt, Label Compare and Branch on

Nonzero

Go to Label

CBZ Wt, Label Compare and Branch on

Zero

Go to Label

ZIP1 Vd.T, Vn.T, Vm.T Zip vectors primary Vd ← Vn[even], Vm[even]

Vd ← Vn[odd], Vm[odd]

UZP1 Vd.T, Vn.T, Vm.T Unzip vectors primary Vd ← Vn[even], Vm[even]

Vd ← Vn[odd], Vm[odd]

Efficient Implementation of the Classic McEliece on ARMv8 Processors 329

Kwon et al. implemented the Rainbow signature schemes on 64-bit ARM
Cortex-A processor [16]. Rainbow signature is based on the multivariate-based
public key signature. They proposed a technique using a look-up table, in which
the result of 4×4 multiplication is pre-computed. The techniques used parallel
operation of vector registers and vector instructions. As a result, the proposed
multiplier by using look-up table performances improvement was improved pre-
vious work by maximum of 167.2×.

Kwon et al. implemented the FrodoKEM on 64-bit ARM Cortex-A pro-
cessor [17]. FrodoKEM is Public-key Encryption and Key-establishment Algo-
rithms, which is selected NIST PQC Round 3 alternate candidates. They pro-
posed the parallel matrix-multiplication and built-in AES accelerator for AES
encryption. They applied these techniques to the FrodoKEM640 scheme, utiliz-
ing vector registers and vector instructions. And the implementation with all of
proposed techniques was improved previous C implementation by maximum of
10.22×.

3 Proposed Method

3.1 Multiplication on F2m

In Classic McEliece, Multiplication is performed on the extended binary finite-
filed F2m . The expensive operations on public keys are multiplication and
inversion on finite-field. Therefore, in this paper, optimization of multiplica-
tion on F2m is performed (m is 12 or 13). In the specification, F212 consists of
F2[x]/(x12 + x3 + 1) and F213 consists of F2[x]/(x13 + x4 + x3 + x + 1) [18].

Multiplication on F2m proceeds as follows. Multiplication is performed on
two m-bit values. At this time, since the multiplication result may be out of the
range of F2m , the multiplication is completed on F2m by performing modular
reduction on the multiplication result value.

To ensure accurate multiplication of two 16-bit values, it is necessary to
apply a masking operation using 32-bit variables. By masking the 16-bit vari-
ables, multiplication can be performed accurately. Subsequently, the resulting
16-bit values are obtained by unmasking the computed values. Figure 2 is the
masking and unmasking operations performed for the multiplication operation
in Classic McEliece. After masking four 16-bit with four 32-bit, multiplication
is performed. After the multiplication operation is completed, the multiplication
result is unmasked again and 4 values of 16 bits are returned.

Algorithm 1 is an optimization implementation code for multiplication on
F2m . Load four 16 bits into one vector register. At this time, four 16-bit values
are loaded into each of two vector registers. The having the same value four 16-
bit value is loaded into one vector register (v0) and four different 16-bit values
are loaded into another vector register (v1)in lines 5–6. Lines 7–8 are performed
a masking operation is applied to the four 16-bit values received as input. This
masking process ensures that the variables are appropriately extended to 32 bits.
Lines 9–26 perform multiplication operations. Lines 27–37 perform the multi-
plication operations, reduction operations are performed to obtain the desired

330 M. Sim et al.

Fig. 2. Masking and Unmasking (In Classic McEliece)

results. Line 38 performs unmasking on the multiplication result. Lines 39–41 call
the result of the previous multiplication operation, perform the multiplication
operation and xor operation as above, and store the result of the multiplication
operation in x0. Lines 42–43 return to Line 4 to Label if the value of x8 is not
0, and repeat the operation until the value of x8 becomes 0. Lines 44–48 When
the value of x8 becomes 0, the value of x9 is subtracted by one. The address
value of x2, which is loaded into v1, and the address value of x0, where the
operation result is stored, are moved appropriately. Move the address value of
x1 loaded into v0 by 16 bits. The above operations are repeated until the value
of x9 becomes 0.

3.2 Multiplication on F213t

The commutative property, also known as the exchange law, states that the
order of operands in a mathematical operation can be interchanged without
affecting the result (e.g. a * b = b * a). In other words, for any given operation,
the outcome remains the same regardless of the order in which the operands are
arranged. Based on the commutative property, which holds for the XOR operation
as well, we can utilize it to rearrange the order of existing operations. This allows
us to interchange the operands involved in XOR operations without affecting
the final result. Therefore, we performed operations by modifying the order of
multiplication operations by utilizing these properties.

Figure 3 represents the original order of multiplication operations performed.
The existing multiplication operations follow a sequential process for performing
16-bit multiplication, as illustrated in Fig. 3(a). Once the operations depicted in
Fig. 3(a) are completed, the multiplication computations proceed in the order
presented in Fig. 3(b).

Efficient Implementation of the Classic McEliece on ARMv8 Processors 331

Algorithm 1. In Classic McEliece-348864, 16-bit value multiplication opera-
tion;(x0 : Result of Multiplication Operation, x1, x2 : Input of Multiplication
Operation)

1: mov x9, #64

2: loop i:

3: mov x8, #64

4: loop j:

5: ld1R {v0.4h}, [x1]

6: ld1 {v1.4h}, [x2], #8

//masking

7: zip1.8h v0, v0, v3

8: zip1.8h v1, v1, v3

//Multiplication

9: and.16b v8, v1, v4

10: mul.4s v6, v8, v0

11: shl.4s v5, v4, #1

12: and.16b v8, v1, v5

13: mul.4s v8, v0, v8

14: eor.16b v6, v6, v8

15: shl.4s v5, v4, #2

16: and.16b v8, v1, v5

17: mul.4s v8, v0, v8

18: eor.16b v6, v6, v8

...

19: shl.4s v5, v4, #10

20: and.16b v8, v1, v5

21: mul.4s v8, v0, v8

22: eor.16b v6, v6, v8

23: shl.4s v5, v4, 11

24: and.16b v8, v1, v5

25: mul.4s v8, v0, v8

26: eor.16b v6, v6, v8

//Reduction

27: and.16b v9, v6, v14

28: sri.4s v10, v9, #9

29: eor.16b v6, v6, v10

30: sri.4s v10, v9, #12

31: eor.16b v6, v6, v10

32: and.16b v9, v6, v15

33: sri.4s v10, v9, #9

34: eor.16b v6, v6, v10
35: sri.4s v10, v9, #12

36: eor.16b v6, v6, v10

37: and.16b v6, v6, v11

//unmasking

38: uzp1.8h v6, v6, v7

39: ld1.4h {v2}, [x0]
40: eor.16b v2, v2, v6

41: st1.4h {v2}, [x0], #8

42: add x8, x8, #-4

43: cbnz x8, loop j

44: add x0, x0, #-126

45: add x2, x2, #-128

46: add x1, x1, #2

47: add x9, x9, #-1

48: cbnz x9, loop i

Figure 4 shows the sequence of the proposed multiplication operation using
four 16-bit loaded vector registers. To leverage the commutative property of
the XOR operation, the paper adopts a modified approach as illustrated in
Fig. 4. The results of the multiplication operations, denoted as (a), (b), (c),
and (d) in Fig. 4, are stored in each registers designated as temp. Since the XOR
operation is commutative, the order of the values does not impact the final result,

332 M. Sim et al.

Fig. 3. Order of existing multiplication operations.

allowing for efficient parallel loading and processing. By adopting this strategy,
the paper maximizes the utilization of parallel operations and takes advantage
of the commutative property of XOR operation, resulting in improved efficiency
in the multiplication process.

Fig. 4. Order of new multiplication operations.

Algorithm 2 is part of the optimization implementation code for multiplica-
tion on F213t . Lines 4–7 perform operations corresponding to (a), (b), (c), and (d)
in Fig. 4 respectively. Lines 8–23 are operations that store the values calculated
through Lines 4–7. Address values are directly calculated for each of them, and
the address values are moved and stored. Lines 24–26 perform the operation by

Efficient Implementation of the Classic McEliece on ARMv8 Processors 333

adding the direct address value appropriately, and the operation of Lines 4–25 is
performed until the value of x9 becomes 0. Lines 35–59 are stored using the st1
v2.h[n]because they need to store values for three 16-bit values (n: 0 to 2).

