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Coordinated Design of Damping 
Controllers for Power System Stability 

Manoj Kumar Kar, Ruchika S. Meshram, Pranali A. Krishna, 
Shivam V. Patil, and Rohan S. Sonawane 

Abstract This paper presents stability improvement of the coordinated design of 
damping controllers for a single machine infinite bus system. The primary goal of 
this work is to minimize the rotor speed deviation of the machine. Under various 
loading circumstances such as nominal loading, light loading and heavy loading, 
the system’s performance has been examined. Power system stabilizer (PSS) and 
static synchronous series compensator (SSSC) are used as damping controllers. The 
damping controller parameters are adjusted using a unique sine cosine algorithm 
(SCA). The responses obtained using SCA are compared with the other three compet-
itive methods to show the superiority of the proposed approach. It was found that the 
SCA method is capable of effectively suppressing power system oscillations. 

Keywords FACTS controller · PSS · SCA · SMIB system · SSSC 

1 Introduction 

A power system’s capability to continue working steadily in the presence of distur-
bances is referred to as stability. These disruptions can be large or small [1]. The 
existing transmission network has been overcrowded due to the rising load demand, 
leading to a number of stability problems within the power system that required 
the power system specialists’ prompt attention. Balancing load demand and energy 
generation using the resources already available in the transmission network is the key 
difficulty in an electric power system. These issues might make controlling power 
flow difficult for security under post-fault conditions and hence, the fault clear-
ance becomes more difficult for network operators. Furthermore, it is also desirable 
to deploy a more flexible solution because utilities now must deal with a grid that is
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extremely dynamic and requires solutions that can accommodate larger changes than 
in the past. For the last two decades, FACTS devices have drawn attention to solve 
the above-mentioned issues [2]. Shunt type FACTS devices, like D-STATCOM, are 
now frequently used to improve the power quality of distribution networks [3, 4]. 
The FACTS controllers were effectively used for reactive power compensation [5, 
6] and to maintain voltage stability [7]. In Gyugyi et al. [8], the performance of the 
SSSC is compared to that of a TCSC. Wang [9] successfully incorporated SSSC in 
power system to reduce oscillations in the system. For a sixteen-machine system, 
PSS and FACTS controllers were designed, and the residue technique, as well as the 
involvement factor, were used to place the controllers [10]. A GA-based method [11] 
and a SSA method [12] are presented to tune the SSSC controller to increase the tran-
sient stability. In [13], a MGWOA tuned Fractional order PID controller is proposed 
to increase power system stability of a SMIB system and in [14] a multi-machine 
power system is considered to suppress the oscillations. The PSO approach [15] 
is employed to fine-tune the PSS parameters in multi-machine power system. The 
stability conditions are also met using the damping factor and eigenvalue analysis. 

2 System Description 

A single machine infinite bus (SMIB) system is used as a case study in the current 
work. 

2.1 SMIB System 

This system comprises of a transformer, a generator, and two transmission lines that 
provide power to an infinite bus. With SSSC, the SMIB system is illustrated in Fig. 1, 
where the infinite bus voltage is VB, while VA is just the generator’s terminal voltage. 

Fig. 1 Design of SMIB system
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Fig. 2 Structure of PSS 

2.2 Power System Stabilizer (PSS) 

PSSs are Power System Stabilizers, which are widely utilized in modern power 
systems as an efficient way of improving overall system stability. By varying gener-
ator stimulation to reduce ac machines rotor oscillations in respect to one another, 
the PSS increases the system stability limit. It produces a rotor-mounted electrical 
torque component that fluctuates in phase with the speed. The framework of PSS is 
shown in Fig. 2. 

2.3 Static Synchronous Series Compensator (SSSC) 

SSSC is a series flexible AC transmission (FACT) device that enables controlled 
power transmission. It controls power flow on the grid and power lines, both reactive 
and active. The SSSC uses no reactive power and provides better control as opposed to 
the phase shift controller. The system incorporates a DC capacitor to supply reactive 
power. The transmission line’s voltage level and power flow are controlled by the 
SSSC. It has the potential to use the reference using signal strength as a current source 
and compensator and phase angle regulation. The Direct Voltage Injection Mode 
is used to power the energy storage. SSSC when connected in series with power 
transmission lines in a power system, produces a controlled AC voltage source. 

3 Problem Formulation 

A variation in the rotor speed is causing the system to oscillate. The objective of this 
study is to minimize the speed deviation. The objective function is thereby considered 
as the ITAE of speed deviations. 

The following is the SMIB system’s primary objective:
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I T  AE  = 
ts∫

0 

|Δω| · tdt (1) 

where, ts is the simulation time, and Δω denotes speed deviation in SMIB. 
The constraints are expressed as follows: 

Minimize I T  AE(K P , T1P , T2P , T3P , T4P , KS, T1S, T2S, T3S, T4S) (2) 

Subjected to 

K min 
P ≤ K P ≤ K max 

P 

K min 
S ≤ KS ≤ K max 

S 

T min 
x P  ≤ TxP  ≤ T max 

x P  ; x = 1, 2, 3, 4 
T min 
yS  ≤ TyS  ≤ T max 

yS  ; y = 1, 2, 3, 4 

(3) 

where, K min 
P and K max 

P are the minimum and maximum values of PSS gain. K min 
S 

and K max 
S are the lower and upper limits of SSSC gain, T min 

x P  and T 
max 
x P  are the lower 

and the maximum of PSS’s Time Constant, T min 
yS  and T max 

yS are the minimum and 
maximum limits controller of the SSSC’s time constant. 

4 Proposed Method 

A unique meta-heuristic approach based on the sine and cosine trigonometric func-
tions was proposed by Mirjalili [16, 17] in 2016. The SCA technique, in contrast to 
other meta-heuristic techniques, outperforms them while being simpler, clearer, and 
easier to implement. It also has less control parameters. The algorithm starts with 
n number of search agents i.e., with each search agent giving a candidate solution. 
Each search agent of t-th Iteration is a d-dimensional vector with each member corre-
sponding to a variable that is an independent part of the issue. Until the termination 
requirements are not satisfied shown in eq. 4, the solutions then shift outward or 
in the direction of the best solution. The optimal solution from the last iteration is 
utilized to solve the problem after the termination criteria have been satisfied. 

Xt+1 
i =

{
Xt 
i + r1 × sin(r2) ×

∣∣r3 × Pt 
i − Xt 

i

∣∣, i f  r4 < 0.5, 
Xt 
i + r1 × cos(r2) ×

∣∣r3 × Pt 
i − Xt 

i

∣∣, i f  r4 ≥ 0.5, 
(4) 

where Xt 
i , Pt 

i is used to indicate the ith location of the current solution and the final 
destination in the current iteration. Xt+1 

i is the I th solution position in t + 1 and |∎| 
represents the absolute value. r1, r2, r3 and r4 indicates the algorithm’s parameters.
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The three parameters r1, r2, and r3 are determined using Eqs. 5, 6 and 7, respectively. 

r1 = a ×
(
1 − t 

Tmax

)
(5) 

r2 = 2 × pi × rand  (0, 1) (6) 

r3 = 2 × rand  (0, 1) (7) 

where an is just a constant set to 2 under this method and t has been the current iteration 
number, Tmax identifies the maximal number of iterations of the algorithm, and rand 
(0,1) helps to identify a random integer generated from a uniformly distribution 
between 0 and 1. 

5 Results and Discussions 

Damping controllers are designed and simulated by using the Sim Power System 
toolkit. A synchronous generator through a 3-phase, 13.8/500 kV step-up trans-
former, a 2100 MVA, 13.8 kV, 60 Hz output is linked to a 300 km parallel trans-
mission line in the SMIB system with SSSC integrated, which is modelled using 
MATLAB SIMULINK. The transmission line and the 100 MVA SSSC controller 
are linked in series. The designed model is put through a simulation, after which 
the objective function is assessed after a disturbance. Equation 1’s fitness value is 
minimized in order to find the optimum control variables. 

5.1 Nominal Loading (NL) Condition 

i. Under standard loading conditions (Pe = 0.8 pu) with disturbance, the suggested 
controller’s performance is assessed. 

ii. A 3-phase fault is applied at t = 1 s for 5 cycles. The system is restored once 
the fault is cleared. 

iii. Figures 3, 4, 5 and 6 depicts the various responses, which include the SSSC 
injected voltage (Vq) in pu, tie line power (P) in MW, speed deviation (Δω) in  
pu, and power angle (δ) in degree.

iv. Based on the responses, it is evident that the suggested strategy is superior to 
the competition in terms of performance.
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Fig. 3 Speed deviation at 
NL 

Fig. 4 Power angle at NL

5.2 Light Loading (LL) Condition 

i. Following that, a 3-phase 5 cycle fault with light loading (Pe = 0.5 pu) is 
considered. 

ii. Figures 7, 8, 9 and 10 show the dominance of the SCA approach on various 
system responses to damp oscillation at nominal loading conditions.
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Fig. 5 Tie line power at NL 

Fig. 6 SSSC injected 
voltage at NL

iii. The proposed method’s improved damping properties demonstrate why it is 
preferable to the other approaches taken into account in this study.
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Fig. 7 Speed deviation at 
LL 

Fig. 8 Power angle at LL

5.3 Heavy Loading (HL) Condition 

i. The SCA technique is eventually put to the test by accounting for heavy loading 
(Pe = 0.95pu). 

ii. The results under conditions of heavy loading are seen in Figs. 11, 12, 13 and 
14.
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Fig. 9 Tie line power at LL 

Fig. 10 SSSC injected 
voltage at LL

iii. From the figures, it is clear that the SCA outperforms the other techniques taken 
in this study.
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Fig. 11 Speed deviation at 
HL 

Fig. 12 Power angle at HL
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Fig. 13 Tie line power at 
HL 

Fig. 14 SSSC injected 
voltage at HL

6 Conclusion 

This paper presents improved power system stability through SCA optimized 
synchronized structure of SSSC and PSS controller. The robustness of the SCA 
based damping controllers increases the stability of SMIB system. The effectiveness 
of the proposed method is measured against other three methods such as PSO, ALO, 
and DE. It is found that the proposed SCA method gives better results compared
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to other three methods. The speed deviations using SCA method are found to be 
0.001408 p.u., 0.000649 p.u., and 0.001896 p.u. under NL, LL, and HL conditions 
respectively. The transient stability analysis has been accomplished for an SMIB 
system. It could be extended for a larger system. Also, some controllers may be used 
to achieve better performance in the future. 
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The Effect of Electric Vehicle Charging 
Stations on Distribution Systems While 
Minimizing the Placement Cost 
and Maximizing Voltage Stability Index 

Sumeet Kumar and Ashwani Kumar 

Abstract Greenhouse gas (GHG) emissions from internal combustion (ICE) vehi-
cles, which are reliant on fossil fuels, are one of the problems in major cities. As a 
result, the electric vehicle (EV) has become the automotive industry’s green alterna-
tive. Promoting the worldwide adoption of electric vehicles is viewed as a possible 
solution to energy security, including energy efficiency, reduced noise, and green-
house emission reduction. Due to its numerous benefits, including their use of flexible 
fuels, ease, safe charging, high performance, and cost savings, Plug-In Electric Vehi-
cles (PEVs) will soon replace traditional vehicles as the most affordable option for 
transportation. Despite the benefits indicated above, improper placement and size 
of aggregated PEVs cause voltage degradation and loss. Therefore, the best loca-
tion for charging stations (CS) is crucial for the widespread use of EVs. Thus, in 
order to allocate fast and slow CS as efficiently as possible, this research suggests 
two optimization technique that takes into account the cost of installation, operation 
cost, increased line loss cost, and voltage deviation cost. The CS placement approach 
of Whale Optimization (WO) and Particle Swarm Optimization (PSO) technique is 
simulated on IEEE-33 radial distribution systems. The results demonstrate that the 
recommended technique can choose the best location and size for CS, which will 
benefit EV owners, EVCS creators, and the power grid. 
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1 Introduction 

The market for electric vehicles (EVs) is expanding quickly on a worldwide scale. 
As per EV volumes, the total number of electric vehicles (including battery elec-
tric vehicles [BEVs] and Plug-in hybrid electric vehicles [PHEVs]) on the road 
increased to 6.75 million in 2021 from 4.2% in 2020. As they aid in lowering pollu-
tion and reducing resource depletion, EVs are gaining popularity all over the world. 
As evidence of how quickly the Indian EV industry is developing, close to 0.32 
million vehicles, up 168% YoY, were sold in 2021. The ongoing adoption of elec-
tric vehicles in India is supported by the Paris Agreement, which aims to reduce 
carbon emissions, enhance the quality of the air in metropolitan areas, and decrease 
oil imports [1]. 

There is an essential need for widely dispersed, publicly available charging 
stations (CSs) that provide electrical energy for recharging an EV battery since the 
number of EVs is growing quickly [2]. Therefore, the construction of the charging 
infrastructure must be prioritized in order to deploy EVs on a big scale. For the EV 
business to expand sustainably, coordinated EV CS planning is of utmost importance. 
In response to the recent demand for PEV supplies, researchers have focused on the 
optimal layout of charging stations [3]. It is possible to broadly divide CS placement 
into two types: slow and quick. Due to lower charging costs and accessibility at home 
or the office, slow charging is the most popular approach. The low charging power 
used by this approach results in a lengthy charge period for an EV battery. However, 
in order to drive long distances, EV customers also want an urgent charging option. 
Therefore, it is essential to have a sufficient number of fast CSs (RCSs) for quick 
charging. However, the widespread use of EVs places an increased demand on a 
conventional distribution network, which might have a number of negative effects 
on the network. With consideration for loss and voltage in distribution networks, 
charging stations are scaled and constructed for maximum efficiency. The distribu-
tion network’s properties, such as voltage stability, dependability, power loss, etc., 
must not be compromised by integrating EV CS into the transport network. 

The literature describes many strategies and procedures used by researchers from 
throughout the world to deploy EV CSs in the best possible positions. A Binary 
Firefly Algorithm (BFA) approach has been proposed by Islam et al. [2] for  the  
optimal allocation of the rapid charging station in the road distribution network of 
the township of Bangi, Malaysia. A new hybrid algorithm based on Chicken Swarm 
Algorithm (CSO) and Teaching Learning Based Optimization Algorithm (TLBO) is 
proposed in Deb et al. [3] to solve the problem of optimal placement of fast and slow 
CS. In Ge et al.  [4], the authors introduced a unique approach to CS placement using 
the Grid Partition technique, with the aim function of minimizing user loss on the 
route to the charging station. To minimize the effects of EVCs in the distribution grid, 
a novel Genetic Algorithm (GA) based approach using capacitor banks is proposed 
in Pazouki et al. [5]. The authors of Liu et al. [6] used Adaptive Particle Swarm 
Optimization (APSO) to report the best sites for EV CSs with a single objective cost 
function. Parking lots with various levels of charging stations are placed and sized in
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the best possible way in electric distribution networks is formulated in Mohsenzadeh 
et al. [7] using Genetic Algorithm (GA). Taking distribution and traffic networks 
into account [8], the best planning for PEV charging stations and demand response 
initiatives is done using Genetic Algorithm (GA). 

Literature [2–8] describes some of the current research done in the field of EV CSs 
placement. Additionally, there are a number of restrictions on the objective functions 
taken into account in the literature, such as a lack of a voltage deviation cost and total 
line loss cost. In this work, two novel modelling method for the EV CS placement 
problem is presented that takes into account the superposition of the distribution 
networks and uses the objective function of installation cost, operating cost, cost of 
voltage deviation, the extra line lost cost, and Voltage Stability Index (VSI), total line 
losses. This work proposes a comparison of two metaheuristic algorithms Particle 
Swarm Optimization (PSO) and Whale Optimization (WO) for the solution of EV 
CS problem formulation. 

The rest of the paper is structured as follows. A brief introduction to EV CS and 
the work already done is presented in Sect. 1. The concept of the EV CS placement 
problem is expanded in Sect. 2. Section 3 tells about the optimization technique 
used in the paper and the flow chart of the optimization technique. The quantitative 
analysis and simulation result is presented in Sect. 4. The paper is concluded at the 
end. 

2 Objective Problem Formulation 

The main goal of the objective function is to minimize the overall cost and maximize 
the VSI. The overall cost is comprised of the installation cost, the cost of operation, 
the extra cost for voltage variation, and the total line loss cost. Figure 1 provides 
a diagrammatic depiction of several objective functions. Equations (1)–(18) in the  
preceding subsections provide further details on the objective function used for the 
optimization as well as the various constraints. 

Operating 

cost 

Objective 1 

Cost based 

Installation 

cost 

Voltage 

Deviation 

cost 

Extra line 

loss cost 

Objective 2 

Index based 

Voltage 

stability index 

Total line loss 

index 

Fig. 1 Objective function of EV CS
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2.1 Objective Function 1 

The first objective function takes the cost-based approach to find the optimal alloca-
tion of EV CS taking the installation cost, operation cost [3], voltage deviation cost 
[9] and extra line loss cost [10]. The objective function is shown by Eq. 1. 

MinOF1 = (
Cinstallation, Coperation, Cdeviation, Cextra line loss

)
(1) 

where, 

Cinstallation-installation cost of CS 

Coperation-annual operating cost of CS 

Cdeviation-cost of per unit voltage deviation 

Cextralineloss-annual cost of extra line loss. 

The formulation of different cost function is given below:-

Cinstallation = Cfast + Cslow (2) 

Cfast = nfastcs ∗ nfastcharger ∗ nfastchargerinstall + Cinstallationfast (3) 

Cslow = nslowcs ∗ nslowcharger ∗ Cslowchargerinstall 
+ Cinstallationslow (4) 

Coperation =
(
nfastcsCpfastnfastcharger + nslowcsCpslownslowcharger

) ∗ Pelectricity ∗ T (5)  

where, 

nfastcs-no of fast CS 

nslowcs-no of slow CS 

Cinstallationfast-fast CS installation cost 

Cinstallationslow-slow CS installation cost 

Cpfast-fast CS consumption power 

Cpslow-slow CS consumption power 

Pelectricity-cost of per unit electricity 

T-time period of planning 

Cdeviation = PVD ∗ 
N∑

i=2 

VD2 
i (6)
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VDi = Vbase 
i − Vcs 

i (7) 

where, 

PV D-cost of per unit voltage deviation 

V Di -voltage deviation at ith bus 

V base i -base case voltage at ith bus 

V cs i -voltage after placing CS at ith bus 

Cextra line loss = (TPLbase − TPLcs) ∗
(
kp + ke ∗ Lsf ∗ T

)
(8) 

Lsf = k ∗ Lf + (1 − k) ∗ Lf2 (9) 

where, 

TPLbase-total power loss without CS 

TPLcs-total power loss after CS 

kp-annual demand power loss cost 

ke-annual loss of energy cost 

Lsf-loss factor 

Lf-load factor 

2.2 Objective Function 2 

The second objective function takes the index-based approach to find the optimal 
allocation of EV CS taking the voltage stability index (VSI) [11] and total real power 
loss of the distribution system. The objective function is shown by Eq. 10. 

MinOF2 = α1 ∗ 
TPLcs 

TPLbase 
+ α2 ∗ ΔVSIcs

ΔVSIbase 
(10)

ΔVSI = max

(
1 − VSIi 

1

)
∀i = 2, 3 . . . . . .  N (11) 

VSIi+1 = V4 
s − 4V2 

s (RiPLi + XiQLi) − 4(XiPLi + RiQLi)
2∀i = 2, 3 . . . . . .  N (12)  

where, 

α1, α2-weighting factors
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ΔV S  I  cs-voltage stability index with CS

ΔV S  I  base-voltage stability index without CS 

N -number of buses 

V S  I  i -voltage stability index of ith bus 

Vs-voltage at sending end 

Ri -resistance of the line 

PLi -active power load at ith bus 

Xi -inductive reactance of the line 

QLi -reactive power load at ith bus 

2.3 Constraint Used 

Two types of constraints are used in the following proposed objective function. 

2.3.1 Equality Constraints 

Forward and backward sweep method is used for distribution system load flow anal-
ysis and is illustrated in Kazmi et al. [12], Martinez and Mahseredjian [13] and Teng 
et al. [14]. Power balance equation considering EV CS in the distribution system can 
be defined as follows: 

PGi − PCSi − PDi = 
N∑

j=1 

V2 
i Y

2 
ijcos

(
θij + λj − λi

)∀i = 1, 2, . . . . . .  N (13) 

QGi − QCSi − QDi = 
N∑

j=1 

V2 
i Y

2 
ij sin

(
θij + λj − λi

)∀i = 1, 2 . . . . . .  N (14)  

2.3.2 Inequality Constraints 

Distribution system should be lime by voltage level at each bus by: 

Vmin 
i ≤ Vi ≤ Vmax 

i (15) 

Maximum and minimum number of fast and slow charging stations can be placed 
at each bus:
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0 < n f astcs  ≤ N f astcsmax (16) 

0 < nslowcs ≤ Nslowcsmax (17) 

The total increased load (L) of the network should be less than the maximum load 
margin (Lmax ) of the system: 

L ≤ Lmax (18) 

3 Optimization Technique Used 

Nature-inspired optimization algorithms [15] are metaheuristic algorithms based on 
biological evolution, swarm behavior patterns, and physical and chemical processes. 
Nature influenced optimization algorithms are examples of computational intelli-
gence methods that are bioinspired because they contain intelligence. Algorithms 
influenced by nature are new in their ability to achieve effective solutions with 
minimal computational resources. Collective intelligence has emerged as a result 
of biological agents such as ants, bees, crows, bats, cuckoos, and others sharing 
information and socializing among members of their own species as well as with the 
environment [16]. 

In this paper Particle Swarm Optimization (PSO) and Whale Optimization (WO) 
is used. The social behavior of fish schools and bird flocks served as the basis for the 
metaheuristic optimization technique known as particle swarm optimization (PSO) 
[17]. The approach simulates a swarm of particles moving across a search space, 
each particle standing in for a potential answer to the optimization issue [18]. The 
flow chart of PSO algorithm is presented in Fig. 2.

Whale Optimization Algorithm (WOA) is a nature-inspired metaheuristic opti-
mization algorithm that was first proposed by Mirjalili et al. in 2016 [19]. It was 
inspired by the hunting behavior of humpback whales, where the whales work 
together to encircle their prey and capture it. The algorithm is based on a mathe-
matical model that simulates the behavior of humpback whales, where each whale 
represents a potential solution to the optimization problem [20]. The flow chart of 
WO algorithm is presented in Fig. 3.

4 Numerical Analysis 

In this study, WO and PSO are used to calculate the ideal CS positions. In this part, 
test system details and the results of the ideal CS setup are provided. IEEE-33 bus 
radial distribution system is taken as the test system for this analysis. The bus data
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Fig. 2 Flow chart of particle 
swarm optimization (PSO) 
algorithm

Start 
Initialize particles randomly 
Set initial velocities randomly 
while (stopping criterion is not met) do 

for each particle i do 
Evaluate fitness of particle i 
If fitness of particle i is better than its personal best then 

Update personal best of particle i 
end if 
Identify global best fitness value among all particles 

end for 
for each particle i do 
Update velocity of particle i using formula: 
( + 1) = ∗ ( ) + 1 ∗ 1 ∗ ( − ) + 2 ∗ 2 ∗ ( − ) 

Update position of particle i using formula: 
( + 1) = ( ) + ( + 1) 

end for 
end while 

Return global best particle 
End 

Fig. 3 Flow chart of whale 
optimization (WO) algorithm

START 
Generate initial population of random solutions 
Evaluate fitness of each solution 
Set the global best solution as the one with the highest fitness 
WHILE stopping criterion is not met DO 

FOR each solution in population DO 
IF random number < a THEN 

Update solution using equation ( + 1) = ( ) − ∗ ( ) 

ELSE IF random number < c THEN 
Update solution using equation ( + 1) = ( ) − ∗ ( ) 

ELSE 
Update solution using equation ( + 1) = ( ) − ∗ ( ) 

END IF 
Evaluate fitness of updated solution 
IF updated solution has higher fitness than current solution THEN 

Replace current solution with updated solution 
IF updated solution has higher fitness than global best solution 

THEN 
Replace global best solution with updated solution 

END IF 
END IF 

END FOR 
END WHILE 
RETURN global best solution 

and line data of IEEE-33 bus radial distribution system is taken from [21] and the 
one-line diagram of the system is shown in Fig. 4. The total demand on the IEEE-33 
bus radial test distribution system with a combined real and reactive load demand of 
3.715 MW and 2.3 MVAR. All simulations are carried out using an Intel Core I7 7th 
Gen CPU with 16 GB of RAM with MATLAB 2022a.

Optimal placement is done based on the two different objective functions using 
PSO and WO optimization algorithms. Different cases have been formed based on 
the number of EV fast and slow CS, and also based on the number of charging 
slots present in that EV CS. Different input parameters have been taken from Islam
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Fig. 4 One line diagram of IEEE-33 bus radial distribution system

et al. [2], Deb et al. [3] and Pazouki et al. [5] are presented in Table 1. On applying 
distribution load flow analysis to IEEE-33 bus radial distribution the total active and 
reactive power losses are 202.6771 KW and 135.141 KVAR. The minimum voltage 
is 0.91306 p.u at bus no 18 and the maximum voltage is 0.99703 p.u at bus no 2. 

Two different objective function is compared with two different Optimization 
algorithm to find the optimal allocation of EV CS. The comparison results of PSO 
and WO algorithm are tabulated in Table 2. In Table 2 OBJ 1 is the cost-based 
objective function formulated by adding installing cost, operation cost, extra line 
loss cost and voltage deviation cost, the second objective function OBJ 2 contains 
voltage stability index and the line loss index.

The voltage profile curve of both objectives with PSO and WO is presented in 
Figs. 5 and 6. The Voltage Stability Index (VSI) of objective function 2 is shown 
in Fig. 7. The respective active and reactive power loss after placing EV CS with 
different objective functions is shown in Figs. 8, 9, 10 and 11. The convergence graph 
of both the objective functions is shown in Fig. 12.

Table 1 Input parameters 

Cinstallationfast 2000 $ Cpfast 50 KW 

Cinstallationslow 1500 $ Cpslow 19.2 KW 

Cfastchargerinstall 
500 $ Cslowchargerinstall 

300 $ 

nfastcharger 8 nslowcharger 12 

nfastcs 2 nslowcs 2 

Pelectricity 0.065 $/kWhr T 8760 

PVD 1000000 $/unit kp/ke 57.693 $ /0.009611 $ 

k/Lf 0.2/0.43 α1, α2 0.5/0.5 

Noofpopulation 50 Noofiteration 200 
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Table 2 Comparison of different results 

PARAMETERS Without 
EV CS 

OBJ 1 with 
WO 

OBJ 1 with 
PSO 

OBJ 2 with 
WO 

OBJ 2 with 
PSO 

Active Power 
Loss 

202.6771 217.1822 221.0593 217.1822 223.9576 

Reactive Power 
Loss 

135.141 145.3920 149.0940 145.3920 147.1367 

No of fast EV 
CS/charger 

– 2/8 2/8 2/8 2/8 

No of slow EV 
CS/charger 

– 2/12 2/12 2/12 2/12 

Power factor – 0.98 0.98 0.98 0.98 

Optimal CS 
Location 

– 2/19/21/20 19/20/2/22 2/19/21/20 2/3/20/19 

Optimal CS Size 
P KW  

– 400/400/ 
230.4/230.4 

400/400/ 
230.4/230.4 

400/400/ 
230.4/230.4 

400/400/ 
230.4/230.4 

Optimal CS Size 
Q KVAR  

– 81.22/81.22/ 
46.78/46.78 

81.22/81.22/ 
46.78/46.78 

81.22/81.22/ 
46.78/46.78 

81.22/81.22/ 
46.78/46.78 

Min/Max voltage 
location 

2/18 2/18 2/18 2/18 2/18 

Min/Max voltage 0.91306/ 
0.99703 

0.91216/ 
0.99622 

0.91216/ 
0.99622 

0.91216/ 
0.99622 

0.91216/ 
0.99622 

% Increase in line  
loss 

– 7.156 8.8246 7.156 9.411 

Annual extra line 
loss cost 

– 1167.6 $ 1439.7 $ 1167.6 $ 1535.4 $ 

Computational 
time 

0.0641 90.5961 90.9458 91.6607 90.8697

From Figs. 5 and 6 we can observe that with the placement of EVCS in radial 
distribution system the voltage profile deviates from the base case. Also, we can see 
that from Figs. 8,9,10, and 11 that the active and reactive power of the branch and the 
system increased from the base case. In Fig. 12 whale optimization (WO) algorithm 
has the better fitness value in both the objective function cases. 

The impact on distribution system increases or decreases based on the number 
of EV CS and number of fast and slow chargers present in the respective CS. The 
optimal placement of different fast and slow charging stations based on number of 
chargers presented in Table 3.
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Fig. 5 Voltage profiles of 33-BUS system after placing EV CS with objective 1 

Fig. 6 Voltage profiles of 33-BUS system after placing EV CS with objective 2
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Fig. 7 Voltage stability index of objective function 2 

Fig. 8 Increased active power loss after placing EV CS objective 1
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Objective 2 Active power loss 
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Fig. 9 Increased active power loss after placing EV CS objective 2 
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Fig. 10 Increased reactive power loss after placing EV CS objective 1
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Fig. 11 Increased reactive power loss after placing EV CS objective 2 

Fig. 12 Convergence graph of both objective function

Table 3 Different placement locations for different EVCS numbers 

EV CS Optimal placement 

No of fast EV 
CS/ charger 

No of slow 
EV CS/ 
charger 

OBJ 1 with 
WO 

OBJ 1 with 
PSO 

OBJ 2 with 
WO 

OBJ 2 with 
PSO 

1/8 3/15 2/20/21/19 2/20/21/19 2/21/20/19 21/22/19/2 

2/8 2/12 2/19/21/20 19/20/2/22 2/19/21/20 2/3/20/19 

3/8 1/10 20/19/2/21 2/22/20/3 2/19/20/21 2/19/20/4 

4/8 0/0 2/20/22/19 20/22/19/2 2/19/20/21 21/20/19/2 

0/0 4/15 2/19/20/21 2/22/21/19 2/19/21/20 3/2/22/20
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5 Conclusion 

For the EV business to flourish quickly, the ideal placement of EV CS. This 
article provides a unique placement approach for EV CS placement considering the 
economics and the stability of the distribution system. CS is crucial. The modelling 
of EV CS contains two objective functions, one focuses on the operation, installation, 
extra losses and voltage deviation cost and the other objective function aims on the 
voltage stability index and line loss index. Two nature-based optimization algorithm, 
Particle Swarm Optimization (PSO) and Whale Optimization (WO) is utilized for 
the resolution of this difficult positioning issue. In this study, the effectiveness of 
these two algorithms in handling challenging optimization issues is firmly proven. 
The best optimal location for EV CS in 33 BUS radial distribution system is 2,19, 20, 
21. Whale optimization has given the best result of EV CS allocation out of these two 
optimization techniques. Further adding DGs to improve the system voltage profile 
is in the further scope of the paper. 
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SFO Based Economic Load Dispatch 
with FACTS Devices for DC Link 
Placement Problem 

B. Suresh Babu 

Abstract This Paper Presents a SFO based Economic Load Dispatch with FACTS 
devices for DC link Placement Problem. While most of the existing DC links are 
designed for point to point transmission, the multi-terminal DC system operation 
has become a reality and its usage is expected to increase in the future with a view 
of making the operation more flexible, secure and economical. The realization of 
multi-terminal DC systems cannot be done at once but can be executed by replacing 
the existing AC transmission lines with DC links over a period of time. The other 
development in power electronics pioneered FACTS devices that make the operation 
of the power system more flexible, secure and stable and have become popular in 
the recent years. The FACTS placement problem is another important optimization 
problem in power systems. New solution strategies involving FO have been suggested 
for the developed OPF with DC link and FACTS placement problem with a view 
of obtaining the global best solution in this paper. It presents simulation results 
of IEEE57 bus test systems with a view of demonstrating the effectiveness of the 
developed strategies. 

Keywords Firefly optimization (FO) · AC/DC power flow · FACTS devices ·
Valve point effect 
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α j β j χ j Fuel cost coefficients 
d j e j Coefficients of valve point effects of the generator 
TFC Total fuel cost 
TRPL Total Real power loss 
NVSI Net Voltage stability index
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LVSI Largest Voltage stability index 
FACTS Flexible AC transmission systems 
T ype  f Integer number in the range of (1–3) denoting the type of f -th FACTS 

device, 1 represents SVC, 2 denote TCSC and 3 indicates UPFC 

1 Introduction 

Over the years, numerous mathematical programming techniques such as gradient 
method by Carpentier 1962 [1], a new innovative technique for OPF validation has 
been described. The Load balancing and loss reduction are achieved by reconfig-
uring the network. The global search technique is rendered owing to the discontin-
uous nature of the problem [2–5]. A modified strategy for OPF along with radial 
distribution system. This approach explores an optimal location of shunt capacitors 
thereby enhancing voltage stability and power factor [6–8]. A new imperative tech-
nique for OPF has been proposed by modern stochastic algorithms such as Particle 
Swarm Optimization (PSO), Evolutionary Programming (EP) and Harmony Search 
Optimization (HSO) [9–14], a hierarchical approach for optimal location of FACTS 
devices through OPF model [15]. A complementary approach for solving a variety of 
ELD problems [16–19] and found to yield satisfactory results. Self Adaptive FO with 
a view of obtaining the global best solution through simulation results on IEEE57 
bus test system. 

2 Problem Statement with FACTS Devices and Solution 
Process 

CASE 1: TFC 

Minimize �1(x, u) =
∑

j∈�

α j Pg2 

j + β j Pg 
j + χ j +

∣∣∣d j sin
(
e j

(
Pg 
j (min) − Pg 

j

))∣∣∣

(1) 

FACTS device constraints − 0.8 ≤ ηz ≤ 0.2 for TCSC and UPFC (2) 

−100mvar ≤ Q f i ≤ +100mvar for SVC and UPFC (3) 

CASE 2: TRPL 

CASE 3: LVSI 

CASE 4: Combination of CASE 1 and CASE 2
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CASE 5: Combination of CASE 1 and CASE 3 

CASE 6: Combination of CASE 2 and CASE 3 

CASE 7: Combination of CASE 1, CASE 2 and CASE 3. 
Evaluate the AOF, highest f in the population as the optimal solution 

Maximize f = 1 

1 + AO F  
(4) 

2.1 Representation of Decision Variables 

The control variable in vector representation in FO method is as follows 

f = [  T ype  f , Loc  f , η  f , QF 
f , P

G 
k , V G j , Tv , Ldc 

p , I dc  p ] (5) 

• Read the problem data 
• Choose FOPM parameters such as number of fireflies, maximum number 

of iteration and convergence check. 
• Set iter = 0 
• Compare the FO of all the firefly in the population for each firefly 
• Repair the firefly and Replace the transmission lines by DC links, place 

FACTS devices and set the control parameters according to the firefly values 
• Evaluate the values of firefly parameters 
• Carryout the AC/DC load flow 
• Evaluate TFC, TRPL and LVSI, light intensity function and objective 

function 
• Rank the fireflies and highest light intensity in the population as the optimal 

solution. 

3 Results and Discussions 

IEEE 57 bus test system by using fix the Table 1 FO parameter (Number of firefly 
and Maximum number of iteration) and fix the Table 2 Number of devices to be 
placed (Number of DC link and Number of FACTS devices) [20].

It is observed from Table 3 tested results from IEEE57 bus system that FOPM 
in CASE 1, CASE 2 and CASE 3 is the reduction of the TFC, TRPL and LVSI. It 
is seen from the results of CASE 4, CASE 5, CASE 6 and CASE 7 that the PM as
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Table 1 FO parameter 
Parameter Value 

Number of firefly 30 

Maximum number of iteration 300 

Table 2 Number of devices 
to be placed Test system IEEE 57 

Number of DC links 3 

Number of FACTS devices 5

well as the HSO and PSO offer a compromised solution, which lies in between the 
respective best and worst objective function values obtained in CASE 1, CASE 2 and 
CASE 3 in IEEE57 bus system. It is observed from Tables 4, 5 and 6 that the Optimal 
solution of FOPM, HSO and PSO. The %TFC savings, %TRPL savings and %LVSI 
for IEEE57 are in Figs. 1, 2 and 3.The lower and upper load bus voltages of all the 
cases of the FOPM are graphically displayed in Fig. 4 respectively for IEEE57 bus 
system.

