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Abstract. This paper presents a Gaussian process based stochastic model pre-
dictive control method for linear time-invariant systems subject to bounded state-
dependent additive uncertainties. Chance constraints are treated in analogy to
tube-based MPC. To reduce the conservatism, the adaptive constraint tightening
is performed by using the confidence region of the predicted uncertainty which is
formulated based on the output of the Gaussian process model. Numerical simula-
tions demonstrate the conservatism reducing advantage of the proposed Gaussian
process based stochastic model predictive control algorithm in comparison with
existing methods.
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1 Introduction

Model predictive control (MPC) is widely used in industry due to the ability of handling
uncertainties and fulfilling constraints. However, the traditional nominalMPCmay result
in poor control quality on occasion in case that the serious disturbance occur, because
it does not account for the uncertainty [1, 2]. The robust MPC, presuming the uncer-
tainty is bounded, is capable to guarantee constraints satisfaction all the time by only
considering the worst-case uncertainty. But it does not allow for the possible statistical
properties of the uncertainty, despite the information is available in many cases. As a
consequence, robust approaches may lead to overly conservative in algorithm design [3,
4]. In some real-world application cases, a certain probability of constraint violation is
usually allowed. The stochastic model predictive control (SMPC) taking into account
the a priori knowledge of the uncertainty and using the chance constraint will result in
less conservatism in constraints satisfaction [5–8].

Majority of existing SMPC algorithms ensure closed loop constraint satisfaction
typically rely on knowledge of worst case bounds corresponding to prescribed chance

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Sun et al. (Eds.): ICCSIP 2023, CCIS 1918, pp. 269–280, 2024.
https://doi.org/10.1007/978-981-99-8018-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8018-5_20&domain=pdf
https://doi.org/10.1007/978-981-99-8018-5_20


270 F. Li et al.

constraints. Although the offline computation of constraint tightening releases the com-
putational complex, it causes intrinsic conservatism for ignoring past constraint vio-
lations and current uncertainty. To cope with this issue, several approaches have been
proposed. In [9], the authors develop a recursively feasible MPC scheme by explic-
itly taking into account the past constraint violations to adaptively scale the tightening
parameters. The work [10] exploits the observed constraint violations to adaptively scale
the tightening parameters to eliminate the conservatism, and analyze the convergence
of the amount of constraint violations rigorously using stochastic approximation. For
linear systems under multiplicative and possibly unboundedmodel uncertainty, the work
[11] presents a stochastic model predictive control algorithm. In which, the probabilistic
constraints are reformulated in deterministic terms bymeans of the Cantelli inequality. A
recursively feasible stochastic model predictive control scheme is designed by explicitly
taking into account the past averaged-over-time amount of constraint violations when
determining the current control input [12].

Another way to reduce the conservatism of MPC scheme is using the statistical
machine learning methods to model the uncertainties based on prior knowledge [13–15].
Gaussian process (GP) regression is particularly attractive because it provides variance
besides the mean of uncertainty, which can be incorporated into MPC to improve the
performance [16–19].

In this paper, we propose a Gaussian process based SMPC (GP-SMPC) scheme
for linear time-invariant (LTI) systems subject to bounded additive uncertainties. The
uncertainties are state-dependent and bounded. The GP models for the uncertainties are
trained offline on the base of previous collected data. The future mean and variance of
the uncertainty can be predicted by the learned GP model on the condition of current
state and input. The key contribution of this work is that the predicted information of
uncertainty is used to adaptively scale the tightening parameters of the system constraints
to achieve less conservatism.

he remainder of this paper is organized as follows. The time-varying tube-based
SMPC is introduced in Sect. 2. Section 3 proposes the GP-SMPC scheme which mainly
consists of the uncertainty modeling and constraint tightening. In Sect. 4, numerical
simulations are given. Section 5 concludes the paper.

Notations
xk|t represents the k-step-ahead prediction of x at time t.
R denotes the set of reals, Ni denotes the set of integers which equal or greater than

i,Nj
i denotes the set of consecutive integers {i, · · · , j}.
Pr(X ) stands for the probability of an event X .
The Minkowski sum is denoted by A ⊕ B = {a + b|a ∈ A, b ∈ B}.
The Pontryagin set difference is represented by A�B = {a ∈ A|a + b ∈ A,∀b ∈ B}.