Algorithm 2. In Classic McEliece-348864, 16-bit value multiplication on F213t

operation.

1: mov x9, #15

2: add x0, x0, #246

3: loop:

4: 4 byte gf mul 877

5: 4 byte gf mul 2888

6: 4 byte gf mul 1781

7: 4 byte gf mul 373

8: add x0, x0, #-110

9: ld1.4h {v2}, [x0]

10: eor.16b v2, v2, v20

11: st1.4h {v2}, [x0]

12: add x0, x0, #-4

13: ld1.4h {v2}, [x0]

14: eor.16b v2, v2, v21

15: st1.4h {v2}, [x0]

16: add x0, x0, #-4

17: ld1.4h {v2}, [x0]

18: eor.16b v2, v2, v22

19: st1.4h {v2}, [x0]

20: add x0, x0, #-10

21: ld1.4h {v2}, [x0]

22: eor.16b v2, v2, v23

23: st1.4h v2, [x0]

24: add x0, x0, #120

25: add x9, x9, #-1

26: cbnz x9, loop

27: add x0, x0, #2

28: 4 byte gf mul 877

29: 4 byte gf mul 2888

30: 4 byte gf mul 1781

31: 4 byte gf mul 373

32: add x0, x0, #-110

33: ld1.4h {v2}, [x0]

34: eor.16b v2, v2, v20

35: st1 v2.h[0], [x0], #2

36: st1 v2.h[1], [x0], #2

37: st1 v2.h[2], [x0]

38: add x0, x0, #-4

39: add x0, x0, #-4

40: ld1.4h {v2}, [x0]

41: eor.16b v2, v2, v21

42: st1 v2.h[0], [x0], #2

43: st1 v2.h[1], [x0], #2

44: st1 v2.h[2], [x0]

45: add x0, x0, #-4

46: add x0, x0, #-4

47: ld1.4h {v2}, [x0]

48: eor.16b v2, v2, v22

49: st1 v2.h[0], [x0], #2

50: st1 v2.h[1], [x0], #2

51: st1 v2.h[2], [x0]

52: add x0, x0, #-4

53: add x0, x0, #-10

54: ld1.4h {v2}, [x0]

55: eor.16b v2, v2, v23

56: st1 v2.h[0], [x0], #2

57: st1 v2.h[1], [x0], #2

58: st1 v2.h[2], [x0]

59: add x0, x0, #-4

334 M. Sim et al.

Algorithm 3 is one of the macros used by Algorithm 2. So, Algorithm 1
Therefore, multiplication operation is possible in the same way as Algorithm 1.
However, Algorithm 3 performs a load for four 16 bits and performs one masking
process over one whole. Because, the other multiplication is a 32-bit constant
value, enter the value directly through Line 2 and use it for operation.

Algorithm 3. In Classic McEliece-348864, multiplication F213 macro for 16-bit
value multiplication for F213t .

.macro 4 byte gf mul 877
1: ld1 {v0.4h}, [x0]

2: mov.8h v1, v12

//masking

3: zip1.8h v0, v0, v3

//Multiplication

4: and.16b v8, v1, v4

5: mul.4s v6, v8, v0

6: shl.4s v5, v4, #1

7: and.16b v8, v1, v5

8: mul.4s v8, v0, v8

9: eor.16b v6, v6, v8

10: shl.4s v5, v4, #2

11: and.16b v8, v1, v5

12: mul.4s v8, v0, v8

13: eor.16b v6, v6, v8

...

14: shl.4s v5, v4, #10

15: and.16b v8, v1, v5

16: mul.4s v8, v0, v8

17: eor.16b v6, v6, v8

18: shl.4s v5, v4, 11

19: and.16b v8, v1, v5

20: mul.4s v8, v0, v8

21: eor.16b v6, v6, v8

22: and.16b v9, v6, v14

23: sri.4s v10, v9, #9

24: eor.16b v6, v6, v10

25: sri.4s v10, v9, #12

26: eor.16b v6, v6, v10

27: and.16b v9, v6, v15

28: sri.4s v10, v9, #9

29: eor.16b v6, v6, v10

30: sri.4s v10, v9, #12

31: eor.16b v6, v6, v10

32: and.16b v6, v6, v11

//unmasking

33: uzp1.8h v20, v6, v7

.endm

4 Evaluation

In this section, we evaluate the proposed implementation and reference C imple-
mentation (PQ-Clean project reference code in C language) [14]. Since the pre-
vious work did not conduct a separate performance evaluation of the multiplier,
so it was not included in the performance evaluation [19].

The implementation were developed through the Xcode 14.3 framework and
carried out through the Xcode IDE. The implementation were evaluated on a
MacBook Pro 13 with the Apple M1 chip that can be clocked up to 3.2 GHz.

Efficient Implementation of the Classic McEliece on ARMv8 Processors 335

Table 3. Evaluation results of multiplier on ARMv8 processors (Apple M1 chip); (cc
: Clock Cycle).

Scheme PQ-Clean This Work

Classic McEliece 348864 ms 4,294 5,429

cc 13,740 17,372

Classic McEliece 460896 ms 40,579 14,563

cc 129,852 46,601

Classic McEliece 6699128 ms 71,185 25,343

cc 227,792 81,097

Classic McEliece 6960119 ms 61,690 21,972

cc 197,408 70,310

Classic McEliece 819212 ms 71,193 25,222

cc 227,817 80,710

Therefore, we measured the operation time by repeating the 1,000,000 times
and compiled using the compile option -O2 (i.e. faster). Performance evaluation is
given in Table 3. The performance of the implementation of Multiplier optimiza-
tion using vector registers performed in Classic Mceliece 348864 is 0.79× times
lower than [14]. The performance of the implementation of Multiplier optimiza-
tion using vector registers performed in Classic Mceliece 46089 is 2.79× times
higher than [14]. The performance of the implementation of Multiplier optimiza-
tion using vector registers performed in Classic Mceliece 6699128 is 2.80× times
higher than [14]. The performance of the implementation of Multiplier optimiza-
tion using vector registers performed in Classic Mceliece 6960119 is 2.81× times
higher than [14]. The performance of the implementation of Multiplier optimiza-
tion using vector registers performed in Classic Mceliece 819212 is 2.82× times
higher than [14].

According to the performance evaluation, the experimental results verified
that the utilization of the proposed method led to a significant performance
enhancement of up to 2.82× compared to the reference implementation.

5 Conclusion

In this paper, a parallel multiplication implementation technique for Classic
McEliece 348864 was introduced. The proposed method utilizes vector registers
and vector instructions of the ARMv8 processor. The proposed parallel multi-
plication operation efficiently computes multiplication in a parallel manner by
exploiting the commutative law and rearranging the order of internal operations.
As a result, the proposed method significantly improves the efficiency of the mul-
tiplication operation in terms of speed and performance. The performance evalu-
ation results achieve that the proposed multiplication technique achieves a speed
improvement of 2.82× compared to the PQ-Clean reference implementation.

336 M. Sim et al.

Acknowledgements. This work was supported by Institute for Information & com-
munications Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2018-0-00264, Research on Blockchain Security Technology for IoT Ser-
vices, 50%) and this work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No. 2022-0-00627, Development of Lightweight BIoT technology for Highly
Constrained Devices, 50%).