4 Summary and Future Research 

In this paper, FO solution technique for OPFDC with FACTS placement are devel-
oped and tested on three IEEE 57 test systems. The algorithms use sequential AC/DC 
load flow involving NR technique for computing the objective function during search 
and are able to offer the global best solution. It can also be observed that the proposed 
methods perform better with FACTS devices. Hybrid algorithms involving classical 
and evolutionary algorithms and the classical can be used to solve the OPFDC with 
FACTS placement problem in order to explore new search regions with the possibility 
of landing at a better solution point.
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Table 3 Performance Comparison of IEEE57 bus system 

CASE Before placement IEEE 57 

FOPM HSO PSO 

1 TFC 4556.5930 3796.1226 3800.4563 3801.2526 

TRPL 28.8037 29.8226 30.6259 30.7040 

NVSI 5.7914 4.8494 5.4457 5.4407 

LVSI 0.2887 0.2316 0.2440 0.2437 

2 TFC 4556.5930 5336.0222 5324.7986 5325.3278 

TRPL 28.8037 12.0663 12.2299 12.2348 

NVSI 5.7914 5.2935 4.8339 4.8351 

LVSI 0.2887 0.2657 0.2438 0.2461 

3 TFC 4556.5930 5365.7795 5065.1341 5157.2746 

TRPL 28.8037 17.0111 16.2796 15.3382 

NVSI 5.7914 3.7220 3.7745 4.1688 

LVSI 0.2887 0.1895 0.1990 0.2069 

4 TFC 5231.6348 5100.1084 4738.6463 

TRPL 25.7949 26.9970 21.3307 

NVSI 5.6759 6.1861 6.0059 

LVSI 0.2607 0.2843 0.2997 

5 TFC 3796.7276 3800.7042 3802.8248 

TRPL 29.7640 30.5586 30.5075 

NVSI 4.2749 4.8859 4.8829 

LVSI 0.2100 0.2226 0.2216 

6 TFC 5343.4440 5336.5989 5323.0015 

TRPL 12.1275 12.4479 12.2558 

NVSI 4.9801 4.5069 4.8364 

LVSI 0.2500 0.2265 0.2440 

7 TFC 5043.1763 4388.2177 4696.4122 

TRPL 24.4751 35.0490 31.4009 

NVSI 6.0508 6.4466 6.2837 

LVSI 0.3029 0.2853 0.3328
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Selection of Batteries for Electric Vehicle 
Applications 

Gaurang Swarup Sharma, G. Agam Swarup, and Subho Upadhyay 

Abstract Storage of energy is considered one of the most important factors for 
electric utilities and, electric vehicles. A battery is the primary source of energy for 
an electric vehicle and a properly selected battery will directly affect the reliability of 
the E-Vehicle. This necessitates understanding the behavior of the batteries on a basic 
level in ideal as well as practical conditions. The main goal of this work is to increase 
the reliability of the electric vehicle through a better selection of batteries. This work 
mainly focuses on simulating the charging and discharging characteristics of different 
types of batteries using MATLAB/Simulink and compares them to propose suitable 
battery types for different applications. 

Keywords Batteries · Simulation ·MATLAB/Simulink · Charging ·
Discharging · Electric vehicles 

1 Introduction 

Global Warming is a recognized concern for the entire world and fuel-consuming 
technologies are one of the main reasons. To mitigate its effects the world today is 
ever-changing and switching towards the use of renewable energy. Sustainable forms 
of energy are being recognized and preferred over conventional fossil fuels [1]. 

In India, green energy technologies are being adopted in a big way. Govern-
ment policy viz. According to the Government of India guidelines for Tariff Based 
Competitive Bidding Process for the Procurement of Power from Grid Connected 
Solar PV Power Projects (3 August 2017, MNRE), The National Electric Mobility 
Mission Plan (NEMMP), The FAME India Scheme (Faster Adoption and Manufac-
ture of (Hybrid and Electric Vehicles))are highly supportive in achieving the target 
of shifting to Electric Vehicle.
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Electric energy, owing to features like clean transportable, and storable, is the 
most prominent form of energy in India. However, the issues mentioned below are 
of concern to the researchers. 

1. Renewable Energy sources: The utilization of renewable energy in vehicle appli-
cations is one of the major points of discussion and research today. Work is 
being done to overcome the challenges of hybrid and electric vehicles [2, 3]. 
These are plagued with a lack of inertia which reduces their acceptance as a 
credible energy source at the utility-scale. Energy storage is being explored as 
a provider of inertia to overcome this problem. Energy storage also provides 
reliability to island renewable energy sources. 

2. Electric vehicles: To reduce pollution levels, the Government of India is empha-
sizing the use of E-Vehicles for personal public and goods transportation. The 
range of power and other dynamics of the vehicles are directly dependent on 
the electrical energy available on board. Research on the batteries and different 
energy-storing systems in an electric vehicle [4, 5] have provided deeper insights 
into the internal working of a battery system. These techniques provide a deeper 
idea of the batteries used in EVs. There has been work done in the Overview of 
batteries and battery management for electric vehicles [6]. There has been work 
on the optimal charging and discharging techniques of grid-connected EVs [7, 
8].Claude Ziad El- Bayeh et al. have researched the Charging and Discharging 
Strategies of battery-operated vehicles [9]. 

The study of electric vehicles their architecture, and the challenges faced in their 
use is an important aspect of choosing a battery for its use [10]. To understand 
the compatibility of converters and different components in a vehicle with different 
batteries a literature review is done on its architecture, with an understanding of 
converter topologies and control techniques is depicted in Vidhya and Allirani [11]. 
To study the recent developments in EVs, a futuristic approach is included in the 
article [12]. 

An electric vehicle’s battery should have a high-speed charging rate and a consid-
erably low discharging rate compared to general-purpose batteries. This project is a 
fundamental model to compare battery specifications such as State of Charge (SoC) 
and Current using MATLAB/Simulink. There has been plenty of advancement studies 
relating to different batteries. Lithium-ion and its state-of-the-art design in electric 
vehicles is a popular and advancing field of research [13]. Similar studies have been 
made for lead-acid [14], nickel–cadmium [15], and nickel metal hydride batteries 
[16]. The focus was made on the characteristics of the lithium-ion battery in a theo-
retical aspect by studying its use in an electric vehicle [17–19]. The study of a state of 
the art charge estimator, management system, and power capability of a lithium-ion 
battery was focused on Hannan et al. [20] and Xiong et al. [21]. Research has been 
done on an overview of the aging effect of lithium-ion battery [22]. A data-driven 
state of charge estimator for lithium-ion batteries in an electric vehicle [23] can be 
done to succeed in this work. A graphical study is done for the characteristics of 4 
batteries: lithium-ion, lead-acid, nickel cadmium, and nickel metal hydride batteries. 
It is considered that how much time the battery takes to charge to full SOC from the
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lowest considerable state (20%) and for discharging, the time taken for a battery to 
discharge from a certain level of SOC (95%) is observed. So, the simulation of the 
batteries for their performance is done based on the following parameters. 

State Of Charge (SOC): The state of charge of an electric battery in relation to its 
capacity is called the state of charge. SOC is the capacity that remains in a battery 
and is an important parameter that determines the control strategy. SOC shows the 
characteristics of the battery during charging and discharging and depends on its 
level or range. When the voltage is high, the battery is fully charged, and when it 
reaches its lowest point, it is empty. 

Current: For discharging the battery is connected to a load of 5 ohms and the 
load current characteristics are observed. As for the charging, considering Constant 
Voltage Charging, voltage is constant hence the current characteristics are observed 
in order to check the better performance. 

Power to Weight Ratio: It is a crucial parameter for automobiles. It provides 
a measure of the performance of the power source. The performance of power is 
calculated by the ratio of power output and the curb weight of the power source. 

Modeling and Simulation of Battery: Modeling and simulation of the battery are 
required to know the mathematical relationship between battery input and output 
parameters and the simulator. Here a controlled voltage source is dependent on the 
actual state of charge (SOC). As it is concluded from the above the battery plays an 
important role in the performance of the electric vehicle so its optimum selection is 
a must and this can be achieved by modeling and simulation. So, the battery model 
is required to monitor battery parameters such as SOC, voltage, and current. 

2 Methodology 

The methodology followed for selection of a battery model is shown in Fig. 1.

2.1 For Charging

• Grid charging is preferred as per the current situation. Here, an external DC source 
is applied to the battery in a parallel combination i.e. positive terminal of the source 
to the anode of the battery and the negative terminal of the source to the cathode 
of the battery as shown in Fig. 2.

• As the current leaves the voltage source to charge a battery, the current is denoted 
with a negative sign along with its magnitude.
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Fig. 1 Flowchart of methodology

2.2 For Discharging

• A series Resistive type load is connected to the battery for determining discharging 
characteristics of the battery.

• For controlled discharging a MOSFET is connected. In order to use the MOSFET 
as a switch the gate of MOSFET it is connected to the comparator which will 
decide the on and off the MOSFET at a specific value of SOC.

• Another end of the battery is connected to the Bus Selector through which the 
current, voltage and state of charge of the battery are observed. This SOC is
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Fig. 2 Block diagram for charging

Fig. 3 Block diagram for discharging 

provided to the comparator for the controlled switching. The block diagram for 
discharging is shown in Fig. 3.

3 Battery Specifications 

The batteries of 10 V and 7AH ratings as depicted in Tables 1 and 2 which were 
selected for simulating the charging and discharging effects. Here the simulation 
begins by charging a 20% initial SOC of batteries to 95%. The time required to 
charge to 95% is determined for each type of battery from Fig. 4, while Fig. 5 shows 
the current drawn for charging in different types of batteries. Similarly Fig. 6 shows
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Table 1 Battery specification 
for charging Nominal voltage (V) 10 

Rated capacity (Ah) 7 

Initial-state of charge (%) 20 

Battery response time (s) 30 

Table 2 Battery specification 
for discharging Nominal voltage (V) 10 

Rated capacity (Ah) 7 

Initial-state of charge (%) 95 

Battery response time (s) 30 

the current discharges from each battery during discharging operation. Finally Fig. 7 
shows the SOC discharging period for the battery. 

Fig. 4 SoC charging characteristics of different batteries
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Fig. 5 Current charging characteristics of different batteries 

Fig. 6 Current discharging characteristics of different batteries
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Fig. 7 SoC discharging characteristics of different batteries 

4 Results and Discussion 

It is observed that in a given specific time, i.e. 650 s, the lithium-ion battery fully 
charges to about 95% SoC, while the other batteries take a lot more time to attain 
a fully charged state. Also, the current flowing through the lithium-ion battery is 
higher than the other batteries (negative because the current flows from an external 
source to the battery). The time taken by the lead-acid battery to attain 95% SoC is 
1979s which is thrice as compared to the lithium-ion battery as shown in Table 3.

The lithium-ion type of battery would discharge sooner as compared to other types 
of battery. The SOC becomes 95–20% at 11556 s, which specifies why lithium-ion 
batteries are not used in houses or for other storage purposes. Whereas lead-acid 
batteries have the largest discharging time i.e., at 13689 s, hence, these they are used 
for higher storage purposes like in-house or charge storing from solar power plants. 

Another point of comparison is the Power to Weight Ratio which is the highest for 
lithium-ion batteries (160–170 W/Kg) i.e. lithium-ion battery will generate a specific 
amount of power with least weight amongst all batteries. But from the perspective 
of current, the lithium-ion battery provides a higher and less varying current which 
is used in the field of Automobiles. This statement is justified by the simulated data 
presented in the above table.



Selection of Batteries for Electric Vehicle Applications 55

Table 3 Observed comparison between batteries 

Battery Power to weight 
ratio [24] 

Charging time 
(simulation) 

Discharging time 
(simulation) 

Load current 
variation

ΔI (%) =
(
I95−I20 

I95 
× 100

)

Lithium ion 160–170 W/kg 650 s/10.83 min 11,556 s/ 
150.667 min 

3.5 

Lead acid 20–30 W/kg 1979s/ 
32.98 min 

13,689 s/ 
171.45 min 

11 

Nickel 
cadmium 

45–55 W/kg 1943s/ 
32.38 min 

13,509 s/173.5 min 8.62 

Nickel metal 
hybrid 

65–80 W/kg 3900 s/65 min 12,690 s/ 
161.53 min 

7.95

5 Conclusion 

Through the above simulation results, it can be concluded that both lithium-ion and 
lead-acid batteries were the best-performing batteries out of the four but are meant 
for different uses in our daily lives. Nickel–cadmium battery is also a good choice 
in terms of charging time as it takes lesser time to charge and less time to discharge 
charge as compared to lead-acid battery but the major disadvantage of this battery is 
the “Memory Effect” [25]. 

The lithium-ion battery takes less time to charge to full SoC (650 s) but also takes 
the least time to discharge i.e. 11556 s (simulation time) which is considerable. 

The Power to weight ratio of the lithium-ion battery is the highest (160–170 W/ 
kg) due to which it has the best performance amongst the other batteries. 

A lead-acid battery takes thrice as long as a lithium-ion battery to attain a fully 
charged state but has a higher discharge time of 13689 s (simulation time) than the 
lithium-ion battery of 11556 s (simulation time). These factors make lithium-ion 
battery preferable for E-Vehicles and lead-acid batteries for use in household power 
supply. 
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Issues and Solutions for Optimum 
Overcurrent Relays Co-Ordination 
in Medium Voltage Radial Distribution 
System 

Shanker D. Godwal and Kartik S. Pandya 

Abstract In medium voltage distribution systems, generally, electrical power is 
supplied through the radial feeder and ring main distribution systems. Further to 
protect such feeder’s overcurrent relay coordination is preferred. The overcurrent 
relay protection is very much efficient for these feeders. Still, there are some issues 
related to the overcurrent relay coordination scheme. These issues are the maloper-
ation of relays under normal operating conditions, backup relays operation before 
primary response, speed of primary and backup relays, underreach and overreach 
problems, and coordination of overcurrent relays with fuses. In this paper, two main 
issues are discussed. These are backup relays responding without failure of primary 
relay and speed of primary and backup relays. The solution to such issues is presented. 
Further, one new constraint in the overcurrent relay coordination scheme has been 
considered along with one objective function reported in the literature. The reported 
objective function, after essential modification, is considered for problem formula-
tion of over-current relay coordination. Considering the new objective function and 
constraint, the optimum relay setting of two systems (radial and ring main distribu-
tion systems) is achieved. Results show the effectiveness of the modified objective 
function and new constraint over the conventional method. For optimum overcurrent 
relay coordination, a genetic algorithm is used. 

Keywords Overcurrent relays · Coordination · Plug setting time setting · Plug 
setting multiplier
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1 Introduction 

These days electricity demand has been intensifying as compared to a decade ago. 
The power demand has inflated tremendously compared to decades ago and so more 
and more power suppliers came forward to install more power plants with maximum 
power handling capacity and installed capacity, and these have distended their capa-
bility to fulfill the energy demand. To supply reliable power to consumers efficiently 
with maintaining power quality, the role of interconnected power systems and power 
system protection is increased [1]. Huge and complex interconnected power systems 
required an efficient and robust power system protection scheme. Many power system 
protection schemes protect the entire power system in an efficient manner and out 
of these schemes inverse overcurrent relay protection scheme is widely used for 
the distribution system and backup protection of transmission lines [2]. Overcurrent 
relays coordination is a very crucial task to protect the entire distribution system 
properly and back up the transmission line. High speed and proper selection of over-
current relays also add complexity to relay coordination i.e., parameters associated 
with inverse overcurrent relays must be optimum otherwise the relay may mal-operate 
and miscoordination may take place [3]. If coordination is not proper among overcur-
rent relays the protection scheme may fail. Recently many researchers have proposed 
a large number of philosophies regarding over-current relay coordination schemes to 
achieve optimum parameters like plug setting (PS), time multiplier setting (TMS), 
and operating time of relays [4]. The optimum overcurrent relay coordination scheme 
states that all primary relay operating time must be minimized. The objective func-
tion to achieve minimum or optimum parameters of overcurrent relays is associated 
with some constraints which are a constraint on plug setting, constraints on TMS 
constraint on operating time, and constraint on coordination criteria [5]. 

The contribution of this paper is “To add one more constraint in overcurrent relay 
coordination formulation to achieve optimum and improved results”. The plug setting 
constraints which are added in the relay coordination problem will improve the results 
and will lead to results toward accuracy. In the previously available literature, only 
coordination time interval and plug setting of individual relays have been added 
which sometimes leads to mal-operation under overload conditions. This paper has 
overcome the said problem of miscoordination between primary and secondary relays 
during overload conditions. 

Problem Statement 

The requirement of the said constraint can be understood by following the radial 
system. Let the radial feeder contain three zones A, B, and C. Each zone is protected 
by three IDMT overcurrent relays. As per the protective scheme relay A must reach 
for fault beyond B and up to C point. Similarly, relay B must reach up to D as these 
two relays will provide the backup protection for the R2 and R3. Further, the relay 
R1, R2, and R3 are IDMT Relays and as per standard relays may operate between 
1.05 to 1.3 value of its pickup. Now let the feeder rated current be 200 amp and fault
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Fig. 1 Simple radial network with three sections [8] 

has been taken place at D bus bar. In that case, as per coordination if R3 will work as 
the primary and R2 will work as a backup relay. Now the current seen by the relay 
R3 and R2 is 200 amp and if pickup of R3 is 1.3 and pickup of R2 is 1.05 then these 
are kept at 100% plug setting considering that 20% overloading is allowed. In such 
case, under normal conditions, the feeder will carry 240 amp current. Further for 
100% the plug setting relay R3 will pick up at 260 amp whereas R2 will operate at 
210 amp. In this way, both relays will mal-operate. So for Proper operation of both 
relays, it is required that relay R3 pickup must be 1.05 times and relay R2 pickup 
must be 1.3 times otherwise both relays will mal-operate. Hence it is required to add 
a new constraint in overcurrent relays coordination considering the pickup range of 
IDMT relays (Fig. 1). 

Further, the speed of overcurrent relays is supposed to be high which means the 
action of the relay must be very fast. In this regard, it is required to achieve plug setting 
and time setting in such a way that the operating time of the relay will become very 
fast. Apart from this relays constrains should not get violated. It means the primary 
relay should get the first chance to operate and if it fails to operate then backup 
relays must operate. Failing to do so, will lead to miscoordination. To avoid such 
a problem the problem formulation part of overcurrent relays coordination must be 
robust. In this paper, one reported objective function is considered and after essential 
modification, the modified objective function is proposed. 

2 Problem Formulation 

The following mathematical structure can be used to optimize the plug setting and 
time setting of the overcurrent relay coordination problem for radial distribution 
systems. As per the overcurrent relay coordination philosophy, the sum of all relays’ 
operating time must be minimum when these relays are working as primary relays 
at their individual allocated zones [1]. The goal of overcurrent relay coordination is 
to reduce the operation time of all primary relays. In this continuation, the Objective 
function of the overcurrent relay can be written as per Eq. (1) [6–14]
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(OF) = 
m∑

i=1 

ti,k (1) 

where m is the total no of overcurrent relays in the radial distribution system, ti,k is 
the time taken by individual relays to operate for fault at k. 

Reported Objective Function (ROF) 

The reported objective function (ROF) is considered from Rajput et al. [1]. Where 
m is the total no. of primary relays, ti is the operating time of the ith primary relay,
�tpbk is the discrimination time between kth P/B relay pair. The total number of P/B 
relay pairs is defined by n, and k represents each P/B relay pair. The operating time 
of the primary and backup relay is denoted as tpk and tbk respectively for the kth pair. 
α1 and α2 are the constants and considered as unity for simplicity. The effectiveness 
of ROF is presented in Rajput et al. [1]. The major drawback of ROF is, its first term 
consists of t2, and as per the overcurrent relay coordination state the operating time 
of all primary relays should be minimum. Here it can be seen that the operating time 
is square. So for the proper comparison, it is required to replace the first term of the 
square of the sum of operating time with the sum of operating time of all primary 
relays. 

ROF = α1 

m∑

i=1 

t2 i + α2 

n∑

k=1

(
|�tpbk − |�tpbk|| · 

t2 pk 
t2 bk 

+ (
�tpbk + |�tpbk|

) · t2 bk
)

(2) 

Modified Objective Function (MOF) 

Modification in the reported objective function. The modification required in ROF 
is implemented in MOF 

MOF = α1 

m∑

i=1 

ti + α2 

n∑

k=1

(
|�tpbk − |�tpbk|| · 

t2 pk 
t2 bk 

+ (
�tpbk + |�tpbk|

) · t2 bk
)

(3) 

In MOF it can be seen that sum of all primary relays in POF is minimum as 
compared to OF. To reduce or minimize the sum of all relays operating time five 
basic constraints are considered in the past literature which are as follows. 

2.1 Constraint Set I—Coordination Criteria 

As per coordination criteria, there should be a specific difference between backup 
relay operating time and primary relay operating time which is known by the 
coordination time interval CTI [7, 8]
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ti,k − tj,k ≥ CTI (4) 

where ti,k, t  j,k are operating times of the primary relay and backup relays respectively. 

2.2 Constraint Set II—Bounds on Relay Operating Time 

Each relay will take a certain time to operate at the same time the relay should not 
take a long time to operate. This constraint specifies the maximum and minimum 
time taken by the relay [9–11] 

ti,min ≤ ti ≤ ti,max (5) 

where ti,max, ti,min are the maximum and minimum time taken by relays for a fault on 
i point which is the maximum operating time of the relay at i location. 

2.3 Constraint Set III—Bounds on the TMS of Relays 

For the coordination of overcurrent relays, it is required to create some intentional 
time delay so this constraint can be represented as per Eq. (4) [12–14] 

TMSi,min. ≤ TMS ≤ TMSi,max. (6) 

where TMSi,min., TMSi,max. Maximum and minimum time delay for relay Ri. 

2.4 Constraint Set IV—Bounds on the Plug Setting (PS) 
of Relays 

The Plug setting of the relay may vary from maximum to minimum so the bound 
can be defined as per Eq. (5) [4, 13]. 

The bounds on relays can be stated as 

PSi,min ≤ PS ≤ PSi,max (7) 

PSi,min, PSi,max. Minimum maximum plug setting of relay Ri; respectively.
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2.5 Constraint Set V—Relay Characteristic 

As per this criteria, it is required to specify the operating characteristic of the over 
current relay for proper coordination. In many research articles, Eq. (6) is considered 
for relay coordination. 

Relay operating time= β 
(PSM)α − 1 

× TMS (8) 

where β and α constant decide the stiffness of overcurrent relay characteristics. 

Constraint Set VI: Constraint Considering Plug Setting of Primary and Backup 
Relay 

As in per this constraint, the relay may be operated in between 1.05 and 1.3 times of 
the plug setting value. As discussed earlier, this constraint will not allow the backup 
relay to operate before the primary relay operation 

PS of RB > (1.3/1.05) × PS of RP (9) 

where RP is the primary relay and RB is the backup relay associated with RP. 

3 Distribution Network 

Figure 2 shows the distribution system having two generators with equal ratings. 
These generators are feeding power to a 66 kV bus and two more feeders. Relays 
R1–R7 are kept for the protection of the entire feeder. Further, R1 & R2 relays are 
backup for the R3 relay similarly R1 and R2 relays are also backup for the R4 relay. 
As in said feeder, power is being fed by two parallel lines hence backup of the R5 
relay will be R4 and the backup of relay R6 will be R3. As R5 and R6 are directional 
overcurrent relays so back of relay 7 will be R3 and R4. Further, for the sake of 
simplicity fault locations are considered mid of the line in case of fault in sections B 
and C with fault level 2600 MVA. Also, the fault level at bus C is considered 1000 
MVA. Further fault current data are given in Table 1.
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Fig. 2 Medium voltage level distribution system [15] 

Table 1 Relay fault currents for distribution network 

S. No Primary 
relay 

Primary 
relay CT 
ratio 

Back up 
relay 

Backup 
relay CT 
ratio 

Primary relay fault 
current (amp) 

Backup relay 
fault current 

1 R1 1000:1 – – 6560 – 

2 R2 1000:1 – – 6560 – 

3 R3 1000:1 R1 1000:1 8529 2843 amp 

4 R3 1000:1 R1 1000:1 8529 8529 amp 

5 R4 1000:1 R2 1000:1 8529 8529 amp 

6 R4 1000:1 R1 1000:1 8529 2843 amp 

7 R5 1000:1 R4 1000:1 2843 2843 amp 

8 R6 1000:1 R3 1000:1 2843 2843 amp 

9 R7 500:1 R3 1000:1 4373 2186 amp 

10 R7 500:1 R4 1000:1 4373 2186 amp 

4 Results and Discussions 

To prove the need for MOF and constraint on plug setting, the three soft computing 
techniques are used. To achieve optimum results of the operating time of each relay, 
three soft computing techniques are considered. These techniques are genetic algo-
rithm (GA), Harmonic Search Algorithm (HSA), and Particle swarm optimization. 
It is observed that HSA performs more optimum as compared to the rest of the two 
algorithms. Further, Table 2 depicts the plug setting and time setting achieved from 
various cases i.e. for the conventional objective function, reported objective function, 
and modified objective function. Figure 3 depicts the sum of the operating time of 
primary and backup relays for the distribution system shown in Fig. 2.
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Fig. 3 Comparative analysis of various techniques OF with ROF and MOF 

It can be seen from Fig. 2 that the operating time in the case of the conventional 
objective function is quite higher as compared to the rest of the two objective func-
tions. Table 3 presents the operating time of primary and backup relays. It can be 
noted that there are major miscoordination has been observed in the case of the 
conventional objective function. Whereas in the case of reported objective function 
and modified objective functions no miscoordination has been observed. Table 4 
depicts the operating time of primary and backup relays for ROF and MOF. It can be 
noted that even though the reported objective function gives optimum relay setting 
as compared to rest techniques but there is a major issue associated with ROF. So it 
is required to adopt MOF over ROF. The result achieved from MOF however quite 
higher as can be seen from Table 2 but as compared to OF the results are more 
optimized. Figures 4 and 5 present a comparative analysis of the primary relay’s 
operating time for ROF with OF and MOF with OF respectively. Similarly Figs. 6 
and 7 present a comparative analysis of the backup relay’s operating time for ROF 
with OF and MOF with OF respectively.
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Table 3 Operating time of primary and backup relay along with CTI for ROF GA and MOF GA 

S. No. Relays OF ROF GA MOF GA 

OTp [15] OTb [15] CTI [15] OTp OTb CTI OTp OTb CTI 

R1 0.397 – – 0.237 0.000 – 0.425 

R2 0.397 – – 0.474 0.000 – 0.732 

R3 0.401 0.593 0.192 0.237 0.353 0.116 0.360 0.682 0.322 

R3 0.401 0.359 −0.041 0.237 0.431 0.194 0.360 0.663 0.303 

R4 0.401 0.359 −0.041 0.307 0.431 0.124 0.644 0.663 0.020 

R4 0.401 0.593 0.192 0.307 0.353 0.046 0.644 0.682 0.038 

R5 0.662 0.713 0.050 0.524 0.527 0.004 0.303 1.649 1.346 

R6 0.662 0.713 0.050 0.310 0.416 0.106 0.247 0.858 0.611 

R7 0.789 0.873 0.084 0.205 0.506 0.301 0.193 1.274 1.081 

R7 0.789 0.873 0.084 0.205 0.635 0.430 0.193 2.612 2.419 

Table 4 Operating time of primary and backup relay along with CTI for ROF HAS, MOF HAS, 
ROF PSO, and MOF PSO 

Relays ROF HAS MOF HAS ROF PSO MOF PSO 

OTp OTb CTI OTp OTb CTI OTp OTb CTI OTp OTb CTI 

R1 0.138 0.859 0.602 0.425 

R2 0.793 0.746 0.881 0.775 

R3 0.192 0.200 0.008 0.203 1.312 1.109 0.346 0.895 0.548 0.662 0.753 0.091 

R3 0.192 0.705 0.513 0.203 0.677 0.474 0.346 0.799 0.452 0.662 0.701 0.039 

R4 0.190 0.705 0.516 0.251 0.677 0.426 0.162 0.799 0.637 0.266 0.701 0.434 

R4 0.190 0.200 0.011 0.251 1.312 1.061 0.162 0.895 0.733 0.266 0.753 0.487 

R5 0.264 0.310 0.046 0.442 0.460 0.017 0.250 0.285 0.035 0.537 0.577 0.040 

R6 0.443 0.561 0.119 0.405 0.448 0.043 0.197 0.786 0.589 0.491 1.426 0.935 

R7 0.150 1.025 0.875 0.349 0.627 0.278 0.127 1.123 0.996 0.238 1.959 1.721 

R7 0.150 0.365 0.216 0.349 0.572 0.223 0.127 0.348 0.220 0.238 0.796 0.558 

Fig. 4 Comparative analysis of primary relay’s operating time for ROF with OF
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Fig. 5 Comparative analysis of primary relay’s operating time for MOF with OF 

Fig. 6 Comparative analysis of backup relay’s operating time for ROF with OF 

Fig. 7 Comparative analysis of backup relay’s operating time for MOF with OF
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5 Conclusion 

In this paper, based on the constraint of plug setting and modified objective func-
tions are used. Further, it is disused the requirement of modification in the reported 
objective function. It is found that the reported objective function delivers optimum 
relay setting but to have a fair comparison with the conventional objective function 
it is required to have a common base. To fulfill this criterion the conventional objec-
tive function is being compared with the modified objective function. Further three 
soft computing techniques are used. These are HSA, GA, and PSO algorithms. It is 
found that harmonic search algorithms work more effectively. Further to examine the 
effectiveness of constraint on plug setting and modify objective function redial distri-
bution system has been taken and obtained results are compared with the conventional 
formulation of overcurrent relay coordination. 
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Powering Electric Vehicles with Solar 
Panels with Both the G2V and V2G 
Charging Modes 

Pranjali Kumari and Sanjay Kumar 

Abstract Solar PV based charging of Electric vehicle (EV) charging circuit is 
presented in this research. To obtain the optimal performance of the solar photo-
voltaic system under Typical Test Circumstances, incremental conductance MPPT 
algorithm is employed. With a boost converter with a 400 V output, a 100 AH battery 
may be charged by a solar PV array. Then, the voltage is lowered to meet the needs 
of buck operation and a 220 V battery. Short-term storage capacity is shown to 
completely charge rapidly. The objective is accomplished by the appropriate appli-
cation of the calculated parameters of the passive components (filter elements on the 
converters and inverters of the system). When power from solar photovoltaic panels 
is not available, electric cars are powered from the AC source. We use a PI (propor-
tional plus integral) regulator with a 10 rad/s corner frequency. An H-bridge rectifier 
provides a DC–DC bidirectional converter with a 400 V dc output voltage. One thing 
to note is how fast the SOC of the battery is reached. The battery current and voltage 
are shown during charging and draining modes. During charging, it is evident that the 
current and voltage of grid are synchronized. It is believed that they are out of phase 
during discharge, signifying a opposite power movement. Power semiconducting 
components are controlled with switching frequency of 10 kHz PWM pulse. Electric 
vehicle on-board chargers are available for use in parking lots and residences. Less 
grid-based power needs and emission-free, quiet driving are hallmarks of solar PV 
connected electric vehicles (EVs). 
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1 Introduction 

Use of solar energy to charge electric vehicle (EV) batteries is feasible in urban 
areas. Thus, the grid’s burden is reduced when EVs are linked directly to solar 
charging stations [1]. So, in this study, we propose using solar energy to charge 
electric vehicles. The transportation industry is a major contributor to emissions 
of greenhouse gases [2]. This problem is made worse by the EVs’ unpredictable 
charging habits [3, 4] and the rising popularity of quick charging [5, 6], both of 
which draw significant amounts of electricity from the grid for very little periods of 
time. Figure 1 illustrates the charging of electric vehicles using solar photovoltaics 
(PV), the grid, and PV. 

Battery SOC (state of charge) must be maintained within safe limits for a long 
lifetime in electric cars. Nickel–cadmium batteries, lead-acid batteries, and lithium-
ion batteries are the most common types found in electric vehicles. Lithium-ion 
batteries are favoured for EVs due to their high specific energy, powerful ability 
to discharge, and extended lifetime [6]. A typical PV-fed dc bus charging station 
consists of PV arrays, EV chargers, ESUs, and multiple DC–DC power converters 
that connect all of these components to a common dc bus. A DC–AC converter is 
necessary when the bus is operating in grid-connected mode, otherwise it is operating 
in the off-grid or islanded mode [7]. 

Several elements of EV charging utilising the grid-only utility supply have been 
thoroughly discussed in literature for many years [8]. Moreover, a number of review 
articles in this field have been published [9]. The bidirectional dc charger regulates 
the voltage and current to fit the recharging EV or ESU. Power may go in either way. 
Uncertainty the energy from the bus of dc side has to be supplied into the AC side, 
and this device acts as a converter that converts DC to AC energy and it is known as 
the inversion mode of operation. In contrast, if the grid power is required to charge 
the dc bus, a converter with property of AC–DC modulation must be installed and it 
is known as the rectification mode. Since it might alter battery life and maintenance 
needs, an efficient charger is crucial [10].

Fig. 1 EV with solar charging configuration 
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Lithium batteries are now the standard due to their superior performance in almost 
every category [11, 12]. In addition, it has a low self-discharge rate, a long life 
cycle, no memory effect when charging, a wide operating temperature range, and 
fast charging. A broad variety of chemical compounds are used in lithium-based 
batteries; for example, Lithium ferro phosphate (LiFePO4) is safer and less likely 
to explode if the battery is unintentionally short-circuited or overcharged, making 
it more convenient to use. Lithium-titanate, the most up-to-date version, offers a 
broader working temperature range, recharges faster, and takes bigger recharge rates 
(>10 C) [13]. A better version of the lithium-based battery now in use in EVs is in 
the works. 

The key benefit in the use of solar energy to power electric vehicles (EVs) has the 
potential to drastically reduce carbon emissions and boost energy independence. EVs 
may be charged with solar energy throughout the day utilising the grid-to-vehicle 
(G2V) and vehicle-to-grid (V2G) charging modes, and they can provide extra energy 
back to the grid at times of peak demand. Solar panels may be placed at home or at 
public charging stations to power EVs in the G2V mode. This enables EV users to 
lessen their dependency on fossil fuels by charging their cars with clean, renewable 
energy. Additionally, utilising solar power throughout the day to charge EVs might 
ease the load on the grid during times of high demand. EVs may provide extra energy 
to the grid in the V2G mode during times of high demand. This may lessen the demand 
for peaker plants that use fossil fuels and increase grid stability. Additionally, EV 
owners may make money by reselling extra energy to the grid, which reduces the cost 
of owning an EV. EVs may run on solar energy and provide beneficial grid services 
by combining the G2V and V2G charging modes. But there are certain issues that 
need to be resolved, such as creating standardised communication protocols for EVs 
and the grid and making sure that V2G charging does not shorten EV batteries’ lives. 
Overall, utilising solar panels to power electric vehicles while employing the G2V 
and V2G charging modes has the potential to provide a viable and affordable option 
for lowering carbon emissions and enhancing grid stability. 

2 History of Electric Vehicle Technologies 

2.1 EV’s Developing History 

A vehicle powered by one or more electric motors is often referred to as an electric 
vehicle (EV). It can include a motorbike or scooter, a truck or a bus. Nevertheless, 
Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and pure 
battery electric cars (BEVs) are the only types of EVs considered in this research. 
Further benefits of the EV include less vibration, stench, noise, or difficulty changing 
gears as compared to a gasoline-powered car. With respect to developments in power 
electronics, battery, control, converters, and microelectronics, the EV is expected to 
have a substantial influence on the automobile industry.
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2.2 Battery 

It’s not only electric cars that rely on electricity; it’s crucial to modern living. The 
battery is essential to the operation of an electric vehicle because it stores electricity 
for later use as motive force (EV). Rechargeable batteries have surpassed all other 
forms of energy storage for usage in electric vehicle propulsion systems due to 
its convenience, safety, and high energy density. Ultra-capacitors, flywheels, and 
hydrogen fuel cells are a few examples of alternative storage components that have 
been developed, but none of them have been able to compete with the low cost of 
batteries. So far, a battery has numerous significant disadvantages, including: (1) a 
small amount of energy; (2) a lengthy charging process; and (3) restricted charging 
cycles. These elements lead to a reduced driving range and pricey replacements. A 
battery’s performance is determined by its particular energy, efficiency, maintenance 
requirements, cost, and environmental effect. 

2.3 PV System 

In order to generate electricity, PV modules absorb sunlight. These days, most solar 
panels use modules made with either polycrystalline or monocrystalline silicon. Yet 
lately, thin films have gained popularity because they are simpler to make, more 
affordable, and function better at greater temperatures. While other, more advanced 
technologies, including multijunction modules and heterojunction with intrinsic thin 
layers, are more effective, they are seldom employed for broad applications because 
of their significantly huge prices. The open circuit voltage and power of a typical 
commercial module range from around 20 to 30 V dc and 200 to 300 W, respectively. 
In order to generate the required voltage for operation, the modules are linked in series 
strings; This ranges from around 200 V dc to about 500 V dc, and it’s used in electric 
vehicles. When the quantity of parallel threads rises, the power of the array rises 
as well, thanks to the series–parallel link. One may learn about the performance 
of a PV scheme under different temperature and irradiance (G) circumstances by 
analysing its current–voltage (I–V ) and power–voltage (P–V ) characteristics (T ). 
Changing values of G and T cause a nonlinear I–V curve. Power is always greatest 
at a constant operating point called the maximum power point (MPP). When G or T 
changes, the MPP swings continually. Thus, a maximum power point tracker (MPPT) 
is necessary to guarantee that the modules are always drawing the maximum feasible 
power, independent of the values of T and G. Several MPPT strategies are utilized, 
including as the incremental conductance, perturb and observe, and hill climbing 
approaches. particle swarm optimization (PSO), Artificial neural networks (ANN), 
fuzzy logic, and other advanced soft computing approaches have been developed in 
recent years.
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2.3.1 P&O MPPT 

Due to its low cost and ease of installation, the perturbation and observation approach 
has been widely employed in solar PV systems. Using the voltage and current 
information the PV module has detected, this method calculates the PV power. By 
sampling both the PV Array current and voltage, the MPPT algorithm used in the 
P&O technique determines the PV output power and the power change. The voltage 
of the solar array is regularly increased or decreased to power the tracker [4]. A 
second perturbation is created in the same (opposite) direction if a particular pertur-
bation causes the output power of the PV to grow (reduce). Up until the maximum 
power point has been achieved, the duty cycle of the DC chopper is changed. In actu-
ality, the MPP is where the system oscillates. The oscillation may be minimised by 
reducing the step size of the perturbation. Small step sizes, however, cause the MPPT 
to lag. The PV array would show multiple characteristic curves for various irradi-
ance and cell temperature levels. Each curve has a peak in its power. The converter 
is then given the equivalent maximum voltage at this moment. The P&O Algorithm 
flowchart is shown in Fig. 2. 