2 Time-Varying Tube-Based SMPC

Consider a discrete LTI system subject to additive uncertainties

xk+1 = Axk + Buk + wk , (1)
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where xk ∈ R
n and uk ∈ R

m are the state and input at time k respectively. The uncertain-
tieswk ∈ W ⊂ R

n, which can be unmodeled nonlinearities and/or external disturbances,
are bounded and state-dependent. Moreover, system (1) is subjected to the following
constraints on states and inputs

Pr(xk+1 ∈ X) ≥ 1 − ε, k ∈ N0, (2a)

uk ∈ U, k ∈ N0. (2b)

The nominal system neglecting the uncertainty part is defined as

sk+1 = Ask + Bvk , (3)

where the nominal state sk ∈ R
n and the nominal open loop input vk ∈ R

m.
The error between observed state xk and nominal state sk is defined as

ek = xk − sk , (4)

One of the commonly used control policies in robust tube MPC is

uk = Kek + vk , (5)

where the feedback gain K is obtained by LQR optimization for the nominal dynamics
(4), such that Acl = A + BK is Schur stable.

Then the system dynamics in (1) can be decoupled into a nominal dynamics and an
error dynamics as

sk+1 = Ask + Bvk , (6a)

ek+1 = Aclek + wk , (6b)

The error dynamics (6b) will be used for constraint tightening.
Suppose that a polytope E ⊂ W is a confidence region of probability level 1− ε for

the uncertainty, that is.

Pr(wk ∈ E) ≥ 1 − ε, (7)

where ε ∈ (0, 1).
Since the error dynamics in (6b) is linear, and the uncertaintyw ∈ W, the propagation

set of uncertainty ek ∈ Wk is evolved as

Wk+1 = AclWk ⊕ W, k ∈ N0, (8)

where W0 = W. Then, it can be induced that Wk = ∑k
i=0 ⊕Ai

clW, k ∈ N0.
Construct the tightened propagation set of uncertainty as

Dk = AclWk−1 ⊕ E, k ∈ N1, (9)
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Then

Pr(ek ∈ Dk) ≥ 1 − ε, k ∈ N0, (10)

follows from (7), where D0 = E .
Define the time-varying tightened state constraint set as

Ck = X � Dk , k ∈ N0. (11)

If sk ∈ Ck , then Pr(xk = sk + ek ∈ X) ≥ 1− ε is satisfied, that is, the satisfaction of
chance constraint (2a) is guaranteed by (10) and (11).

Define the tightened input constraint set

V = U � KZ, (12)

where Z = ∑∞
i=0 ⊕Ai

clW and ek ∈ Z, k ∈ N0. If vk ∈ V , then the hard constraint (2b)
uk = vk + Kek ∈ U is guaranteed by (12).

Define terminal constraint set

Xf = {
s ∈ R

n : sk ∈ X � Z,Ksk ∈ V, k ∈ N0
}
. (13)

The finite horizon optimal control problem to be solved at each time instant t is as
follows:

min
s0|t ,v0|t ,··· ,vN−1|t

∑N−1

k=0

(
‖sk|t‖2Q + ‖vk|t‖2R

)
+ ‖sN |t‖2P

s.t. sk+1|t = Ask|t + Bvk|t,

sk|t ∈ Ck+t, k ∈ N
N−1
1 ,

vk|t ∈ V, k ∈ N
N−1
0 , (14)

xt − s0|t ∈ Wt,

sN |t ∈ Xf .

3 SMPC Using Gaussian Process Regression

Since the uncertainty is state-dependent, it will be conservative if the confidence region
E formulated based on its maximum amplitude. In this section, a Gaussian process
regression method is proposed to solve this issue.
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3.1 Gaussian Process Regression

Considering a training set {(xi, yi), i = 1, 2, · · · ,M }, where xi ∈ R
d and yi ∈ R. The

GPR model learns a function f (x) mapping the input vector x to the observed output
value y given by y = f (x) + w, where w ∼ N (

0, σ 2
n

)
. The observed output values are

normally distributed y ∼ N (μ(X ),K(X ,X )), where the mean value vector μ(X ) =
[μ(x1), · · · , μ(xM )]T and the covariance matrix

K(X ,X ) =

⎡

⎢
⎢
⎢
⎣

c(x1, x1) c(x1, x2)
c(x2, x1) c(x2, x2)

· · · c(x1, xM )

· · · c(x2, xM )
...

...

c(xM , x1) c(xM , x2)

. . .
...

· · · c(xM , xM )

⎤

⎥
⎥
⎥
⎦

, (15)

and c
(
xi, xj

)
is the covariance of xi and xj, which can be any positive definite function.

A frequently used covariance function called Square Exponential Kernel function is
defined as

c
(
xi, xj

) = σ 2
f exp

(

−1

2

(
xi − xj

)T
L
(
xi − xj

)
)

+ σ 2
n , (16)

where L = diag([l1, · · · ld ]), σf and σn are the hyperparameters of the covariance
function.