References

1. NIST PQC project. https://csrc.nist.gov/Projects/post-quantum-cryptography.
Accessed 29 July 2022

2. Avanzi, R., et al.: CRYSTALS-Kyber algorithm specifications and supporting doc-
umentation. NIST PQC Round 2(4), 1–43 (2019)

3. Ducas, L., et al.: Crystals-Dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embedded Syst.ms 2018, 238–268 (2018)

4. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The SPHINCS+ signature framework. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2129–2146 (2019)

5. Fouque, P.-A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over
NTRU. Submiss. NIST’s Post-quantum Cryptogr. Stand. Process 36(5), 1–75
(2018)

6. Kim, Y., Song, J., Seo, S.C.: Accelerating falcon on ARMv8. IEEE Access 10,
44446–44460 (2022)

7. Becker, H., Hwang, V., Kannwischer, M.J., Yang, B.-Y., Yang, S.-Y.: Neon NTT:
faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. Cryptology
ePrint Archive (2021)

8. Sanal, P., Karagoz, E., Seo, H., Azarderakhsh, R., Mozaffari-Kermani, M.: Kyber
on ARM64: compact implementations of Kyber on 64-Bit ARM cortex-A proces-
sors. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H., Yung, M. (eds.)
SecureComm 2021. LNICST, vol. 399, pp. 424–440. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90022-9 23

9. Kim, Y., Song, J., Youn, T.-Y., Seo, S.C.: Crystals-Dilithium on ARMv8. Secur.
Commun. Netw. 2022, 1–12 (2022)

10. Kölbl, S.: Putting wings on SPHINCS. In: Lange, T., Steinwandt, R. (eds.)
PQCrypto 2018. LNCS, vol. 10786, pp. 205–226. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-79063-3 10

11. Becker, H., Kannwischer, M.J.: Hybrid scalar/vector implementations of Keccak
and SPHINCS+ on AArch64. Cryptology ePrint Archive (2022)

12. Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptography.
NIST Submissions (2017)

13. McEliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv 4244,
114–116 (1978)

14. PQClean project. https://github.com/PQClean/PQClean. Accessed 29 July 2022
15. Armv8-A instruction set architecture. https://developer.arm.com/documentation/

den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets. Accessed 07 June
2023

16. Kwon, H., Kim, H., Sim, M., Lee, W.-K., Seo, H.: Look-up the rainbow: efficient
table-based parallel implementation of rainbow signature on 64-bit ARMv8 pro-
cessors. Cryptology ePrint Archive (2021)

https://csrc.nist.gov/Projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-030-90022-9_23
https://doi.org/10.1007/978-3-319-79063-3_10
https://doi.org/10.1007/978-3-319-79063-3_10
https://github.com/PQClean/PQClean
https://developer.arm.com/documentation/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets
https://developer.arm.com/documentation/den0024/a/An-Introduction-to-the-ARMv8-Instruction-Sets

Efficient Implementation of the Classic McEliece on ARMv8 Processors 337

17. Kwon, H., et al.: ARMing-sword: scabbard on ARM. In: You, I., Youn, T.Y. (eds.)
Information Security Applications. LNCS, vol. 13720, pp. 237–250. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-25659-2 17

18. Chen, M.-S., Chou, T.: Classic McEliece on the ARM cortex-M4. IACR Trans.
Cryptogr. Hardw. Embedded Syst. 2021, 125–148 (2021)

19. Sim, M., Eum, S., Kwon, H., Kim, H., Seo, H.: Optimized implementation of
encapsulation and decapsulation of Classic McEliece on ARMv8. Cryptology ePrint
Archive (2022)

https://doi.org/10.1007/978-3-031-25659-2_17

Evaluating KpqC Algorithm Submissions:
Balanced and Clean Benchmarking

Approach

Hyeokdong Kwon1 , Minjoo Sim1 , Gyeongju Song1 , Minwoo Lee2 ,
and Hwajeong Seo2(B)

1 Department of Information Computer Engineering, Hansung University,
Seoul 02876, South Korea

2 Department of Convergence Security, Hansung University,
Seoul 02876, South Korea
hwajeong84@gmail.com

Abstract. In 2022, a Korean domestic Post Quantum Cryptography
contest called KpqC held, and the standard for Post Quantum Cryptog-
raphy is set to be selected in 2024. In Round 1 of this competition, 16
algorithms have advanced and are competing. Algorithms submitted to
KpqC introduce their performance, but direct performance comparison is
difficult because all algorithms were measured in different environments.
In this paper, we present the benchmark results of all KpqC algorithms
in a single environment. To benchmark the algorithms, we removed the
external library dependency of each algorithm. By removing dependen-
cies, performance deviations due to external libraries can be eliminated,
and source codes that can conveniently operate the KpqC algorithm can
be provided to users who have difficulty setting up the environment.

Keywords: Benchmark · Cryptography Implementation · KpqC ·
Post Quantum Cryptography · Standardization

1 Introduction

Quantum computers, first proposed by physicist Richard Feynman in 1981 [1],
gradually began to materialize with the introduction of quantum algorithms by
Professor David Deutsch in 1985 [2]. Quantum computers can execute quantum
algorithms, which pose a significant threat to modern cryptosystems. One exam-
ple is Grover’s algorithm, an algorithm designed to locate specific data among n
unsorted data entries [3]. A classical computer would require a brute force search
of at most O(2n) attempts. However, Grover’s algorithm reduces the search time
to a maximum of O(2n/2). This effectively halves the security of symmetric key
algorithms and hash functions. Another powerful quantum algorithm is the Shor
algorithm, which efficiently performs prime factorization [4]. The Shor algorithm
can break public key algorithms such as RSA and ECC in polynomial time. While
symmetric key algorithms can temporarily mitigate the threat posed by quantum
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 338–348, 2024.
https://doi.org/10.1007/978-981-99-8024-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8024-6_26&domain=pdf
http://orcid.org/0000-0002-9173-512X
http://orcid.org/0000-0001-5242-214X
http://orcid.org/0000-0002-4337-1843
http://orcid.org/0000-0002-2356-3055
http://orcid.org/0000-0003-0069-9061
https://doi.org/10.1007/978-981-99-8024-6_26

Evaluating KpqC Algorithm Submissions 339

computers by doubling the key length, public key algorithms lack such defenses.
To address this issue, NIST initiated a Post Quantum Cryptography competition
to foster the development, standardization, and distribution of Post Quantum
Cryptography [5]. Similarly, a Post Quantum Cryptography contest was held in
Korea, marking the beginning of the process to select a Korean standard. In this
paper, we eliminate the dependencies of the algorithms submitted to the KpqC
competition and present benchmark results in a standardized environment.

1.1 Contributions

– Benchmark results in common development environments. All algo-
rithms in KpqC Round 1 come with detailed white papers that include per-
formance measurements. The provided benchmarks, prepared by the develop-
ment teams, are highly reliable. However, a challenge arises from the fact that
the benchmark environments in the white papers differ. Therefore, conduct-
ing the benchmark in an environment with sufficient resources can provide
advantageous results. To address this, we conducted a collective benchmark
of all algorithms in a standardized environment, enabling a fair performance
comparison among the algorithms.

– Enhancing accessibility by eliminating working dependencies. Many
of the KpqC candidate algorithms rely on external libraries for their imple-
mentation. These dependencies offer significant benefits by providing pre-
existing modules for algorithm implementation, eliminating the need for sep-
arate implementation. However, from the perspective of downloading and
using the source code, the absence of these dependencies can create com-
plexity and hinder code operation. This issue is particularly challenging for
novice users who may struggle with setting up the development environment.
To address this, our focus was on removing the dependencies associated with
the algorithms. This approach offers two key advantages.
Firstly, it enables immediate use of the source code without the need to set up
the environment. By distributing the source code in a runnable state, even
users unfamiliar with environment setup can easily operate the code. This
greatly enhances the accessibility of the source code and attracts a broader
user base.
Secondly, it ensures a fair benchmarking process. While most libraries used
are likely to be the same, discrepancies can still arise due to differences in
library versions during environment setup. By eliminating external library
dependencies and replacing the necessary modules with identical source code,
we can provide more accurate and equitable benchmark results.

The rest of the paper is structured as follows. Section 2 provides an overview
of the Post Quantum Cryptography contest and the specific details of KpqC.
Additionally, we introduce the PQClean project, which served as the inspira-
tion for the research discussed in this paper. In Sect. 3, we detail the method-
ology employed to benchmark the KpqC algorithms and present the obtained
benchmark results. Finally, Sect. 4 concludes the paper by summarizing the key
findings and discussing potential directions for future research.