Fig. 2 Flowchart of pertub 
and observe algorithm
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3 EV Circuit Configuration and Design 

For the EV to run as efficiently as possible, the passive filters utilised in the circuit 
must be designed well. This article presents the design of passive components. A high 
value DC capacitor is needed on the DC side of the inverter of the single phase grid 
because the DC output voltage contains harmonics with second order terms. Between 
the input and output, there is an energy storage device called a DC capacitor. The 
amount of energy storage will determine the capacitor value. (i) If the input power 
factor is one, the input power is supplied. 

Pin  = vin  × iin  = V I  

2 
− V I  

2 
cos 2ωt (1) 

Power of the inductor at input side is given by (2) 

PL = ∂
(
1 
2 L(I sin ωt)2

)

∂t
= ωL I  2 sin ωt cos ωt (2) 

The H-bridge converter receives energy from the input inductor and uses it to 
charge the output dc capacitor. If there are no losses in power in the devices, the 
output capacitor will store the same amount of power as the transformation among 
the input and inductor. Using this, one can determine the power flow via the capacitor 
(3) 

Pc = Pin  − PL =
(
V I  

2 
− V I  

2 
cos 2ωt

)
− (

ωL I  2 sin ωt cos ωt
)

(3) 

The capacitor is charged and discharged by second order components in Eq. (3), 
which results in ripple in the output DC voltage. By simplifying and taking the 
integration to get the instantaneous power for a haf cycle, where (4) is the ripple 
energy 

Ec = 
T/2∫

0 

/
V 2 I 2 

4 
+ ω

2L2 I 2 

4 
sin 2ωtdt  =

/
V 2 I 2 

4
+ ω

2L2 I 2 

4 
/ω (4) 

One may determine the relationship between the voltage of the DC side, capacitor 
at the DC side, and inductor at the input side as follows from the swell energy in the 
capacitor: (5) 

Cdc = 
/

V 2 I 2 
4 + ω2 L2 I 2 

4 

2 × Vdc × �Vdc × ω 
(5) 

Cdc is determined to be 2 mF using (5).
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(ii) The current ripples passing over the filter inductor informs the design of the 
input side filter (Ls and Cs) (Ls). 

Ls = Vdc × V sin ωt V dc  × (
1 − V sin ωt V dc

)

2�I fsw 
(6) 

The instant rate of the AC input voltage is represented through V sint, while Vdc 
is the DC voltage with fluctuations. The current ripple I is considered to be 10% of 
the current at the input side and f sw is the switching frequency. The input LC filter 
capacitor is used to dampen the output voltage’s harmonics, which are represented 
by (7) 

Cs =
(

1 

2π fsw

)2 

× 1 
Ls 

(7) 

The 20 F and 0.75 mH values for the filter capacitor Cs and filter inductor Ls are 
attained. (iii) (Lo and Co) output filter using (8) and (9) separately, the filter at output 
i.e. capacitor Co and inductor Lo are determined. 

Lo =
(
D(1 − D2)r

)

2 fsw 
(8) 

Co = (1 − D) 

8Lo

(
�Vo 
Vo

)
f 2 sw 

(9) 

To keep the output voltage constant, a very large output side capacitor is needed. D 
is the duty cycle, resistance on the internal part denoted by r, buck/boost converter f sw 
switching frequency, output voltage is Vo, and voltage ripple, which is five percent 
of voltage at the output end, is Vo. It is determined that Lo and Co are 41 H and 600 F. 
In this study, a single phase 120 V rms system is taken into account. 

4 Simulation Results and Discussions 

This Simulink model consists of 2000 W solar PV linked to the DC bus through a 
step up converter, the 240 V EV battery is connected to the Dc bus through DC DC 
to buck boost converter and the grid is connected to the DC bus via a single phase 
inverter (Fig. 3).

This control logic consists of the incremental conductance extreme power chasing 
method (MPPT) for the PV scheme. Incremental conductance MPPT receives the PV 
voltage and current and generates the duty cycle and duty processed via the PWM 
generator for generating the pulse for the Boost converter (Fig. 4). Bidirectional 
converter of the battery is controlled by the voltage control method. The voltage of
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Fig. 3 Solar photovoltaic (PV) charging circuit for electric vehicles, modelled in Simulink for G2V 
and V2G modes of operation

the DC bus is monitored and related with the DC bus standard voltage. The voltage 
error is handled through a PI regulator. The PI regulator produces the duty ratio and 
it is handled through the PWM generator. The PWM generator produces the pulse 
for the Bidirectional converter for controlling the voltage of the DC bus. The inverter 
of the grid side is controlled by means of the DQ current control concept for V2G 
and G2V operation.
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Fig. 4 Control logic of Solar PV boost converter, EV battery bidirectional converter, grid inverter 

4.1 Mode 1: Solar PV Used for Charge the EV Battery 
and Supply the DC Load 

The PV voltage is maintained at 240 V during 1000 and 500 W/m2 and 80 V during 
0 W/m2 irradiance (Fig. 5). The PV current is 8.1 A during 1000 W/m2, current is 
4 A during 500 W/m2 and current is zero at 0 W/m2. The PV power is 2000 W during 
1000 W/m2, 1000 W for 500 W/m2 and 0 W for 0 W/m2.

The voltage of the Battery is upheld at 255 V, the battery is in charging mode 
during 1000 and 500 W/m2 (Fig. 6). Battery in discharging mode during 0 W/m2. 
The battery current is −6 and −2.5 A during 1000 and 500 W/m2 and 1.8 A during 
0 W/m2.

The load of DC bus or voltage of the DC bus is upheld at 400 V, current of the DC 
load is maintained at 0.6 A and the Dc load power is maintained at 240 W (Fig. 7).
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Fig. 5 PV voltage, current and power

Fig. 6 Battery voltage and current
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Fig. 7 DC load voltage, current and power 

The inverter or voltage of the grid is upheld at 230 V, inverter and current of the 
grid is maintained at 0 A (Fig. 8).

The solar PV system is linked to a charge controller in this mode of operation, 
which controls the voltage and current coming from the solar panels to make sure 
the electric vehicle battery is charged at the proper pace. Additionally, the charge 
controller prevents the battery from being overcharged or undercharged, both of 
which might harm it. In addition, a DC load—anything that uses DC electricity—is 
connected to the solar PV system. A DC load might be any appliance or gadget. In 
the event that the solar PV system is not producing enough energy, this load may be 
provided either directly by the solar panels or by the battery. This mode of operation 
may assist to maximise the use of solar energy and lessen dependency on the grid by 
utilising solar PV to charge the EV battery and power a DC load at the same time. 

4.2 Mode 2: Grid to Vehicle Mode with Solar PV 

The PV voltage is maintained at 240 V during 1000 and 500 W/m2 and 80 V during 
0 W/m2 irradiance (Fig. 9). The PV current is 8.1 A during 1000 W/m2, current is 
4 A during 500 W/m2 and current is zero at 0 W/m2. The PV power is 2000 W during 
1000 W/m2, 1000 W for 500 W/m2 and 0 W for 0 W/m2.
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Fig. 8 Inverter voltage, inverter current and grid current

The voltage of the battery is upheld at 255 V, the battery current is always in the 
negative region and the battery is in charging mode via the grid as well using solar 
PV (Fig. 10).

In this mode of operation, the solar PV system is connected to a charge controller 
that regulates the voltage and current from the solar panels to ensure that the EV 
battery is charged at the appropriate rate. The charge controller also monitors the 
state of charge of the battery and adjusts the charging rate accordingly. When the 
solar PV system is generating more energy than is needed to charge the EV, the excess 
energy can be fed back into the grid through a grid-tied inverter. This allows the solar 
PV system to offset grid energy usage and potentially generate income through net 
metering or feed-in tariffs. 

4.3 Mode 3: Vehicle to Grid Mode with Solar PV 

The PV voltage is maintained at 240 V during 1000 and 500 W/m2 and 80 V during 
0 W/m2 irradiance (Fig. 11). The PV current is 8.1 A during 1000 W/m2, current 
is 4 A during 500 W/m2 and current is zero at 0 W/m2. The PV power is 2000 W 
during 1000 W/m2, 1000 W for 500 W/m2 and 0 W for 0 W/m2.
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Fig. 9 PV voltage, current and power

Fig. 10 Battery voltage, current



84 P. Kumari and S. Kumar

Fig. 11 PV voltage, current and power 

The voltage of the battery is upheld at 255 V, the battery current is always in the 
negative region during 1000 and 500 W/m2 and the battery is in charging mode via 
solar PV (Fig. 12). The battery current is positive during 0 W/m2 and discharging 
operation happens in the battery during this mode and supply the power to the grid 
and DC load.

The voltage of the inverter is upheld at 230 V, the inverter and the current of the 
grid are maintained at 3 A peak and voltage and current both in phase (Fig. 13).

In V2G mode, the EV battery may be utilised as a portable energy storage device, 
enabling the utilisation of the stored energy when the grid is experiencing high 
demand. During sunny seasons, the solar PV system may also be used to directly 
charge the EV battery. The EV is attached to a bidirectional charger that can charge 
the EV battery and discharge it back to the grid in order to allow V2G functioning. 
A system that governs the energy flow to and from the EV battery operates the 
charger depending on variables including grid demand, energy pricing, and battery 
state of charge. The V2G technology may use energy from the EV battery to assist 
balancing the grid during times of heavy demand. As a result, the EV may function 
as a distributed energy resource and enhance grid stability. 

Table 1 presents data on photovoltaic (PV) power generation under different levels 
of irradiance. The irradiance is measured in W/m2, while the PV power generated is 
measured in W. The table also provides information on the maximum power point 
ratio (%) and efficiency (%) of the PV panels under different irradiance levels. The 
data shows that as irradiance decreases, the PV power generated also decreases.
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Fig. 12 Battery voltage, current

Fig. 13 Inverter voltage, inverter and grid current
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Table 1 Comparison of PO MPPT and incremental MPPT 

Irradiance (W/m2) PV power (W) Maximum power point 
ratio (%) 

Efficiency (%) 

PO MPPT INC MPPT PO MPPT INC MPPT PO MPPT INC MPPT 

1000 1990 1998 99.5 99.9 96 98.5 

800 1592 1599 99.5 99.9 96.5 98.6 

500 993 997 99.3 99.7 97 98.4 

400 794 799 99.25 99.87 97.2 98.9 

Additionally, the maximum power point ratio and efficiency of the panels decrease 
slightly with decreasing irradiance. However, the efficiency remains relatively high, 
ranging from 96 to 98.9%, even at low irradiance levels. 

5 Conclusion 

In this research, a circuit for charging an electric car is outlined. using energy derived 
from the sun. Normal test conditions include measuring the Power–Voltage and 
Current–Voltage features of the solar PV array. The design procedure for filter of 
passive components is defined. With the help of a converter, the 245 V voltage 
at the output from the solar PV system will be increased to 400 V. To satisfy the 
requirements of charging an electric car battery, a bidirectional dc–dc converter filters 
the output voltage and steps down the filtered voltage. The employed DQ frame-
based current controller charges the EV battery quickly. Based on measurements, it 
is clear that SOC functions well throughout both the charging and discharging stages. 
An electric vehicle’s connection to and disconnection from the power grid may be 
represented by out-of-phase and in-phase voltage and current. The state-of-charge 
(SOC) of the battery is monitored while discharging and charging. The regulator 
performs a fine job of keeping the reference voltage stable while discharging and 
charging, with just a little amount of steady-state inaccuracy. Solar charging mitigates 
voltage problems and congestion in the delivery network produced by an increase in 
generating units and energy consumption as a consequence of a rise in the quantity 
of electric vehicles (EVs) charging from the grid. 
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Ultrasonic Analysis of Lorentz Force 
for Gas Density Monitoring Using EMAT 
Sensor 

Soumya Debashis Das , Siddharth Mohanty, Sudhansu Panigrahi, 
Rajsekhar Sahu, Ahwan Pradhan, and Gyan Ranjan Biswal 

Abstract Gas-Insulated Switchgear (GIS) in substations encounters round the clock 
ppm/ppb level leakages hence increasing the necessity of a robust, reliable, and 
sensitive device for gas density monitoring. Electromagnetic-acoustic transduction 
is a novel alternative to piezoelectric transduction for resonator sensors, with unique 
features and benefits. The paper presents a modeling that defines the electromagnetic-
acoustic interaction in the GIS (gas-insulated switchgear) vessel for the detection of 
SF6 gas leakage. Detection of gas density using an acoustic wave was found to 
be suitable because of its good electrical properties in gases. It also presents the 
approach in which the analytical EM (electromagnetic) solvers for Lorentz force 
density were connected to the ultrasonic simulation. The arrangement is unique as 
well and helps in finding gas leakage at ppm level because in the substation the live 
conductors and other electrical components are surrounded by SF6 gas. In this study, 
the performance and stability of the EMAT sensor for gas leakage were evaluated 
in the presence of parameters such as its geometry, pressure, temperature, humidity, 
and molar mass. 

Keywords EMAT sensor · Substation automation · Gas density sensors ·
Acoustic wave · Gas-insulated switchgear (GIS) · Eddy current, ppm/ppb 

1 Introduction 

Gas-Insulated Switchgear (GIS) based on SF6 is commonly utilized in High-Voltage 
(HV) applications. Because of the environmental impact of SF6 gas, strict rules 
have been implemented to monitor their use and to restrict their emission from
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switchgear. An Electromagnetic-Acoustic Transducer (EMAT) sensor was discov-
ered to be a promising technique for detecting gas leaks. With its benefits of 
extended propagation distance, low attenuation, and high testing efficiency, ultra-
sonic guided wave testing has become widely employed as Nondestructive Testing 
(NDT) and structural health monitoring in recent years. A variety of NDT techniques 
are commonly used, including piezoelectric, laser, and electromagnetic-acoustic 
transducers. Among these techniques, electromagnetic-acoustic transducers can 
detect non-contact defects by electromagnetic coupling with the tested object. The 
complaint-free nature of EMATs makes them particularly useful in harsh conditions, 
such as hot, cold, clean, or dry. 

One goal for sensor applications is to track a specific resonant peak frequency as 
a function of changes in the targeted gas medium. EMATs can primarily excite the 
longitudinal Bulk Acoustic Wave (BAW), also known as Longitudinal EMAT (L-
EMAT), and the shear BAW, also known as shear EMAT (S-EMAT). One significant 
EMAT design feature is that it is used in both sensor and stiffness constant extraction 
applications where it can pick which BAW mode to stimulate. As a result of this 
property, a resonating plate’s harmonic spectrum is clear, with no or few overlapping 
modes. This results in clear resonating peaks and the possibility of selecting higher 
harmonics for parameter extraction. To comply with stricter future regulations on 
SS6 gas usage and to improve the reliability, cost-effective and easy-to-use in situ 
density sensors are required [1]. 

The eddy currents generated by the EMAT on the sample surface can be applied to 
conductive materials or materials that can be easily created by depositing a metallic 
coating on them. This eddy current is distributed at a very thin layer of the material, 
called skin depth, according to electromagnetic induction theory. Due to this eddy 
current in a static magnetic field, Lorentz’s force is experienced. The distribution of 
this Lorentz force is primarily controlled by the magnet and electric coil designs, but 
it is also influenced by the qualities of the test material, the relative position of the 
transducer to the test part, and the transducer’s excitation signal as shown in Fig. 1. 
The exact nature of the elastic disturbances is determined by the spatial distribution 
of the Lorentz force. The Lorentz force mechanism is used in the majority of effective 
EMAT applications.

2 Methodology 

The major constituents of EMAT are a generating coil, a receiving coil, and a 
permanent magnet. The generating coil has a radio-frequency power source, and 
the receiving coil is directly connected with an RF amplifier while the magnet is 
responsible for producing the magnetic field [2].
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Fig. 1 Schematics of an 
EMAT sensor

2.1 Mathematical Model 

The distributed point source method (DPSM) is used to model the acoustic sensor. 
In an EMAT system, Navier’s equation (in its dynamic state) can be used to describe 
the complete motion of waves. In Eq. (1), the body force is depicted by F, the 
displacement vector is depicted as s, K and L are Lame’s elastic constants, and the 
material density is depicted as Q. 

(λ + μ)∇(∇.s) + μ∇2 s + ρ F = ρu (1) 

Considering the Cartesian coordinate system for a coil, the dependency of the 
excitation current on the magnetic potential vector is summarized as in Eq. (2).
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where 

Ri = 
/
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2 + (z − Czi )
2 (3) 

The active source coordinates in Eq. (3) are represented as Cxi  , Cyi and Czi . Also  
“x, y, and z” are relational to the passive points. Considering the x-direction, the 
magnetic potential can be computed using Eq. (4).
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When the effect of the potential is considered, the magnetic field can be understood 
from Eqs. (5), (6), and (7). 

B = ∇  ×  A (5) 
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Operation as Transmitter 

EMAT-based ultrasonic transmitter has been broken down into core components that 
are expected to operate in an uncoupled way [3, 4]. A finite-difference-based approach 
based on Maxwell’s equations is used to determine the eddy currents generated inside 
the test specimen due to the EMAT coil. In the region of interest, it is assumed that 
the enormous static magnetic flux in the test specimen is uniform in both directions 
and intensity. The Lorentz forces generated within the test specimen are calculated 
using Eq. (8). 

F = qvp × B (8) 

Finally, a finite difference approach is used to represent the ultrasonic wave 
propelled into test specimen by Lorentz body forces. 

Operation as Receiver 

An EMAT receiver for detecting acoustic waves in a specimen in a common arrange-
ment is shown in Fig. 2. A meander line coil is suspended over the specimen with 
wire spacing “b” and lift-off “h” identical to that of an EMAT transmitter.

The received acoustic waves have an angle of θ concerning the z-axis, Bo (y, z) 
is a static magnetic flux density, “v (y, z, t)” is the particle velocity, and “u” is the  
specimen’s conductivity. Due to the mechanical vibrations of the medium and the
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Fig. 2 Signal received at EMAT receiver

existence of a static magnetic field, a free conduction current density distribution, J 
= σ V XBo, is established in the specimen. As a result, the current density generates a 
time-varying vector potential A (y, z, t) inside and outside the specimen, which can be 
monitored as a voltage in an EMAT receiver. The induced current density distribution 
is also periodic, due to the anticipated spatial periodicity of the vibrating plane wave 
in the medium. To achieve maximal emf signal responsiveness, the induced currents 
must have the same frequency as pickup wire spacing (b = X/2 sin θ ) as the sinusoidal 
plane wave assumption. The induced voltage Vf for a finite cross-sectional one-turn 
coil is given by Eq. (9). 

V f (t) = 
˜ 

Vp(y, z, t)dydz  ˜ 
dydz  

(9) 

where voltage Vp(y, z, t) due to point pickup coil is given by Eq. (10). 

Vp(y, z, t) = −  
∂ 
∂t 

¨ 
B.dS (10) 

2.2 Geometric Analysis for Designing the Sensor 

The conventional magnet’s volume is the same as that of the enhanced magnet. In 
the conventional configuration, the radii of the magnet are 15 mm. In the improved 
configuration, a ring magnet (Magnet 2) having an outer and inner radius of 15 and
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Table 1 Parameters used in 
FEM Objects Parameters Symbols Values 

Spiral coil Diameter D1 0.51 mm 

Magnet 1 Radius R21 10 mm 

Height h1 20 mm 

Magnet 2 Inner radius R21 10 mm 

Outer radius R22 15 mm 

Height h2 20 mm 

Aluminum Mass density ρ 2700 kg/m3 

Electrical conductivity σ 3.77 × 10–3 

Young’s modulus E 70 × 108 Pa 
Poisson’s ratio μ 0.33 

Thickness H2 50 mm 

10 mm, respectively, and a solid magnet (Magnet 1) having a radius of 10 mm were 
being used by the 2-D Finite Element Method (FEM). Their total height is 20 mm. 
In both configurations, the size of the coil is the same having a diameter of 0.51 mm 
and 30 turns, and the material of the coil is copper wire. The parameters used were 
as shown in Table 1. 

After numerical calculation, the magnetic flux density distribution on the spec-
imen’s surface was plotted for the two configurations. It should be noted that the 
graph is a 2-D axisymmetric graph with the z-axis rotated cross section as shown 
in the figure. The magnetic flux density vector on the aluminum plate’s surface was 
calculated to precisely analyze the distribution of magnetic flux density magnitude 
concerning the traditional and modified EMAT. 

It is imperative to note that the magnitudes vary. The radial component of magnetic 
flux density Bsy is 0 at the center of the magnet, and near the edge of the magnet, 
there appears a spike peak. The magnetic flux density Bs exhibits an arching peak 
in its axial component near the magnet’s surface. It has been observed that near the 
magnet’s edge, it drops sharply to 0 or even becomes negative. 

2.3 Generation of Eddy Current from Coil 

For the generation of eddy current, a quasi-static equation, i.e., Equation (11) for  the  
magnetic potential A is needed to solve the problem: 

σ 
∂ A 
∂x 

+ ∇  × (
μ−1 
0 μ−1 

r ∇ ×  A
) = σ 

Vcoil 

2πr 
(11) 

Here μr denotes vacuum permeability, σ denotes electrical conductivity, and Vcoil 

is the voltage across one turn of the coil [5]. The equation can then be reduced to 
time-harmonic form as shown in Eq. (12).
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j ωσ A + ∇  × (
μ−1 
0 μ−1 

r ∇ ×  A
) = σ 

Vcoil 

2πr 
(12) 

By integrating Maxwell’s stress tensor on the delimiting boundary ∂Ω, one can 
obtain the total electromagnetic force acting on an area of space Ω depicted by 
Eq. (13) 

F =
{

∂Ω

Tnd  S (13) 

The force calculation tool conducts the integral along the boundaries of the 
selected region automatically, considering the problem in axisymmetric geometry, 
where electrical currents are induced in the metallic plate by the fluctuating magnetic 
field in the time-harmonic regime [6]. The currents, in turn, generate an opposite 
magnetic field that “shields” the plate from the magnetic field. The zone where 
electrical currents are formed is constrained relatively close to the surface. Conse-
quently, the size shrinks with increasing frequency. At 10 and 300 Hz, respectively, 
Figs. 3 and 4 show the induced current density in the SF6 gas medium. To evaluate 
the system’s step response, a time-domain analysis is conducted in this model in a 
combined surface and arrow plot as shown in Fig. 5. Finally, the force calculation 
feature computes the total axial force between the coils and the plate as a function 
of time. The force acts in the opposite direction (negative). 

Fig. 3 The magnetic vector potential at a frequency of 10 Hz
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Fig. 4 Plot of the quantities at a frequency of 300 Hz 

Fig. 5 Snapshot of the induced current density (surface plot) and magnetic flux density (arrow 
plot) during the transient study
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2.4 Simulation of Dynamic Characteristics of the EMAT 

Three systems influence the ultrasonic proliferation of EMAT: Lorentz force, perti-
nent to non-ferromagnetic materials, dynamic attractive power, and magnetizing 
force, relevant to ferromagnetic materials. Subsequently, in aluminum, the Lorentz 
force rules the mathematical recreation of the transmission and gathering of mechan-
ical waves in the presence of SF6 gas [6, 7]. When an EMAT instrument is subjected 
to Lorentz force acting along the outspread bearing of the curve affected by the 
attractive polarization, it refers to the ultrasonic waves heading out opposite to the 
specimen surface as shown in Fig. 6. Using an aluminum plate as a test example, a 
2-D pivotal symmetric FEM strategy has been developed and different systems have 
been ignored. This includes the curl test and the waveguide test of the ultrasound 
data [8, 9]. 

To receive this ultrasonic wave, the receiver of EMAT was assumed to be installed 
on a 200-mm-thick aluminum plate to simplify the numerical analysis. The dimen-
sions and material properties of magnet and coil, respectively, will remain the same 
as described in the static simulation. The distance between the magnet and the upper 
surface of the aluminum plate is set to 0.5 mm. A three-cycle-long current signal 
having a peak value of 200 A, centered at 2 MHz, and modulated by a sine squared 
window drives the coil [10]. The excitation signal is loaded into the model at 6 µs. 
The step length is set to 0.1 µs to ensure a smooth and stable detection of any hidden 
crack as shown in Fig. 7.

Fig. 6 Distribution pattern of magnetic field in sustained mode 
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Fig. 7 Detection of the crack using a generated ultrasonic wave 

3 Results 

3.1 Quantitative Analysis of the Simulated Sensor 

The crack height is computed by multiplying the shear wave velocity Cs by the 
difference in ToF between the plain and defective shapes (ToFi ) using  Eq. (14). 

hi = 
[Cs × (ToF − ToFi )] 

2 
(14) 

An artificial crack was created at the bottom of the stainless-steel plate. The model 
was tested for three various sizes of fracture heights. For each of the recommended 
sizes, the amplitude of EMAT’s output signal V (t) was measured. It was found that 
the model can identify the presence of hidden fractures as well as changes in their 
height [11, 12]. This is owing to the reflection created by the presence of hidden 
cracks as shown in Fig. 8. A comparison between the targeted crack height and the 
hidden crack height assessed using the ToF technique was tabulated as in Table 2.

The sensitivity of EMAT to changes in crack width was tested. The crack height 
was set at 2 mm while the crack width was adjusted from 1 to 3 mm. The FEM and 
TBLO analysis illustrates how effectively the EMAT sensor can identify changes in 
fracture width, and this was tabulated as shown in Table 3. The results also demon-
strate that a shift in the received signal occurs as the fracture width changes. By 
solving an inverse problem, the crack width was calculated. In the NDT sector, 
inverse issues are typically formulated to address optimization issues. A numerical 
model such as FEM is used to represent the forward problem. However, iterative 
methods are used to solve the inverse problem to deduce geometrical information 
about the defects.
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Fig. 8 Deflection of the wave for various cracks 

Table 2 Crack height versus ToF 

Crack no. TOFi (in µs) Crack height (m) Mape (%) 

Estimated Desired 

1 11.9 0.96 × 10–3 1 × 10–3 4 

2 11.28 1.96 × 10–3 2 × 10–3 2.4 

3 10.9 2.57 × 10–3 2.5 × 10–3 2.8 

4 10.56 3.1 × 10–3 3 × 10–3 3.3 

5 10.2 3.6 × 10–3 3.5 × 10–3 2.9

Table 3 Width by TBLO  
Crack no. Crack width (m) Mape (%) 

Estimated Desired 

1 0.95 × 10–3 1 × 10–3 5 

2 1.55 × 10–3 1.5 × 10–3 3.3 

3 2.08 × 10–3 2 × 10–3 4 

4 2.45 × 10–3 2.5 × 10–3 2 

5 2.92 × 10–3 3 × 10–3 2.7 

3.2 Parametric Analysis 

Pressure, temperature, and humidity are just a few of the parameters that have been 
investigated here. It was discovered that if pressure and density remain constant,
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wave velocity of the ultrasonic wave reduces as temperature lowers, and hence Time 
of Flight (TOF) increases. Similarly, if temperature and density remain constant, a 
rise in pressure causes wave velocity to increase exponentially, reducing flight time. 

As moisture detection and management are critical for Gas-Insulated Switchgear 
(GIS), the moisture inside GIS must be kept within the prescribed limit for safe and 
dependable operation. This article describes an acoustic sensor for measuring trace 
moisture in SF6 gas for use in GIS [13, 14]. The presented sensor’s performance 
is simulated for various moisture concentrations in SF6 gas. All the sensor’s results 
are derived from the assumptions made in the simulation, which confirms its usage 
for effective moisture monitoring in GIS where live conductors and other electrical 
equipment are surrounded by SF6 gas. 

4 Discussion 

Industrial structures are subject to microstructural alterations brought on by thermal 
aging, corrosion, and fatigue cracking. A hidden crack in a GIS is typically very 
hazardous as it is challenging to find using non-destructive evaluation. The method 
presented in this paper uses an ultrasonic signal to estimate the size of a hidden 
crack inside a GIS vessel. The Finite Element Method (FEM) is used to simu-
late the signal that EMAT has received. Then, using a combination of two tech-
niques, it is possible to determine the hidden crack sizes. The initial technique is the 
Time-of-Flight (ToF) method, which calculates the height of the crack by comparing 
the ToF of the healthy and defective forms. The crack width is then calculated by 
employing the Teaching–learning-Based Optimization (TLBO) meta-heuristic algo-
rithm for resolving inverse problems from the signal hence received. The obtained 
results demonstrate the EMAT sensor’s sensitivity to variations in crack sizes. Addi-
tionally, the quantitative examination of the crack dimension amply demonstrates 
the effectiveness and dependability of the chosen strategy. 

By using the EMAT sensor and the NDT technique, the solution to the problem 
of monitoring the density of SF6 in GIS vessel can be achieved with the analysis 
and assumptions that have been developed for its development [15]. It was found 
that the EMAT sensor is both sustainable and efficient in detecting gas density as 
well as detecting any leaks from the GIS vessel [16–18]. Although there are many 
well-developed sensors on the market, the EMAT sensors were developed because 
SF6 GIS was preferred over conventional transmission substations. The design and 
cost of land made it unsuitable for urban areas. The maintenance burden led to the 
use of SF6 switchgear. Here, we find piezoelectric sensors that produce the same 
wave as EMAT sensors but are less robust due to their contact nature with the GIS 
vessel. Both the sensors have their benefits as acoustic signals are encountered as a 
result of their excellent electrical properties. 

A piezoelectric sensor is the first of its kind to detect gas leakage in a dense 
environment, but some of its crystals are water soluble and dissolve in a high-humidity 
environment. It is also used for dynamic measurement, so it does not suit the static
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environment, which is why EMAT sensors had to be developed. This paper studies 
the frequency response of EMAT sensors under different gases to determine the effect 
of a different medium on the response. Fabrication and construction of EMAT for 
the detection of gas density are likely to be studied in the future. 

5 Conclusion 

The equipment for the generation of shear and longitudinal acoustic waves in static 
and pulsed magnetic fields has been optimized by analyzing the ultrasonic Lorentz 
force for gas density measurement using an EMAT sensor, mathematical and finite 
element modeling of magnetic systems, and the study of EMAT specificities. The 
results in a SF6 gas medium, which is chosen as an ideal gas in this study, have also 
been explored without angular deflection and with angular deflection. Furthermore, 
data for the longitudinal ultrasonic field deflection for various molar masses at various 
pressures and temperatures have been reported. These findings are also reported for 
the SF6 gas density measurement. 

Based on the results of the simulation, it is evident that the system still needs 
considerable improvement. To boost their endurance, sensor wear pads will be 
upgraded to ceramic-based ones. Wear pad durability will improve if the EMAT 
sensor carrier is fine-tuned to optimize the transition between gas chambers. 
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WSN Based Energy-Efficient Protocols 
for Smart Grid: A State-of-Art Review 

Sandeep Kanaujia and Ajay Sharma 

Abstract The topic of research is wireless sensor network in smart grid systems for 
monitoring of power system parameters’ safety and stability. The Process of selecting 
a path for network traffic to travel from its source to its destination across network 
is difficult, as the unit of data are routed to the base station through a number of 
nodes. It is important that efficient packet routing with minimal energy consumption 
must be followed so that the life of the network and battery’s remaining power can 
be extended. We begin by reviewing literature on location based, data centric and 
then details in hierarchical base protocols such as LEACH, power efficient PEGASIS, 
threshold sensitive TEEN, adaptive periodic threshold sensitive APTEEN and cluster 
based routing HEED. Despite the fact that it can help to increase energy efficiency, 
the review’s findings indicate that energy consumption is the main issue with WSN. 

Keywords Smart grid ·WSN · Energy efficiency · Routing literature review 

1 Introduction 

The maintenance personal can obtain Power Grid information in real time, the intel-
ligent extra High Voltage Power Grid safety monitoring system combines wireless 
sensor network with Information Communication Technology. In this system intel-
ligent sensors are placed on the power transmission line [1]. The sensor includes 
multiple induction coil equipped with a backup function and a chargeable battery 
which can work for a long time and the sensing circuit allows the sensor to monitor 
power transmission line in real time. The system is equipped with an infrared tempera-
ture sensor, 3 Axis accelerator temperature sensors, humidity sensor and an illumina-
tion sensor. Through these sensors the system can monitor the conductor temperature

S. Kanaujia (B) 
Department of Electronics, United University, Prayagraj, India 
e-mail: sandeepkanaujiamnnit@gmail.com 

A. Sharma 
Department of Electronics Engineering, UCER, Prayagraj, India 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
O. H. Gupta et al. (eds.), Soft Computing Applications in Modern Power and Energy 
Systems, Lecture Notes in Electrical Engineering 1107, 
https://doi.org/10.1007/978-981-99-8007-9_8 

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8007-9_8&domain=pdf
mailto:sandeepkanaujiamnnit@gmail.com
https://doi.org/10.1007/978-981-99-8007-9_8


104 S. Kanaujia and A. Sharma

of power lines. After the intelligence sensor conducts a sensing task, it transmits the 
sensing data to a Gateway installed on the tower. The Gateway uses a low power 
consumption embedded system as the computing platform [2]. 

Wireless sensor networks (WSN) are groups of gadgets connected wirelessly 
that are capable of gathering and exchanging data over wireless links. The gathered 
data will be delivered to the base station or sink for additional processing. Newly, 
small, cheap, and smart sensors are fitted with wireless interfaces with which they 
can transmit and receive together to form a network. The design of a WSN is greatly 
influenced by the application and must take into account factors like the environment, 
the design objectives of the application, cost, hardware, and system constraints [3]. 
The sensor nodes can be fitted with various types of sensors such as whether, acoustic, 
thermal, chemical, pressure, optical sensor and can be used for building up various 
types of powerful application. Apart from remote, under ocean monitoring and target 
tracking, each sensor has its own characteristics, requirements, and applications. 

With the rapid development of MEMS (Micro Electromechanical Systems) and 
wireless communication, large-scale wireless sensor networks, millions of tiny sensor 
nodes dispersed across an area of interest, are now feasible to install. Energy effi-
ciency for extending network lifetime is one of the most crucial topics in sensor 
networking because of the stringent energy limits. As a result, every component of 
the node, including the hardware and protocols, must be exceedingly energy-efficient 
[4]. 

2 Energy Efficiency 

Energy efficiency, said simply, is the process of eliminating energy waste by using less 
energy to accomplish the same task. The word “energy efficiency” refers to using less 
energy to provide the same amount of useful output. In other words, lowering energy 
costs allow consumers to potentially save money. Energy consumption is a serious 
issue because nodes only have a little amount of non-replaceable, non-rechargeable 
power. 

3 Routing Protocol 

The foundations of WSN routing protocols are Location-based protocols, Data-
centric protocols and Hierarchical Protocols, which are different dependent on 
network structure and which improve the energy efficiency in sensor networks. 
Hierarchical protocols will be covered in full in this article (Fig. 1).

Location based routing protocols 

In Wireless Sensor Networks (WSN), where node locations are used for communi-
cation, location-based routing methods are used. Geographic routing protocol and
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Fig. 1 WSN overview

position-based routing protocols are other names for it. These protocols lengthen the 
lifespan of the network and minimize energy consumption but they have the draw-
back of using the same old path if the target node is in the same location, which uses 
more energy for certain nodes, while leaving others unused [5]. 

Data-centric routing 

When information queries are sent across the network, they produce sampled data. 
This data is then named or labeled based on certain properties or attributes, which 
are used to route the data to its intended destination (Fig. 2).

This type of data processing and routing is commonly used in distributed systems 
and databases, where data is spread out across multiple nodes or servers. By sampling 
the data and routing it based on its properties, the system can efficiently process and 
retrieve large amounts of data from distributed sources. 

Examples of attributes used to label data in this type of system could include 
data type, location, size, or timestamp. The routing algorithm would then use these 
attributes to determine the optimal path for the data to take, based on factors such as 
network congestion, available bandwidth, and latency. This is known as data-centric 
routing, which is diffusion-based. The network is interested in performing sensing 
tasks when routing is data-centric [6]. Here, as the number of nodes rises, there is 
a correlation between packet transmission and energy dissipation in a network, and 
that both values tend to decline over time. In future, sensor fields may employ signal 
amplifiers to properly relay weak signals from one end of the network to the other 
[7].
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Fig. 2 Routing protocols in 
WSN

Hierarchical based protocols 

It is been carefully investigated the current routing protocols and the process of identi-
fying and understanding the underlying processes or components that are responsible 
for a particular phenomenon or behaviour that effectively use energy [8]. There are 
numerous ways to approach the topic of energy use. A data transfer process in a 
wireless sensor network where, a sink node acts as a data collection point and typi-
cally receives data from other nodes in the network. The base station (BS) is often 
the endpoint or destination for this data, where it can be processed and analyzed. 
Clustering routing algorithms are among the most dependable protocols used [9]. 

WSN are extremely complex and applicable because scientists and engineers 
must deal with a wide range of problems caused by their complex nature. Numerous 
energy-efficient routing techniques have been established in recent years. Numerous 
studies have been conducted to address energy efficiency in WSN. To reduce energy 
usage, a variety of routing techniques are used in WSNs, including hierarchical and 
cluster-based networks [10]. CBRP, which uses energy and Centroid-based routing 
to transfer data packets to the nearest base station. Using energy-efficient composite 
event detection (ED), the volume of data can be handled while increasing energy 
economy. The majority of the methods in use today for energy consumption use 
composite event detection [9, 10]. 