The training output y and a predicted output y∗ corresponding to the test input x∗ are
jointly Gaussian distribution

[
y
y∗

]

∼ N
(

0,

[
K(X ,X ) k(x∗,X )T

k(x∗,X ) k(x∗, x∗)

])

, (17)

where k(x∗,X ) = [
c(x∗, x1), c(x∗, x2), · · · , c(x∗, xM )

]
, k(x∗, x∗) = c(x∗, x∗).

Following the Bayesian modeling framework, the posterior distribution of y∗ can
be obtained conditioned on the observations, and the resulting is still Gaussian with
y∗|y ∼ N (

μ(x∗), σ 2(x∗)
)
and

μ
(
x∗) = k

(
x∗,X

)
K(X ,X )−1y, (18a)

σ 2(x∗) = k
(
x∗, x∗) − k

(
x∗,X

)
K(X ,X )−1k

(
x∗,X

)T
. (18b)

3.2 GP Model of Uncertainty

The learned GPR model depends on measurement data collected from previous expe-
rience. The model input and output are the state-control tuple zk = (xk; uk) and
corresponding uncertainty wk , respectively. The uncertainty at time k.

wk = xk+1 − (Axk + Buk). (19)



274 F. Li et al.

The data pair (zk ,wk) represents an individual experience. Given a well collected
data pair setD = {z,w} and a test data pair (z∗,w∗), the jointly Gaussian distribution is

[
w
w∗

]

∼ N
(

0,

[
K(z, z) k(z∗, z)T
k(z∗, z) k(z∗, z∗)

])

. (20)

The posterior distribution of w∗ is still Gaussian

w∗|D ∼ N
(
μ

(
z∗

)
, σ 2(z∗

))
(21)

with mean and variance as follows

μ
(
z∗

) = k
(
z∗, z

)
K(z, z)−1w, (22a)

σ 2(z∗
) = k

(
z∗, z∗

) − k
(
z∗, z

)
K(z, z)−1k

(
z∗, z

)T
. (22b)

The n separate GP models are trained for each dimension in w ∈ R
n. We gain the

optimal hyperparameters of eachGaussianmodel offline bymaximizing the logmarginal
likelihood of collected data sets [20].

3.3 Adaptive Constraints

Define the prediction model as

x̃k+1 = Ax̃k + Bũk + w̃k , (23)

where x̃k denotes the predicted state, ũk the predicted input, and w̃k the predicted uncer-
tainty. On the condition of trained GP models, the distribution of w̃k corresponding to
(x̃k; ũk) can be obtained as

w̃k ∼ N (
∼
μk ,

∼
σ
2

k), (24)

where
∼
μk and

∼
σ
2

k are computed by (22a) and (22b).
Define the confidence region of the predicted uncertainty with the probability level

1 − ε as

∼
Ek =

{∼
μk − α

∼
σ k ≤ w̃k ≤ ∼

μk + α
∼
σ k

}
, k ∈ N0, (25)

where α is the quantile value corresponding to 1 − ε.
According to (9), the more stringent propagation set of uncertainty is

∼
Dk = AclWk−1 ⊕ ∼

Ek−1, k ∈ N1, (26)

Then

Pr
(
ẽk ∈ ∼

Dk

)
≥ 1 − ε, k ∈ N1, (27)
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follows.
Construct the adaptively time-varying state constraint set as

∼
Ck = X � ∼

Dk , k ∈ N1. (28)

If sk ∈ ∼
Ck , then the chance constraint Pr(xk = sk + ek ∈ X) ≥ 1 − ε is satisfied.

Define the tightened input constraint set V = U � KZ as (12). If vk ∈ V , then the
satisfaction of hard constraint uk = vk + Kek ∈ U is guaranteed.

3.4 Gaussian Process Based SMPC

On the basis of the time-varying tube-based SMPC, by combining the GP-based uncer-
tainty prediction, the Gaussian process based stochastic optimal control problem to be
solved at each time instant t is as follows:

min
s0|t ,v0|t ,··· ,vN−1|t

∑N−1

k=0

(
‖sk|t‖2Q + ‖vk|t‖2R

)
+ ‖sN |t‖2P

s.t. x̃0|t = xt,

x̃k+1|t = Ax̃k|t + Bũk|t + w̃k|t,

ũk|t = K
(
x̃k|t − sk|t

) + vk|t,

w̃k|t(x̃k|t, ũk|t) ∼ N (
∼
μk|t,

∼
σ
2

k|t),

Generate
∼
Ck+t|t by Eq. (24) − (27) (29)

sk+1|t = Ask|t + Bvk|t,

sk|t ∈ ∼
Ck+t|t, k ∈ N

N−1
1 ,

vk|t ∈ V, k ∈ N
N−1
0 ,

xt − s0|t ∈ Wt,

sN |t ∈ Xf .