340 H. Kwon et al.

2 Related Works

2.1 NIST Standardization of Post Quantum Cryptography

The significance of Post Quantum Cryptography (PQC) has emerged as a means
to ensure secure communication in the age of quantum computers. The United
States National Institute of Standards and Technology (NIST) initiated the PQC
Standardization Contest in 2016. In 2022, standard algorithms were selected,
and Round 4 was conducted to determine additional standards [6]. Following
the standard selection process, CRYSTALS-Kyber [7] was chosen as the Key
Encapsulation Mechanism (KEM). In the Digital Signature category, the selected
algorithms include CRYSTALS-Dilithium [8], Falcon [9], and SPHINCS+ [10].
Round 4 is currently underway to select additional standards for the KEM cate-
gory, with BIKE [11], Classic McEliece [12], and HQC [13] competing. Although
SIKE [14] advanced to Round 4, it subsequently withdrew from the contest due
to the discovery of a security vulnerability [15].

2.2 KpqC: Korea’s Post Quantum Cryptography Standardization

KpqC, the domestic contest for standardizing Post Quantum Cryptography in
Korea, took place at the end of 2021 [16]. The timeline of the KpqC competition
is presented in Table 1. The results of Round 1 were announced at the end of 2022,
with 16 algorithms passing the evaluation. Subsequently, the Round 2 results
will be announced in December 2023, and the final standard will be selected
in September 2024. KpqC has defined four evaluation criteria for assessing the
algorithms.

The first criterion is safety. Algorithms must demonstrate their security and
provide proof of their safety. It is crucial for these algorithms to ensure security
not only on quantum computers but also on classical computers.

The second criterion is efficiency. The computational resources required to
execute the algorithm should be reasonable, and the computation time should
not be excessively long. Some algorithms may have a probability of decryption
or verification failure due to their structure, but this failure probability should
not hinder their practical use.

The third criterion is usability. The implemented algorithm should be capa-
ble of operating in various environments, ensuring its usability across different
systems.

The final criterion is originality. The proposed algorithm should possess a
creative and innovative structure, showcasing novel approaches in the field of
Post Quantum Cryptography.

In Kpqc Round 1, a total of 7 algorithms were chosen in the Key Encapsula-
tion Mechanism (KEM) category, and 9 algorithms were selected in the Digital
Signature category. The specific algorithms that passed the evaluation can be
found in Table 2. Notably, among the selected algorithms, the Lattice-based algo-
rithms demonstrate strong performance. This observation aligns with the NIST
PQC standard, where three out of the four selected standards are also Lattice-
based algorithms.

Evaluating KpqC Algorithm Submissions 341

Table 1. Timeline of KpqC competetion.

Phase Date

Announcement of holding KpqC 2021. 11

Deadline for submitting candidate algorithms 2022. 10

Announcement of Round 1 Results 2022. 12

Scheduled date for announcement of Round 2 results 2023. 9

Scheduled date of announcement of standard selection 2024. 09

Table 2. KpqC Round 1 candidate algorithms.

Scheme PKE/KEM Digital Signature

Code-based IPCC [17] Enhanced pqsigRM [18]

Layered-ROLLO [19]

PALOMA [20]

REDOG [21]

Lattice-based GCKSign [22]

NTRU+ [23] HAETAE [24]

SMAUG [25] NCC-Sign [26]

TiGER [27] Peregrine [28]

SOLMAE [29]

Multivariate Quadratic-based – MQ-Sign [30]

Hash-based – FIBS [31]

Zero knowledge-based – AIMer [32]

2.3 PQClean

A significant number of NIST’s Post Quantum Cryptography algorithms rely on
external libraries. Utilizing pre-existing implementations rather than building
modules from scratch is more efficient in cryptographic algorithm implementa-
tion, resulting in the creation of dependencies on external libraries. While depen-
dencies are convenient during development, they can pose inconvenience when
using the implemented source code as the development environment must be
set up accordingly. To address this issue, PQClean, a library introduced in [33],
focuses on removing these dependencies to enable easy operation of Post Quan-
tum Cryptography (PQC).

PQClean not only aims to make source code operation more convenient by
eliminating library dependencies but also places emphasis on improving the over-
all quality of the source code. To achieve this, PQClean conducted approximately
30 implementation checklists. These checklists included verifying adherence to
the C standard, ensuring consistency in compilation rules, minimizing Makefiles,
and confirming the consistency of integer data. As a result, PQClean not only

342 H. Kwon et al.

facilitates the convenient operation of source code by removing library depen-
dencies but also provides clean source code for higher quality implementation.

Another advantage of PQClean is its ease of portability to other platforms
or frameworks, as it does not form dependencies. For instance, pqm4 is a library
that collectively executes NIST PQC on ARM Cortex-M4 and provides bench-
mark results [34]. This showcases the versatility and compatibility of PQClean
in various computing environments.

3 KPQClean: Clean Benchmark on KpqC

Building upon the inspiration of PQClean, we undertook the KPQClean project
for the KpqC competition. The initial phase involved working with a total of 16
candidate algorithms from KpqC Round 1. To present the results, we focused on
removing external dependencies for each algorithm and conducting benchmark-
ing.

The project proceeded in a systematic manner, starting with the removal of
libraries and subsequently addressing the Makefile rules and benchmarking. Dur-
ing the library removal process, we carefully examined the dependencies present
in each code. Most KpqC algorithms rely on OpenSSL [35] and utilize OpenSSL’s
AES for random number generation. To eliminate these dependencies, the code
sections that made external library calls were removed. Consequently, the exter-
nally implemented algorithms can no longer be used in their original form. To
ensure the operation of these algorithms, we directly integrated the source code
that implements the algorithms. For instance, the AES algorithm requires the
utilization of CTR-DRBG. We ported the AES code used by PQClean, making
necessary modifications to the internal structure to ensure seamless functional-
ity. This approach enables the development of code that operates independently
by eliminating external library dependencies.

The next step involved writing a unified Makefile. Most KpqC candidate
algorithms offer convenient compilation using gcc by providing compilation rules
in the Makefile. However, variations in compilation rules across different algo-
rithms can lead to discrepancies in performance measurements. To address this,
we made efforts to create a standardized Makefile with consistent rules, thereby
ensuring fair and comparable benchmarking results.

Lastly, the benchmarking process was conducted. A dedicated source code
for benchmarking was prepared, compiled, and executed. The benchmarking
environment resembled the specifications outlined in Table 3. The two devices use
a Ryzen processor and an Intel processor, respectively, and the rest of the device
specifications are almost identical. To obtain the measurements, each algorithm
underwent 10,000 iterations, and the median number of clock cycles required
for operation was calculated for each round. We applied -O2 as an optimization
level option. However, most of the KpqC algorithms performed performance
measurements on -O3. Therefore, -O3 performance was additionally measured
to reflect the developer’s intention.

Table 4 presents the benchmark results for the Key Encapsulation Mechanism
(KEM) algorithms. Among the KEM candidates, SMAUG performed the best in

Evaluating KpqC Algorithm Submissions 343

the Keygen operation, NTRU+ excelled in Encapsulation, and PALOMA show-
cased the best performance in Decapsulation. However, it is worth noting that
IPCC-1’s Encapsulation measurement exhibited excessively slow performance,
leading to the exclusion of its measurement as an error value. As a result, it was
temporarily excluded from the benchmark.

One KEM algorithm REDOG, was temporarily excluded from the bench-
marking process. REDOG presented a unique case as it was implemented in
pure Python while all algorithm analyses were based on the C language. Con-
sequently, REDOG was excluded from the benchmarking process as it deviated
from the performance standards used for other algorithms.

Table 3. Benchmark environment.

Environment 1 Environment 2

CPU Ryzen 7 4800H Intel i5-8259U

GPU RTX 3060 Coffee Lake GT3e

RAM 16 GB 16 GB

OS Ubuntu 22.04 Ubuntu 22.04

Compiler gcc 11.3.0 gcc 11.3.0

Optimization level -O2, -O3 -O2, -O3

Editor Visual Studio Code Visual Studio Code

Table 5 presents the benchmark results for the Digital Signature candidate
algorithms. The performance measurements were conducted in the same bench-
marking environment as the Key Encapsulation Mechanism (KEM) algorithms.

In the Digital Signature category, AIMer demonstrated excellent performance
in the Keygen operation, while Peregrine showcased exceptional performance in
Sign and Verification. However, accurate measurements for FIBS could not be
obtained due to incomplete calculations, rendering its measurement inconclusive.