The foundation of the hierarchical protocol is made up of the LEACH, PEGASIS, 
TEEN, APTEEN, and HEED protocols. The most energy-efficient routing protocols
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are hierarchical [11]. Based on this supposition, PEDAP, GSTEB, and TBC perform 
significantly better than LEACH and HEED [12]. 

4 Literature Review 

Numerous energy-efficient algorithms have been created for the significance of 
energy efficiency in WSN as an outcome. None of these, however, suffices. To address 
a range of problems, including energy consumption [13], load balancing [14], and 
transmission costs [15], numerous routing algorithms have been devised. There are 
numerous protocols that have already been put into use with the data fusion transmis-
sion technique that is a tree-based hierarchical topology. This family’s fundamental 
protocols are LEACH and HEED [11]. Because the length of the message trans-
mitted from leaf to BS remains constant, every node transmits the same amount of 
data regardless of the amount of data it receives from its leaf node and sends forward 
in the same manner. Energy is used by either “productive” or “wasteful” work in a 
sensor node [12]. 

The review is done on hierarchical based routing, and it explores various cluster 
based routing protocol approaches, including the following: 

4.1 LEACH: Low Energy Adaptive Cluster Head Protocol 

WSN sensors rely on batteries for power, which makes it unchangeable in many 
circumstances where there is insufficient energy. One of the routing protocols used 
in this investigation is the LEACH protocol. Utilizing the LEACH protocol can cut 
down on energy use and increase network longevity. The cluster-based WSNs in 
the WSN are designed in a variety of ways. To communicate the data to the BS, 
only identical data and identical events are used. Cluster heads are utilized to cut 
down on energy use. The cluster head LEACH protocol, reduces energy usage while 
extending network lifetime [16]. When the cluster head sent the request messages, 
they were fixed in the routing table, bringing all of the nodes in the cluster up to date 
in accordance with the TDMA list. Clustering routing methods are employed at the 
different layers such as network, transport, and data to solve the “hot spot” issue and 
boost output performance. 

In Low Energy Adaptive Clustering Hierarchy (LEACH), exchange of data is 
taken into account between a fixed square’s worth of randomly distributed sensor 
nodes and an external receiver. It consists of algorithms for adjusting clusters, a 
distributed cluster creation technique that allows large numbers of nodes to self-
organize, and circular movement of cluster head positions to uniformly spread the 
energy used across all nodes [17]. 

Leach-C is an enhanced version of leach. Nodes informed the BS about the amount 
of energy left at the start of each round. Leach-c performance does not to exceed
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or go beyond a certain limit or standard when the BS is located close to the sensor 
nodes, which is a drawback [18]. 

4.2 PEGASIS: Power Efficient Gathering in Sensor 
Information System 

Packets from all nodes are transferred progressively to the BS through the routing 
technique PEGASIS known as the Power Efficient Gathering in Sensor Information 
System [19]. The LEACH convention transports data from the aggregate to the sink 
via resident data calculation, increasing the network’s life. One problem is that it 
works well in homogenous networks but not in those with heterogeneous networks. 
Two phases of heterogeneity nodes are provided by (Stable Election Protocol) SEP. 
The first is an advance node, while the second is a standard node. Advance nodes 
have more energy than regular nodes. 

PEGASIS out performs LEACH by saving energy during numerous processes. 
As compared to sending to a cluster-head in LEACH, most nodes travel far shorter 
distances during local gathering. During each exchanging data round, only one 
junction communicates to the Base Station [19]. 

4.3 TEEN: Threshold Sensitive Energy Efficient Sensor 
Network Protocol 

TEEN is WSN’s energy-efficient dispel convention, the TEEN protocol is utilized to 
save energy usage while enhancing network consistency and longevity. 

The TEEN protocol’s disadvantage is that none of the dead nodes make it to the last 
point, therefore we cannot access any network data and nodes are unable to connect 
with the cluster head as a result of this cause. TSEP is employed in this to introduce 
another routing protocol. Threshold Sensitive Stable Election procedure (TSEP), a 
reactive procedure that makes use of three type levels in heterogeneity. In contrast 
to proactive networks, reactive networks react right away to changes in pertinent 
criteria of interest [20]. As the three stages of heterogeneity nodes in the TSEP 
technique, use advance junctions, intermediate junctions, and normal junctions. The 
TEEN procedure is used to increase energy regulations. TEEN is appropriate in 
time-sensitive severe requests which is the future problem.
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4.4 APTEEN: Adaptive Periodic Threshold Energy Efficient 
Network Protocol 

The Adaptive Periodic Threshold Efficient Energy network (APTEEN) is a proposed 
routing protocol. 

By choosing of the CHs, the cluster head in APTEEN broadcasts some information 
first during each cluster period like Qualities in which the admin is attentive in fact 
on a group of physical properties. 

This parameter has two thresholds: Schedule, a time division multiple access 
periods that allots a time slot to each node, and monitor Time, the longest interval 
a node can send between two consecutive reports. In this study, the author observed 
that APTEEN delivers a lower energy dissipation value and a greater count of alive 
junction at any one time after simulating multiple different protocols. For network 
longevity and energy, the TEEN, LEACH, and APTEEN protocols are contrasted 
[19]. 

4.5 Energy Efficient Distributing Clustering 

One of the key goals of WSN is to increase energy efficiency. 
The author provides two recommendations for lowering the use of power of a 

system by making use of supply and putting an end to delays. The distribution 
clustering methodology comes first. In this method, the clusters determine the ideal 
cluster head based on end-to-end delay and energy consumption. Then, in order 
to reduce end-to-end latency, the Inter clustered routing algorithm makes use of a 
novel energy cost function. Numerous heuristic tactics are put out to address energy 
consumption and end-to-end delays; however, these solutions are not appropriate for 
long-term coverage. Because they are effective at reducing energy usage and put an 
end to latency, clustering techniques are used. The distributed scheduling technique 
for joining clusters that underlies the Tree utilizes less energy [21]. 

The author integrates all of the sensor data when the mingling of packets reaches 
the destination node to minimize the delay. There are many routing algorithms 
used for clusters, and one of them works well in three-hop clusters because it 
makes an energy-efficient connection between the clusters and the sink. Clustering 
is both hybrid and energy-efficient (HEED) [22]. The intersection, residual energy 
usage, and other parameters are randomly used to choose the cluster head limits. 
The researcher tackles the two issues surrounding energy-efficient routing in power 
hinder escalation in an Asynchronous network sensor with numerous Gateways [23]. 
The primary one seeks to develop the trees that describe effective routing, and the 
secondary one seeks to demonstrate how to enlarge the cluster head member utilizing 
cluster fuses.
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4.6 Additional Cluster Based Protocols Network 

In history, numerous clustering-based routing protocol concepts have been made. 
Data from sensor nodes that have been detected in close vicinity to the same collection 
are sent to the head. In order to ignore the last packet and merge the data from different 
quantification to the information sink, the collection head discards the two sets of 
information. The network’s resilience and energy effectiveness are enhanced as a 
result. 

Energy is a limited resource that quickly depletes in sensor nodes, especially in 
hostile environments where it is challenging to maintain or replenish the sensor’s 
batteries once they have been deployed. As a result, the purpose of applications like 
air force surveillance and structural health monitoring (SHM) is to design an energy 
optimization routing approach for wireless networks [24]. 

The study of the clustering method is used to optimize the power. Energy gener-
ating sensor nodes that are near the destination and have a high likelihood of receiving 
energy are selected as the cluster head junction during clustering. The final non-
elected node stores a portion of its harvested energy for use when it becomes the 
cluster leader. The cluster head nodes can thus endure longer by using this stored 
gathered energy. The shortest path is taken to route the information from cluster head 
nodes to the destination. 

Additionally, in SHM applications, optimizing sensor node location is essential 
because doing so results in cost savings if the required information quality can be 
obtained with fewer sensor nodes. Therefore, the Energy boost with greater data 
Quality for SHM Application in Wireless Networks [25] implements the exhaustive 
search approach to carry out the sensor node position optimization. 

5 Conclusion 

Given how quickly technology is developing, WSN is becoming more and more 
common, and sensors are being used in a number of contexts such as smart grids. 
Despite being widely used, sensors are considered to be very sophisticated because to 
their low energy and memory requirements. The issue of energy efficiency is serious. 

There have been several attempts to make the algorithm more energy-efficient, 
but the methods have not been successful since the algorithm is either very complex 
or overly basic for WSN. The data used in this investigation are recent. 

The systematic literature review that was conducted to develop the research subject 
and review the literature is discussed in this survey. The purpose of this review is to 
evaluate WSN’s energy effectiveness in various fields such as smart grid technology. 
The WSN environment is complex, and only a few study approaches are believed to be 
successful. Numerous research philosophies provide very energy-efficient techniques 
that increase network longevity and evenly distribute load across nodes. Only a small 
number of the load balancing and energy-efficient methods that have been considered
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are thought to function well for WSN energy. In future more number of routing 
methods can be developed for the conservation of energy in the smart grid. 
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Wireless Sensor Network for Condition 
Monitoring of Axel Counter Device 
in Railways 

Rajev Kumar Sharma, Ajay Sharma, and Sandeep Kanaujia 

Abstract Axel counter device plays a pivotal role in safe operation of train. ACD 
is fixed on track-side to count the axels of train boggies. It works on the principle 
of cutting of magnetic flux between two coils. It counts the axels with passing of 
wheel-flange through the passage of two coils of ACD fitted on track. It is employed 
in station area or yard area which simultaneously monitors the occupancy of different 
track sections as approach track, main line, loop line, berthing line, common loop 
line, point zone, washing line, Siding line etc. ACD with high availability is also 
installed outside station area to push the train in the block section to give line clear-
ance from rear station for the next train in sequence to avoid any unusual incident 
in the block section. This helps in designing a standard interlocking system to give 
signal on best paths for train movement in busy routes for premium trains (like Rajd-
hani Express train on Indian Railway Network). Presently ACDs are monitored with 
wired network such as Copper quad cables, OFC, Two core Power cables, give poor 
insulation to OHE induced voltage in Railway Electrified area. Also wires and cables 
are prone to be damaged during excavation activities along the track, and use of these 
cables results in loss of power and redundancy in data. This paper proposes a tech-
nology to replace physical wired network with Wireless Sensor Network technology. 
Adhoc wireless sensor network improves the availability of train data and reduces 
redundancy, failures and reduces power requirement. With the help of various routing 
methods, an energy efficient WSN is developed which can be employed in accessible 
areas, reducing human interaction. 
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1 Introduction 

Railway ACD is used to identify the track occupancy or track clearance of the section. 
Axel counters are mounted on the rail. ACD is used in pair at a single location, oper-
ated at different frequencies to check the reference count direction (RCD). Combi-
nation of two detection points defines the limit of the section. When the number of 
axel-count-pulses entering-DP of the section is equal to the number of axel-count-
pulses at exit DP of the section then the section is declared free, otherwise the section 
is considered as occupied is installed on the railway track so that it can monitor station 
line Main line, Loop Line, Berthing Line, point-zone, stabling line Siding , Washing 
line etc. to check the occupancy of each section. 

The main parts of Axel Counter Devices are (i) Axel Detector (EM-sensor) (ii) 
Track side unit (iii) Central Evaluator (iv) Line Verification Box, (v) Relay Unit (vi) 
Event Logger (vii) Diagnostic Terminal. 

2 Requirements for Remote Supervision 

To achieve a preventive maintenance of this vital component, real time supervision 
of information is required [1, 2]. Various parameters like battery voltage, frequency, 
insulation, poor dip-count, are to be monitored on top priority. Poor insulation of 
copper cable connecting the trackside equipment to the central evaluator gives poor 
dip or corrupted bit count of the wheel, which is very well improved with wireless data 
transmission. The remote supervision through ad hoc-WSN will help the Railway 
system to be more robust, error free and reliable and fail-safe operation of traffic. The 
remote supervision proposed here will not have any influence on main functionality 
of an axel counter maintaining the Integrity of the Specifications. 

3 Literature Review on Condition Monitoring 

A drastic development in condition monitoring of various railway subsystems has 
taken place in the recent past. The innovating medium on the railway signalling 
system [3] has been introduced using a typical control system which takes data from 
switch, track circuit, Signal aspect and finally transfer data to route control and traffic 
control. Design optimization of magnetic Sensors [4] is proposed for moving wheel 
detection. Magnetic phase reversal principle has been utilized by the trac device 
which detects the physical crossing of the wheel through detection point and counts 
axel of the train. A railway axel counter prototype using a microcontroller [1] has 
been introduced that fulfils various train safety standards, like IEC61508, SIL (safety 
Integrity Level) etc; here a modular structure with several control boards for input, 
output, display, optocoupler, monitoring, modem is proposed for the train control
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system. Railway Axel counter remote supervision system [2] is presented with wifi, 
GPRS, FreeRTOs. A train tracking and collision avoidance system [3] has been 
introduced using android and WSN [5]. A model control room in android platform 
is introduced so the data of the moving train is exchanged using internet and WSN; 
here an algorithm using Zigbee module stops the train in case of head on collision 
if trains are moving on the same track in the opposite direction. A typical control 
mechanism [3] is proposed in this paper, which synchronizes signal control, route 
control and traffic control. A different simulation model [6] and performance study 
of WSN is elaborated using MATLAB code. A signal quality analysis is given to 
study interference versus BER/FER. A handbook of CAMTECH on the installation 
procedure of GGtronics & CEL make the Axel counter device [7, 8] to give a clear 
overview of internal components where sensors can be introduced. 

4 Basic Working Principle of an Axel Counter 

It works on deviation of magnetic field [4] between two coils (one is transmitting 
coil and other is receiving coil). 

When the flange of the wheel crossed the passage between two coils mounted on 
the track itself, it changes the direction of the flux. The phase reversal of the induced 
voltage on the receiver coil, gives a dip in voltage proving the existence of wheel at 
DP (Fig. 1). 

The Fig. 2 shows the principle of detection of wheel through induced field voltage 
waveform received at the receiver coil.

Fig. 1 Basic principle of wheel detection 



116 R. K. Sharma et al.

Fig. 2 Phase reversal and dip detection waveform 

5 Proposed Architecture Wireless Sensor Network 

The wireless Sensor Node is placed at each detection point in the section. Figure 3 
shows a section of two DPs constituting a small section of the railway track using 
single detection. 

The counts are checked at both ends—entry and exit points. However, for complex 
railway yards having more than 50 routes, a higher level of topology can be designed 
in bigger railway yards as seen in Fig. 1. The sensor nodes are located exactly in 
close vicinity of DP keeping schedule of the dimension from the centre of the track 
to avoid infringement with traffic on that part of the track. As DPs are configured 
to the control track section, WSN nodes are also kept in tandem with them. Now 
this group of WSN -node makes an adhoc wireless sensor network to operate under 
a suitable network protocols shown in figure. The layout shows two Axel Counter 
Track Sections (ATS-1 & ATS-2) controlled by different combinations of associated 
DPs. Figure 4 illustrates a section of two DPs [7] constituting a small section of the 
railway track [8].

Here a Wireless node is attached to each DP and fed with individual energy 
backup, constituting an ad hoc wireless network given in Table 1.

Fig. 3 Axel counter tack sections comprising various routes 
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Fig. 4 Wireless node basic 
building block

Table 1 Detection point versus wireless sensor node configuration table 

S. No. Axel counter track section Controlling DP Controlling nodes 

1 ACTS-1 DP2-DP3 N2-N1 

2 ACTS-2 DP1-DP5 N1-N5 

DP1-DP2 N1-N2 

DP4-DP5 N4-N5 

DP3-DP5 N3-N5 

The block diagram of the WSN Node consists of the Power Source, Transceivers, 
Micro-controller, External Memory, Sensor, and ADC, as shown in Fig. 4. Each 
Point Zone has a group of DPs attached with a sensor node constitutes a cluster, each 
cluster is finally connected to the base station at station. The evaluator will compare 
the counts of each DP and declare if ATS is occupied or not. The wireless node 
comprises of a power source, Microcontroller, Sensor, ADC, external memory and 
transceiver as shown in Fig. 4. 

The central evaluator is connected to the Field unit through a copper cable as 
shown in Fig.  5. The main disadvantage is the Physical media of carrying the low 
power bits which is prone to error in received data resulting in wrong count of Axels. 
The power requirement is also 12 W per detection point, 24 W for central evaluator 
(16 DP model) station master panel. Cable requirement is Half Quad (Cooper cable) 
from the Central Evaluator t of each DP and 2 core 6 sq mm or 10 sq mm copper 
cable from the battery bank to the Central Evaluator, and 2 core shielded cables from 
that the CT rack to central evaluator, which consume heavy construction cost.

The proposed WSN adhoc network which replaces the copper wire (to connect 
the Field DP to central Evaluator) using WSN-Cluster heads as shown in Fig. 5.
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Fig. 5 WSN-based network 
to send data from sensor 
node to base station

6 Advantages of Proposed System 

Railway signalling system is a complex architecture which involves signal aspect 
control, point machine control, and track circuit control to give exact selection of a 
particular track to the train loco pilot. The quick decision of the exact path for the 
train through bigger yards and busy routes (like Rajdhani express train on Indian 
Railway network) is a cumbersome exercise. In the present study the interlocking 
system is governed with Copper cables and relays which are prone to heavy loss of 
signalling data and frequent failure of track, signal or point operation, resulting in 
delay of the train or unusual incidents like head on collision, derailment, accidents 
due to wrong selection of track [3] etc. The proposed system enhanced with the Ad 
hoc Wireless sensor Network has the following advantages [4]. 

6.1 Low Construction Cost 

Cable laying is a tedious exercise in the yard area and in block section involving a huge 
capital expenditure. Thousands of cables are laid underground in the yard area, which 
makes the civil structure like track formation weak due to frequent digging under 
the track. However WSN node deployment required onetime investment without 
disturbing track formation, resulting in low construction cost. 

6.2 Error Free Signalling Data 

Copper cables are very much prone to cut due to earth work executed by civil agencies 
throughout the year. This results in the following: the poor merging of the cable results 
in insulation loss that results in heavy voltage loss, which is the main reason of error 
in the received information at the interlocking system. Human error during cable 
connection are minimized.
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6.3 Low Down Time of Train 

The restoration of failure due to cable cut is a tedious task, sometimes it becomes 
impossible to detect the location of the fault, especially at night. The engineer has to 
walk along the track with the cable route tracer device to detect the cable-cut, and 
again lot of time is involved to reconnect the cable which results in train detention. 
Long detention of the premium passenger train is very difficult to manage the railway 
traffic to be pushed in sequence for higher transport management. The restoration of 
the Adhoc WSN node is much easier and takes lesser time without hampering train 
operation. 

6.4 Low Demand of Block Period 

Block is the time slot required by the restoration agency from traffic control. During 
this period no train movement is permitted on the faulty track section, resulting in 
huge revenue loss to railways due to under-utilization of the line capacity, which is 
overcome upto a great extent in case of the proposed WSN network. 

6.5 Energy Efficient system 

A heavy power source is required for continuous operation. Integrated power 
supply with redundant voltage sources with dedicated power backup is an essen-
tial for continuous train operation via copper cables. However WSN node utilises an 
optimum power source through the energy efficient routing protocol. 

6.6 Ease of Installation and Maintenance 

In comparison to the existing signalling system on physical media, WSN based adhoc 
network is easy to deploy the sensor node reducing the initial construction cost. 
Repair and maintenance is much easier without hampering train operation because 
no excavation work along the track is required
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7 Conclusion 

This paper introduces an energy efficient and secure Wireless Sensor Network in 
the Signalling subsystem, which will enhance the safety of the train movement and 
help the engineer to attend failures more efficiently. However WSNs are an emerging 
technology which will continue to grow exponentially in the coming years, Network 
optimization in terms of bandwidth, latency, economics, power efficiency through 
energy-efficient routing, load balancing to distribute power consumption, network 
aggregation to reduce traffic load, and minimization of up-time of sensors, requires 
new network technologies, different routing algorithms, new MAC protocols, which 
play very crucial role in the design of the Ad hoc WSN. Therefore this new commu-
nication paradigm introduces a new set of design constraints, where the design must 
be extremely low-cost both for installation and operation. 

Future scope: Modern communication technology may be used to integrate the WSN 
with the outer world through Internet. Field data can be stored for fault analysis over 
handheld device through IoT. 
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PID Based Optimal Neural Control 
of Single Wheel Robot (SWR) 

Ashwani Kharola , Vishwjeet Choudhary , Rahul , 
Sankula Madhava , Abhijat , and Aditya Nagalia 

Abstract This study investigates the application of Proportional-integral-derivative 
(PID) based Artificial neural network (ANN) controller for the stabilisation of highly 
nonlinear and multivariable Single wheel robot (SWR). The nonlinear governing 
equations of motion for the proposed system were derived using Newton’s second 
law. The gains of PID controller were optimised using auto-tuning function. The 
results of PID were used for training of ANN controller designed using optimal 
number of neurons in the hidden layer. The performance of the proposed controller 
was measured in terms of settling time, overshoot ranges and steady state error 
responses. The results indicate superior performance of ANN controller designed 
using 30 neurons in the hidden layer. 

Keywords SWR · Nonlinear control · PID · ANN ·Modelling · Simulation 

1 Introduction 

Wheeled robotic systems are popular nonlinear systems which find immense applica-
tions in various fields of Science and Engineering [1]. The unique capability of these 
systems to take sharp turns and navigate through congested areas makes them more 
agile compared to conventional legged robotic systems [2]. Plenty of work has been 
done by researchers for adequate control of these highly nonlinear systems [3]. For an 
instance, a hybrid controller based on a combination of Particle swarm optimisation 
technique and PID for stabilisation of mobile humanoid robot has been proposed
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in [4]. Incorporation of particle swarm optimisation technique with PID aided in 
minimising the computational complexity and reduced the number of iterations. The 
results indicate that combining the above two techniques resulted in reducing the 
stabilisation time and overshoot responses by 25%. 

Further, a novel five degree of freedom two-wheeled robot suitable for both 
industrial and service applications has been proposed in [5]. The authors adopted 
Lagrangian modelling approach to develop a mathematical model of the proposed 
system and further simulated it in Matlab/Simulink platform. The proposed system 
has been finally stabilised using PID and fuzzy logic control strategies. Moreover, 
different control strategies namely PID, Genetic algorithm tuned PID and Model 
predictive control have been considered for realistic control of Segway system in [6]. 
The study further adopted an online optimisation technique which aided in solving 
the dynamic optimisation problem in model predictive control effectively. 

A fuzzy fractional-order PID controller for stabilisation of two-wheel robot on an 
inclined surface has been proposed in [7]. The primary objective of the study was 
to realise the wheel position control and stabilise the non-vertical direction of the 
body. The controller has been further compared with conventional fractional-order 
PID controller and the results indicate superior performance of fuzzy fractional-
order PID controller. In this study, a PID controller has been designed for control 
of SWR moving on a horizontal surface. A mathematical model of the proposed 
system has been initially developed using Newton’s second law of motion. The gains 
of PID controller have been optimised using auto-tuning function in Matlab. The 
outcomes of PID controller were further used for training of ANN controller. In 
order to optimise the performance of ANN controller, the number of neurons (n) 
in the hidden layer has been varied i.e. n = 10, 20 and 30 respectively. Finally, 
the performance of the proposed controller has been monitored through responses 
obtained for settling time, overshoot and steady state error. 

2 Mathematical Model and Simulink of SWR 

A SWR comprises of robot chassis mounted on a single wheel. The robot chassis is 
inclined at an angle (θ ) from vertical as shown in Fig. 1.

The objective is to balance the robot wheel and chassis at desired position (x) 
and angle (θ ) respectively under the influence of external control force (F) generated 
through controller. The final derived equations for linear acceleration of the wheel 
(ẍ) and angular acceleration of the chassis (θ̈) are shown below [8]. 

ẍ = −M2L2gθ 
Ms(ML2 + I ) − M2L2 

+ (M2L2 + I )F 
Ms(ML2 + I ) − M2L2 

(1)
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Fig.1 Schematic view of 
SWR

Table 1 Attributes 
considered for designing of 
SWR 

Symbol Value 

Mass of chassis (M) 1 kg  

Mass of wheels (W ) 0.25 kg 

Length of chassis (L) 0.1 m 

Radius of wheel (R) 0.05 m 

Wheel moment of inertia (I) 0.0123 kg m2 

Pendulum moment of inertia (J) 0.1984 kg m2 

Acceleration due to gravity (g) 9.81 m/s2 

θ̈ = MgL Msθ 
Ms(ML2 + I ) − M2L2) 

− MLF  

Ms(ML2 + I ) − M2L2 
(2) 

where, Ms = M + W + J 
R2 . 

The attributes along with symbols used in the above equations are highlighted 
with the help of Table 1. 

The above equations were further used for developing a Simulink model of SWR 
as shown in Fig. 2.

3 Designing of PID Based ANN Controller for SWR 

PID is a closed-loop control feedback mechanism commonly used in various indus-
trial and control applications [9]. It finds vast application in problems involving 
continuous modulated control [10]. A PID controller evaluates an error value e(t) 
as the difference between desired output and measured output and further applies a 
correction based on proportional (K p), integral (Ki ) and derivative (Kd ) terms [11]. 
Mathematically, a PID controller can be represented with the help of Eq. (3).
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Fig. 2 Simulink model of SWR

Table 2 PID gains obtained 
after auto-tuning Controller K p Ki Kd 

Chassis −851.832 −1142.019 −60.813 

Wheel −101.019 −0.786 −22.244 

u(t) = K pe(t) + Ki 

t∫

0 

e(τ )dτ + Kd 
de(t) 
dt  

(3) 

In the above equation K p, Ki and Kd are the coefficients of proportional, integral 
and derivative gains respectively and u(t) denotes the control variable. In this study, 
two separate PID controllers were designed for control of robot chassis and wheel 
respectively. The PID gains obtained after tuning are shown with the help of Table 2. 

The ANN controller has been trained using Levenberg–Marquardt algorithm using 
790 data samples which were randomly divided into training (552 nos.), validation 
(119 nos.) and testing (119 nos.) sets [12]. ANN controller has been trained using 
different number of neurons in the hidden layer and it has been observed that the 
best validation performance of 0.0052208 has been obtained using 30 neurons in the 
hidden layer at 14 epochs as shown in Fig. 3 [13]. Similarly, the values obtained for 
gradient, Mu and validation checks are shown with the help of Fig. 4. The gradient 
represents slope of the curve and helps in determining the direction of the curve a 
few points ahead, Mu is a control parameter which directly affects the convergence 
rate of the network [14]. Whereas, validation checks help in stopping iteration when 
the error value consecutively increases for 6 epochs.
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Fig. 3 Best validation performance obtained after 14 epochs 

Fig. 4 Values of gradient, Mu and validation checks obtained after training
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Fig. 5 Regression results obtained after training 

The regression responses obtained for different samples are shown with the help 
of Fig. 5. It can be observed that excellent regression values have been obtained 
for all the categories of samples indicating a close correlation between outputs and 
targets [15]. 

The error histogram which represents histogram of errors along 20 smaller bins 
is shown with the help of Fig. 6. It can be clearly observed from the results that the 
zero error line i.e. line with zero error falls under the bin with value 0.007141.
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Fig. 6 Error histogram obtained after training 

4 Results and Comparison 

The responses obtained for SWR (t = 5 s) using ANN controllers with different 
number of neurons in hidden layer are shown below with the help of Fig. 7.

A comparison of simulation results for ANN controller designed with different 
number of neurons in the hidden layer is shown with the help of Table 3.
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Fig. 7 Simulation responses for a Wheel position, b Wheel velocity, c Chassis angle, d Chassis 
angular velocity
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Fig. 7 (continued)

5 Conclusion 

The study successfully considers a PID based optimal ANN controller for stabil-
isation of highly nonlinear SWR. A mathematical model of the proposed system 
has been developed using Newton’s second law. The gains of PID controller have 
been successfully optimised using auto-tuned function in Matlab. The results clearly 
indicate superior performance of ANN controller designed using 30 neurons in the 
hidden layer both in terms of settling time and maximum overshoot responses. The 
settling time taken by ANN controller designed using 30 neurons in hidden layer 
for stabilisation of wheel position, wheel velocity, chassis angle and chassis angular 
velocity was 2.0, 1.0, 3.0 and 1.5 s respectively. Thus, the proposed ANN controller 
was able to stabilise the complete system within 3.0 s. Further, the maximum over-
shoot range responses obtained using proposed controller for output wheel position 
were −0.025 to 0.1 m, for wheel velocity were −0.3 to 0.1 m/s, for chassis angle
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Table 3 Simulation results obtained for ANN controller with different number of neurons 

Output Settling time (s) Maximum overshoot Steady state error 

ANN controller with 30 neurons in hidden layer 

Wheel position 2.0 −0.025 to 0.1 m 0 

Wheel velocity 1.0 −0.3 to 0.1 m/s 0 

Chassis angle 3.0 −0.005 to 0.015 rad 0 

Chassis angular velocity 1.5 −0.03 to 0.15 rad/s 0 

ANN controller with 20 neurons in hidden layer 

Wheel position 2.5 −0.01 to 0.1 m 0 

Wheel velocity 1.5 −0.2 to 0.8 m/s 0 

Chassis angle 3.5 −0.004 to 0.012 rad 0 

Chassis angular velocity 2.0 −0.02 to 0.17 rad/s 0 

ANN controller with 10 neurons in hidden layer 

Wheel position 3.6 −0.14 to 0.17 m 0 

Wheel velocity 3.5 −0.75 to 0.65 m/s 0 

Chassis angle 4.0 −0.02 to 0.028 rad 0 

Chassis angular velocity 3.0 −0.12 to 0.15 rad/s 0

were −0.005 to 0.015 rad and for chassis angular velocity were −0.03 to 0.15 rad/s 
respectively. The results also indicate that the proposed ANN controller was able to 
stabilise the complete system with almost zero steady state error. As an extension for 
future work a real-time model of SWR can also be developed for further validation. 
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Impact of Instrument Transformer 
Secondary Connections on Performance 
of Protection System—Analysis of Field 
Events from Indian Power Sector 

Pankaj Kumar Jha, M. S. Hada, and Sandeep Yadav 

Abstract Protective relays are commonly connected to the secondary windings of 
instrument transformers i.e., current transformers (CTs), and/or capacitive voltage 
transformers (CVTs). The purpose of CT and CVT is to provide galvanic isolation 
from high voltages and reduce primary currents and voltages to a nominal quantity 
recognized by the protective relays. Selecting the correct instrument transformers 
for an application is imperative: failing to do so may compromise the relay’s perfor-
mance, as the output of the instrument transformer may no longer be an accurately 
scaled representation of the primary quantity. Having accurately rated instrument 
transformer is of no use if these devices are not properly connected. The perfor-
mance of the protective relay is reliant on its programmed settings and on the current 
and voltage inputs from the instrument transformers secondary. This paper will help 
in understanding the fundamental concepts of the connections of instrument trans-
formers to the protection relays and the effect of incorrect connection on the perfor-
mance of protective relays. Multiple real-world case studies of protection system 
mis-operations due to incorrect connections of instrument transformers are discussed 
in detail in this paper. All the case studies presented in this paper are the actual 
field events of high-voltage AC transmission networks of Indian power transmission 
sectors. Apart from the connection issue of instrument transformers to protective 
relays, this paper also discusses about the effect of multiple grounding of CTs and 
CVTs secondary on the performance of the protection system. We hope that the case 
studies presented in this paper will help the readers to analyze the problem through 
real-world challenges in the complex power system networks.
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1 Introduction 

Protective relays are commonly connected to the secondary windings of instrument 
transformers i.e., current transformers (CTs), and/or capacitive voltage transformers 
(CVTs). The purpose of CT and CVT is to provide galvanic isolation from high 
voltages and reduce primary currents and voltages to a nominal quantity recognized 
by the protective relays. With today’s focus on digital technology, the importance 
of instrument transformer secondary connections is often overlooked. Selecting the 
correct instrument transformers for an application is imperative: failing to do so may 
compromise the relay’s performance, as the output of the instrument transformer may 
no longer be an accurately scaled representation of the primary quantity. Having an 
accurately rated instrument transformer is of no use if these devices are not properly 
connected. The performance of the protective relay is reliant on its programmed 
settings and on the current and voltage inputs from the instrument transformers 
secondary. 

Section-2 of this paper describes industry practice on instrument transformer 
secondary connection. Section-3 will focus on methodical approach of commis-
sioning and retrofitting philosophies as adopted by POWERGRID. Section-4 
discusses real-life example events from Indian power sector. Section-5 of this paper 
will focus briefly on CVT transients. 

In this paper, the case studies are prepared using the actual field event data of 
EHVAC transmission of Indian power transmission networks. All the case studies 
describe, mis-operation of protection system due to incorrect connection of instru-
ment transformer secondaries. The disturbance records and other field event data 
are the actual extracted data from the numerical IEDs at the EHVAC substations. At 
the end of each case study, remarks have been provided which describes that how 
each of these mis-operations could have been avoided by following the correct instru-
ment transformer secondary connections to the protective relays and by following 
the correct commissioning procedures.
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2 Fundamental Concepts and Review of Relevant IEEE 
Standards 

This section specifically details application guidance on grounding and conventional 
wiring practices for Instrument Transformers and their secondary circuits. Guidelines 
provided in this section will help the utilities and practicing engineers in designing 
a dependable and secure protection system. 

2.1 Neutral Connection and Grounding of Instrument 
Transformer Secondary Circuits 

IEEE Std C57.13.3™-2014 stresses the importance of and provides guidance on 
grounding instrument transformer secondary circuits [1]. Readers may refer to this 
resource for more detailed information. 

2.1.1 Connect Only One Grounding Point Per Secondary Circuit 

The instrument transformer secondary circuits are generally grounded at one point. 
The circuits shall preferably be connected to ground at the first point of application 
of the circuit. Figure 1 shows the single point grounding in one and half circuit 
breaker scheme. If the secondary circuits are grounded at more than one location, 
the potential differences between the grounding locations during faults can result in 
current flows through the relays and meters connected to the circuit. These additional 
currents could cause the relays to perform incorrectly and could result in providing 
incorrect measurements by meters. If the neutral conductor of the secondary circuit 
is connected to ground at multiple locations, large amounts of current could flow in 
the neutral conductor that could overheat this conductor and damage it.

2.1.2 Connect Used Instrument Transformer to Ground Near 
the Relays at the Switchboard Terminal and Connect Unused 
Instrument Transformer to Ground at Instrument Transformer 
Location 

The following two practices are used for grounding instrument transformer secondary 
circuits:

• The circuit is connected to ground where the instrument transformers are located.
• The circuit is connected to ground where relays and other devices connected to 

the circuit are located.
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Fig. 1 CT secondary circuit for One and Half CB scheme

Connecting the instrument transformer secondary circuit to ground at or near the 
instrument transformer location limits the voltage stresses on the secondary windings 
of the instrument transformers. Another reason to ground instrument transformer at 
the first point of application is because it then becomes convenient to locate and isolate 
the ground during testing. The grounding location should be accessible to facilitate 
the temporary disconnection and reconnection of the ground during testing. The use 
of fuses, contacts, auxiliary relays, or any switching devices that may unexpectedly 
open or leave open the ground connection is not recommended [1]. 

In many situations, some of the secondary windings of instrument transformers 
are not used and no circuit is connected to the windings. In such cases, the secondary 
winding of the instrument transformer is connected to ground where the instrument 
transformer is located. 

2.1.3 Ground Conductor Size 

The grounding conductor size shall be as large or larger than the phase conductors 
[1]. 

2.2 Cable Selection for Instrument Transformer Connection 

IEEE Std 525™-2007 provides detailed guidelines for design & installation of cable 
system in the substation [2]. Readers may refer to this resource for more detailed 
information.
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3 Commissioning and Retrofitting Philosophies 
of Powergrid 

Pre-commissioning checks/tests are the activities carried out to ascertain the correct-
ness, completeness of installation and healthiness of the equipment before its 
charging. POWERGRID follows a well-documented and structured method for 
commissioning and retrofitting of protection system. During the commissioning of 
the protection system, following are ensured by the commissioning team: 

a. CVT and CT secondary neutral or common lead are earthed at one place only at 
the terminal blocks where they enter the panel. Such grounding is made through 
links so that grounding may be removed from one group without disturbing the 
continuity of grounding system for other groups. 

b. Continuity check, cross ferruling and measurement of insulation resistance of 
each wire before connecting to the protection system. 

c. Verification of the factory supplied connection. 
d. Continuity test of each CT core with earth. 
e. Ensuring that all unused CT cores are shorted and earthed. 
f. Correctness of CT star point and verification of CT ratio in relay and meters with 

respect to CT name plate data. 
g. Measuring and confirming that the voltages and currents measured at various 

instrument transformers and transducers are being supplied to each and every 
protective relay, meter, recorder, etc. 

h. Trigger fault record in all the numerical relays and check magnitude and phase 
of the current and voltages. 

POWERGRID has formulated well-documented procedure for retrofitting of 
protection system. Generally, all the steps taken during commissioning of new system 
shall also be applicable to the retrofitting cases. 

POWERGRID has created a detailed risk-assessment matrix for retrofitting 
of protection system. The risk-assessment matrix is created for all the possible 
retrofitting cases. 

POWERGRID has created a detailed risk-assessment matrix for retrofitting of 
protection system for all the possible retrofitting cases. 

4 Analysis of Field Events 

The events in this section are a result of problems identified with the wiring on 
the instrument transformer circuits, system related settings, such as the instrument 
transformer ratio or the tripping due to problem in voltage selection relays.
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4.1 Problem in VT Selection Relay Leads to Tripping of Bus 
Reactor 

At one of the 765 kV substations of POWERGRID, line reactor charged as bus reactor 
tripped after closing the Main CB of the adjacent diameter. Backup impedance relay 
of this reactor tripped due to problem in the measured voltage by the relay. 