The solution of the optimal control problem yields the optimal initial nominal state
s∗0|t and input sequence.

v∗(xt) =
[
v∗
0|t, · · · , v∗

N−1|t
]
. (30)
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The associate optimal state sequence for nominal system is

s∗(xt) =
[
s∗0|t, · · · , s∗N |t

]
. (31)

Using the first entry of the optimal input sequence and the optimal initial state, the
optimal control law is designed as

u∗(xt) = K
(
xt − s∗0|t

)
+ v∗

0|t . (32)

Apply u∗(xt) to the system (1) yields new state.

xt+1 = Axt + Bu∗(xt) + wt . (33)

Based on the new state xt+1, the entire process of GP based SMPC is repeated at
time t + 1, yielding a receding horizon control strategy.

4 Numerical Simulation

In this section, the chance constraint satisfaction of the GP-SMPC scheme are compared
with nominalMPC, robustMPC and time-varying tube-based SMPC. In the simulations,
the polytopes C, V , D and Z are computed by using the MPT3 toolbox.

To show the constraint violation of the GP-SMPC scheme, a discrete LTI system sub-
ject to state-dependent additive uncertainty disturbed by a truncated normal distributed
noise is designed as

xk+1 =
[

1.6 1.1
−0.7 1.2

]

xk +
[
1
1

]

uk + wk ,

The state and input constraints are Pr(xk ∈ X) ≥ 0.8 and uk ∈ U, respectively.

X �
{

x ∈ R
2 :

[−10
−2

]

≤ x ≤
[
2
10

]}

,U �
{
u ∈ R

1 : |u| ≤ 10
}
.

The uncertainty wk ∈ W and

W �
{

w ∈ R
2 : ‖w‖∞ ≤ 0.1,w = 0.1 ∗

(
1

1 + |u|e−x
− 0.5

)

+ N
(
0, 0.0152I2

)}

.

Design the weights of cost functionQ = I2 and R = 1. ComputeK as the LQR feed-
back gain for the unconstrained optimal problem (A,B,Q,R). The prediction horizon
is N = 6. The simulation step is N sim = 11. The initial state x0 = [−6.5, 10.5]T.

The state constraint violations of the nominalMPC, the robustMPC, the time-varying
tube-based SMPC and the proposed GP-SMPC are illustrated in Figs. 1, 2, 3 and 4. In
the up side of each figure, the closed-loop actual state trajectories of 100 realizations
are demonstrated. On account of that the constraint violation occurs around the border
at the first several steps, the details of the first 3 step trajectories is enlarged at the down
side part of each figure. Table 1 presents the first three steps constraint violation ratios
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and the average ratios of 1000 realizations. From the figures and the table, it can be seen
that: the average constraint violation at the first 3 steps of the nominal MPC is 100%,
the constraint is break at all steps; the average constraint violation at the first 3 steps
of the robust MPC is 0%, the constraint is satisfied with heavy-duty conservatism; the
average constraint violation at the first 3 steps of the time-varying tube-based SMPC is
65.0%, the conservatism is relieved a bit; and that of the proposed GP-SMPC is 16.2%,
which is close to 20% specified in advance, resulting in less conservatism and constraint
satisfaction.

Fig. 1. Closed-loop trajectories of nominal MPC with 100 realizations.
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Fig. 2. Closed-loop trajectories of robust MPC with 100 realizations.

Fig. 3. Closed-loop trajectories of time-varying SMPC with 100 realizations.
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Fig. 4. Closed-loop trajectories of GP-SMPC with 100 realizations.

Table 1. Constraint violation of MPC algorithms.

Algorithm Step 1 Step 2 Step 3 Average

Nominal MPC 100% 100% 100% 100%

Robust MPC 0% 0% 0% 0%

Time-varying SMPC 67.2% 65.3% 62.6% 65.0%

GP-SMPC 17.4% 17.3% 13.8% 16.2%

5 Conclusion

The proposed GP-SMPC scheme reduces the conservatism through tightening the con-
straints adaptively. Specifically, the stringent propagation set of uncertainty is obtained
by using the time varying confidence regionwhich is formulated on the basis of Gaussian
process prediction. Numerical simulations validate that the chance constraint satisfac-
tion of GP-SMPC is better than that of nominal MPC, robust MPC and time-varying
tube-based SMPC.
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