In common, the operation on the Intel processor tends to be somewhat faster
than the operation on the Ryzen processor. This is because the Intel proces-
sor used in the experiment had better performance than the Ryzen processor.
Also, for many algorithms, the performance difference between the -O2 and -O3
options is not noticeable. This is because each algorithm is well optimized and
no further optimization is performed at the compiler level. Some algorithms per-
form better with the -O3 option. In this case, it can be said that the algorithms
have a point where optimization is possible.

344 H. Kwon et al.

Table 4. Benchmark result of KpqC KEM Round 1 Candidates. (Unit: clock cycles
(algorithm speed), Strikethrough: Lack of consistency in benchmarks, A: AVX applied.)

Environment 1 -O2 Environment 2 -O2

Algorithm Keygen Encapsulation Decapsulation Keygen Encapsulation Decapsulation

IPCC-1 14,362,627 164,892,550 2,484,981 13,792,887 159,126,951 1,196,157

IPCC-3 14,170,647 898,710 2,619,570 13,754,219 870,059 1,235,991

IPCC-4 14,209,594 1,075,059 2,904,524 13,754,687 1,050,451 1,318,173

NTRU+-576A 208,742 111,998 128,093 186,944 105,686 120,194

NTRU+-768A 279,386 148,480 181,250 246,616 139,310 166,938

NTRU+-864A 304,819 179,858 224,953 270,494 160,789 200,702

NTRU+-1152A 444,744 223,619 278,690 698,490 202,678 257,114

PALOMA-128 125,800,419 510,922 35,496 118,204,341 499,914 39,724

PALOMA-192 125,360,779 514,228 34,220 118,310,371 499,302 38,846

PALOMA-256 125,294,065 510,284 34,713 118,366,206 503,814 43,174

SMAUG-128 171,477 154,483 178,205 158,149 164,598 196,470

SMAUG-192 250,096 229,999 277,298 244,736 225,490 272,132

SMAUG-256 479,138 385,178 438,364 435,790 411,917 465,572

TiGER-128 273,470 466,755 628,778 163,856 209,168 311,924

TiGER-192 288,550 518,491 674,192 171,578 214,126 312,702

TiGER-256 536,152 1,088,747 1,477,318 444,558 433,462 673,105

Environment 1 -O3 Environment 2 -O3

IPCC-1 13,940,097 160,111,204 16,360,164 12,643,392 145,233,220 1,159,273

IPCC-3 13,996,024 926,492 2,512,836 12,795,377 874,663 1,206,585

IPCC-4 13,989,832 1,106,031 2,714,531 13,078,917 1,037,485 1,310,503

NTRU+-576A 202,652 110,026 121,742 177,748 102,296 111,820

NTRU+-768A 270,512 146,566 174,435 239,546 137,135 161,970

NTRU+-864A 297,192 168,113 204,537 260,672 153,481 186,386

NTRU+-1152A 435,305 222,459 266,626 568,556 201,226 246,050

PALOMA-128 122,325,408 498,365 34,307 108,402,198 459,846 40,838

PALOMA-192 122,290,738 503,266 34,278 108,206,652 460,374 40,688

PALOMA-256 122,321,957 497,959 34,249 108,216,713 459,880 40,886

SMAUG-128 72,790 57,246 50,460 63,020 49,324 39,196

SMAUG-192 105,966 82,940 80,475 92,658 69,739 67,691

SMAUG-256 158,021 139,925 135,749 135,202 122,766 115,096

TiGER-128 65,482 48,749 51,214 62,490 45,398 53,248

TiGER-192 69,426 63,510 57,739 66,512 60,238 58,572

TiGER-256 81,316 87,551 93,090 78,772 82,776 89,902

Layered ROLLO I-128A 285,940 83,346 788,104 203,181 66,529 558,503

Layered ROLLO I-192A 320,958 136,503 518,491 227,813 102,758 671,605

Layered ROLLO I-256A 687,721 201,913 1,014,203 375,056 136,052 1,245,346

Evaluating KpqC Algorithm Submissions 345

Table 5. Benchmark result of KpqC Digital Signature Round 1 Candidates. (Unit:
clock cycles (algorithm speed), o: original(NCCSign) c: conserparam (NCCSign),
Strikethrough: Lack of consistency in benchmarks, A: AVX applied.)

Environment 1 -O2 Environment 2 -O2

Algorithm Keygen Sign Verification Keygen Sign Verification

AIMer-I 145,058 3,912,361 3,669,834 145,566 3,691,256 3,713,173

AIMer-III 296,496 8,001,274 7,550,063 274,358 7,771,108 7,366,672

AIMer-V 710,442 18,068,276 17,415,022 790,456 18,394,069 17,662,359

GCKSign-II 179,771 601,707 176,987 171,176 640,093 167,116

GCKSign-III 186,673 649,049 183,367 173,252 698,964 168,824

GCKSign-V 252,822 917,415 277,733 248,629 945,815 273,631

HAETAE-II 798,312 4,605,461 147,494 700,875 4,173,002 142,584

HAETAE-III 1,533,941 11,474,155 257,926 1,352,577 10,615,663 250,534

HAETAE-V 846,713 3,902,298 305,428 752,413 3,418,728 311,986

MQSign-72/46 94,788,559 516,954 1,461,281 87,038,447 509,630 1,377,392

MQSign-112/72 488,913,828 1,493,703 5,211,909 448,271,119 1,472,032 4,808,216

MQSign-148/96 1,488,480,956 3,162,943 12,036,827 1,326,638,494 3,128,536 11,091,036

NCCSign-IAo 2,650,542 10,404,301 5,232,079 2,296,351 15,914,954 4,519,308

NCCSign-IIIAo 4,477,513 17,657,839 8,867,243 4,009,717 16,015,734 7,996,462

NCCSign-VA
o 7,240,343 64,377,767 14,358,074 6,561,582 26,019,063 13,005,536

NCCSign-IAc 1,869,079 23,762,252 3,681,057 1,704,190 27,083,021 3,344,228

NCCSign-IIIAc 3,655,334 39,587,190 7,241,808 3,271,119 65,455,745 6,533,931

NCCSign-VA
c 6,263,739 179,281,596 12,418,902 5,723,169 39,565,842 6,533,931

Peregrine-512 12,401,256 329,933 37,294 12,073,005 295,128 33,114

Peregrine-1024 39,405,505 709,848 80,243 38,493,479 640,132 71,246

Enhanced pqsigRM-612 6,013,112,315 7,210,560 2,223,401 4,961,556,899 7,505,040 2,125,125

Enhanced pqsigRM-613 58,238,108,879 1,864,512 1,053,034 74,021,054,015 2,113,913 1,126,131

SOLMAE-512A 23,848,774 378,392 43,935 22,494,902 351,311 64,526

SOLMAE-1024A 55,350,546 760,380 141,375 52,388,360 706,028 152,984

Environment 1 -O3 Environment 2 -O3

AIMer-I 145,986 3,878,272 3,672,923 133,130 3,960,345 3,747,101

AIMer-III 296,032 8,087,462 7,678,098 272,484 8,440,184 7,968,982

AIMer-V 713,922 17,983,857 17,361,691 643,253 17,998,305 17,373,174

GCKSign-II 164,836 537,675 159,674 175,993 597,712 172,893

GCKSign-III 166,199 581,189 161,646 183,987 698,941 179,608

GCKSign-V 231,797 895,549 279,009 238,884 928,251 262,868

HAETAE-II 688,083 3,429,265 131,805 672,901 3,334,242 126,972

HAETAE-III 1,329,157 8,734,670 228,578 1,291,292 8,261,232 227,780

HAETAE-V 723,318 2,790,612 272,542 719,708 2,627,334 270,600

MQSign-72/46 39,040,917 311,112 512,227 38,474,591 298,952 533,676

MQSign-112/72 115,942,827 669,465 1,143,296 117,049,542 650,928 1,120,124

MQSign-148/96 235,289,035 1,186,622 1,943,667 236,124,011 1,165,706 1,897,664

NCCSign-IAo 2,619,295 10,301,902 5,171,686 2,317,555 13,776,448 4,568,006

NCCSign-IIIAo 4,379,261 86,475,941 8,685,877 3,981,551 83,521,123 7,935,382

NCCSign-VA
o 7,178,921 42,637,366 14,245,148 6,333,006 25,183,392 12,555,623

NCCSign-IAc 1,843,356 50,520,712 3,636,803 1,666,543 16,352,341 3,248,162

NCCSign-IIIAc 3,618,997 21,416,384 7,170,903 3,141,974 34,454,252 6,234,249

NCCSign-VA
c 6,149,059 151,973,282 12,196,791 5,613,303 167,158,023 11,155,020

Peregrine-512 11,953,307 253,402 25,462 11,783,005 260,328 26,262

Peregrine-1024 38,366,232 535,920 53,621 38,493,479 551,168 55,654

Enhanced pqsigRM-612 6,139,551,981 4,610,319 2,278,806 4,702,612,115 4,732,706 2,064,731