Voltage selection relay was used for supplying the selected voltage to the backup 
impedance relay. During analysis, it was observed that, after closing of the main CB 
of adjacent diameter, 75A relay picked up and 75B relay drops off (as per voltage 
selection logic of the substation). 

On further analysis it was observed that, the voltage selection scheme was correct 
and the selection relay operated correctly, however some of the contacts of 75B relay 
were defective and even though 75B relay was in reset condition, some of its contacts 
were in make state and this leads to erroneous voltage to backup impedance relay 
(refer Figs. 2, 3). 

This type of tripping was due to erroneous voltage to the Backup Impedance 
Relay during normal service of the shunt reactor. To avoid occurrence of similar 
events in future, POWERGRID created additional logic in Backup Impedance Relays, 
wherein the Timers of the distance Zones will become active only, if backup impedance 
relay detects faults in the system by Over-Current or earth Fault Start Logic. No 
such inadvertent tripping was reported by any of the POWERGRID sites after the 
implementation of this logic.

Fig. 2 Operation of backup impedance relay due to distorted voltage waveform
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Fig. 3 Voltage selection scheme of the bus reactor

4.2 400/220 kV 500MVA Auto Transformer Tripped 
on Differential Protection After Closing of Tie Circuit 
Breaker of HV Side 

400/220 kV 500MVA auto transformer at one of the POWERGRID substation was 
in service through its main CB on 400 kV side (one & half CB scheme) and main 
CB of 220 kV side (DMT Scheme). 

During analysis of the disturbance report, it was observed that the differential 
current was present in all three phases of the auto transformer. The differential current 
keeps on increasing with an increase in loading condition. When, the differential 
current crosses the set differential current threshold in the relay, the differential 
protection operates and leads to tripping of the auto transformer (refer Fig. 4).

Since, the auto transformer was already in service through its main CB of HV 
side and tie CB was charged recently, it was suspected that the polarity of tie CT 
was not correct. On further, analysis of DR, it was observed that the sum of main & 
tie CT current of HV side was not the correct representation of 220kV side of auto 
transformer current. Further, analysis of DR confirms that the tie CT star point was 
not correct and leads to operation of differential protection of auto transformer. 

This case could have been avoided, by simply checking and analyzing the manually 
triggered DR of differential relay after closing of tie CB which is also a standard 
pre-commissioning procedure of POWERGRID.
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Fig. 4 Differential protection operated, incorrect star point of CT

4.3 Line Tripped on Single Line to Ground Fault 
but the Phase to Neutral Voltage Were not the True 
Representation of Single Line to Ground Fault 

One of the 400 kV line of POWERGRID tripped on single line to ground Fault 
(CN fault) after successful auto reclose from both ends. During, this tripping of 
transmission line, it was observed that apart from VCN, the  VAN and VBN also became 
distorted during both instances of CN fault (refer Fig. 5).

After a detailed investigation at site, multiple grounding in CVT secondary circuit 
were found. It was observed that the secondary circuit of CVT was grounded at relay 
location in the relay panel as well as at CVT Junction Box in the switchyard. This 
second grounding of CVT was removed and wiring was made proper as per IEEE 
Std C57.13.3–2014. After modification, no such distortion in voltage waveforms was 
observed during subsequent line faults on this transmission line. 

This problem could have been rectified, if the proper wiring guidelines as per IEEE 
Std C57.13.3–2014 were followed at the commissioning stage. However, issue was 
rectified by proper DR analysis after the first occurrence of the problem and leads to 
avoidance of any mis-operation of the distance protection of this transmission line.
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Fig. 5 Distorted VAN and VBN for CN fault on transmission line

Proper disturbance report analysis after every tripping is very helpful in avoiding 
the mis-operation of relays during faults on the feeder. 

4.4 Line Tripped on Operation of Over-Voltage During 
Planned Bus Shutdown at 765 kV Substation Due 
to Wiring Error. 

One of the 765 kV line of POWERGRID tripped due to operation of over-voltage 
protection during normal system condition. During analysis of the disturbance report 
(DR), it was observed that, over-voltage protection operated in one of the relays of 
this 765 kV transmission line after opening of the last circuit breaker of the bus 
(planned shutdown of the bus was being availed). 

Since, the over-voltage protection operated in only main-2 relay, it was clear that 
the problem was with the wiring. During analysis, it was observed that R phase 
voltage dropped from its pre-fault magnitude and a slight increase in Y and B-phase 
voltages was observed (refer Fig. 6). The R phase voltage reduction occurred from 
the time of BUS shutdown. Such voltage response is observed when R phase of line 
CVT is connected with R phase of bus CVT through voltage selection relays. In this
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Fig. 6 Over-voltage condition in B and C- phase 

case, bus CVT secondary voltage drops to zero (last CB of bus opened for SD), R 
phase of line CVT drops due to the shorting and a slight increase in other phase 
voltages is observed due to double grounding (line CVT secondary grounding and 
bus CVT secondary grounding). The scheme was checked and it was found that R 
phase line CVT and bus-1 CVT are selected via tie BCU output contacts and extended 
to tie CSD relay for auto transformer switching (refer Fig. 7). 

Fig. 7 Voltage selection scheme
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Fig. 8 Line and bus CVT voltage connection 

In the wiring of the selected voltage, bus-1 output wires were connected directly 
to input and the BCU contacts were found to be bypassed. The output of the above 
scheme was permanently shorted to bus 1 R phase voltage (refer Fig. 8). As soon as the 
main bay was taken into shutdown, the line voltage was selected which caused mixing 
of R phase and neutral of line and bus-1. As soon as the bus went under shutdown 
this mixing resulted in lowering of R phase voltage to relay and over-voltage in other 
phase which led to tripping. 

This type of problem could be avoided by proper scheme checking at the pre-
commissioning stage. 

4.5 Line Tripped Due to Faulty CT Cable on Detection 
of Phase-To-Phase Fault in the Distance Relay During 
Phase to Ground Fault on the Transmission Line 

One of the 400 kV line of POWERGRID tripped due to pickup of phase-to-phase 
loop during phase to ground close in fault on the transmission line. This line was in 
service for more than ten years and no such tripping was noticed during several phase 
to ground fault on this transmission line during the past more than ten years. Hence, 
this was a very peculiar problem because the tripping could not be attributed to either 
wiring error or to the relay settings. During, analysis it was observed that only one 
out of the two distance protection relays of this line has detected the phase-to-phase 
fault. 

The DR of both Main-1 and Main-2 Relay was analyzed and it was observed 
that in main-1 relay the current in neutral was the same as that of A-phase current. 
Further, the voltage dip in only A-phase was observed and hence this relay declares 
phase to ground fault (AN fault) correctly (refer Fig. 10).
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Fig. 9 A-phase current distributes equally between C-phase and neutral in main-II relay

While in the main-2 relay, the current in neutral was approximately half as that 
of A-phase current and remaining current was flowing through C-phase. However, 
voltage dip in only A-phase was observed but because the current was detected in 
A, C and N in this relay hence this relay doesn’t declare phase to ground fault (AN 
fault) correctly (refer Fig. 9).

Both relays have sensed a dip in VAN and an increase in A-Phase current but 
in one of the relays, A-phase current returns through neutral while in second relay 
A-phase current distributes equally between C-phase and neutral. This distribution 
of current was the reason for incorrect operation of the distance relay. 

To identify the problem, the scheme was checked thoroughly with the available 
scheme drawing at the substation and nothing was found abnormal. Finally, it was 
decided to carry out insulation resistance measurement of CT cable from CT junction 
box to relay panel. During, IR measurement it was observed that the insulation 
resistance of C-phase was very low as compared with A, B and neutral wire. Further, 
C-phase cable was showing direct continuity with ground. This defective CT cable 
was replaced with healthy cable and the problem was rectified.
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Fig. 10 Current only in A-Phase and neutral in Main-I Relay

4.6 Auto Transformer Tripped on Operation of REF 
Protection Due to Damaged CT Lug 

At one of the POWERGRID substation, 765/400 kV auto transformer tripped on oper-
ation of REF (restricted earth fault) protection. As per the scheme high impedance 
type REF protection was used in this auto transformer which was a bank of three 
single phase units. From the SCADA events of the substation, it was observed that 
REF protection of B-phase unit has operated. The Disturbance report of B-phase 
REF relay was extracted and from the DR, it was observed that the current in the 
REF coil of the relay has increased suddenly and crossed the threshold limit (refer 
Fig. 11). Since, the auto transformer was already in service since long hence it was 
clear that the sudden increase of current was due to some external factor.

Since, the REF relay was high impedance type and the relay has detected the 
current suddenly during normal operation, it was clear that some of the current 
has stopped reporting to the relay correctly. In high impedance relay, all CTs are 
paralleled in switchyard and only two wires are connected at relay terminal hence it 
was decided to check the REF circuit at switchyard level. During checking, neutral 
CT lug was found broken and CT wire was found removed from TB (refer Fig. 12).



146 P. K. Jha et al.

Fig. 11 B-phase REF protection operated

Fig. 12 Broken lug of neutral CT of REF 

This problem could have been avoided by proper crimping of ct wires and proper 
wire termination at TB. 

4.7 Auto Transformer Tripped on Operation of Differential 
Protection Due to Incorrect CT Ratio 

At one of the POWERGRID substation, 400/220 kV 500MVA auto transformer 
tripped due to operation of differential protection (refer Fig. 13). The tertiary of 
this auto transformer was charged to feed the substation auxiliary supply at the 
substation. At the time of incident, it was observed that, differential protection of 
auto transformer operated due to internal problem in a motor connected at the LV 
side.
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Fig. 13 Differential protection operated due to problem in the LV side 

As per DR, Current in HV (400kV) and MV (220kV) side was normal but LV 
side (33kV) current was showing high value (refer Fig. 14). 

During further analysis, it was observed that the LV current was connected to the 
transformer differential protection module of the differential relay (refer Fig. 15).

On further analysis, it was observed that the actual CT ratio of 33kV (Channel-7, 
8 & 9) is 50/1 but it was set to LV side full load current i.e., 1837/1 (refer Fig. 16) 
which leads to approx. 37 times of actual LV current measured by differential relay.

This tripping was due to incorrect configuration of the differential protection relay 
and setting of incorrect CT ratio. The problem could have been avoided by following

Fig. 14 Analog current data of differential relay 
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Fig. 15 Incorrect configuration of differential relay

Fig. 16 Incorrect CT ratio in the differential relay setting

the standard pre-commissioning procedure of POWERGRID and by following the 
standard setting and configuration template of POWERGRID. Problem was rectified 
by changing the relay configuration and settings.
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Fig. 17 REF protection operated after charging of the bus reactor 

4.8 Shunt Reactor Tripped on Operation of REF Protection 
Due to Problem in CT Wiring 

At one of the substations of POWERGRID, 125MVAR bus reactor tripped on the 
operation of REF protection immediately after charging (refer Fig. 17). 

High impedance type REF protection was used for bus reactor at this substation. 
The HV and neutral side CT were connected in parallel and two wires were finally 
connected to the relay. During the checking of the scheme it was observed that 
the REF protection operated because of the reverse polarity of neutral CT at the 
switchyard. 

This problem could have been avoided, if proper wiring methodologies as per 
commissioning procedure of powergrid were followed 

4.9 Incorrect Direction Determination by Directional 
Overcurrent Protection Because of Missing CVT Neutral 
and Leads to Tripping of Auto Transformer 

At one of the POWERGRID substation, 400/220 kV auto transformer tripped on 
operation of LV side over current protection during a fault on LV network. The 
operation of LV overcurrent for fault on LV network was a cause of concern and 
needs analysis. For analyzing the incorrect operation of LV backup EF protection of 
auto transformer, the relay internal events and other DR of previous incidences were 
extracted. From the previous events, it was observed that the LV backup EF protection 
was getting picked up during any fault on the 220 kV side of the auto transformer. 
However, most of the time, since the fault was cleared before the operation of LVEF
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protection hence no unwanted tripping of auto transformer was observed since last 
more than three years. The HV backup impedance protection relay was installed by 
retrofitting the erstwhile electromechanical backup over current and backup earth 
fault protection of HV side of auto transformer three years ago. In this HV backup 
impedance protection, the backup over current and backup earth fault protection of 
LV side were also enabled as the existing electromechanical protection was removed 
from service. 

Directional protection relay determines the direction of operation based on the 
polarizing quantities. The polarization quantity to the relay is determined based upon 
the magnitude of CVT voltage. The settings of auto transformer backup protection 
were checked and it was observed that the settings are correct as per the setting 
template. Hence, it was clear that the incorrect direction determination must be due 
to the incorrect connection of CVT wiring to the relays. On analyzing the retrofitted 
scheme of auto transformer backup impedance relay the problem was due to the 
missing CVT neutral to the relay. 

To ascertain the CVT connection to the relay, the CVT connection from the 
switchyard up to the relay was checked and the following were observed: 

1. Before retrofitting, three over current and one earth fault relay in each side were 
being used as backup protection of auto transformer. 

2. Core-1 of the bus CVT was being used for the backup directional overcurrent 
protection. Three wires, one each from A, B and C-phases were terminated to 
the three TBs at relay panel and the neutral of core-1 was earthed at the CVT 
MB itself. Three overcurrent relays were connected between these three wires 
as AB, BC and CA directional overcurrent relays. 

3. Core-2 of the bus CVT was being used for backup directional earth fault protec-
tion. This core of the CVT was connected in open delta manner and the two ends 
of this open delta were terminated to the two TBs at relay panel. One directional 
earth fault relay was connected between these two wires in the relay panel. 

4. During, retro-fitment work, three wires of core-1 (point-2 above) were connected 
as A, B and C-phase and one wire of core-2 (point-3 above) was connected as 
neutral to the relay. 

From Fig. 18, it is clear that, core-1 of bus CVT was being used for the directional 
overcurrent protection. Further the neutral of CVT Core-1 was earthed in the CVT 
MB itself and six wires, two from each phase were connected to six different TBs in 
the relay panel. Out of these six, wires, the wire nos. E213, E233 and E253 were being 
used for connecting the CVT input of A, B and C-phase to the erstwhile directional 
overcurrent protection.

Core-2 of bus CVT was connected in open delta form and two wires i.e., wire no. 
E373 and E374 were connected to the two different TBs in the relay panel. These 
two wires become E377 and E378 after fuse and the erstwhile directional earth fault 
protection relay was connected between these two wires in the relay panel. 

At the time of retrofitting, during the connection of CVT wires to the backup 
impedance relay, wire nos. E213, E233 and E253 were connected to the relay as the
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Fig. 18 Connection of CVT core-1 and core-2 in CVT MB in switchyard

A, B and C-Phase CVT input while wire no. E377 was connected as neutral of new 
relay. 

Although E213, E233 and E253 are of A, B and C-Phase CVT input respectively 
but E377 was not the correct neutral to the new relay. This incorrect connection of 
neutral wire to the new relay was the reason for incorrect direction determination by 
the relay. 

The connection of CVT secondary wires was modified and four wires from core-1 
of bus CVT were connected to the relay with only single point neutral grounding. 
After, the modified connection relay was kept under observation to ascertain the 
correct operation of the relay. During recent faults on downstream feeders, it was 
observed that auto transformer backup protection relay is now detecting the correct 
direction of the fault and LVEF relay was not picking up during LV side fault. 

This problem could have been avoided if proper wiring and pre-commissioning 
procedures were followed at the retrofitting stage. Further, the internal events of the 
numerical relays help in the identification of this type of problem and these internal 
events must be checked after any out of zone faults after any retrofitting or commission 
work.
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4.10 Phase-phase Fault in One of the 400 kV Line, One Out 
of the Two Protection Relay Declares Fuse Fail 
and Blocked the Distance Protection. The Problem 
was Due to Multiple Grounding of CVT Secondaries 
at Switchyard MB as well as at relay/control Panel 

To evaluate this problem, the DR was analyzed and it was observed that the negative 
and zero sequence magnitude of voltages and current was satisfying the fuse failure 
conditions of the Relay as per the relay algorithm for VT Fuse failure. 

The Relay settings were found to be correct based on best practices and as per the 
setting template of POWERGRID. Further, the faulted phase current was consistent 
with AB, phase-phase fault. 

However, analyzing the voltages captured during the fault shows that instead of a 
decreasing voltage signature, in A- and B-phase, the voltage of B-phase and C-phase 
decreases but the voltage of A-phase increases and this was inconsistent w.r.t. the 
Ph–Ph fault and leads to declaration of fuse failure by the relay (refer Fig. 19). 

The wirings were checked as per scheme and it was observed that there was 
grounding in the CVT secondary at switchyard MB as well as at the relay location

Fig. 19 DR captured by the relay during phase-phase fault 
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and this double grounding was the main cause for mis-operation of distance protection 
relay. 

5 Instrument Transformer Secondary Connection and Cvt 
Transients 

The transient response of a capacitive voltage transformer is the ability to reproduce 
rapid changes in the primary voltage. It’s defined as the remaining secondary voltage 
after a specific time due to a short circuit on the primary voltage. Several factors 
influence this, they are; the equivalent capacitance of the stack, the tap voltage, the 
connected burden, and the type of ferro-resonant suppression circuit. Out of these 
factors, only the connected burden is under the control of the utility engineers. 

Distance relays calculate the impedance to the fault and operate if the calculated 
impedance is within its reach setting. Correct analog inputs are necessary for a relay 
to make the impedance calculation. CVT transients cause incorrect information to 
be presented to the relay for a short period of time. Since zone 2 and zone 3 timers 
are much longer than the CVT transient period, zone 2 and zone 3 elements are 
not affected by CVT transients. Zone 1 elements operate with no intentional delay. 
Therefore, their operation is affected by the CVT transient. Zone 1 relay reach settings 
need to be reduced based on the SIR of the line. The latest version of microprocessor 
relays uses filtering techniques to lessen the effects of CVT transients. Case study 
4.10 describes the effect of multiple grounding of CVT secondary on the measured 
voltage by the protective relays. This case study describes, how due to incorrect 
connection of CVT secondary, to the distance protection relay, inadvertently gets 
blocked during Phase-Phase fault on the transmission line. 

6 Conclusion 

CT and CVT connection errors can lead to undesired operations of protection 
systems. However, many of these operations can be avoided by adhering to industry 
standards and implementing tried-and-true field testing and commissioning practices. 

Fundamental concepts of the connections of instrument transformers to the protec-
tion relays and the effect of incorrect connection on the performance of protective 
relays are discussed in detail in this paper. Multiple real-world case studies of protec-
tion system mis-operations due to incorrect connections of instrument transformer 
are presented in this paper. 

We learned through the discussion of these case studies that, how a missing neutral 
wire, led to incorrect tripping of auto transformer due to incorrect direction determi-
nation by the backup earth fault relay. We have also learnt that how due to multiple 
grounding in CVT secondary the distance protection relay gets blocked during actual
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Ph–Ph fault on the transmission line. In addition to these, we also learnt that how 
incorrect CT star point, incorrect CT ratio, incorrect relay configuration and the 
avoidable errors at retrofitting stages lead to tripping at a later stage during normal 
service of the feeders. 

We hope that the case studies presented in this paper will help the readers to 
analyze the problem through real-world challenges in the complex power system 
networks. 
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Reducing the Burden on the Utility Grid 
by Implementing the Demand Response 
Strategy with Home Loads and Solar PV 
Using TLBO Technique 

Raseswar Sahoo, Sagarika Rout, and Gyan Ranjan Biswal 

Abstract The demand response (DR) strategy gives electricity users the chance to 
contribute to the reliability of the power system by controlling their electricity usage. 
A scheme for optimal management of electricity consumption in the home environ-
ment is introduced in this work. The work is primarily focused on electricity price 
minimization and reduced burden on the power grid. The proposed methodology 
introduced the scheduling of home appliances optimally according to the real-time 
pricing (RTP) structure as well as the consumers’ preferences. The solar Photovoltaic 
(PV) assists the demand response strategy in the home environment. Furthermore, 
the scheduling problem is mathematically formulated with Teaching Learning based 
optimization (TLBO) method. The results show the proficiency of the proposed 
method in comparison to the conventional uncontrolled energy consumption. 

Keywords Demand response · Home load · Scheduling · TLBO 

1 Introduction 

The demand response (DR) enables consumers to participate actively in demand side 
management (DSM) by lowering or shifting the energy consumption in response to 
time-based rates during peak periods. The strategy implements a cost-efficient energy 
environment in coordination between utility and consumers. The various dynamic 
tariff structures such as time-of-use pricing, critical peak pricing, real-time pricing, 
and critical peak rebates are the most suitable ways for customers to reshape the 
energy pattern in demand response. The scheduling of household appliances by 
considering customers’ satisfaction level and energy bill is reduced [1].
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In [2] authors considered the deferrable loads of a home for reshaping the residen-
tial load curve. The population-based meta-heuristic technique is used to schedule the 
home load while taking consumer preference into consideration with two different 
pricing mechanisms for demand response. In [3], the scheduling of home loads is 
considered to minimize peak demand and consumption prices. For scheduling appli-
ances, three techniques are used. The effectiveness of developed techniques in terms 
of bill reduction and peak reduction is demonstrated by experimental analysis. In [4], 
Particle swarm optimization (PSO) is used in the DR strategy for home apparatuses. 
It considers the switches of the smart home appliances operation from peak hours 
to doing so during off-peak hours, which ultimately lowers the energy bill while 
maintaining low computational costs. 

In [5], the appliance scheduling issue for residential consumers in the smart grid is 
examined. Two types of loads are taken into consideration time-shiftable and power-
adjustable for the decision variable with starting operating time. The best solution 
was developed by using a specific weighted sum method in order to change the 
defined multi-objective mixed integer optimization problem to a single weighted sum 
objective with comfort enhancement and energy cost deprecation as the scheduling 
objectives. For all types of loads in the house, the discomfort index was introduced 
based on their ideal start time and actual start time. 

The authors explained that home load arrangement using the branch and cut 
technique of mixed integer linear program (MILP) is solved. The ideal starting time 
of both kinds of home loads, which are deferrable and adjustable, is a decision 
constraint. The goals of the optimization technique include reducing the peak demand 
and the energy use cost by using the Time of Use (TOU) price tariff [6]. 

The authors in [7]; suggested a scheduling method together with the Time of 
Use tariff to address the industrial area’s scheduling issue for plants. The suggested 
scheme lowers the electricity cost and can only be used in scaled-down problems 
due to excessive computation costs. The problem is constructed as a continuous-
time model. In order to manage discrete events in a more natural and straightforward 
manner, this led to discrete-time models. 

To schedule and keep track of the electrical appliances, a control algorithm is 
suggested for the home energy management system (HEMS) [8].  The strategy is  
based on the energy cost. When switching household smart loads, if the energy is 
costly, the demand is satisfied with the battery bank. This study takes into account 
solar panels as well, and the suggested architecture is put into practice on a real-time 
testbed. The findings show that there is a reduction in electricity costs with minimum 
comfort violation.
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An effective energy management technique was created by Luna Adriana et al. 
for the purpose of integrating RESs and lowering electricity costs [9]. Decreasing the 
amount of imported energy is the main target of RES integration. In their job, RESs 
like solar panels and WTs with battery storage systems are taken into consideration. 
However, the installation cost of RESs is not considered in this study, even though 
simulation findings support their suggested system model. In [10], a home load 
energy management controller is proposed with swarm intelligence to schedule the 
home loads. The objective is to minimize the cost of energy use by harnessing the 
power from electric vehicles with the least burner to the conventional grid. In [11], the 
DR problem while considering numerous homes with the same living arrangements 
is examined. An efficient strategy has been proposed for reshaping the pattern of 
appliance energy consumption. The scheduling arrangement, therefore, represents a 
similar functioning as the utility demand curve. Customers can reduce their energy 
costs and only bring in a small amount of energy from the external grid in this 
manner. Additionally, effective scheduling might guarantee a steady and dependable 
microgrid. 

The paper is structured with the home load energy management system described 
in Sect. 2 followed by problem formulation in Sect. 3. The optimization technique 
has been explained in Sect. 4. The results and discussion is introduced in Sect. 5 
whereas Sect. 6 concludes the findings of the paper. 

2 Home Load Energy Management System Model 

The work considers a smart home with renewables with different user-specific smart 
appliances. The renewables only considered integrated home solar panels. It is 
expected that the home loads are under the home energy management controller 
(EMC) and smart meters are installed in residences. The purpose of the smart meter 
is to share load demand and price signals between the utility and the electricity 
consumer. Whereas the Energy management controller (EMC) is set up to schedule 
appliances in accordance with price signals and electricity produced by the micro-
grid. RTP tariff is adopted for electricity cost calculation. The duration of scheduling 
is considered as one day in this work. Additionally, the whole duration is divided 
into equal-sized sub-intervals.
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Table 1 Home appliances with types and rating [12] 

Category Appliance name Power 
rating(kw) 

Optimal start 
time (h) 

Optimal end 
time(h) 

LOT(h) 

Deferrable Cooker 3 6 10 1 

Deferrable Oven 4 15 20 1 

Deferrable Microwave 1.7 6 10 1 

Deferrable Laptop 0.1 18 24 2 

Deferrable Desktop 0.3 18 24 3 

Deferrable Vacuum cleaner 1.2 9 17 1 

Deferrable Electric Vehicle 3.5 18 8 3 

Deferrable Dish Washer 3.5 18 8 3 

Non-Shiftable Lighting 0.84 16 24 5 

Non-Shiftable Refrigerator 0.3 1 24 20 

2.1 Home Appliances 

The home consists of a set of smart loads categorized with their power ratings with 
information on lengths of operational time (LOT), optimal starting times, and optimal 
ending times. The appliances should start at their optimal starting time or later, but 
they must finish the operation before the optimal end time. Each appliance either 
operates or does nothing during the time slots. Furthermore, all the home appliances 
are pulled into two categories based on their operational time: shiftable appliances 
and non-shiftable appliances, and is depicted in Table 1. 

Shiftable Appliances: The appliances that are shifted during their execution. These 
deferrable loads help with energy management. Examples of this kind of appliance 
include vacuum cleaners, dishwashers, and cooker hubs. 

Non-Shiftable Appliances: These are the loads that once started must have to 
complete their execution without any interruption. The load schedule may or may 
not involve these appliances. Examples of this kind of appliance include lighting and 
refrigerators.
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2.2 Solar Photo-Voltaic 

The PV is considered in this work for electricity generation in the home environment. 
Electricity generation from solar PV in the form of direct current (DC), which is then 
changed into alternating current (AC) with the help of an inverter. The PV generation 
is explained with the mathematical formulation explained in Eq. 1 [13]. 

Ppv(t) = ηpv ∗ Apv ∗ I rr  (t) ∗ [1 − 0.005(T emp(t) − 25)] (1) 

where Ppv(t) is the total electricity generation in KW from the solar panel in t 
interval, ηpv is the solar panel efficiency, Apv is the area of PV panel in m2. I rr  (t) 
is the amount of solar radiation in Kw/m2, and T emp(t) is the temperature in ◦C at 
t interval. 

3 Problem Formulation 

Reducing electricity consumption costs and imported load for the residence with 
the incorporation of Solar PV is the aim of this work. The RTP pricing strategy 
is utilized in this work to calculate costs; this strategy provides a distinct price for 
energy for each hour. When a load is switched from a high-priced to a low-priced 
hour, the total cost automatically decreases. In this work, for each hour the algorithm 
first determines whether energy is accessible from the solar panel or not, if it is, that 
energy is used, and the remaining energy requirement is purchased from an external 
grid. Otherwise, the whole energy requirement for that hour is satisfied using energy 
purchased from the external grid. The objective is defined mathematically in Eq. 2. 

f1 = Minimize  
T∑

t=1 

(Es(t) + Ens(t) − E pv(t))E pp(t) (2) 

Subject to 

N∑

i=1 

γi, j = LOT  ( j ) ∀ j 

α j ≤ γ j ≤ β j ∀ j 

0 ≤ I rr  (t) ≤ Kc  

where Es(t) is the energy used by all the appliances scheduled at t interval.Ens(t) is 
the energy used by all the non-shiftable appliance scheduled at t interval. E pv(t) PV
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energy utilized in t interval. E pp(t) price offered by the utility in tth slot which is the 
RTP signal. γi, j is ith slot of jth appliance and maximum no of slots is N. Therefore∑N 

i=1 γi, j is the total slots allotted to jth appliance which should always be equal 
to the length of operation time (LOT) of jth appliance and this condition should be 
satisfied for all appliances in the home. α j , β j are the operational start and end time of 
jth appliance respectively and γ j is the operational time of the jth load, this condition 
implies that the operation of an appliance should always lie between the start time 
and end time. LOT  ( j ) is the predefined length of operational time. I rr  (t) and Kc  
are the solar radiation during t interval and clear sky condition respectively. 

4 Teaching Learning Based Optimization (TLBO) 
for HLEM 

The paper implements the Teaching Learning based optimization for load scheduling, 
and the cost minimization in home load energy management. 

Teaching Learning based optimization is a nature-inspired population-based meta-
heuristic optimization technique that simulates the environment of a classroom to 
optimize a given objective function [14]. The most appealing aspect of this strategy is 
that it requires just two parameters: population size and the number of iterations for 
its operation. Aside from that, this method is devoid of derivatives. When compared 
to other evolutionary algorithms, it is simple to implement as any other algorithm-
specific parameters are not required in this algorithm. Lower computation and the 
simplicity associated with this algorithm is what make it avourable for Home Load 
Energy Management. Furthermore, there has been less work published on this algo-
rithm for Home Load Energy Management, and the works have not considered factors 
such as appliance comfort, which is considered in this work. This algorithm works 
in two-fold scenarios (i) Teacher structure phase, (ii) Learner Phase structure. 

The TLBO defines the relationship of teacher and student to improve the quality of 
knowledge. Firstly, the teacher tries to bring all students to the same knowledge level 
by utilizing the teaching phase and students’ learning capabilities in the teaching 
phase. In the second learning step, the interaction among themselves increases their 
knowledge. The pseudocode of the TLBO algorithm is as follows [15]. 

Pseudocode:
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5 Results and Discussion 

Simulations have been run to demonstrate the best scheduling of microgrid and house-
hold appliances. The usefulness of the proposed work is assessed by reducing energy 
costs with the best possible use of electricity produced by the own solar generation. A 
smart house is considered with ten home loads connected to the Energy Management 
Controller via the WIFI, and the controller decides whether to turn on or off each 
appliance based on the electricity tariff. As per the operational nature, the devices are 
categorized as deferrable which can be shiftable and others as non-shiftable. As non-
shiftable appliances cannot be scheduled and must operate at predetermined intervals 
set by energy users, they have little impact on load management and electricity cost 
reduction. By shifting from expensive to inexpensive hours, shiftable appliances may 
significantly lower energy costs. Additionally, 24 h are considered for simulation. 
The data considered for the research work like hourly solar generation, RTP signal, 
length of operation time of appliances, Ratings of appliances are considered from 
[1]. The proposed scheme is optimized with TLBO algorithm and compared with 
the cost when consumption is considered in the traditional way and when scheduled 
considering Particle Swarm Optimization (PSO) algorithm. 

5.1 Scheduling with Traditional Structure 

In this section, the home loads are considered in a conventional way. The Scheduling 
strategy of home loads harnesses energy from the conventional grid with the 
structured tariff plan. The results shown here are explained without optimization 
techniques. 

Figure 1. shows the RTP pricing signal [1] as well as the hourly electricity 
consumption costs. By effectively shifting the load towards low-priced electricity 
hours, the suggested strategy reduces the amount of electricity used during high-
priced electricity hours, or from 8 to 13, as is evident. Only the load demanded by 
the deferrable appliances are scheduled by the proposed plan.

The hourly electricity uses from the external grid are shown in Fig. 2 for a day. As 
discussed previously, this graph shows how the suggested plan reduces the energy 
consumption during periods of high electricity prices. No electricity is purchased 
from the external grid between the hours of 8 and 14. In this instance, the expense 
of the electricity was calculated to be 415.1520 Rupees.

5.2 Scheduling with TLBO Optimization 

The hourly energy utilization prices with TLBO optimization along with the RTP 
pricing signals are depicted in Fig. 3. Most appliances are observed to be used during
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Fig. 1 Non optimized Hourly energy consumption costs for home loads in comparison with real 
time pricing signal

Fig. 2 Electricity utilisation from external grid for 24 hours in a day

the 1-to-5-h window, which has the lowest energy price range of the entire day. In 
contrast to the prior instance, where most appliances were scheduled during the 
15–20 h, which is also an area with cheap energy prices but higher than the 1–5 h.

The hourly electricity imports from the external grid for the TLBO optimized 
case are shown in Fig. 4. for the entire time frame. In accordance with the previous 
figure, this figure shows that a large amount of electricity is drawn during the early 
morning hours. In this instance, the expense of electricity was determined to be
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Fig. 3 Hourly energy consumption costs for home loads with optimal Scheduling

Fig. 4 Hourly imported electricity from external grid with optimized schedule slots for home loads

374.6680 rupees. Table 2 shows the time of operation of appliances during both the 
cases along with LOT, optimal start time and optimal end time data. 

Figure 5 shows the hourly energy production from the microgrid in the smart 
home, which is solely made up of solar panels. The figure makes it abundantly 
obvious that the electricity production varies with the amount of sun that is available 
throughout the day. This graph shows that energy production from solar panels is 
greatest during the day. On the other hand, during periods of low solar irradiation or 
at night, the solar panel produces zero electricity. Figure 6. shows the hourly energy
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Table 3 Objective function values 

Cases Non-optimized PSO optimized TLBO optimized 

Objective function values 415.1520 387.9520 374.6680

Fig. 5 Hourly electricity generation of solar PV 

Fig. 6 Hourly energy consumption costs comparisons for home loads 

utilization costs of both cases along with the RTP pricing signal. The numerical cost 
comparison has been given in Table 3. 

Figure 7 shows the comparison between the three cases. Without optimization 
total electricity cost was 415.1520 rupees whereas, with PSO optimization it was 
387.9520 and with TLBO optimization it was 374.6680 rupees which is around 
6.55% and 9.75% decrease in the total electricity cost.
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Fig. 7 Total Consumption cost comparison with optimized scheduled load Scenario 

6 Conclusion 

In this work, appliance scheduling is performed in a single residence by taking total 
electricity cost and imported electricity from grid minimization with RTP pricing 
strategy as objectives. The results show; the proposed TLBO scheme schedules the 
smart appliances in accordance with the real-time pricing. The analysis shows a 
distinct proficiency of around 10% in cost reduction as compared to the unscheduled 
traditional case. This also clearly shows the peak demand reduction and wise use 
of renewables beneficial to consumers and utility. The work can be extended to 
the analysis of impact in micro grid with more dynamic load integration and DSM 
technology. 
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Automatic Generation Control of Multi 
Area Power Systems Using BELBIC 

J. Shankar and G. Mallesham 

Abstract The goal of this review article on automatic generation control studies is to 
offer both a thorough analysis of the literature and a sizable bibliography. It has been 
addressed to use various methods for controlling frequency and power. Different 
power generating sources, including conventional, renewable energy sources, and 
realistic Renewable Energy Sources (RES), are taken into account in both regulated 
and uncontrolled situations when discussing various linear and non-linear power 
system models. Several secondary controllers with integer order, fractional order, 
intelligence, cascade, and a few recently used controllers are also briefly explained 
in the AGC literature. In this record, the subject of load frequency regulation received 
considerable attention. A multi-area, connected power system still has a serious LFC 
issue. For LFC in power systems, numerous control strategies have been put forth 
in recent years. This essay offers a comprehensive review of the LFC literature. 
Excellent control action, disturbance handling, and robustness of system parameters 
are all characteristics of the proposed controller Brain Emotional Learning Based 
Intelligent Controller (BELBIC). It has been used in the field of control because of 
its exceptional effectiveness and simplicity of application. A power system that is 
subjected to disturbance variation change and system-inherent nonlinearity will be 
the subject of the simulation results, which will be obtained using MATLAB. To 
prove that the suggested designed controller works as intended. 
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1 Introduction 

Maintaining the proper operating level of frequency, voltage control, and load flow 
conditions is the major duty of a power producing system. To deliver customers with 
dependable, consistent, high-quality electric power, the relationship between power 
requirements and power production needs to be rebalanced. The system’s easily 
controllable sources’ parameters can be changed to regulate both reactive and actual 
electricity generation. The fundamental goal of AGC is to maintain a reasonable 
spacing between the switching frequency and tie-line power [1, 2]. Variations in 
power demand have an impact on both the frequency of the power system and the flow 
of electricity via the tie-lines. By attempting to manage the power generation with 
area control, the major goal of frequency control for load is to maintain the operating 
frequency at the predetermined value. Maintaining the tie-line changeover schedules, 
distributing the power among the generators, and preserving the typical frequency of 
50 Hz or 60 Hz are the key goals of LFC. Many conventional controllers, including 
PID, PI, and I, are employed in manipulating machines because they are simple to 
implement, simple to understand, and inexpensive. Nature of their control approach 
is dependable and mentioned as sturdy for a few operating situations. However, the 
reaction of the device with those controllers is gradual and bad in evaluation of the 
Intelligent controller [3]. A variation in frequency (f) and tie-line actual power (Ptie), 
2 separate assessments of the change in rotor angle as illustrated in Fig. 1, can both 
be recognized using LFC as its primary approach. Together, they can be used to 
identify this tiny difference in accuracy. Several methods were employed to address 
the LFC issue, including robust control [4, 5], particle swarm optimization [6], pole 
placement strategic plan [7], and state input [8]. To control the frequency and tie-
line power in LFC systems, a variety of control techniques, including the adaptive 
neuro-fuzzy inference system (ANFIS), the NARMAL-2 controller, etc., have been 
described in the literature [9, 10]. Area Control Error (ACE) and area control error 
reduction using continuous active power adjustment. Historically, the input for the 
LFC controller used to control the area control error (ACE) and the interoperability 
frequency deviation has been the area control error (ACE), also known as the sum 
of the area frequency bias, frequency deviation, net power interchange error, or net 
tie-line flow error. 

The industry-standard conventional type LFC controllers are tuned online through 
trial-and-error procedures. It has been suggested to simulate the entire system instead 
of just the control region under consideration so as to use a variety of optimiza-
tion techniques to fine-tune the control parameters [11, 12]. Tie-lines connect the 
various locations to one another. The tie-lines are used to exchange energy between

Fig. 1 Load frequency 
control in a two-area system 
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successive two areas and to offer inter-area assistance in the event that the power 
system experiences abnormal conditions [13]. Some of them mistakenly think that 
all sub-systems are identical, which is untrue for actual power systems. Numerous 
decentralized LFC controllers were developed to address the aforementioned issue. 
The system develops a mismatch in frequency and scheduled power exchange across 
locations when a load change occurs. Load frequency control (LFC), which is defined 
as the management of generator power output within a tolerable limit is required to 
fix this mismatch [14]. The length of time required for frequencies to stabilize in a 
system with Control scheme, PID, and PID with a fuzzy logic-based controller was 
measured [15, 16]. Of all the controllers, fuzzy with PID generated the most effec-
tive results. The controllers in use are PID with fuzzy logic-based AGC controllers 
[12, 17–21]. 

In the following paper, it is suggested to build and develop a brain emotional 
controller with the primary goal of controlling load frequency. Although the design of 
the brain’s emotional controller is similar for all purposes, the choice of sensory signal 
and emotional cue or reward functions varies. The variable gain employed to obtain 
better performances is geared for the brain’s emotional controller. The proposed 
technique’s structure, which uses the brain’s emotional controller to modulate the 
load frequency, is depicted in Fig. 4. The design of the brain’s emotional controller 
is distinctive and straightforward, which defeats the complexity found in other intel-
ligent controllers. This essay is structured as follows: The section on “Develop-
ment of Brain Emotional Controller” discusses the structure of the brain, with an 
emphasis on the limbic system and its related regions to develop as a controller. 
Section ‘Results and comments’ explains the findings, while Section ‘Conclusions’ 
presents the conclusions. 

2 Mathematical Modelling of LFC 

The frequency of power systems is dependent on active power, and voltage is depen-
dent on the reactive power limit. The control power system is divided into two distinct 
problems. Load frequency control (LFC) refers to the control of frequency by active 
power [18, 22]. An important task of LFC is to keep the frequency deviation constant 
in the face of continuous load variation, also known as unknown external load distur-
bance. Power exchange error is a critical task for LFC [23, 24]. A power system 
is typically composed of several generating units linked together; these generating 
units are interconnected via tie-lines to become fault tolerant. The block diagram 
can be made as given below of a two-area interconnected power system is shown 
in Fig. 2. The use of tie-line power is represented in Eq. (1) introduces a new error 
into the control problem, which is known as the tie-line power exchange error. Area 
controller error (ACE) represented in Eq. (1) plays a significant role in interconnected 
power systems, as well as in minimizing error functions of the given system. The 
BELBIC controller is proposed in this paper, as is the performance of load frequency 
control on a two-area power system.
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Fig. 2 Block diagram of two area interconnected power system with controller 

Power is transferred from area 1 to area 2. 

Ptie12 = 
|V1||V2| 
X12 

sin(δ1 − δ2) (1) 

If the load demands of two areas change, the power angle will change incre-
mentally. Δδ1 and Δδ2 are the incremental changes in δ1 and δ2 are the power 
changes. Because controller input is Area control error, it plays a significant role in 
interconnected power systems. 

AC Ei = 
N∑

j=1

ΔPi j  + BiΔωi (2) 

where N is the no. of areas interconnected areas i, Pi j  is the power deviation between 
areas i and j from the scheduled values.

Δω is the speed deviation 

Bi = 
1 

Ri 
+ Di (3) 

Bi is the frequency bias factor represented in Eq. (3). 
Where Δf1, Δf2 are change in frequency in area-1 and area-2. 

3 Concepts for Designing a Control System 

The control system designs were used to discuss LFC advancements in power 
systems that are interconnected. The vast majority of LFC design features are based 
on technologies employed in the control system design field. Techniques were the
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focus of the first era of traditional control theory. Root Locus, Bode, Nyquist, and 
Routh-Hurwitz are examples of control methods. These methods commonly employ 
complex frequency domain transfer functions, feedback, and trying to simplify 
assumptions to evaluate the time response. One of the major drawbacks of tradi-
tional control strategies was the use of single-input, single-output (SISO) methods. 
The frequency domain and transfer functions are also limited to structure linear 
time-invariant systems. 

The use of state-space model-based techniques is a hallmark of the second era of 
control systems, also referred to as the modern control era. Standard control evalu-
ation and development are performed in the time domain. State space model-based 
methods removed classical control’s limitations and provided insight into system 
structure and properties, but they obstructed other important control properties that 
could be studied and manipulated using classical control. During the third era, it 
offered assistance to the systems’ uncertainty problem. As well as optimal and adap-
tive control, which are also expressed in state space, robust control, which combines 
contemporary state space and traditional frequency domain techniques, is a type of 
control. 

4 Research Gaps and Challenges 

Load frequency control’s (LFC) primary goal, also known as unidentified explicit 
disturbance, is to maintain a steady frequency over arbitrarily changing active power 
loads. Controlling the tie-line power exchange error is another objective of LFC 
[25–27]. The tie-line power exchange error is a new error that has been added to the 
control problem as an outcome of the use of tie-line power. The energy gained within 
the area is obtained via TL from preceding areas when an unanticipated change in 
active power happens over the area. The balance must ultimately be managed among 
the areas that are processed to load change without aid from other sources. If not, the 
regions’ economies will diverge to some extent. Since each location needs its own 
LFC to control the tie-line power exchange error, various set points can be defined for 
each area within an interconnected power system. The LFC requirement is therefore 
more resistant to fluctuations in system parameter uncertainty and system model 
uncertainties. In conclusion, the LFC is in charge of two key duties: keep up with 
the tie-line power exchange and keep up with the frequency benchmark value in the 
event of fluctuating load variations.
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4.1 Improvement of AI Optimization Techniques Over 
Conventional PI Controllers 

The conventional controller, one of many techniques used in the design of LFC, 
produces subpar results as shown by pronounced overshoots. When determining and 
modifying the PID controller parameters, AI optimization techniques such as fuzzy 
control, particle swarm optimization, also known as (PSO), and genetic programming 
(GA) will significantly enhance the system outputs. These control methods, which 
rely on smooth computer technology for LFC parameters, guarantee the system 
frequency and total eradication of steady state error. 

5 Proposed Control Strategy 

In this work, a novel use of artificial intelligence was discussed. Brain Emotional 
Learning Based on Intelligent Controller (BELBIC), is the name of the new controller. 
Its two main components are the medial brain concept and emotional processes. The 
newly proposed controller is meant to control load frequency in two thermal zones in 
response to various operating conditions and disturbances, including changes in load 
demand, parameter uncertainty, and parameter. A direct adaptive controller, an easy 
structure, strong robustness and performance properties, and quick auto-learning are 
just a few of the benefits of BELBIC. 

5.1 BELBIC Controller 

Nevertheless, there are two different kinds of cognitive and intelligent control tech-
niques. The intelligent system modifies the controller’s variables mostly through 
indirect means. We chose the second option since it is a more favourable strategy. 
In this situation, the BELBIC computer model serves as the intelligent system’s 
controller block. A model representation is shown in Figure 3. A system called 
BELBIC creates actions in response to sensory input and emotional cues. However, 
for demonstration purposes, just one Sensory-input and one Emotional-Cue signal 
(stress) were taken into account in the benchmarks presented in this study. These can 
normally be vector valued. The amygdala is the main location for emotional learning.

A BELBIC is a Highly intelligent Controller Based on Brain Emotional Learning. 
It is reliant on mammals’ brains’ limbic system. The BELBIC controller is originally 
introduced by Lucas, and the first straightforward computer model of the emotional 
learning process is created by Moren and Balkenius. There are a total of four parts. 
The first component is the Thalamus (TH), and its source of signal is stimuli (SI). 
The reward signal (Rew), which is received as an input by the amygdala (A), is the 
second component. The remaining third and fourth overall components, respectively,
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Fig. 3 Block diagram of BELBIC 

Fig. 4 A Schematic structure of BELBIC 

Fig. 5 Change in frequency 
AREA1 with PI & BELBIC 
for 0.01p.u. Load Change

are the sensory cortex of the brain (CX) and the brain’s orbital frontal cortex (OFC). 
As seen in Fig. 4, the system receives a sensory cortex input as well as the major 
reward signal REW. 

This paper describes a controller with a single output and two inputs: the sensory 
input (SI) and the reward signal (Rew) where kp and ki are the (PI) controller gains 
and (ACE) is the input. The appropriate controller is created by tuning these gains 
in order to increase performance. The BELBIC controller’s main benefits are its
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Fig. 6 Change in frequency 
AREA2 with PI & BELBIC 
for 0.01p.u. Load Change 

Fig. 7 Change in frequency 
AREA1 with PI & BELBIC 
for 0.02p.u. Load Change 

Fig. 8 Change in frequency 
AREA2 with PI & BELBIC 
for 0.02p.u. Load Change

straightforward structure, quick autolearning, good robustness and dynamic perfor-
mance, and low online computation during controller adaptation. However, for the 
same application, the BELBIC has large peak overshoots because it reaches a steady 
state with any random initial values in a shorter amount of time. The sensory signal 
(Si) coming from the thalamus is the only one sent to the sensory cortex (SCi) in
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Fig. 9 Change in frequency 
AREA1 with PI & BELBIC 
for 0.05p.u. Load Change 

Fig. 10 Change in 
frequency AREA2 with PI & 
BELBIC for 0.05p.u. Load 
Change

Eq. (4) and Eq. (5) and Amygdala. 

SCi = g(Si ) (4) 

g(Si ) = esi (5) 

Ai and Oi , Amygdala and Orbitofrontal cortex outputs are represented in Eq. (6) 
and Eq. (8) 

Ai = Vi Si (6)

ΔVi =∝ (Si max(0, Rew −
∑

i 

Ai )) (7) 

where V i is the gain of Ai . 
The orbitofrontal cortex output is expressed as 

Oi = Wi Si (8)
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where W i is the gain of OFCi . 
The ΔV i and ΔW i learning process passes through the internal weight update 

represented in Eq. (7) and Eq. (9)

ΔWi = β(Si (E
i − Rew)) (9) 

. 
In the above, Δ symbol represents the variations in weights. α and β are the 

learning rates of Ai and OFCi . 
The reward signal can be derived with function J. 
The emotional signal output, Ei , represented in Eq. (10) is obtained by combining 

inhibitory Orbitofrontal Cortex and excitatory Amygdala nodal outputs, as shown 
below 

Ei = Ai − Oi (10) 

The total derived Reward signal is expressed as 

E = A − O (11) 

E is the resultant emotional signal of the controller represented in Eq. (11). 

6 Simulation Results and Discussion 

The Interconnected two are power system is simulated in MATLAB with the proposed 
BELBIC controller under a load demand change of 0.01, 0.02, and 0.05 p.u. in both 
areas. The frequency deviationΔf1 of the thermal area-1 and the frequency deviation
Δf2 of the thermal area-2, for the two areas for the system dynamic responses are 
shown in Figs. 5, 6, 7, 8, 9, 10. The dynamic response of the system is given in Figs. 7, 
8, 9, 10 these performances represent the robustness of the BELBIC Controller where 
the frequency is better than the PI Controller. The settling time of the BELBIC 
controller is faster than that of the PI controller. The peak over shoot and peak under 
shoot of the BELBIC controller are less than that of the PI controller, and steady 
state error is zero. Finally, the designed controller outperforms the PI controller in 
terms of dynamic response. The following Tables 1, 2, 3, 4 describe the simulation 
results of the two controllers BELBIC and PI.
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Table 1 Peak Undershoot 
(Hz) with different methods Controller Area-I Area-II 

PI 0.058 0.058 

BELBIC 0.035 0.035 

Table 2 Peak Overshoot 
(Hz) with different methods Controller Area-I Area-II 

PI 0.028 0.028 

BELBIC 0.001 0.001 

Table 3 Steady State Error 
with different methods Controller Area-I Area-II 

PI −0.003 −0.003 

BELBIC 00 00 

Table 4 Settling time with 
different methods Controller Area-I Area-II 

PI 55 55 

BELBIC 08 08 

7 Conclusion 

This paper presents the study on load frequency control (LFC) that was conducted, 
providing an overview of problems with LFC and approaches for control system 
design. discussion of various load frequency control techniques, including traditional 
models and contemporary control principles, will then follow. Modern concepts 
discuss several optimal LFC schemes as well as intelligent LFC schemes. In this, 
many models described in the literature that are linked to this research effort were 
discussed. Intelligent control systems that use various optimization algorithms to 
manage load frequency may produce better results. The structure of a suitably 
analyzed BELBIC control algorithm for power grid Control of connected load 
frequency is discussed. in this article. The Load disturbance in both areas verifies 
the BELBIC system’s rigidity. MATLAB was used to conduct simulation studies. 
The suggested controller is connected to the load disturbance in both areas more 
dynamically.
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Chaotic Quasi-Oppositional Differential 
Search Algorithm for Transient Stability 
Constraint Optimal Power Flow Problem 

Sourav Paul , Sneha Sultana , Provas Kumar Roy , Nirmalya Dey, 
Pravin Kumar Burnwal, and Devjeet Sengupta 

Abstract In this research work, the concept of Chaotic Quasi-Oppositional Dif-
ferential Search Algorithm (CQODSA) has been successfully applied to address 
the transient stability constraint optimal power flow problem. The effectiveness 
of the suggested algorithm has been evaluated on WSCC 3-generator, 9-bus sys-
tem and New England 10-generator, 39-bus system. The recommended algorithm’s 
implementation has been evaluated for different fault conditions with the purpose of 
demonstrating CQODSA’s applicability in this versatile scenario. By contrasting the 
findings with those of other well-known algorithms, the superiority of the established 
method has been proven. 

Keywords Optimal power flow · Transient stability constraint · Chaotic 
quasi-oppositional based learning · Differential search algorithm 

1 Introduction 

A network used to transfer energy from generators to loads is called a power system. 
The electric power transmission network is used to convert energy from generators to 
loads. The complexity of the current power system network is gradually increasing 
for planning and operation purposes due to large power transfers across greater 
distances, complicated coordination, the challenging connection between multiple 
system controllers, and low power reserves. It is considered that a power system is 
secure when it can resist unexpected interruptions with little degradation in service 
quality. Whenever there is a disruption, the system experiences the following transient 
before entering an acceptable stable state in which all operational restraints are kept 
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under the permitted boundaries. The true and reactive powers of the generators in an 
interlinked power system are to be flexible within practical bounds based on using 
the least amount of fuel possible while still meeting the specific load requirements. 

The concept of optimal power flow underpins the operation, control, and planning 
of power systems. (OPF). Dommel et al. [ 1] was the one who initially presented it. 
After that, the community of power system researchers proposed a number of OPF 
techniques. Currently, OPF is a standard power system analysis technique and has 
proven to be trustworthy enough for practical application. As a result, the core objec-
tive of the OPF solution is to create a power production system that reduces the cost of 
fuel while meeting all equity and inequality criteria. The OPF problem is typically a 
wide-ranging, multi-objective, highly nonlinear, non-convex optimization problem. 
For the purpose of minimizing the desired objective function while still satisfying 
the power balancing equations and some inequality constraints in the system, the 
ideal steady-state operation of a power system needs to be determined. This is done 
using a nonlinear programming problem. The limits of the independent and depen-
dent variables are the restrictions on inequality, as well as the load flow equations, 
which are the power balancing equations. The generator real powers, omitting slack 
bus power, generator bus voltages, transformer tap settings, and reactive power injec-
tion, are independent variables. Load bus voltages, slack bus power, line flows, and 
generator reactive powers are the dependent variables. Though reducing fuel costs is 
the major goal of the OPF, however, because of the continuous rise in energy demand 
and incomparable expansions in production and transmission capacity, power system 
construction and operation are being faced with a new challenge: voltage instability. 
Reactive power sources in electrical systems that are insufficient might cause a signif-
icant transmission loss. In these situations, it could be required to make the objective 
of the OPF issue take into account transmission loss and voltage stability margin. By 
lowering losses in transmission and generator reactive margins in the Spanish power 
system, Lobato et al. [ 2] proposed an OPF-based on linear programming (LP). This 
method simulates the discrete characteristics of capacitors and shunt reactors by 
using integer variables. It was discovered that the method, which linearized both 
the constraints and the goal function in each iteration, was superior to one that only 
linearized the objective function once. By extending the basic Kuhn-Tucker require-
ments, Momoh [ 3] made use of a generalized quadratic-based model for the OPF. The 
proposed OPF technique took into account the feasibility, convergence, and optimal-
ity requirements. In order to include various goal functions and selectable constraints, 
it was also capable of using hierarchical structures as well. The generalized method 
combines the sensitivity of a goal function to changes in constraints with optimal 
performance, leading to a globally optimal solution. Requirements for algorithmic 
memory and execution speed were reduced. The Newton-based techniques [ 4, 5], 
the reduced gradient method, Lagrangian relaxation (LR), interior point methods 
(IPM) [ 6, 7], and linear programming (LP) [ 8]. Roy et al. [ 9] and Abou [ 10] dis-
covered in the literary [ 11– 13] are some of the traditional methods for solving OPF 
problems that have evolved over the past 20 years. These strategies use the starting 
point and convexity to locate an overall ideal solution. Techniques, however, were 
unable to resolve complex objective functions that are not differentiable. The non-
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linear objective function and constraint problems may be addressed using nonlinear 
programming (NLP) [ 7]. This method, however, also has a number of disadvantages, 
including unstable convergence features and excessive numerical iterations that lead 
to enormous computations, large execution times, and algorithmic complexity. Some 
of these methods are effective at finding the best solution, but they frequently converge 
slowly and have high computing costs. The limitation of Newton-based approaches 
is that their merging traits are sensitive to the starting circumstances, and due to an 
improper initial condition, they may not even converge. Heuristic approaches have 
recently achieved significant advancements in the optimization of power supply net-
work. A significant quantity of heuristic algorithms seemed suggested over the recent 
years to find the best solution or to be highly effective in addressing nonlinear OPF 
issues, including GA [ 14, 15], SA [ 16], TS [ 17], PSO [ 17, 18], Chaotic Ant Swarm 
Optimization (CASO) [ 19], BFO [ 20], DE [ 21]; Sivasubramani and Swarup [ 22], 
Biogeography Based Optimization (BBO) [ 23], Harmony Search Algorithm (HSA) 
[ 24], ABC [ 25], and GSA [ 26] are all examples of hybrid evolutionary programming 
(HEP). They have been effectively used to solve a variety of issues where finding a 
global solution is preferable to finding a local one or where the issue contains non-
differentiable regions. Basu [ 27] applied the multifaceted discrete evolution method 
to the OPF problem using FACTS instruments in IEEE 30-bus and IEEE 57-bus 
systems, and the outcomes were compared to prior studies. In order to update the 
gravitational acceleration, Hadi [ 28] presented a non-dominated sorting gravitational 
search algorithm (NSGSA) in 2012. This Sivasubramani and Swarup [ 22] introduced 
the multi-objective Harmony Search Algorithm (HSA) to assess the OPF issue. The 
outcomes of the suggested method were contrasted with NSGA-II in this study, and 
numerous objectives including fuel expenditure, L-index, and transmission loss were 
taken into account. Voltage deviation, total real power losses, total emission, and the 
overall fuel expense of thermal units were contrasted with that of other algorithms. 
Abido and Bakhashwain [ 29] proposed a technique for solving the restricted optimal 
VAR dispatch problem with objective functions that included real power outages 
and varying voltages as objective functions. The suggested technique’s durability 
and precision were tested using the IEEE 30-bus system. 

One of the numerous OPF issues is the OPF with transient stability limitations, 
and it makes for an intriguing research topic since it considers not only certain opti-
mum solutions but also all security and stability requirements. The boundaries that 
system dynamics must meet to be stable under transient conditions are referred to as 
transient stability constraints. In contemporary power systems, it is extremely expen-
sive to lose synchronous due to transient instability. Employing transient stability-
constrained optimal power flow is a more effective way to strike a balance between 
the security and economics of the power system. (TSC-OPF). The main aim of the 
TSC-OPF is to combine the economic objectives of stability constraints and steady-
state goals into a single, original formulation. One approach is to treat the TSC-OPF 
as an algebraic optimization problem that may be dealt with using Gan et al. [ 30] 
by using standard optimization techniques. The TSC-OPF issue is then interpreted 
through a transformation of differential equations as inequality constraints into com-
parable algebraic equations. Based on this, Yuan et al. [ 31], who developed a fresh
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method for incorporating a model of transient stability into conventional OPF which 
significantly decreases computational load, is the source of the multi-contingency 
concept. However, it has significant limitations brought on by the enormous number 
of variables, which also causes computation errors for approximations in addition 
to convergence issues. In order to change the TSC-OPF issue’s infinitesimal dimen-
sion into a finite-dimensional issue, Chen et al. [ 32] propose a new technique called 
functional transformation. But due to the high sensitivity issue of the beginning 
conditions, these solutions are unfortunately not applicable to real-world systems. 
Because of the computing challenges, types of limits in OPF concerns which are 
the transient stability limit and the flexibility of the objective functions are both 
limited. Because of this, it is essential to develop optimization methods that can 
get around these limitations and manage these challenges. The artificial bee colony 
(ABC) by Karaboga et al. [ 33], the improved genetic algorithm (GA) by Chan et al. 
[ 34], and differential evolution by Cai et al. [ 35] are a number of population-based 
optimization techniques that have been effectively used to solve TSC-OPF issues. In 
this chapter, the researcher suggested chaotic quasi-oppositional based differential 
search algorithm (CQODSA), for addressing TSC-OPF issues by taking into consid-
eration the New England 10-generator, 39-bus system, and the WSCC 3-generator, 
9-bus system. 

2 Formulation of Mathematical Problems 

2.1 Objective Function 

The purpose of OPF is to reduce the objective function while preserving all equality 
and inequality constraints. The OPF issue might be stated as follows: 

.Minimize OF(x, y) (1) 

.Subject to:

{
e(x, y) = 0

iei ≤ ie(x, y) ≤ ieu

}
(2) 

in which, .OF(x, y) and .e(x, y) are the objective function and equality constraints 
respectively; .ie(x, y) is the inequality constraints; .iei , ieu are the minimum and 
maximum limits of the inequality constraints; x is the vector of dependent variables 
composed of slack bus active power, load voltages, reactive power of generators, 
and loadings of transmission lines; y is an independent variable vector comprised 
of reactive power injections, alternator voltages, transformer tap settings, and active 
power injections from generators other than the slack bus. Thus, the expression for 
. x and . y is 

.x = [Pg1, Vl1 ...VlNL , Qg1 ...QgNG , Sl1 ...SlNT L ] (3)
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.y = [Pg2 ...PgNG , Vg1 ...VgNG , T1...TNT , Qc1 ...QcNC ] (4) 

where .NG and .NL are the number of generator and load buses; .NTL is transmission 
line’s number; the numbers .NT and .NC represent the amount of transformers and 
shunt compensators. 

The overall generation cost is provided with an optimal remedy in this study. The 
total fuel expenditure of the generating units is given for the exponential expense 
function by 

.Fc(u, v) =
NG∑
p=1

(ap P
2
gp

+ bp Pgp + cp) (5) 

where .aP , bp, cP are the gasoline expenditure multipliers, and .Pgp is the .pth gener-
ation. 

Because many valve steam turbines are used in real generators to provide more 
precise and adaptive operation when determining an acceptable cost function, the 
valve spot effect should be considered by generating units with valve point loading 
in order to meet the overall fuel expense: 

.Fc(u, v) =
NG∑
p=1

(ap P
2
gp

+ bp Pgp + cp + dpsin[ep(Pmin
gp

− Pgp )]) (6) 

where .dp, ep are the energy expense factors with inlet point transferring impact and 
.Pmin

gp
is the .pth generator’s minimum generation. 

2.2 Transient Stability Assessment 

To characterize the fluctuating behaviour of a system containing unstable moments, 
the angle of rotor angles in relation to the inertial centres for each alternator are given 
here. According to Athay et al. [ 36], the centre of inertia is located as follows: 

.δCOI =
∑NNG

k=1 Mkδk∑NNG
k=1 Mk

(7) 

where .Mk is the .kth generator’s inertia constant and . k is the .kth generator’s rotating 
angle. The rotor angle limitation can be expressed in terms of limitations of inequality 
as follows: 

..δ, ≤ δk − δCOI ≤ δ,, (8) 

.K ⊆ SG (9)
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where the set of generators is .SG and the lower and higher power source rotor angle 
parameters are .δ,, δ,,. 

2.3 Constraints 

Equality Constraints: The equality constraints applied to the load flow equations 
are as follows: 

.

⎧⎨
⎩

Pgi − PLi = ∑N
j=1 |Vi |

||Vj

||Gi jcosδi j + Bi j sinδi j

Qgi − QLi = ∑N
j=1 |Vi |

||Vj

||Gi j sinδi j − Bi jcosδi j

(10) 

where .Vi , Vj are the voltages of the .i th and the . j th bus; .Pgi , Qgi are the active and 
reactive powers of the .ith generator; .PLi , QLi are active and reactive power of the 
.ith load bus; .Gi j , Bi j , δi j are the conductance, admittance, and phase difference of 
voltages between the .i th and the . j th bus; .N is the number of buses. 

Inequality Constraints 

(i) Generator constraints: The  .i th bus’s generator voltage, reactive power, and 
active power are all between their lower and upper limits, as represented by 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vmin
gi ≤ Vgi ≤ Vmax

gi i = 1, 2, ...., NG

Pmin
gi ≤ Pgi ≤ Pmax

gi i = 1, 2, ...., NG

Qmin
gi ≤ Qgi ≤ Qmax

gi i = 1, 2, ...., NG

(11) 

in which,.Vmin
gi , Vmax

gi are the minimum and maximum generator voltages of the 
.i th generating unit; .Pmin

gi , Pmax
gi are the minimum and maximum active powers 

of the.i th generating unit; .Qmin
gi , Qmax

gi are the minimum and maximum reactive 
powers, of the .i th generating unit, respectively. 

(ii) Load bus constraints: 

.Vmin
li ≤ Vli ≤ Vmax

li i = 1, 2, ...., NL (12) 

where .Vmin
li

, .Vmax
li

are the minimum and maximum load voltages respectively 
of the .i th generating unit. 

(iii) Transmission cable limitations: 

.Sli ≤ Smax
li i = 1, 2, ....NTL (13)
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where .Sli is the evident electricity flow of .i th branch; .Smax
li

is the perceived 
high-powered flow limit of the .i th branch. 

(iv) Transformer outlet restrictions: The upper and lower boundaries of the trans-
former input settings are mentioned below 

.TCmin
i ≤ TCi ≤ TCmax

i i = 1, 2, ....NT (14) 

where .TCmin
i , TCmax

i are the minimal and most prominent maximum setting 
tap, respectively, of the .i th transformer. 

(v) Constraints on shunt compensators: The following are the boundaries of 
shunt compensation: 

.Qmin
ci ≤ Qci ≤ Qmax

ci i = 1, 2, ...., NC (15) 

where.Qmin
ci , Qmax

ci are the lower and highest VAR injection limits, respectively, 
of the .i th shunt capacitor. 

3 Differential Search Algorithm (DSA) 

3.1 Inspiration of DSA 

This section discusses Civicioglu’s differential search algorithm (DSA), a novel meta-
heuristic optimization method [68]. DSA takes its cues from the natural migration 
patterns of living things. Due to changes in the seasons throughout the year, there 
are differences in the availability and effectiveness of food areas that exist in nature. 
Living things exhibit migration behaviour as a result throughout the year. This makes 
it possible for living things to transition from one habitat to a different habitat, where 
natural resources are more plentiful and effectively used. This serves as the primary 
drive for calculating DSA in the literature [ 37]. 

3.2 Modelling of DSA Mathematically 

Initialization T‘ .artificial organism DSA is generated through a chance procedure 
that points to the difficulty of optimization. DSA synthetic creature initialization is 
characterized by Eq. (2.8) [ 37]: 

.X (i, j) = rand × (ub( j) − lb( j)) + lb( j) (16) 

where .i = 1, 2, 3, ......, np , . j == 1, 2, 3, ......, dim, .X (i, j) is described as the ini-
tial population of the . j th variable of .i th agent, .rand is a number chosen randomly
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in between [0, 1], .np and.dim are interpreted as the number of search agents (super-
organism) and a number of control variables of the optimization problem, and also 
.ub( j) and .ib( j) are the upper and lower limits of . j th variable, respectively. 

Superorganism Reshuffle at Random. Choose a .superorganism at random from 
the beginning populace and move it towards the target.donor using random shuffling 
in search of the.stopover site, which plays a crucial role in an effective..scaleGamma 
randomly generate establishes scale value to regulate the functions of synthetic Eq. 
(2.9) [ 37]: 

.scale = randg(2 × r1) × (r2 − r3) (17) 

where .randg is a gamma distribution value selected at random and . r1, . r2, and . r3
are numbers that are chosen at random through (0,1). In DSA, the .stopoversite of 
.superorganism is identified as [ 37]. 

Boundary Condition. In DSA, there are two additional variables at most, i.e., . p1
and .p2 are members of that group chosen at random .superorganism to interact in 
.stopoversite. The values that are typically created between [0, 0.3] whenever a part 
of the .stopoversite exceeds the restrictions of the environment, then a boundary 
condition is put on the components of .stopoversite them into the ecosystem through 
forcibly [ 37]. 

4 Quasi-Oppositional Based Learning (Q-OBL) 

OBL was first introduced by Tizhoosh [38] as an revolutionary notion for intelligence-
or soft virtualization tactics to progress diverse simulated procedures. It appears to 
be among the most successful theories in algorithmic wisdom for tackling non-
linear optimization problems, enhancing the searching capabilities of traditional 
population-based optimization strategies. The establishment of the first estimate, 
which is based on some prior knowledge about the answer or random, is where 
the OBL process begins. The best course of action may be in any way, or at least 
the opposite. The opposing set of estimates is taken into account for convergence, 
replacing the starting estimates repeatedly for a better answer in the way of optimal 
solutions. 

4.1 Opposite Numbers 

Let the real number be represented by.P ∈ [y, z] and.P0 be the meaning of a numer-
ical value for its reverse by 

.P0 = y + z − P. (18)
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4.2 Opposite Pointing 

Say.R = (X1, X2, ......., Xn) is a point in n-dimensional space, where. Pr ∈ [yr , zr ],
.r ∈ 1, 2, ...., n. The.R0 = (X1

0, X2
0, .......Xn

0). Its constituents determine the oppo-
site case: 

.Pr
0 = yr + zr − P0. (19) 

4.3 Quasi-Opposite Number and Quasi-Opposite Point 

Let .P be a real number between .[y, z]. The quasi-opposite number is defined as 

.PQ0 = rand(C, P̃) (20) 

where .C is given by .C = y+z
2 . Let  .P be a real number between .[a, b]. The quasi-

opposite point .Pr
Q0 is defined as 

.Pr
Q0 = rand(Cr , P̃r ) (21) 

. where Cr = yr + zr
2

.

4.4 Chaotic DSA 

Chaotic DSA (CDSA), which combines chaotic action with differential search opti-
mization (DSA), was created to lessen the shortcomings of DSA. Chaos, which is 
stochastic and non-repeating by nature, conducts general searches at higher speeds, 
which is essential for quickening a deify algorithm’s convergence rate. A chaotic set 
is composed of a total of 10 chaotic maps, each of which exhibits a different action. 
This set’s starting point has been determined to be 0.7 between 0 and 1. The many 
chaotic map actions help to solve issues with local optimum and convergence speed. 

5 CQODSA Steps for OPF Problem 

Different steps of the CQODSA for solving the OPF problem are presented below 

Step 1: Define.superorganism and create the first wave of people (P) of each indi-
vidual at random. Also, generate the PSS control parameters with compute 
the feature subset in the specified subspace.
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Step 2: Generate chaotic quasi-opposite population and calculate the fitness func-
tion. 

Step 3: Arrange the group from best to worst according to their fitness value. Thus 
far, the best answer achieved is represented by .PE. An initial .KE is given 
to every particle. 

Step 4: According to value, only a select handful of the best answers are privileged 
status-preserved solutions. 

Step 5: Those not belonging to the elite solutions are once more subjected to the 
varied chaotic map conduct of the CDSA in order to change the indepen-
dent variables. In CDSA, the whales target the focuses particularly and 
the location of the fixates is regarded as the best location. 

Step 6: Randon shuffling of.superorganism takes place and evaluate the scale using 
the gamma distribution. 

Step 7: The method is finished and the outcomes can be seen if the stopping 
requirement is met; otherwise, proceed to Step 4. 

6 Simulation Results and Discussions 

Two test systems, the Western Systems Co-ordinating Council (WSCC) 3-generator, 
9-bus system and the New England 10-generator, 39-bus system, were used to eval-
uate the applicability and validity of the various optimization strategies. Each time, 
the synchronous generators are all represented by a classical generator model, while 
the loads are all represented by constant impedance models. All simulations are run 
on a personal computer with an Intel Core i5 3.1 GHz processor and 8GB of RAM 
using MATLAB 2022b. The entire simulation time is set at 3.0 s, with an integration 
time step of 0.01 s. 100 iterations are chosen as the terminating condition. 

6.1 Test System-I (WSCC 3-Machine 9-Bus System) 

Case I: Base loading conditions (OPF without transient stability constraint) 
As shown in Fig. 1, The infrastructure is made up of 3 generating units, 9 buses, 
2 regulatory transformers and 2 shunt converters, and 11 transmission lines. The 
data for the system bus, the lines, the capacities of the generators, and the cost 
coefficients are extracted from Nguyen and Pai [ 39]. In contrast, the VAR and the 
regulatory transformers follow the prompt injections of the shunt capacitors, which 
are both active powers and voltages regarded as parameters of a generator (apart 
from slack bus-1) are considered continuous variables. The span of [0.95 p.u., 1.1 
p.u.] and [0.95 p.u., 1.05 p.u.] [ 39] for the load buses’ and generators’ respective 
voltage amplitudes is taken into consideration. Regulating transformer tap options 
are bound to a range of [0.9 p.u. and 1.1 p.u.]. For the shunt capacitors’ Var injection 
restrictions, the range of [0 Mvar, 5 Mvar] with a distinct initial value taken into
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Fig. 1 The WSCC 3-machine 9-bus test system 

Table 1 Simulation outcomes achieved by different methodologies for Case I (Test system-I) 
Algorithms BPD ABC DE TS TDS TLBO QODSA CQODSA 

Pg1 (MW) 105.94 107.15 105.94 106.19 105.94 105.3200 104.7600 104.1235 

Pg2 (MW) 113.04 114.18 113.04 112.96 113.04 113.1800 112.6751 112.6512 

Pg3 (MW) 99.23 96.74 99.29 99.20 99.24 99.3700 97.9095 98.1218 

Vg1 (p.u.) 1.05 1.033 1.050 1.000 1.05 1.0998 1.0321 1.0054 

Vg2 (p.u.) 1.05 1.024 1.050 1.000 1.05 1.1000 1.0980 1.0457 

Vg3 (p.u.) 1.04 1.028 1.040 1.000 1.04 1.0999 1.0323 1.0012 

FC ($/hr) 1132.17 1131.87 1132.30 1132.59 1132.18 1131.0340 1131.0112 1131.0067 

consideration of 0.5 Mvar, the simulation outcomes for the fuel price fitness function 
are shown in Table 1. The computed results have been compared with MDE [ 40], 
BBO [ 41], GSA [ 42], and TLBO [ 43]. The minimum objective function values for 
CQODSA and DSA are 1131.0112 and 1131.0067, respectively, when contrasted 
with the additional strategies in Table 1. Hence, it can be inferred from Table 1 that, 
in comparison to other algorithms, CQODSA and DSA algorithms provide more 
appropriate controller parameters for Case I. 