Enhanced pqsigRM-613 54,994,439,928 714,647 225,577 71,111,088,778 923,513 417,658

SOLMAE-512A 23,053,028 349,566 40,513 22,627,042 332,848 64,838

SOLMAE-1024A 53,966,332 698,581 135,256 53,245,753 668,103 149,168

346 H. Kwon et al.

4 Conclusion

This paper presents a benchmarking effort conducted on the candidate algo-
rithms of KpqC Round 1. To facilitate the benchmarking process, the KPQ-
Clean library was developed and is currently available on GitHub1. The primary
objective of the KPQClean library is to remove dependencies in the KpqC candi-
date algorithms and provide benchmark results in a standardized environment.
However, there are a few limitations that need to be addressed.

Firstly, there are algorithms that have not yet been measured or evaluated.
While this issue exists, the goal is to address these gaps and provide benchmark
results for all the algorithms. Efforts are ongoing to resolve these outstanding
matters.

The second limitation involves the removal of remaining dependencies. Cur-
rently, KPQClean focuses on eliminating external library dependencies, but there
are other dependencies such as dynamic allocation that still need to be addressed.
The aim is to eliminate all dependencies to ensure a fully self-contained library.

Lastly, it is important to rectify any anomalies or unusual values in the
measurement results to ensure that they align with normal benchmarking stan-
dards. While most algorithms exhibit consistent trends in their measurements,
some algorithms may demonstrate anomalies that result in extremely slow per-
formance. These issues will be addressed to provide accurate and reliable bench-
mark results. This is likely due to limitations of the benchmark method. To
measure the performance of the algorithm, many iterations were performed and
the median value of the values was used. During this process, the equipment
may perform other calculations, and performance may deteriorate due to heat
generation. Therefore, we devise a more sophisticated benchmark method.

The KPQClean project is an ongoing endeavor closely aligned with the KpqC
Competition. The project aims to present benchmark results in a unified envi-
ronment while also providing a more convenient PQC library. This endeavor
seeks to generate increased interest among researchers and students in the field
of KpqC, offering a comfortable and conducive environment for further study
and exploration.

References

1. Feynman, R.P.: Simulating physics with computers. In: Feynman and Computa-
tion, pp. 133–153. CRC Press (2018)

2. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quan-
tum computer. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

1 https://github.com/kpqc-cryptocraft/KPQClean.

https://github.com/kpqc-cryptocraft/KPQClean

Evaluating KpqC Algorithm Submissions 347

5. Jang, K.-B., Seo, H.-J.: Quantum computer and standardization trend of NIST
post-quantum cryptography. In: Proceedings of the Korea Information Processing
Society Conference, pp. 129–132. Korea Information Processing Society (2019)

6. NIST, Round 4 submissions - post-quantum cryptography: CSRC (2022)
7. Avanzi, R., et al.: CRYSTALS-Kyber algorithm specifications and supporting doc-

umentation. NIST PQC Round 2(4), 1–43 (2019)
8. Lyubashevsky, V., et al.: Crystals-dilithium. In: Algorithm Specifications and Sup-

porting Documentation (2020)
9. Prest, T., et al.: Falcon. In: Post-Quantum Cryptography Project of NIST (2020)

10. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The SPHINCS+ signature framework. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2129–2146 (2019)

11. Aragon, N., et al.: BIKE: bit flipping key encapsulation (2017)
12. Albrecht, M.R., et al.: Classic McEliece. Technical report, National Institute of

Standards and Technology (2020)
13. Melchor, C.A., et al.: HQC: hamming quasi-cyclic. In: NIST Post-Quantum Stan-

dardization, 3rd Round (2021)
14. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to

the NIST Post-Quantum Standardization Project, vol. 152, pp. 154–155 (2017)
15. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. Cryptology

ePrint Archive, Paper 2022/975 (2022). https://eprint.iacr.org/2022/975
16. K. team: KpqC competition round 1 (2023). https://kpqc.or.kr/competition.html.

Accessed 07 Apr 2023
17. Ryu, J., Kim, Y., Yoon, S., Kang, J.-S., Yeom, Y.: IPCC-improved perfect code

cryptosystems (2022)
18. Cho, J., No, J.-S., Lee, Y., Koo, Z., Kim, Y.-S.: Enhanced pqsigRM: code-based

digital signature scheme with short signature and fast verification for post-quantum
cryptography. Cryptology ePrint Archive (2022)

19. Kim, C., Kim, Y.-S., No, J.-S.: Layered ROLLO-I: faster rank-metric code-based
KEM using ideal LRPC codes. Cryptology ePrint Archive (2022)

20. Kim, D.-C., Jeon, C.-Y., Kim, Y., Kim, M.: PALOMA: binary separable Goppa-
based KEM. In: Esser, A., Santini, P. (eds.) CBCrypto 2023. LNCS, vol. 14311, pp.
144–173. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-46495-9 8

21. Kim, J.-L., et al.: REDOG and its performance analysis. Cryptology ePrint Archive
(2022)

22. Woo, J., Lee, K., Park, J.H.: GCKSign: simple and efficient signatures from gen-
eralized compact knapsacks. Cryptology ePrint Archive (2022)

23. Kim, J., Park, J.H.: NTRU+: compact construction of NTRU using simple encod-
ing method. Cryptology ePrint Archive (2022)

24. Cheon, J.H., et al.: HAETAE: hyperball bimodal module rejection signature
scheme (2023)

25. Cheon, J.H., et al.: SMAUG: the key exchange algorithm based on module-LWE
and module-LWR (2023)

26. Shim, K.-A., Kim, J., An, Y.: NCC-Sign: a new lattice-based signature scheme
using non-cyclotomic polynomials (2023)

27. Park, S., Jung, C.-G., Park, A., Choi, J., Kang, H.: TiGER: tiny bandwidth key
encapsulation mechanism for easy miGration based on RLWE (R). Cryptology
ePrint Archive (2022)

28. Seo, E.-Y., Kim, Y.-S., Lee, J.-W., No, J.-S.: Peregrine: toward fastest FALCON
based on GPV framework. Cryptology ePrint Archive (2022)

https://eprint.iacr.org/2022/975
https://kpqc.or.kr/competition.html
https://doi.org/10.1007/978-3-031-46495-9_8

348 H. Kwon et al.

29. Kim, K., et al.: SOLMAE algorithm specifications (2022)
30. Shim, K.-A., Kim, J., An, Y.: MQ-Sign: a new post-quantum signature scheme

based on multivariate quadratic equations: shorter and faster (2022)
31. Kim, S., Lee, Y., Yoon, K.: FIBS: fast isogeny based digital signature (2022)
32. Kim, S., et al.: The AIMer signature scheme (2023)
33. Kannwischer, M.J., Schwabe, P., Stebila, D., Wiggers, T.: Improving software qual-

ity in cryptography standardization projects. In: 2022 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), pp. 19–30. IEEE (2022)

34. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM Cortex-M4 (2019)

35. Viega, J., Messier, M., Chandra, P.: Network Security with openSSL: Cryptography
for Secure Communications. O’Reilly Media, Inc. (2002)

Author Index

A
Ahn, Hong Eun 175
Ahn, Tae Min 27
Alghuried, Ahod 159
Althebeiti, Hattan 159, 213