Case II: OPF with transient stability constraint (3-phase to ground fault at 
bus 7) To be precise, an asymmetric specifically 3-phase to ground at bus 7 and 
among lines 7–5 as illustrated of Fig. 2 in a network, in order to discuss if the rec-
ommended algorithms are suitable for handling the power systems. By opening the 
circuit breaker contact for 0.35 s, the aforementioned problem was fixed. This case’s 
outcome complies with the transient stability limit. In Table 2, the minimal full cost 
values are compared: Artificial Bee Colony Simplification (ABC) [ 44], Dynamic 
Variation (DV) [ 35], Sensitive to Trend line (TS) [ 35], Simulations in Spatial Domain 
[ 35], and TLBO [ 43]. The outcome demonstrates the superiority of the suggested 
CQODSA in finding the overall ideal solution. Using the suggested CQODSA algo-
rithm, the solution is reliable and safe.
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Fig. 2 The 3-machine, 9-bus WSCC test system has a problem at bus 7 

Table 2 Simulations outcomes achieved by various methodologies for Case II (WSCC 9-bus sys-
tem) 

Algorithms ABC DE TS TDS TLBO QODSA CQODSA 

Pg1 (MW) 117.69 130.94 170.20 117.85 105.3100 104.1209 103.7840 

Pg2 (MW) 105.89 94.46 48.94 103.50 113.3300 101.8956 101.8765 

Pg3 (MW) 94.23 93.09 98.74 96.66 99.2400 95.99 97.8970 

Vg1 (p.u.) 1.025 0.9590 1.000 1.05 1.0988 1.04 1.0789 

Vg2 (p.u.) 1.070 1.0139 1.000 1.05 1.0987 1.05 1.0459 

Vg3 (p.u.) 1.070 1.0467 1.000 1.04 1.0999 1.03 1.0897 

FC ($/hr) 1133.18 1140.06 1179.95 1134.01 1131.1908 1132.12 1130.1289 

6.2 Test System II (New England 10-Machine 39-Bus System) 

The New England 10-machine 39-bus test system is also used to perform the sug-
gested techniques as depicted in Fig. 3. There are 10 generator buses and 19 load 
buses in the network. Bus 39 is going to act as the load bus. The load buses’ and 
the generators’ respective voltage magnitude spans are [0.95 p.u., 1.1 p.u.] and [0.95 
p.u., 1.05 p.u.]. Limitations are established among [0.9 p.u. and 1.1 p.u.], [0.9 p.u., 
1.1 p.u.], [0.9 p.u., 1.1 p.u.], [0.9 p.u., 1.1 p.u.], [0.9 p.u., 1.1 p.u.], and [0.9 p.u., 
1.1 p.u.]. The [0 Mvar, 5 Mvar] span with a discrete value of 0.5 Mvar moves is 
taken into consideration for using shunt capacitors’ Var insertion limitations. The 
primary objective is to lower the total gasoline prices. The simulation results for the 
wellness feature (the price of fuel), 3–4 indicate active production and voltage. The 
system features a 3-phase asymmetrical fault across lines 28 and 29, as well as at bus 
29. By briefly opening the connections on the circuit breakers, the aforementioned 
issue can be resolved. The actual power generation and voltage of various generat-
ing units, as well as the fuel price and transmission loss, were calculated using the 
Classical Model (CM) [ 45] and the Dynamic model (DM [ 45], Variables simulation 
method (DSA) [ 46] prototype and TLBO [ 43] (strategies described in the literature
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Fig. 3 The 10-machine, 39-bus New England test system 

Table 3 Simulation outcomes achieved by different methodologies (Test system-II) 

Active 
power 
generation 
(in MW) 

TLBO CM DM DSA QODSA CQODSA 

PG30 2.4422 248.7300 249.4470 247.8300 249.4470 247.8300 

PG31 5.6007 577.8400 578.3590 577.2300 578.3590 577.2300 

PG32 6.4363 654.4700 654.3560 653.4100 654.3560 653.4100 

PG33 6.3298 645.0000 641.7600 643.2800 641.7600 643.2800 

PG34 5.1098 518.8200 517.4100 517.7800 517.4100 517.7800 

PG35 6.5306 664.3200 660.7310 662.4600 660.7310 662.4600 

PG36 5.6103 571.3700 568.1810 569.5900 568.1810 569.5900 

PG37 5.3286 547.8100 547.6950 543.8800 547.6950 543.8800 

PG38 8.4015 752.0200 754.6180 774.5400 754.6180 774.5400 

PG39 9.5845 995.6000 1003.1810 1000.3500 1003.1810 1000.3500 

Cost ($/hr) 60873.5574 61600.7600 61597.7600 61799.6800 61597.7600 61799.6800 

are compared with the wellness feature values). An analysis of Table 4 reveals that, 
when compared to the other algorithms listed there, CQODSA gives the smallest 
minimum objective function value, 41.1290. Accordingly, it can be inferred from 
Table 4 that CQODSA and QODSA algorithms as shown in Tables 3 and 4 give more 
appropriate controller settings than alternative algorithms. Table 4 includes informa-
tion on the voltage and actual power generation of different generating units, the fuel 
usage, and the energy losses as determined by various methods. We could conclude 
from this that the gasoline cost acquired using the provided CQODSA and QODSA 
approaches is significantly less than that gathered utilizing other methods.
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Table 4 Simulation outcomes achieved by different methodologies (Test system-II) 

Generated 
voltages (in 
p.u.) 

TLBO CM DM DSA QODSA CQODSA 

V30 1.0996 1.0150 1.0150 0.9840 1.0132 0.7867 

V31 1.0924 1.0870 1.0870 1.0740 1.0675 1.0345 

V32 1.0863 1.0290 1.0290 1.0080 1.0289 1.0066 

V33 1.0985 1.0160 1.0160 1.0140 1.0131 1.0091 

V34 1.0997 1.0220 1.0220 1.0190 1.0234 1.0237 

V35 1.0999 1.0620 1.0620 1.0670 1.0453 1.0453 

V36 1.0999 1.0900 1.0900 1.0870 1.0675 1.0651 

V37 1.0994 1.0470 1.0470 1.0120 1.0231 1.0089 

V38 1.0995 1.0380 1.0380 1.0510 1.0231 1.0432 

V39 1.0998 1.0530 1.0530 1.0190 1.0319 1.025 

Loss (MW) 43.15359 NA NA NA 42.1231 41.1290 

7 Conclusion 

Various TSC-OPF problem-solving strategies have been introduced, developed, and 
effectively employed in this chapter. The WSCC 3-generator 9-bus system and the 
New England 10-generator 39-bus system are The described method is used to eval-
uate the realistic generator operating on two test devices. The verdict drawn from the 
simulation results produced by various algorithms is that the suggested CQODSA 
and QODSA algorithms are capable of discovering the best solutions in every sce-
nario without violating any operating limits. To further demonstrate the superiority, 
it can be stated that CQODSA and QODSA significantly beat all other classifiers 
presented in this chapter when it comes to verifying the finished method’s efficiency, 
rated, and continuity. Furthermore, the mentioned techniques have high convergence 
properties. The recommended CQODSA and QODSA algorithms are thus highly 
intriguing evolutionary optimization approaches for the goal of overall optimization 
of any TSC-OPF difficulties based on originality. Even if the presented algorithms 
give superior results, these algorithms can be further tuned to produce the likely best 
response in a fair time period. 
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Chaotic Quasi-Oppositional Moth Flame 
Optimization for Radial Distribution 
Network Reconfiguration with DG 
Allocation 

Sneha Sultana , Sourav Paul , Poulami Acharya, Provas Kumar Roy , 
Devjeet Sengupta, and Nirmalya Dey 

Abstract This research aimed to reconfigure radial distribution networks in the 
presence of distributed generators (DGs) using the Chaotic Quasi-Oppositional Moth 
Flame Optimization (CQOMFO) method so as to minimize power losses in the 
power system network and keep the voltage profile consistent throughout the power 
system network, which will aid in increasing system efficiency. The primary goal is 
to demonstrate the proper placement of Distributed Generators (DGs) in the radial 
distribution network, as well as the reconfiguration and installation of DGs in the 
radial distribution network. The main advantage of this algorithm is continuous 
guiding search with changing goals, which can be used for real-time applications with 
only minor adjustments because the power from distributed generation is constantly 
changing. This algorithm’s efficiency and suitability for real-time applications have 
been determined by testing for loss minimization on typical 33- and 69-bus radial 
distribution systems. 

Keywords Distribution network reconfiguration · Distributed generation ·
Optimal DG allocation problem · Quasi-oppositional moth flame optimization ·
Power loss minimization 

1 Introduction 

Network reconfiguration is a systematic and effective way for reducing power loss 
in power distribution networks. The goal of Distribution Network Reconfiguration 
(DNR) is to improve voltage profile and load balance, reduce power losses, and 
enhance network reliability. This can be done by using tie switches and section-
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alizing. The goal of the DNR issue is to find the best method of operation for the 
radial distribution network while minimizing power losses and satisfying all network 
constraints. 

If the optimal location and size of DG resources are not selected correctly, network 
efficiency will decline, the network will become unstable, voltage levels will exceed 
operational norms, and power losses will rise. As a result, the primary problems 
that can be addressed by implementing DNR and strategically arranging DGs are 
lowering power losses and improving the voltage profile. The purpose of this paper 
is to show how to reconstruct and position capacitors on a Radial Distribution System. 

In order to correctly determine the most efficient network for distribution con-
figuration, traditional model-based techniques necessitate network parameters. The 
functioning of distributed generators (DG) can have both positive and negative effects 
on distribution networks (DN). According to research, incorrect DG location and size 
may result in higher system losses than losses without DG [ 1]. The incorporation of 
distributed generators (DGs) into distribution networks is increasing as a result of 
energy market liberalization, environmental concerns, and technical advancement. 
Reference [ 2] investigates a distribution network reconfiguration process using the 
model-free reinforcement learning (RL) strategy and the NoisyNet Deep Q-learning 
Network (DQN). The paper successfully demonstrated that the exploration can be 
carried out automatically with no changes to the parameters, resulting in improved 
performance and reduced losses with minimal voltage deviation. Paper [ 3] explores 
a scenario-based convergent programming model to increase distribution network 
reconfiguration potential through optimal reserve branch placement, despite the fact 
that only a few branches are switchable. Two test networks have been set up for 
this reason. Reference [ 4] is based on the data batch-constrained RL algorithm that 
addresses the flaws of physical model-based control methods while also resolving 
the DNR problem. Three networks were investigated, and it was determined that this 
technique enhances behaviour control policy, is extremely scalable, and can deliver a 
workable resolution immediately. In order to achieve a superior operating condition 
during critical landing, Cao et al. [ 5] have improved and generalized the traditional 
reconfiguration strategy using dynamic microgrids. The research is supported by a 
two-stage mixed-integer conic programme model with risk aversion. DGs are small 
sources of electrical energy with variable capacities of up to 10 MW, with either a 
renewable or non-renewable primary energy source, and are connected to the dis-
tribution network immediately or at the site of consumption [ 6]. According to the 
study, Particle Swarm Optimization outperformed the Genetic Algorithm in terms 
of discovering the optimal answer, speeding convergence, and reducing running 
time. Another study looked at various optimal and maximal models for utility-based 
dispersed generation penetration. The main aim was to increase the penetration of 
distributed generations into rural distribution networks. Paper [ 7] addressed simul-
taneous radial distribution system remodelling and changed condenser allotment 
to improve distribution network efficiency. The primary objectives were to reduce 
active and reactive power losses and improve the voltage profile. To boost a system’s 
power generation capability and meet increasing electricity demand, two alterna-
tive techniques—distribution system reconfiguration (DSR) and optimal capacitor
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placement (OCP)—are explored [ 8]. It was better to use both tactics simultaneously 
than one at a time. The individual OCP mode and the dual DSR mode after the 
OCP were the two operating modes that were used. The artificial ecosystem opti-
mizer (AEO) approach is employed to distribute distributed generators (DGs) and 
capacitors while accounting for the reorganization of power distribution networks. 
(RPDS). This was inspired by three energy-transfer procedures in an ecosystem that 
concerned production, consumption, and decomposition [ 9]. For instance, Tan et al. 
[ 10], Srinivasa Rao et al. [ 11], Mohamed Imran et al. [ 12], novel integrates the DNR 
and DG positioning issues to boost the distribution network’s efficiency. In Srinivasa 
Rao et al. [ 11] the presence of DG, the DNR issue is addressed to lower real power 
loss and improve the voltage profile of the distribution network (HSA). In an attempt 
to minimize electricity loss and enhance voltage consistency, Mohamed Imran et 
al. [ 12] suggested an approach for handling DNR and DG placement that relies on 
the fireworks optimization algorithm (FWA). Both studies employed a variety of 
methods, including the voltage stability index (VSI) and the loss sensitivity factor, to 
pre-identify the suitable bus sites for DG installation (LSF). The earliest techniques 
for network reconfiguration were built on heuristic methods. Merlin et al. published 
a pioneering work on network reconfiguration for loss reduction [ 13]. They proposed 
a heuristic method that starts with a network that resembles a mesh, which can be 
achieved by turning off all the switches. The switches are subsequently opened one 
at a time, according to the least current criterion, to restore the radial structure. This 
approach does not always result in global optimization. Shirmohammadi et al. [ 14] 
used a compensation-based power flow strategy in accordance with the methodol-
ogy described in Shirmohammadi et al. [ 14] to accurately model the weakly meshed 
networks. To reduce network losses, Civanlar et al. [ 15] suggested a straightforward 
heuristic technique. However, the network setup can have an impact on the position-
ing and sizing of the DG. Both reconfiguration of the network and DG installation 
problems have to be addressed in order to benefit the entire distribution network [ 16]. 
Sultana et al. [ 17] narrated the oppositional krill herd (OKH) algorithm, and this was 
successfully integrated to perform optimal reconstruction of distribution network 
difficulties. In the future, this could encourage researchers to concentrate on difficult 
power system efficiency problems such as self-regulating generation control, optimal 
energy flow, economic discharge of load dispatch, hydro-thermal planning, power 
supply stability, and so on. Reference [ 18] suggested the first-ever application of 
the suggested quasi-reflection-based slime mould algorithm (QRSMA) for optimal 
capacitor bank positioning and size, as well as radial distribution network reconfig-
uration. In addition, the authors of Barnwal et al. [ 19] provided a novel approach 
that, by meticulously balancing the positioning of DGs, DNR, and PVQ bus volt-
age control, enhances voltage stability, reduces power losses while maintaining the 
desired voltage profile of radial distribution networks, and takes into account the 
presence of fluctuating reactive power at the P bus. This leads to the definition of a 
multi-objective function. The grey wolf optimization (GWO) method is suggested. 
The simultaneous network reconstruction and DG placement in radial distribution 
systems utilizing a new quasi-oppositional chaotic neural network method are cov-
ered in Ref. [ 20] (QOCNNA). It targeted to reduce active power losses and maintain



202 S. Sultana et al.

stable voltage in distribution networks like 33-, 69-, and 118-bus systems. To mini-
mize the accumulative cost for dispatchable DER operation and load reduction, an 
optimal distributed energy resource (DER) scheduling problem is solved in Ref. [ 21]. 
Finally, the topology with the lowest accumulative cost is chosen from among all 
radial topologies. It was tested on IEEE 69 and IEEE 123 bus systems. 

In this study, the author created a novel algorithm, the chaotic quasi-oppositional 
moth flame optimization, to solve the reconfiguration issue with optimal DG place-
ment in RDN, taking into account the profile of the voltage and the stability of the 
voltage index. CQOMFO is a relatively new optimization algorithm that is consid-
erably simpler and more robust than other optimization issues. This study used the 
optimization of a CQOMFO to minimize losses and optimize the voltage profile 
and stability index in the distribution system. A comparison of simulation results 
obtained using MATLAB software and other approaches recommended by others is 
given. 

To organize the paper, use the following technique. The second section discusses 
mathematical reasoning. Section 3 describes the chaotic quasi-oppositional moth 
flame optimization method. Section 4 addresses the use of CQOMFO for DNR as well 
as the ODGA problem. Section 5 discusses the findings and research. The conclusion 
is addressed in Sect. 6. 

2 Mathematical Formulation 

2.1 Intended Purpose 

The goal of this study is to reduce distribution network losses by reconfiguring 
and allocating (location and size) DGs. The proposed approach is used to solve the 
problem here. In this context, power loss .(OFPloss) is used as an objective function 
along with DG: 

. PLOSS =
N∑

M=1

N∑

P=1

RM,P

VMVP
Cos(μM − μP)(AM AP + BM BP)

+ RM,P

VMVP
Sin(μM − μP)(BM AP − AM BP). (1) 

Here, .PLOSS is the real power loss; .RM,P and .VMVP are resistance and voltage of 
the branch connected between.M th and.Pth buses; .μM , .μP are the voltage angle of 
.M th and .Pth buses; .AM BM and .AP BP are real and reactive power of .M th and . Pth
buses, respectively.
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2.2 Modelling of Load 

We have now taken into consideration various forms of load. The following details 
are provided for the active and reactive loads: 

.PL p = PLo(p)(s1 + s2|v(p)| + s3|v(p)|2) (2) 

.QL p = QLo(p)(t1 + t2|v(p)| + t3|v(p)|2) (3) 

where (.s1, t1), (.s2, t2), and (.s3, t3) are considered as the arrangement of fixed power, 
fixed current, and fixed impedance, respectively. Here, three factors have been taken 
into account: constant power, constant current, and constant impedance. The con-
stant power load circumstances.s1 = t1 = 1 and.s2 = t2 = s3 = t3 = 0; and constant 
current load .s2 = t2 = 1 and .s1 = t1 = s3 = t3 = 0. 

2.3 Constraints 

Power Balanced Constraints To achieve load-balanced conditions, the total demand 
for bus and system losses must be satisfied by the total electricity generated by DG 
at a specific bus and that provided by the substation. The following are the list of 
load equilibrium restrictions: 

.psub-station +
N∑

i=1

pDG,i =
N∑

i=1

pT D,i + Ploss (4) 

.qsub-station +
N∑

i=1

qDG,i =
N∑

i=1

qT D,i + qloss. (5) 

Voltage Limit: In order to ensure system stability and power quality from the fol-
lowing sources, the bus voltage must be between its maximum and lowest voltage 
limits: 

.VM,MIN ≤ VM ≤ VM,MAX. (6) 

Range of Voltage Angle: At the bus, the voltage angles must fall within the range 
of permissible angles, including minimum and maximum: 

.δM,MIN ≤ δM ≤ δM,MAX. (7)
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3 Optimization Technique 

3.1 Moth Flame Optimization 

In the year 2015, Seyadali Mirjali developed the MFO [ 22] a brand-new population-
based meta-heuristic technique dubbed Moth Flame optimization. Elegant insects 
called moths resemble butterflies quite a little. Over the course of their existence, they 
typically go through two phases: the larval phase and the adult phase. The distinctive 
night-time behaviour of the flying moth organism served as the inspiration for this 
technique. Moths are thought to have a distinctive night-time navigation system 
called a transverse mechanism. 

Moths fly using the aforementioned process by keeping a steady angle at night 
with respect to the moon. The following strategy makes sure that the moths go in 
a straight line even when the moon is quite far from them. Nevertheless, when the 
moths are placed close to a man-made light source, they have a tendency to move 
in a dangerous spiral pattern. This specific conduct is helpful for resolving issues 
in everyday life. In basic MFO, individual moths represent potential solutions, and 
each position is expressed as a matrix of choice variables, as shown below 

.Y =

⎡

⎢⎢⎢⎣

Y1
Y2
...

Y1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Y1,1 Y1,2 . . . Y1,n−1 Y1,n

Y2,1
. . . . . . . . . Y2,n

... . . .
. . . . . . . . .

YN−1,1 . . . . . .
. . . YN ,n−1

YN ,1 YN ,2 . . . YN−1,n YN ,n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(8) 

where .Yi = [
Yi,1,Yi,2, . . . , Yi,n

]
, i ∈ 1, 2, . . . ., n. The moth and the flame are the 

two main characters of MFO. To get the desired consequences, the moth must pass 
across the flame. The logarithmic spiral function, which is described in the equation 
below, is used to model the spiral movement of the moth: 

.Y k+1
i =

{
μi .ean .cos (2π t) + fki (k), i ≤ n. f m

μi .ean .cos (2π t) + fkn. f m(k), i ≥ n. f m
(9) 

where .μi = |Yik − fki | represents the distance between a moth at point .xi from its 
corresponding flame . fki . 

In comparison to other meta-heuristic algorithms, the MFO algorithm is seen to 
have a greater convergence rate in its results which provides better quality solutions in 
a very less amount of time. But after this above-mentioned process is fulfilled, there 
is one more concern to be thought about which is that the position refreshing of the 
moths with respect to various locations in the particular search space that may reduce 
the chances of achieving the best solutions. This concern can be remedied using the
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below-stated mathematical formulation where the number of flames is reduced with 
every successful iteration: 

.Ng = round(γ − δ ∗ γ − δ

σ
) (10) 

where.Ng is the flame number,. γ is then the maximum number of flames at the present 
time, . δ is the current cycle number, and . σ is the maximum amount of iterations. 

Several real-world optimization problems have been solved using the moth flame 
optimization algorithm (MFO), which has the benefits of being quick to converge, 
having few setting parameters, and being easy to understand and apply. However, 
the MFO struggles to strike a good balance between exploration and exploitation, 
and there is little information sharing among people, especially when it comes to 
working out some challenging mathematical issues. 

3.2 Quasi-Oppositional Based Learning 

Tizhoosh [ 23] initially released OBL which is a cutting-edge idea in intelligence-
based problem solving or soft computing that can be utilized to enhance several 
optimization methodologies. It looks to be one of the most effective theories in 
computational intelligence, which can handle nonlinear optimization problems and 
enhance the search performance of conventional population-based optimization pro-
cedures. OBL’s primary objective is to compare an estimate or assumption with its 
opposite or reciprocal in order to increase the possibility that a solution will be found 
more rapidly. The OBL approach begins with initializing the initial estimate, which 
is done either randomly or based on prior knowledge about the solution. Any direc-
tion, or at the very least the opposite, may be the best course of action. The opposing 
set of estimates for a superior solution is taken into consideration for convergence 
after iteratively replacing the initial estimates in the direction of optimality. Let the 
real number be denoted by .B ∈ [k, l] and .B0 be its corresponding opposite number 
is defined real number by 

.B0 = k + l − B. (11) 

Say .R = (Z1, Z2, ......., Zn) is a number in n-dimensional space with upper and 
lower bounds, where .Bu ∈ [ku, lu], u ∈ 1, 2, ...., n. The  . R0 = (Z1

0, Z2
0, .......Zn

0)

opposite point is defined by its components: 

.Bu
0 = ku + lu − B0. (12) 

Let .B be a real number defined between upper and lower limits .[k, l]. The quasi-
oppositional number is described by 

.BQ0 = rand(C, B̃) (13)
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where .C is given by .C = k+l
2 . Suppose .B is a real integer .[e, f ]. Define the quasi

-oppositional point .Br
Q0 as 

.Br
Q0 = rand(Cu, B̃u) (14) 

. where Cr = ku + lu
2

.

4 Chaotic Moth Flame 

In order to get even closer to the ideal global solution, the current researchers 
expanded the QOBL to the CQOBL. A key factor in accelerating the convergence 
speed of a meta-heuristic algorithm is the stochastic and non-repeating nature of 
chaos, which performs the overall searches at greater speeds. Different chaotic maps 
are taken into account to control the MFO’s parameters in the CQOMFO optimiza-
tion issue. There is an aggregate of 10 chaotic maps chosen for a chaotic set, and 
each one has a unique behaviour. This set’s starting point has been determined to be 
0.7 ranging from 0 to 1. The many chaotic map behaviours help to solve the issues 
of local optimal and speed of convergence. 

5 CQOMFO Applied to Reconfiguration Problem Along 
with DG 

The reconfiguration of the distribution network with the simultaneous allocation of 
DGs is implemented using the CQOMFO as follows: 

Step 1: Initialize the size of population .(Pn), and read data for the system with 
constraints and the maximal iteration. 

Step 2: Determine the DG size following the maximum and minimum limits. 
Step 3: Calculate the objective function (1) by performing power flow calculations 

and determine the minimum power losses. 
Step 4: Depending upon the present candidate solution in the search space, a loga-

rithmic spiral defining a little better solution is retained as noble solutions. 
Step 5: Use functions (9)–(12) to produce opposite population. 
Step 6: If the obtained objective function is weak, replace the best solution with 

the previous best solution; otherwise, return to Step 3. 
Step 7: Increase the number of iterations and return to Step 3. Print the results and 

stop the algorithm.



Chaotic Quasi-Oppositional Moth Flame Optimization. . . . 207 

6 Results 

The above-proposed approach CQOMFO is evaluated using two different systems 
for testing that consist of 33 and 69 buses, with an operating voltage of 12.66 kV, to 
assess its usability and superiority in solving the MFO problem for reconfiguration 
with DG installation identifies the best location and DG size to diminish active power 
loss. Simulations are executed using MATLAB software on a PC with an Intel i3-
7020U @ 2.30 GHz and 8 GB of RAM. The algorithm’s population size is set at 50, 
and its iteration count is set at 100. 

6.1 Radial Distribution Network 33-Bus Demonstration 

As seen in Fig. 1, 33-bus demonstration RDN, which has 33 buses and 32 branches, 
is used to test the CQOMFO methodology. Line values and the load values for the 
systems are taken from Ref. [ 24]. The results of the 33-bus test system are shown 
in Table 1. For a 33-bus test system by application of CQOMFO and MFO, the real 
power and losses are obtained at 119.01 and 151.21 kW respectively after placement 
of DG. But after reconfiguration of the radial distribution network, power losses 
decreased to 49.03 and 56.13 kW, respectively. After reconfiguration, the 33-bus 
system for constant power type load and constant current type load is shown in 
Figs. 2 and 3, respectively. The obtained results are compared with Tran et al. [ 25] 
for constant power type load which shows power loss reduction is more significant 

Fig. 1 Topology of 33-bus RDN
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Table 1 Summary of the results for 33-bus RDN before and after reconfiguration with DG for 
constant power type load 

Without reconfiguration 

Parameters Without DG 
placement 

With DG placement 

SFS [ 25] MFO CQOBL-MFO 

Power loss (KW) 200.23 NA 151.21 119.01 

Optimal position 
of DG 

NA NA 29 29 

26 26 
24 24 

Optimal size of 
DG 

NA NA 992.35 876.12 

900.31 731.02 
733.02 655.17 

Opening 
branches 

NA NA NA NA 

Closing 
branches 

NA NA NA NA 

With reconfiguration 

Power loss (KW) 53.01 56.13 49.03 

Optimal position of DG 22 12 12 
25 17 17 
33 27 27 

Optimal size of DG 775.3 856.56 997.14 
1285.8 602.43 645.8 
735.6 600.01 601.12 

Opening branches 7–8 7–8 7–8 
9–10 9–10 9–10 
14–15 14–15 14–15 
27–65 28–29 28–29 
30–31 32–33 32–33 

Closing branches NA 21–8 21–8 
9–15 9–15 
22–12 22–12 
18–33 18–33 

by the CQOMFO technique than other techniques. And also for constant current type 
load, CQOMFO is superior to MFO. 

Figure 3 shows the building layout of a 33-bus radial distribution network for a 
continuous current type load multiplied by 1.0.
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Fig. 2 The design of a 33-bus circumferential distribution network for a constant power type load 
with a load multiplication factor of 1.0 

Fig. 3 The construction layout of a 33-bus radial distribution network for a continuous current type 
load for load multiplication factor 1.0 

6.2 69-Bus Test Radial Distribution Network 

As seen in Fig. 4, the 69-bus test RDN, which consists of 69 buses and 68 branches, 
is used to test the CQOMFO methodology. Line values and the load values for the 
systems are taken from Ref. [ 24]. In Table 2, 33-bus test systems are explained. For 
a 69-bus test system by application of CQOMFO and MFO, the real power losses 
are obtained as 97.01 and 125.26 kW respectively after placement of DG. But after 
reconfiguration of the radial distribution network, power losses decreased to 33.03
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Fig. 4 Topology of 69-bus RDN 

Table 2 Summary of the results for 33-bus RDN before and after reconfiguration with DG for 
constant current type load 
Without reconfiguration 

Parameters Without DG placement With DG placement 

MFO CQOBL-MFO 

Power loss (KW) 179.68 117.31 102.46 

Optimal position of DG NA 8 8 

18 18 

23 23 

Optimal size of DG NA 923.12 908.47 

934.5 905.1 

965.12 902.3 

Opening branches NA NA NA 

Closing branches NA NA NA 

With reconfiguration 

Power loss (KW) 51.69 38.12 

Optimal position of DG 11 11 

23 23 

29 29 

Optimal size of DG 943.23 912.12 

911.12 898.35 

878.21 945.3 

Opening branches 7–8 7–8 

9–10 9–10 

14–15 14–15 

31–32 31–32 

Closing branches 21–8 21–8 

9–15 9–15 

22–12 22–12 

18–33 18–33
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Fig. 5 The construction layout of 69-bus radial distribution network for continuous power type 
load for load multiplication factor 1.0 

Fig. 6 The construction 
layout of 69-bus radial 
distribution network for 
continuous current type load 
for load multiplication factor 
1.0 

and 37.21 kW, respectively. After reconfiguration, 33-bus systems for constant power 
type load and constant current type load are shown in Figs. 5 and 6 each. The obtained 
results are compared with Tran et al. [ 25] which shows power loss reduction is more 
significant by CQOMFO technique than other techniques (Tables 3 and 4).
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Table 3 Summary of the results for 69 bus RDN before and after reconfiguration with DG for 
constant power type load 

Without reconfiguration 

Parameters Without DG 
placement 

With DG placement 

SFS [ 25] MFO CQOBL-MFO 

Power loss (KW) 223.20 NA 125.26 97.01 

Optimal position 
of DG 

NA NA 18 18 

62 62 
64 64 

Optimal size of 
DG 

NA NA 910.21 879 

883.12 833.20 
874.02 690.47 

Opening 
branches 

NA NA NA NA 

Closing 
branches 

NA NA NA NA 

With reconfiguration 

Power loss (KW) 35.16 37.21 33.03 

Optimal position of DG 11 21 21 
61 47 47 
64 58 58 

Optimal size of DG 537.6 868.43 764.01 
1434.0 901.12 866.32 
490.3 933.14 910.03 

Opening branches 14–15 55–56 55–56 
56–57 62–63 62–63 
61–62 11–12 11–12 

Optimal size of DG 11–43 – – 

13–21 – – 

Closing branches NA 50–59 50–59 
27–65 27–65 
15–46 15–46
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Table 4 Summary of the results for 69-bus RDN before and after reconfiguration with DG for 
constant current type load 

Without reconfiguration 

Parameters Without DG 
placement 

With DG placement 

MFO CQOBL-MFO 

Power loss (KW) 198.24 105.09 83.21 

Optimal position of 
DG 

NA 25 25 

34 34 
45 45 

Optimal size of DG NA 923.01 837.54 
867.42 867.32 
801.56 754.75 

Opening branches NA NA NA 

Closing branches NA NA NA 

With reconfiguration 

Power loss (KW) 49.5 35.01 

Optimal position of DG 18 18 
39 39 
47 47 

Optimal size of DG 812.03 743.11 
899.43 797.52 
921.03 932.33 

Opening branches 13–14 13–14 
54–55 54–55 
61–62 61–62 

Closing branches 50–59 50–59 
27–65 27–65 
15–46 15–46 

7 Conclusion 

In this research, the CQOMFO method was effectively implemented for the simulta-
neous location and magnitude of the DG problem and distribution network reconfig-
uration. The goal is to reduce active power loss while increasing the voltage stability 
index of power distribution networks. Additionally, various approaches for voltage 
stability improvement and loss reduction, including only DG installation and network 
reconfiguration after the exact placement of DG, are simulated in order to demonstrate 
the superiority of the proposed method. The main goal was to improve the voltage 
profile while lowering active power loss in the distribution network. The CQOMFO 
was a reliable and effective method that quickly converged in all circumstances taken
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into account. On 33- and 69-bus test systems, the suggested procedure is put to the 
test. According to the test results, CQOMFO can manage extremely intricate and 
sizable distribution networks. Moreover, CQOMFO outperformed other approaches 
in terms of improving voltage profiles and reducing power loss for all applications. 
As a result, the suggested CQOMFO method may be a very promising approach for 
resolving the DNR problem in conjunction with the ideal location of DGs. 
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Global Horizontal Irradiance Prediction 
Using Clustering and Artificial Neural 
Network 

Deep Rodge , Janavi Popat , and Akanksha Shukla 

Abstract Due to the limited supply of fossil fuels and their negative effects on the 
ecosystem, renewable energy sources, in particular solar energy, are becoming more 
and more significant. In order to maximize the use of solar energy and increase the 
effectiveness of solar energy facilities, solar energy forecasting is an essential area of 
research. In this study, we investigate the application of machine learning methods, 
particularly linear regression, polynomial regression, and artificial neural networks, 
for Global Horizontal Irradiance (GHI) prediction which would be important for 
effective solar energy facilities. Before applying the machine learning methods, we 
also examine the effects of clustering the data using the K-means algorithm. The 
accuracy of the different methods is evaluated using mean absolute error (MAE), 
root mean squared error (RMSE), and R-squared (.R2) values. According to the 
results, the accuracy of ANN along with K-Means performed better than the other 
methods, with an MAE of .53.941971, RMSE of  .25.018180, and .R2 of .0.966465. 
Our results indicate that machine learning methods, in particular ANN, can be help-
ful for precise forecasting of GHI, and clustering the data can further enhance the 
models’ accuracy. The renewable energy sector may be significantly impacted by 
these findings, especially in terms of optimizing solar energy use and improving the 
effectiveness of solar energy facilities. 
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1 Introduction 

The conventional sources of electricity not only contribute to greenhouse emissions 
but also mandates centralized bulk power generation, which leads to additional cost of 
transmission and reduced efficiency. Whereas Renewable Energy Sources (RES) will 
enable decentralized, sustainable, and reliable power generation. It is estimated that 
due to industrialization, urbanization, and the inclusion of electric vehicles (EVs), 
the demand for electricity could rise by 3% YOY by 2030. On the other end, sources 
like coal, natural gas, and oil are getting depleted. To meet the increased energy 
demand, RES will play a vital role [ 1]. 

According to the COP27 report, India is responsible for 7% of the world’s carbon 
dioxide emissions. India’s 4% of total energy demand is met by renewable and 
nuclear power, to which, the contribution of solar is 42.5%, i.e., 1.7% of the total 
power demand. In the first quarter of 2022, solar power generation has saved 19.4 
million tons of coal and 4.2 billion dollars in fuel costs, which is equivalent to 9% of 
total fuel costs. India is among the top economies when it comes to solar generation 
capacity and is aiming to increase the overall capacity to 500 GW by 2030, which 
will reduce the cumulative emissions by one billion tons [ 2]. 

Increasing the solar generation capacity isn’t as simple as increasing the thermal or 
hydro generation capacity, as it depends on the natural resource, which is intermittent 
in nature. The duration of energy availability and its intensity varies widely with 
location. Eg., Yuma, USA, has 4127 sunlight hours, whereas Tórshavn has only 840. 
It also differs in nearby regions based on weather conditions such as temperature, 
pressure, relative humidity, wind speed, wind direction, etc. 

Due to the intermittency of power generation, solar power planning and develop-
ment are much more complex than that for thermal and hydropower plants. When 
we are concerned about conventional generation, the load demand is dynamic, but 
generation will follow certain rules and combinations which can be controlled. In the 
case of solar, both load and generation are dynamic, and none of them are easily con-
trollable. Hence, it needs complex mathematical methods to plan accurately. Hourly 
forecasting of both load and solar generation are needed to analyze how much power 
can be generated by solar and what should be the energy storage or conventional 
backups’ capacity to make the system reliable [ 3]. 

Solar energy is directly related to solar irradiance and temperature. There are 
three types of solar irradiance, namely, Global Horizontal Irradiance (GHI), Direct 
Normal Irradiance (DNI), and Diffused Horizontal Irradiance (DHI). As far as solar-
to-electrical conversion is concerned, GHI is the only parameter that impacts the 
generation. Solar cell current increases significantly with an increase in GHI, result-
ing in increased power. Temperature is directly related to GHI, but inversely to the 
voltage of the solar cells. The impact of each parameter needs to be considered and 
correlated to have a better forecasting model. 

There are various methods available to predict to process the time series data. The 
traditional ones, such as ARMA, ARIMA, ARIMAX, SARIMA, SARIMAX, etc., 
and also the neural network based, such as ANN, LSTM, RNN, CNN, etc. Authors
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of [ 4] have used ANN to predict solar energy for Malaysia using the historical data, 
with 4.8% of Mean Absolute Percentage Error (MAPE). But they have taken only 
irradiance, temperature, and relative humidity into consideration. While authors of 
[ 5] have developed an advanced ANN model, but it establishes the relationship 
between cloud cover and PV energy output. The energy output is dependent on 
other parameters as well, it demands an ANN model which establishes a relationship 
between different weather parameters and GHI. In [ 6, 7], authors have used ANN 
and LSTM, respectively, to predict the future load depending upon the numerous 
weather parameters. A similar approach can be developed to predict global horizontal 
irradiance. Sharma and Kakkar [ 8] compare different methods such as, compare the 
performance of several machine learning models, including decision tree regression, 
random forest regression, and ANN. Along with the algorithms used in the previous 
article, authors of [ 9] also analyzed Support Vector Machine (SVM). In both cases, 
ANN outperformed other algorithms when compared using MAPE. Researchers 
of Mishra et al. [ 10] have proposed an unique ensemble learning approach which 
combines ANN, SVR, and RF, but it fails to take in account the seasonality and 
sensitivity of different parameters. 

This research article tries to visualize the seasonal data and the correlation by 
the Pearson method, and polar plots, and the algorithms are further applied to the 
well-processed clustered data. Section 2 describes the methodologies used, i.e., K-
Means Clustering and ANN. Section 3 gives brief insights into data, its seasonality, 
and how the pre-processing is done. Section 4 provides the comparison of MAE, 
RMSE, and .R2 for different algorithms used on clustered and non-clustered data. It 
also provides the results of sensitivity analysis and shows how the parameters are 
strongly correlated with each other. 