B
Bae, Seungyeon 244
Bai, Yuhao 67

C
Choi, Daeseon 107

D
Doh, Hyun Jung 27

E
Eum, Siwoo 324
Euom, Ieck-Chae 119

G
Gedawy, Ran 159
Ghafoori, Nasratullah 269

H
Ha, Seon 231
Hong, Mi Yeon 27

I
Igarashi, Yasutaka 3
Ikematsu, Yasuhiko 40

J
Jang, Kyungbae 310
Jeon, Seungho 91, 201, 282
Jeong, Hanho 131
Ji, Ilhwan 91
Jo, Hyungrok 16, 40
Jo, Uk 131

K
Kang, Yeajun 310
Khan, Irshad 188
Kim, Donghyun 201
Kim, Do-Yeon 119
Kim, Eunyoung 55
Kim, Ga-Gyeong 119
Kim, Howon 79, 131, 297
Kim, Hyunji 310
Kim, Jaehyun 131
Kim, Jong 257
Kim, Taehun 244
Kim, Wonwoong 310
Ko, Youngjoo 257
Kuzuno, Hiroki 143
Kwon, Hyeokdong 324, 338
Kwon, Taekyoung 175
Kwon, Young-Woo 188

L
Larasati, Harashta Tatimma 79, 297
Le, Thi-Thu-Huong 79, 131
Lee, Kang Hoon 27
Lee, Minwoo 324, 338
Lee, Soojin 67
Lee, Wonho 107
Lee, Woomin 244
Li, Ming 67

M
Miyaji, Atsuko 269
Mohaisen, David 159, 213
Moon, Hyungon 231

N
Na, Hyunsik 107
Nyang, Daehun 159

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
H. Kim and J. Youn (Eds.): WISA 2023, LNCS 14402, pp. 349–350, 2024.
https://doi.org/10.1007/978-981-99-8024-6

https://doi.org/10.1007/978-981-99-8024-6

350 Author Index

O
Oh, Simon 131
Oh, Yoonju 107
Oktian, Yustus Eko 79, 131
Omo, Kazuki 143

P
Park, Jaewoo 175
Park, Leo Hyun 175
Park, Yonggon 257
Prihatno, Aji Teguh 79

S
Seo, Hwajeong 310, 324, 338
Seo, Jung Taek 91, 201, 282
Seo, Seung-Hyun 67
Shibayama, Naoki 3
Shikata, Junji 16
Shin, Jiho 201
Shin, Youngjoo 244
Sim, Minjoo 324, 338

Sohn, Kiwook 55
Song, Gyeongju 324, 338
Suryanto, Naufal 79

V
van der Ham, Jeroen 143

W
Watanabe, Ryo 269

Y
Yamauchi, Toshihiro 143
Yano, Tomohiko 143
Yasuda, Takanori 40
Yoo, Joon Soo 27
Yoon, Ji Won 27
Yoon, Seong-Su 119

Z
Zhang, Yan 67

	 Preface
	 Organization
	Invited Talk and Keynotes
	 5G-AKA and EAP-AKA from Cryptographic Perspectives (Invited Talk)
	 Leaking AI: On Side-Channel Vulnerabilities (and more) on EdgeML Devices (Keynote)
	 Post-Quantum Cryptography: Now and Onwards (Keynote)
	 Contents

	Cryptography
	A New Higher Order Differential of LCB
	1 Introduction
	2 The Algorithm of LCB
	3 Higher Order Differential Attack
	3.1 Higher Order Differentialch1lai
	3.2 Saturation Properties
	3.3 Attack Equation

	4 Higher Order Differential Characteristics of LCB
	5 Attack on the Full-Round LCB
	5.1 Distinguishing Attack
	5.2 Key Recovery Attack

	6 Modification of LCB
	6.1 The Algorithm
	6.2 Higher Order Differential Characteristics
	6.3 Higher Order Differential Attack

	7 Conclusion
	References

	Bloomier Filters on 3-Hypergraphs
	1 Introduction
	2 Preliminaries
	2.1 Bloom Filters
	2.2 Hypergraph

	3 The Existing Bloomier Filters
	3.1 Chazelle et al. ch2CKRT04
	3.2 Charles and Chellapilla ch2CC08

	4 Our Proposals
	5 Further Discussion
	6 Conclusion
	References

	Principal Component Analysis over the Boolean Circuit Within TFHE Scheme
	1 Introduction
	2 Background
	2.1 Homomorphic Encryption (HE)
	2.2 Principal Component Analysis (PCA)

	3 Related Work
	4 Our Model
	5 PCA over the TFHE Scheme
	5.1 Dominant Eigenvector
	5.2 Eigen Shift Procedure
	5.3 Details of PCA Algorithm

	6 Experiment
	7 Result
	8 Discussion and Future Work
	8.1 Discussion
	8.2 Future Work

	9 Conclusion
	References

	A Security Analysis on MQ-Sign
	1 Introduction
	2 MQ-Sign
	2.1 UOV
	2.2 MQ-Sign-RS

	3 Our Proposed Attack
	3.1 Preliminary
	3.2 Representation Matrices of the Central Map of MQ-Sign-RS
	3.3 The Idea of Our Attack
	3.4 How to Recover t1' and t2'
	3.5 How to Recover the Other Vectors t3',…, to'

	4 Implementation Results and Complexity Analysis
	4.1 Experiments
	4.2 Complexity

	5 Conclusion
	References

	Network and Application Security
	Research on Security Threats Using VPN in Zero Trust Environments
	1 Introduction
	2 Zero Trust 5 Pillars
	2.1 Zero Trust Concept
	2.2 Approaches to Applying Zero Trust to the US DoD
	2.3 Analysis of Published Zero Trust Security Frameworks

	3 Security Threats to ZTNA
	3.1 Zero Trust Security Threat Scenarios
	3.2 Security Vulnerabilities for Zero Trust-Based VPN Equipment
	3.3 Security Vulnerability Countermeasure Techniques

	4 Conclusion
	References

	A Blockchain-Based Mobile Crowdsensing and Its Incentive Mechanism
	1 Introduction
	2 Literature Review
	3 System Model
	4 Proposed Approach
	4.1 Account Grouping Method
	4.2 Grouping Truth Discovery Algorithm
	4.3 Reward Distribution Mechanism

	5 Experiments and Security Analysis
	5.1 Security Analysis
	5.2 Experiment Setup and Performance Metrics
	5.3 Result Analysis

	6 Conclusion
	References

	A New Frontier in Digital Security: Verification for NFT Image Using Deep Learning-Based ConvNeXt Model in Quantum Blockchain
	1 Introduction
	2 Related Work
	3 Datasets
	4 Methodology
	4.1 NFT Concept
	4.2 NFT Image Verification Using ConvNeXt
	4.3 Quantum Blockchain

	5 Proposed Approach
	6 Experiment Results and Comparison
	6.1 Experimental Setup
	6.2 Comparison

	7 Conclusion
	References

	AE-LSTM Based Anomaly Detection System for Communication Over DNP 3.0
	1 Introduction
	2 Related Works
	3 Power System Network
	3.1 Analysis of Power System Network Communication Method
	3.2 Risk Analysis of DNP 3.0-Based Communication Systems

	4 Proposed AI-Based Anomaly Detection System
	4.1 DNP 3.0 Parser
	4.2 Feature Preprocessor
	4.3 AE-LSTM Classifier

	5 Evaluation
	5.1 Dataset Description
	5.2 Experimental Setup
	5.3 Performance Index
	5.4 Experiment Result

	6 Conclusions and Future Research
	References

	Privacy and Management
	Systematic Evaluation of Robustness Against Model Inversion Attacks on Split Learning
	1 Introduction
	2 Background
	2.1 Split Learning
	2.2 Model Inversion Attacks
	2.3 Defenses Against Model Inversion Attacks

	3 Implementations of Previous Defense Approaches on Training Phase
	3.1 Laplacian Noise
	3.2 NoPeekNN
	3.3 Differential Privacy

	4 Experimental Settings
	4.1 Datasets
	4.2 Target Classification Models
	4.3 Inverse Models
	4.4 Evaluation Matrix

	5 Experimental Results
	5.1 Classification Performance Evaluation
	5.2 Data Privacy Evaluation

	6 Conclusion
	References

	Vulnerability Assessment Framework Based on In-The-Wild Exploitability for Prioritizing Patch Application in Control System
	1 Introduction
	2 Scoring System of Vulnerability
	2.1 Common Vulnerability Scoring System, CVSS
	2.2 Exploit Prediction Scoring System, EPSS

	3 Related Works
	4 In-The-Wild Risk Assessment Method for Vulnerabilities
	4.1 Evaluate Attacker Skill Level and Likelihood of Exploiting In-The-Wild Vulnerabilities
	4.2 Quantifying Risk of In-The-Wild Vulnerabilities
	4.3 Case Study

	5 Conclusion
	References

	Patchman: Firmware Update Delivery Service Over the Blockchain for IoT Environment
	1 Introduction
	2 Problem Definition
	2.1 Trust Model
	2.2 Security Goals

	3 Patchman Delivery Service
	3.1 Components
	3.2 Protocol

	4 Security Analysis
	5 Related Work
	6 Conclusion
	References

	Security Risk Indicator for Open Source Software to Measure Software Development Status
	1 Introduction
	2 Background
	2.1 Vulnerability Information
	2.2 OSS Information

	3 Assumed Situation
	4 Approach
	4.1 Requirement
	4.2 Design
	4.3 Implementation

	5 Evaluation
	5.1 Purpose and Environment
	5.2 Assessment of Security Risk Indicators
	5.3 Exploited Vulnerability Handling of Security Risk Indicators
	5.4 Calculation Time of Security Risk Indicator

	6 Discussion
	6.1 Considerations
	6.2 Limitations

	7 Related Work
	8 Conclusion
	References

	Attacks and Defenses
	Defending AirType Against Inference Attacks Using 3D In-Air Keyboard Layouts: Design and Evaluation
	1 Introduction
	2 Related Work
	3 System and Threat Model
	4 Design and Methodology
	4.1 Design Justification
	4.2 3D AR Keyboard Design
	4.3 Technical Details

	5 Evaluation
	5.1 User Study
	5.2 End-to-End Pipeline

	6 Discussion and Limitations
	7 Conclusion
	References

	Robust Training for Deepfake Detection Models Against Disruption-Induced Data Poisoning
	1 Introduction
	2 Background and Motivation
	2.1 Deepfake Defense Methods
	2.2 Threat Model

	3 System Design
	3.1 Overview
	3.2 Diffusion Purification
	3.3 Timestep for Purification

	4 Evaluation
	4.1 Experimental Settings
	4.2 Purification Ability for Disruptive Images
	4.3 Accuracy of Detection Models Under the Poisoned Dataset

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Multi-class Malware Detection via Deep Graph Convolutional Networks Using TF-IDF-Based Attributed Call Graphs
	1 Introduction
	2 Related Work
	3 Proposed Architecture
	3.1 APK Characterization
	3.2 Classification

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Measures
	4.3 Results and Discussion

	5 Conclusion
	References

	OCR Meets the Dark Web: Identifying the Content Type Regarding Illegal and Cybercrime
	1 Introduction
	2 Background and Related Works
	2.1 Analysis on Dark Web Content
	2.2 Optical Characteristics Recognition
	2.3 Existing Works Related to Dark Web Crawling

	3 Methodology
	3.1 Overview
	3.2 Collecting the Dark Web Page
	3.3 Collecting the Text and Image from the Dark Web Page
	3.4 Text Extraction
	3.5 Keyword Collection
	3.6 Evaluating Keyword Inclusion

	4 Experiment
	4.1 Dataset Description
	4.2 Setup
	4.3 Experiment and Results

	5 Limitations
	6 Conclusion and Future Works
	References

	Enriching Vulnerability Reports Through Automated and Augmented Description Summarization
	1 Introduction
	2 Related Work
	3 Dataset: Baseline and Data Augmentation
	4 Methodology and Building Blocks
	4.1 Sentence Encoders
	4.2 Pretrained Models
	4.3 Pipeline

	5 Evaluations
	6 Conclusion
	References

	Hardware and Software Security
	Protecting Kernel Code Integrity with PMP on RISC-V
	1 Introduction
	2 Background and Motivation
	2.1 Kernel Code Integrity
	2.2 Limitation of Existing Solutions
	2.3 RISC-V Physical Memory Protection

	3 Threat Model
	4 Design and Implementation
	4.1 PMP Policies for Locking Kernel Code
	4.2 Hooking Kernel Entries and Exits

	5 Evaluation
	5.1 Performance Overhead
	5.2 Security Evaluation
	5.3 Limitation in Performance Overhead Estimation

	6 Related Work
	7 Conclusion
	References

	Exploiting Memory Page Management in KSM for Remote Memory Deduplication Attack
	1 Introduction
	2 Background
	2.1 Memory Deduplication Attack
	2.2 Analyzing the KSM Behavior

	3 Remote Memory Deduplication Attack with KSM's Memory Page Management Mechanism
	3.1 Building Blocks of the Attack
	3.2 Remote Attack Procedure

	4 Conclusion
	References

	Mutation Methods for Structured Input to Enhance Path Coverage of Fuzzers
	1 Introduction
	2 Background
	2.1 Coverage-Based Grey-Box Fuzzing
	2.2 Mutation Method

	3 The Proposed Mutation Methods
	3.1 Uniform Mutation
	3.2 Format-Agnostic Mutation

	4 Evaluation
	4.1 Experiment Setup
	4.2 The Result of Uniform Mutation
	4.3 The Result of Format-Agnostic Mutation

	5 Related Work
	6 Conclusion
	References

	Improved Differential-Linear Cryptanalysis of Reduced Rounds of ChaCha
	1 Introduction
	2 Preliminary
	3 Differential-Linear Cryptanalysis
	4 Improved Differential-Linear Analysis on ChaCha
	4.1 Our Strategy
	4.2 Linear Part
	4.3 Differential Part
	4.4 Computational Complexity

	5 A Comparative Analysis of Our Research Findings and Existing Studies
	6 Conclusion
	References

	SP-Fuzz: Fuzzing Soft PLC with Semi-automated Harness Synthesis
	1 Introduction
	2 Related Research
	3 Preliminary
	4 Fuzzing Soft PLC with Harness
	4.1 Overview
	4.2 Semi-automated Harness Generator
	4.3 Fuzzing the Harness

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Comparative Study
	5.4 Unit Test
	5.5 Case Study

	6 Limitations
	7 Conclusion
	References

	Post-Quantum Cryptography and Quantum Cryptanalysis
	Quantum Circuit Designs of Point Doubling Operation for Binary Elliptic Curves
	1 Introduction
	2 Preliminaries
	2.1 Shor's ECDLP
	2.2 Binary Elliptic Curves in the Quantum Realm

	3 Quantum Circuit Designs of Point Doubling Operation for Binary Elliptic Curves
	3.1 Challenges on Quantum Point Doubling Construction
	3.2 Proposed Quantum Circuits

	4 Discussions and Limitations
	5 Conclusions and Future Work
	References

	PQ-DPoL: An Efficient Post-Quantum Blockchain Consensus Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Blockchain Consensus Algorithm
	2.2 Evaluation Metrics for Blockchain Performance
	2.3 CRYSTALS-DILITHIUM
	2.4 Trusted Execution Environment

	3 PQ-DPoL
	3.1 Post-Quantum Blockchain Using Dilithium
	3.2 Construction of Trusted Execution Environment
	3.3 Proof of Luck with Delegated Approach

	4 Benchmark
	4.1 Environment and Evaluation Metrics

	5 Conclusion
	References

	Efficient Implementation of the Classic McEliece on ARMv8 Processors
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Classic McEliece
	2.2 ARMv8 Processor
	2.3 Related Works

	3 Proposed Method
	3.1 Multiplication on F2m
	3.2 Multiplication on F213t

	4 Evaluation
	5 Conclusion
	References

	Evaluating KpqC Algorithm Submissions: Balanced and Clean Benchmarking Approach
	1 Introduction
	1.1 Contributions

	2 Related Works
	2.1 NIST Standardization of Post Quantum Cryptography
	2.2 KpqC: Korea's Post Quantum Cryptography Standardization
	2.3 PQClean

	3 KPQClean: Clean Benchmark on KpqC
	4 Conclusion
	References

	Author Index