2 Methodology 

2.1 Problem Formulation 

Accurate prediction of Global Horizontal Irradiance (GHI) is essential for planning 
and designing solar energy systems. Traditional methods such as linear regression 
and polynomial regression have been commonly used for GHI prediction. However, 
these methods may not adequately consider the seasonal variations in GHI data. This 
limitation can lead to inaccurate predictions, which can have significant economic 
and environmental implications. To overcome these challenges, this research aims 
to investigate the effectiveness of artificial intelligence (AI) methods, specifically 
K-means clustering and artificial neural networks (ANN), for predicting GHI. By 
leveraging the capabilities of AI, the research seeks to develop a more precise and 
reliable GHI prediction model. 

The proposed methodology involves the development of an ANN-based GHI pre-
diction model that incorporates both the time series component and external factors.
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The time series component, denoted as.Xt (m(t), d(t), h(t)), represents the historical 
GHI data, with.m(t) representing the month of the year, .d(t) denoting the day of the 
month, and .h(t) indicating the hourly component. The external factors, represented 
by .Xw(t), capture the relevant weather information. The forecasting model aims 
to establish the relationship between the input variables (.Xt and .Xw) and the GHI 
output, denoted as . Y , while accounting for random errors that may be present in the 
data. The model can be expressed as 

.Y = f (Xt , Xw) + E (1) 

The primary objective of this research is to compare the accuracy of different 
methods, specifically linear regression, polynomial regression, K-means clustering, 
and ANN, for GHI prediction. By evaluating the performance of these methods 
using appropriate metrics, such as mean absolute error (MAE), root mean squared 
error (RMSE), and R-squared (R. 

2), the research aims to identify the most effective 
approach for GHI prediction. Furthermore, the research seeks to explore the poten-
tial of AI methods, specifically ANN, in enhancing the efficiency and effectiveness 
of solar energy systems. By providing more accurate GHI predictions, the research 
aims to facilitate the widespread adoption of solar energy systems and reduce our 
reliance on fossil fuels. 

In summary, this research addresses the limitations of traditional GHI prediction 
methods by investigating the effectiveness of AI techniques, such as K-means clus-
tering and ANN. The research aims to develop a robust GHI prediction model and 
evaluate its accuracy compared to traditional methods. The ultimate goal is to con-
tribute to the advancement of solar energy systems and promote sustainable energy 
practices. 

2.2 Artificial Neural Network (ANN) 

An Artificial Neural Network (ANN) is a computational model that borrows features 
from the structure and operation of biological neurons found within the human brain. 
ANNs are made up of many levels of interconnected processing units called neurons 
that are arranged into input, hidden, and output layers. In an ANN, each neuron gets 
input signals from other neurons or outside sources, processes the data, and then 
generates an output signal that is sent to other neurons or an output layer. In most 
cases, mathematical functions known as activation functions control how neurons 
interpret signals. 

A feed-forward multi-layer perception (FFMLP) network was chosen as the neural 
network, one of the most widely used neural networks that learn from instances. 
Figure 1 depicts a visual representation of the basic architecture. The input, 5 hidden, 
and output layers make up the network’s multiple layers. Each layer is connected to 
other layers using strengths called weights [ 11].
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Fig. 1 ANN architecture 

The input factors used for the nodes of the input layers consisted of five temporal 
and five climatic variables. The year, month, day, hour, and minute were the temporal 
factors, and temperature, wind speed, wind direction, pressure, and relative humidity 
were the climatic factors. The output layer had a single node with the calculated global 
horizontal irradiance as its output. Relu function . f (zi ) was used as the neurons’ 
activation function. 

. f (zi ) = max(0, x) (2) 

.zi =
n∑

j=0

wi j x j + βi (3) 

where.wi j is the weight on the link directed from neuron. j to neuron i,.x j is the signal 
coming from the . j th neuron, .βi is the bias of neuron . i , and .zi is the weighted sum 
of the input signals. Supervised instruction, the approach that is used the most, was 
employed. GHI measurements were provided, and the network learned by analyzing 
the measured and estimated data. Using a back-propagation training algorithm, the 
difference, the error, is transmitted backward from the output layer. 

To make the weights more accurate and produce the desired group of outputs, 
training the model with the data is done. Before training starts, a small random value 
is assigned to each weight to prevent saturation by large values. The goal is to reduce 
the squared difference between the produced output and what is desired. An epoch is
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Fig. 2 ANN training algorithm 

completed when a neural network is trained for an entire cycle. The training process 
is repeated epoch after epoch till a desired error value is achieved. 

Figure 2 depicts the flowchart method for training ANN. The raw data are scaled 
from 0 to 1 prior to training. The ANN’s parameters are set, such as learning rate, 
iterations, hidden layer count and size, and solver. The neural network is then taught, 
and the error resulting from the output data is determined. The errors are back-
propagated and the ANN’s weights are revised if the stopping conditions are not 
met. Retraining of the model is done. We obtain an ANN model with the suitable 
weights for forecasting when the stopping criteria are satisfied. 

2.3 Performance Metrics 

.MAE =
∑N−1

i=0 |yi − ŷi |
N

(4)
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.RMSE =
/∑N−1

i=0 (yi − ŷi )2

N
(5) 

.R2 = 1−
∑N−1

i=0 (yi − ŷi )2∑N−1
i=0 (yi − yi )2

(6) 

where . n represents the number of observations, .yi represents the actual value, . yi
represents the predicted value and .yi represents the mean value. 

We’ve not used Mean Absolute Percentage Error (MAPE) metric as it can be 
problematic when applied to prediction problems where real values (for our case, 
GHI) may be zero. This is because MAPE can result in a division by zero error 
if the real value is zero, making it challenging to use this metric for evaluation. 
An alternative to MAPE is the Root Mean Squared Error (RMSE), which we’ve 
considered and is a more widely used metric for evaluating regression models. 

3 Experiment 

3.1 Data Description 

The time series data of Surat city available on National Renewable Energy Labora-
tory (NREL) was used for the experiment. Each hourly value from 2017 to 2019 is 
included. This results in 26280 data points with 11 features (weather parameters) and 
GHI as the output variable [ 12]. The statistical description of the data is mentioned 
in the Table 1. 

Table 1 Statistical data 

Parameter Mean Std Min Min 
(25%) 

Min 
(50%) 

Min 
(75%) 

Max 

Temperature 27.43 4.37 12.6 25.2 27.6 29.8 41.7 

Wind speed 3.37 1.58 0.3 2.1 3.1 4.4 9.7 

Pressure 1007.51 4.76 992 1004 1008 1011 1022 

Wind 
direction 

202.89 90.39 0 120 230 260 360 

Relative 
humidity 

64.74 23.75 13.14 43.2 69.28 86.56 100 

GHI 212.4 295.66 0 0 0 413 1049
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Table 2 Pearson coefficient 
of different parameters with 
GHI 

Parameter Correlation with GHI 

Temperature 0.630184 

Wind speed . −0.022556

Pressure 00.066675 

Wind direction 00.140302 

Relative humidity . −0.515194

3.2 Correlation Between Parameters 

In order to understand the relationship between the weather parameters and the GHI, 
we used Pearson’s correlation coefficient [ 13]. The correlation coefficient, whose 
values range from.−1 to +1, assesses the strength and direction of the linear connec-
tion between two variables. A value of +1 indicates a perfect positive correlation, 
a value of .−1 indicates a perfect negative correlation and a value of 0 indicates no 
correlation. 

The Pearson correlation coefficients between the various weather factors and the 
GHI are displayed in Table 2. As expected, temperature is highly positively correlated 
with the GHI, with a coefficient of 0.63. On the other hand, the correlation between 
wind speed and the GHI is extremely weak, with a coefficient of .−0.02. Pressure 
and wind direction both have very weak positive correlations with the GHI, with 
coefficients of 0.07 and 0.14, respectively. Interestingly, there is a moderate negative 
correlation between relative humidity and the GHI, with a coefficient of .−0.52. 

The correlation coefficients give us a general sense of how strongly the various 
parameters are related to the GHI, but they do not reveal the nature or pattern of 
the relationship. We can visualize the correlations using a heat map to better under-
stand how the various parameters link to the GHI. The heat map of the correlation 
matrix between the various factors and the GHI is displayed in Fig. 3. As anticipated, 
the greatest positive correlation exists between the GHI and temperature, while the 
strongest negative correlation exists between the GHI and relative humidity. The 
relationships between the other variables are weaker, with wind speed and pressure 
almost completely unrelated to the GHI. 

3.3 Seasonality 

The GHI varies over a year due to changes in the sun’s position in the sky and 
other factors such as atmospheric conditions and cloud cover. Specifically, the GHI 
changes over time within a year due to Seasonal variation. The amount of solar 
radiation received at a particular location is affected by the sun’s angle in the sky, 
which changes throughout the year due to the earth’s axial tilt. In the Northern 
Hemisphere, the GHI is typically highest during the summer months when the sun 
is highest in the sky and lowest during the winter months when the sun is lowest in 
the sky. The GHI can also be affected by weather conditions such as cloud cover,
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Fig. 3 Correlation heat map 

which can reduce the amount of solar radiation that reaches the surface. In some 
locations, cloud cover can be more prevalent during certain seasons, affecting the 
seasonal variation of GHI. Understanding these changes is essential for accurate 
solar radiation estimates for planning and forecasting purposes [ 14]. 

The GHI being highly correlated with weather parameters which are proven to be 
seasonal [ 15], it becomes necessary to assess the seasonality of the historical data of 
GHI in order to develop a better model. To establish the seasonality, a polar plot is 
used here. It visualizes the time series coordinates as polar and connects the clusters 
accordingly. 

In Fig. 4 of the polar plot, the plots of March, April, and May are far from the 
origin, and those of December and January are closer, which shows that GHI data has 
a significant seasonal component. For Surat, the data can be visualized as 6 clusters, 
each of 2 months, because the weather conditions are such that any season will have
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Fig. 4 Polar plot 

its extreme impact for two months and moderate in the rest of the two. (Will be 
proved by the clustering algorithm in the upcoming description as well) 

3.4 Data Pre-processing 

Before using the data for the prediction of GHI, it is necessary to normalize it because 
AI models are highly sensitive to the scale of data points. The GHI data ranges from 
0 to 1050.W/m2, values of wind speed are between 0 and 10, but those of pressure are 
in thousands. Without normalizing it, bigger values will have a greater impact on the 
prediction model and will lead to poor accuracy. Moreover, neural network-based 
algorithms are reliant on distance matrix for prediction. Normalizing ensures the 
consistency of the distance matrix across all features. Hence, it becomes mandatory 
to scale the data from 0 to 1 for better performance [ 16]. 

We have used Min-Max Scalar to normalize the data. Using the Min-Max Scalar, 
each feature’s minimal value is subtracted, and the remaining range—the difference 
between the minimum and maximum values—is divided. The resultant numbers will 
range from 0 to 1, with 0 denoting the least value and 1 denoting the greatest value. 
Min-Max scaling is often used in machine learning algorithms, particularly those that 
rely on distance calculations, such as k-nearest neighbors and clustering algorithms, 
where differences in the features’ scale can significantly impact the results. These 
algorithms can be more accurate and efficient by scaling the features to a common 
range.
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Fig. 5 K-means clustering algorithm 

To take advantage of the seasonality, we performed K-means clustering on the 
data to group them seasonally. K-means clustering can be a helpful technique for 
analyzing seasonal data, particularly when we want to identify patterns or groupings 
within the data. Seasonal data typically exhibit repeating patterns over time, and 
K-means clustering can be used to identify groups of observations that share similar 
patterns [ 17]. 

The K-Means clustering flowchart method is shown in Fig. 5. To cluster days 
seasonally; we need to consider all 24 h data points of each day together, so we 
used customized K-Means. The first step is deciding how many clusters to split our 
data into. Then any . k number of days are selected randomly as centroid values. The 
Euclidean distances of each node from the centroids are calculated, and the nodes 
are then grouped together around the centroid that is closest to them. By averaging 
all the nodes in each cluster, new centroids are obtained. If the centroid values are 
changed, the process is repeated, or else final clusters are obtained.
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Table 3 Centroid GHI values 
for different clusters 

No. Centroid GHI 

1 707.155405 

2 284.586777 

3 775.156757 

4 739.124424 

5 968.085020 

6 595.384181 

After clustering the data into 6 groups, the GHI values obtained for the 7 h of each 
centroid are displayed in Table 3. The table shows that the GHI data has a significant 
seasonal component. 

4 Results and Discussion 

By using 80% of dataset for training and 20% of it for testing, Linear Regression 
(LR), Polynomial Regression (PR) of sixth order, and ANN was implemented on the 
dataset non-clustered and clustered. It can be observed that the accuracy is maximum 
by using ANN. In each algorithm, there is a significant reduction in error when it is 
implemented on clustered data. Error minimization is crucial because the GHI values 
are in.W/m2. They will be multiplied by the total area of the solar generation facility, 
and the total power will be used to calculate the energy. Hence, the error will also be 
multiplied (Table 4). 

Table 4 Performance metrics for various algorithms 

Methods MAE RMSE . R2

Linear Regression 178.14132 143.430586 0.639508 

Linear Regression 
with K-Means 

169.046487 133.542961 0.675377 

Polynomial 
Regression 

102.957678 77.567908 0.879584 

Polynomial 
Regression with 
K-Means 

69.056983 46.638887 0.945827 

Artificial Neural 
Network 

65.448092 27.941005 0.950632 

Artificial Neural 
Network with 
K-Means 

53.941971 25.018180 0.966465
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Fig. 6 Artificial Neural Network 

Figures 6 and 7 show that the ANN often provided the closest match between 
the actual value and the dataset. Its forecasting profile is frequently too clean to 
include random variations caused by meteorological data since it learns the current 
dynamics of data sets. Furthermore, it could appear as though the errors are too big 
for the forecasting model. This results from the significant uncertainty in the solar 
and weather data. More hidden layers in the model can enhance results, but doing 
so would prolong computation time and burden. In order to agree on the number of 
hidden layers, a trade-off between computational burden and minimizing errors is 
given consideration. Trial and error are used to achieve this. 

Studying the effects of various features on system performance is essential because 
the computational load will increase due to many features. As a result, in this research, 
various weather inputs are disregarded one at a time, while actual data is fed with the 
remaining weather inputs. The values of the performance matrices for the various 
input factors for the ANN-based prediction model with and without K-Means are 
listed in Tables 5 and 6, respectively. The importance of temperature in the prediction 
can be expected. When all weather inputs are taken into account, the least is achieved 
with the observed error values. Hence, emphasizing the significance of taking into 
account all external variables. When the temperature is disregarded, forecast model 
performance is at its lowest. The error significantly grows by 8.9% as the MAE rises 
from 65.45 to 71.28. When the input factors pressure, wind speed, and wind direction 
are disregarded, there is less variation in the model’s performance. Therefore, it can 
be said temperature and humidity are crucial factors in forecasting and must be 
considered.
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Fig. 7 Artificial Neural Network with K-means 

Table 5 Sensitivity analysis for ANN 

Parameter MAE RMSE . R2

All weather inputs 65.448092 27.941005 0.950632 

Without temperature 71.275043 34.480865 0.941450 

Without wind speed 70.198105 30.862293 0.943206 

Without pressure 68.878392 30.296059 0.945322 

Without wind 
direction 

70.615335 33.149972 0.942529 

Without relative 
humidity 

70.860863 32.136967 0.942129 

Table 6 Sensitivity analysis for ANN with K-means 

Parameter MAE RMSE . R2

All weather inputs 53.941971 25.018180 0.966465 

Without temperature 60.730970 29.425981 0.957491 

Without wind speed 58.859790 27.685562 0.960071 

Without pressure 57.945705 27.154220 0.961301 

Without wind 
direction 

55.908939 26.339465 0.963974 

Without relative 
humidity 

59.442174 28.325263 0.959277
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5 Conclusion 

In this study, we have presented a comprehensive analysis of the performance of 
different algorithms for predicting the global horizontal irradiance (GHI) in a solar 
power generation system. The dataset used in this study covers a period of 3 years 
and includes variables such as temperature, wind speed, pressure, wind direction, 
and relative humidity. 

We used linear regression, polynomial regression with and without K-means clus-
tering, and artificial neural network algorithms to predict the GHI values. Three error 
metrics—mean absolute error (MAE), root mean squared error (RMSE), and R-
squared (.R2)—were used to assess each algorithm’s efficiency. Our results show that 
the artificial neural network along with K-Means outperforms the other algorithms, 
achieving the lowest error values for all three metrics. 

Furthermore, we have analyzed the impact of seasonality on the prediction accu-
racy. The analysis of seasonal variations showed that the models’ efficacy varied 
greatly throughout the year. The results suggest that the models must be retrained for 
each season in order to achieve the highest accuracy in GHI predictions, necessitating 
the clustering of the data. 

Overall, our research shows how effectively machine learning algorithms can be 
used to forecast GHI values in solar power generation systems. As precise GHI value 
predictions can help maximize the output and efficiency of solar power plants, our 
research findings can offer useful insights to the solar power industry. These find-
ings can serve as a guide for similar studies in other locations too. Future research 
can focus on developing more advanced machine learning algorithms, incorporat-
ing more diverse data sources to further improve the accuracy and using these GHI 
predictions for designing efficient solar power plant and integrating them with the 
power grid as well. 

References 

1. Majid MA et al (2020) Renewable energy for sustainable development in india: current status, 
future prospects, challenges, employment, and investment opportunities. Energy, Sustainability 
and Society 10(1):1–36 

2. United Nations. COP27: Delivering for people and the planet|United Nations—un.org. https:// 
www.un.org/en/climatechange/cop27 

3. Popat J, Kakadiya H, Tak L, Singh NK, Majeed MA, Mahajan V (2021) Reliability of smart 
grid including cyber impact: a case study. In: Computational methodologies for electrical and 
electronics engineers. IGI Global, pp 163–174 

4. Khatib T, Mohamed A, Sopian K, Mahmoud M (2012) Solar energy prediction for Malaysia 
using artificial neural networks. Int J Photoenergy 2012 

5. Chen Changsong, Duan Shanxu, Cai Tao, Liu Bangyin (2011) Online 24-h solar power fore-
casting based on weather type classification using artificial neural network. Solar energy 
85(11):2856–2870

https://www.un.org/en/climatechange/cop27
https://www.un.org/en/climatechange/cop27
https://www.un.org/en/climatechange/cop27
https://www.un.org/en/climatechange/cop27
https://www.un.org/en/climatechange/cop27
https://www.un.org/en/climatechange/cop27
https://www.un.org/en/climatechange/cop27


232 D. Rodge et al.

6. Majeed MA, Mudgal S, Tak L, Popat J, Kakadiya H, Singh NK, Mahajan V (2021) Artificial 
neural network modelling for short term load forecasting. In: 2021 international conference on 
technology and policy in energy and electric power (ICT-PEP). IEEE, pp 302–306 

7. Majeed MA, Mudgal S, Tak L, Popat J, Kakadiya H, Singh NK, Mahajan V (2022) Hourly 
load forecasting using sequence-to-sequence LSTM-based deep machine learning model. In: 
Sustainable technology and advanced computing in electrical engineering: proceedings of 
ICSTACE 2021. Springer, pp 469–477 

8. Sharma Amandeep, Kakkar Ajay (2018) Forecasting daily global solar irradiance generation 
using machine learning. Renewable and Sustainable Energy Reviews 82:2254–2269 

9. Mutavhatsindi Tendani, Sigauke Caston, Mbuvha Rendani (2020) Forecasting hourly global 
horizontal solar irradiance in south africa using machine learning models. IEEE Access 
8:198872–198885 

10. Mishra DP, Jena S, Senapati R, Panigrahi A, Salkuti SR (2023) Global solar radiation forecast 
using an ensemble learning approach. Int J Power Electron Drive Syst 14(1):496 

11. Hongjun Lu, Setiono Rudy, Liu Huan (1996) Effective data mining using neural networks. 
IEEE transactions on knowledge and data engineering 8(6):957–961 

12. NSRDB—nsrdb.nrel.gov. https://nsrdb.nrel.gov/data-sets/international-data 
13. Aldrich J (1995) Correlations genuine and spurious in Pearson and yule. Stat Sci 364–376 
14. Davey AM, Flores BE (1993) Identification of seasonality in time series: A note. Mathematical 

and computer modelling 18(6):73–81 
15. Frimpong K, Oosthuizen J, Van Etten EJ (2014) Recent trends in temperature and relative 

humidity in Bawku east, northern Ghana 
16. Sola Jorge, Sevilla Joaquin (1997) Importance of input data normalization for the application 

of neural networks to complex industrial problems. IEEE Transactions on nuclear science 
44(3):1464–1468 

17. Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J Royal Stat 
Soc. Series C (Appl Stat) 28(1):100–108

https://nsrdb.nrel.gov/data-sets/international-data
https://nsrdb.nrel.gov/data-sets/international-data
https://nsrdb.nrel.gov/data-sets/international-data
https://nsrdb.nrel.gov/data-sets/international-data
https://nsrdb.nrel.gov/data-sets/international-data
https://nsrdb.nrel.gov/data-sets/international-data
https://nsrdb.nrel.gov/data-sets/international-data
https://nsrdb.nrel.gov/data-sets/international-data


Optimal Co-Ordination of Directional 
Overcurrent Relays in Distribution 
Network Using Whale Optimization 
Algorithm 
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Jagarapu S. V. Siva Kumar, Pradeep Jangir, Laith Abualigah, 
and Chandran Ramakrishnan 

Abstract Modern power distribution networks are incredibly complex due to the 
growing incorporation of distributed generators in the past few years. The coordina-
tion of Directional Overcurrent Relays (DORs) in interconnected systems with many 
relays is significantly hindered by this complexity. In a nonlinear and constrained 
optimization problem, optimal DOR coordination is essential for protecting such
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complex systems and necessitates rigorous constraints. In order to address the optimal 
coordination problems of DORs, this study suggests using the Whale Optimisation 
Algorithm (WOA), a bio-inspired metaheuristic technique. WOA can optimize the 
fitness function in electrical engineering applications by taking insights from the 
humpback whales’ hunting strategies. Using various fault data from 3-bus, 9-bus, 
and 30-bus standard systems, the effectiveness of WOA in promoting optimal DOR 
coordination is assessed. The main objective is to delineate the implementation of 
WOA to deal with DOR coordination problems. As a result, we are not comparing 
WOA’s performance against any currently used algorithms. Rather, we use three 
case studies to test the algorithm’s effectiveness with various population sizes and 
maximum iterations. The outcomes convincingly show that WOA is highly efficient 
in reducing the total period that primary relays are required to operate. 

Keywords Bio-inspired algorithm · Operating time · Overcurrent relay 
coordination · Whale optimization algorithm 

1 Introduction 

When used in combination with fuses, reclosers, and Circuit Breakers (CBs), Over-
current Relays (OCRs) are a common kind of protection for traditional radial distri-
bution networks. The incorporation of Distributed Generators (DGs) into distribu-
tion networks has grown in recent years because of the significant technological, 
economic, and environmental advantages that DGs provide. The incorporation of 
DGs, on the other hand, transforms the radial topology of the traditional distribution 
network into an interconnected framework, leading to bidirectional power flow [1, 
2]. A significant influence on the amount of the short-circuit current is exerted by the 
kind of DG and penetration level of DGs. When it comes to protecting such complex 
networks quickly and reliably, Directional Overcurrent Relays (DORs) are typically 
preferred over simple OCRs [3]. In order to improve the overall effectiveness of the 
protection scheme, DORs must work together in the most efficient manner possible. 
In transmission and distribution infrastructure, DORs are commonly employed for 
main protection, and they can also be used to safeguard distance relays in transmission 
systems as a backup protective device [4, 5]. 

The DORs might become necessary in order to achieve fault zone differentiation in 
the ring main, double-end fed, parallel feeder, and multi-looped systems. The primary 
function of a DOR is to identify a fault as soon as it occurs if it occurs within its
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operational zone without any intended delay [6]. Primary protection is defined as the 
identification of a problem inside the specified zone without the use of any intended 
delay. Occasionally, primary protection neglects to eliminate a problem due to the 
failure of relays and/or CBs to function properly. It is necessary to have backup 
protection in place to correct the problem. Backup protection is an extra layer of 
security offered to a spot that only triggers after an intended delay if the main security 
of that part neglects to function properly [7]. In the coordination of DORs, the task 
of determining the most appropriate relay settings, specifically the Time Multiplier 
Setting (TMS) and the Plug Setting (PS), in such a way that the main relay reacts 
quicker than any other relays in the system is referred to as coordination. To minimize 
the overall working time of all primary relays and prevent miscoordination between 
primary and backup relay pairs, the coordination of DORs must find the optimal TMS 
and PS values for each relay while taking into consideration specific constraints. In 
the event of a failure of the main relay or the related circuit breaker, backup relays 
must be activated after a certain time interval, ensuring that the Primary/Backup (P/ 
B) relay pairs are operated in the correct sequential order [8, 9]. 

Several ways to achieve the best possible coordination of DORs utilized for the 
protection of meshed distribution networks have been described in the scientific 
research literature. For relay coordination, it was common to practice in the past to 
use trial-and-error approaches [10]. Trial and error procedures, on the other hand, are 
hampered by the demand for many iterations and the sluggish rate of convergence. 
Topological modelling was used to provide optimal coordination of DORs, which 
were later implemented [11, 12]. When contrasted to trial-and-error procedures, topo-
logical analysis-based methods specify a minimum number of iterations to arrive at 
an appropriate solution. Nevertheless, using the topological analysis approach, it is 
not assured that the global optimal of TMS and PS of DORs would be obtained. In 
subsequent phases, numerous optimization algorithms for overcoming the coordi-
nation challenges of DORs were suggested, with the most prominent programming. 
Simplex [13], two-phase simplex [14], Sequential Quadratic Programming (SQP) 
[15], and dual simplex [16] are examples of classical optimization methods that are 
based on Linear Programming (LP) methods [17]. These approaches are fast and 
straightforward. However, because the operating time of the DOR is a linear func-
tion of the TMS, the LP-based optimization strategies are only useful for optimizing 
the TMS in this case. Because DOR management is a nonlinear problem, Nonlinear 
Programming (NLP) methods such as the gradient search technique [18], random 
search technique, and sequential quadratic programming [19] have been suggested 
in previous studies to defeat the shortcomings of LP-based approaches. It is possible 
to tune both the TMS and PS of DORs simultaneously using an NLP-based opti-
mization technique. When it comes to addressing the DOR coordination problem, 
NLP-based solutions outperform LP techniques by a wide margin. However, both 
traditional optimization strategies have the potential to become stuck at the local 
optima and struggle to reach the global optima as a result. Furthermore, as the 
scale of the system grows, the pace of convergence of such optimization techniques 
becomes more and slower. As a result, over the last few decades, heuristic methods 
have emerged as useful tools for solving the relay coordination problem. There are
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a variety of methods available, including Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), Differential Evolutionary (DE) algorithm, Backtracking Search 
Algorithm (BSA), Artificial Bee Colony (ABC) algorithm, Ant Colony Optimiza-
tion (ACO), Biogeography-Based Optimization Algorithm (BBOA), Gravitational 
Search Algorithm (GSA), Teaching Learning-Based Optimization (TLBO), Grey 
Wolf Optimizer (GWO), Cuckoo Search (CS), and Harmony Search (HS) algorithm 
[20–24]. For the coordination problem of DORs, hybrid methods are also used to 
improve computational speed. These methods include GA-LP, GA-NLP, BBOA-LP, 
GSA-SQP, PSO-SQP, and PSO-GSA. When compared with trial and error, topo-
logical, and traditional LP and NLP algorithms, such heuristic and evolutionary 
optimization algorithms outperform them in terms of reaching the global optimal 
solution. Most metaheuristic algorithms, on the other hand, need greater computing 
time and suffer from premature convergence. Researchers have put forth a great 
amount of effort to date to solve the optimal relay coordination challenges that arise 
in DOR networks. It seems that practically every time, the primary aim is to improve 
the relay settings to reduce the total Operating Time (OT) of the relays. However, 
the challenge of coordination between relays (P/B relay pairs) has not been prop-
erly handled so far. As a result, to close the research gap, this paper addresses both 
objectives, namely, optimization of coordination between P/B relay pairs and relay 
settings, at the same time and with better results. 

Recently, a bio-inspired metaheuristic optimization technique called Whale Opti-
mization Algorithm (WOA) for solving optimization issues was published in [25] and 
is described in detail. In comparison to other algorithms, WOA is made to balance the 
exploration and exploitation of the search area, which can improve the convergence 
rate and overall optimization. It is simpler to develop and utilize for many optimiza-
tion problems because it only requires a few tuning parameters. It can rapidly reach 
an equivalent to an ideal solution in a short period due to its strong convergence 
rate. Compared to other optimization techniques, it is more computationally effi-
cient and relatively simple to implement. It can solve various optimization problems, 
including those with one or more objectives. In addition, this algorithm is not applied 
to optimal coordination of directional overcurrent relay optimization problems. This 
motivated us to select the whale algorithm for the above-said optimization problem. 
Therefore, this paper uses WOA to provide the best possible coordination of DORs. 
The recommended algorithm’s performance is tested on standard 3-, 9-, and 30-bus 
test power systems, with faults introduced at the midway of the lines to evaluate 
its effectiveness. The recommended algorithm’s performance is revealed to be an 
optimal tool in terms of attaining the shortest overall OT of relays.
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2 Optimization Problem Formulation 

2.1 Objective Function 

The problem of DOR can be expressed as either a linear function or a nonlinear 
function. In the scenario of a linear function, plug-setting has remained constant 
among the upper and lower bounds of the flow of current while TMS is computed; 
however, in the scenario of a nonlinear function, both TMS and PS are minimized at 
the same time in both cases. Apart from that, the quantized characterization of relay 
configurations increases the difficulty in coordinating the operation of the system. 
When it comes to solving the DOR’s coordination challenge, there are primarily two 
objectives that must be addressed. The initial aim is to reduce the overall running 
time of all relays put in the network to the bare minimum, allowing the problem 
to be addressed in the shortest amount of time. Second, the coordination between 
the backup and primary relays should be retained, i.e., the backup relay would only 
act after a specified period if the primary relay could not function properly. The 
mathematical expression of the relay can be stated as follows [26]. 

Tik  = T M  Si ∗ β(
I f 

P Si . CTRating,P

)α − δ 
(1) 

I f = IRi ,k 

CTRating,P 
(2) 

where Tik  denotes the ith relay operating time for a fault at the kth site, IRi ,k denotes 
the fault current observed in the relay Ri for a fault at the the kth site, and If denotes 
the fault current at the Current Transformer (CT) primary terminal. PSi denotes the 
PG of the relay Ri above which it begins to operate, while T M  Si denotes the TMS 
of the relay Ri . α, β, and δ are coefficients that change depending on the charac-
teristics of the relay. According to [26], the values of the parameters are 0.02, 0.14, 
and 1, respectively, as per IEC Standard 60,255–151 for Inverse Definite Minimum 
Time (IDMT) relays. CTRating,P denote the primary rating of the respective CT. The 
relationship between IRi ,k and PSi denotes the factor that determines the degree of 
nonlinearity. If the fault occurs nearer to the relay, then the fault is called the near-end 
fault (or close-in fault), and if the fault occurs at another end of the line is called the 
far-end fault (or far-bus fault), as depicted in Fig. 1.

The primary objective of coordinating the DORs problem is to find the best TMS 
and PS values so that the overall weighted sum of all primary relays’ Operation Time 
(OT) at their related zones is as small as possible. As a result, the objective function 
can be written as follows [27, 28]. 

Min: f = 
Ncl∑
i=1 

T i clin  ,P + 
N f ar∑
j=1 

T j f arbus ,P (3)
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Fig. 1 Schematic of close-in 
and far-bus faults for relay

T i clin  ,P =
0.14 · TMSi

(
I i f 

text  P  Si ·CTi 
Rating,P

)0.02 
− 1 

(4) 

T j f arbus ,P =
0.14 · TMS j

(
I j f 

text  P  S  j ·CT j Rating,P

)0.02 

− 1 
(5) 

where Ncl denotes the number of relays responding to a near-end fault and N f ar  
denotes the number of relays responding to far-end faults. 

2.2 Constraints 

There are specific limits on how long the relay can operate that must be met for 
the relay to function properly. To function within the constraints, the TMS and PS 
should be constrained. The TMS has a boundary requirement that should be met for 
the relay to operate quickly and correctly. The relay must not cross the bounds. It 
should function within the TMS’s upper (ub) and lower (lb) limits. As a result, the 
ith relay’s TMS limit setting can be written as follows: 

T M  Slb i ≤ T M  Si ≤ T M  Sub i , i = 1, 2, 3, . . . ,  Ncl (6) 

In this paper, the lb  and ub values of TMS are chosen to be 0.05 and 1.1, respec-
tively. The relay’s PS should be such that it stays quiet when the feeder is receiving 
peak load current, but it should function when the feeder is experiencing minimum 
fault current. To satisfy the above conditions, the bounds of the i th relay’s PS can 
be stated as follows [27]: 

PSlb j ≤ PSj ≤ PSub j , j = 1, 2, 3, . . . ,  N f ar (7)
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In this paper, the lb  and ub values of PS are chosen to be 1.25 and 1.5, respectively. 
The TMS, PS, and the fault current shown by the relay determine the relay’s OT. 
The OT is calculated using analytic formulas or standard inverse curves based on 
the characteristics of the relay. Each element of the objective function is constrained 
to be between 0.1 and 1.1. The backup relay should only be used after the primary 
relay has failed to prevent maloperation. It is required for the backup and primary 
relays’ selectivity to be maintained. The Coordination Time Interval (CTI) is the 
summation of the OT of the circuit breaker connected with the primary relay and the 
overshoot time. The gap between the OT of the backup relay and the primary relay 
should be greater than the CTI in coordinating two overcurrent relays. The CTI can 
be characterized as follows [27]: 

CT  I  = Tj,k − Ti,k, i = 1, 2, . . . ,  Ncl (8) 

where Tj,k denotes the OT of the jh B-relay for a fault at kth location within the 
protected zone by the ith P-relay. Thus, the constraint for CTI can be represented as 
follows [27]: 

CT  I  ≥ CT  I  min (9) 

where CT  I  min denotes a minimum CTI, and it is typically between 0.2 and 0.3 s. 
For all P/B pairs, the constraint for CTI should be met. Close-in, far-bus, and middle-
point fault currents are commonly utilized, and they provide coordination for many 
fault scenarios. 

2.3 Modified Objective Function 

However, the least possible CTI between the backup and primary relays is essential 
for correct selection; considerably deferred backup relay operation is not preferred 
from the standpoint of successful relay coordination. Therefore, the objective func-
tion is adjusted to improve the CTI between primary and backup relays, as follows 
[29]: 

Min: f = α1 

m∑
i=1

∑
k 

T 2 i,k + α2 

m p∑
p=1

[
�Tmp − β

(
�Tmp −

∣∣�Tmp

∣∣)]2 (10)

�Tmp = Tj,k − Ti,k − CT  I (11) 

where �Tmp denotes the difference in OT with CTI between pth pair of relays, m 
denotes the number of relay units, m p denotes the number of P/B relay pairs, α1 and 
α2 denote weight factors, and β denotes factor to consider the miscoordination. If the 
value of β increases, the level of miscoordination decreases; however, it increases
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the OT of the relay units. Therefore, it is necessary to select the optimal values of β. 
The synchronization between DORs is stated as a highly constrained and nonlinear 
optimization problem in which the TMS and PS of each relay are considered as 
design parameters. The major aim is to reduce the OTs of all P-relays, which are 
supposed to work to clear the faults in their respective regions after the faults are 
cleared. 

3 Whale Optimization Algorithm (WOA) 

WOA is a recently proposed metaheuristic algorithm based on swarms that have been 
presented for continual problems. It has been demonstrated to outperform contempo-
rary meta-heuristic approaches in terms of overall performance [25, 30]. For example, 
it is simple and robust compared to other metaheuristic approaches, making it analo-
gous to diverse nature-inspired algorithms in terms of implementation and robustness. 
The algorithm requires a smaller number of control parameters; in practice, only one 
parameter has to be fine-tuned. As depicted in Fig. 2, the humpback whale population 
in WOA searches for food in a multi-dimensional search space. In this model, the 
positions of whale populations are depicted as various decision vectors, and the range 
between whale populations and food relates to the level of fitness values. The three 
operational procedures described below are used to determine the time-dependent 
position of a whale population: (i) prey encircling, (ii) bubble-net attacking, and (3) 
prey search. The WOA is depicted in Fig. 3 in its most fundamental form. 

Fig. 2 Bubble-net attacking of the prey
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Fig. 3 Position update of the 
whale using spiral strategy 

3.1 Prey Encircling 

Whales can distinguish and encircle their prey while they are in their natural habitat. 
Because the location of the design optimization in the search area is not known a 
priori, the WOA assumes that the current best candidate solution is either the target 
prey or very close to the best solution in the search space. The top search agent would 
be identified, and the remaining search agents would adjust their positions to be as 
close as possible to that of the top search agent. According to [25], the following 
equations can be used to express the behaviour described above: 

−→
D =

∣∣∣−→C .−→X∗(t) − −→X (t)
∣∣∣ (12) 

−→
X (t + 1) = 

−→
X∗(t) − −→A .−→D (13) 

−→
A = 2−→a · −→r − −→a (14) 

−→
C = 2 · −→r (15) 

where 
−→
X∗(t) denote the best position of the agent, −→X (t) denote the current position 

of the agent, t denote the current iteration, −→a is constant, and it varies linearly from 
2 to 0, and  −→r denotes a uniform random number between [0, 1]. 

3.2 Bubble-Net Attacking 

For the whale’s bubble-net behaviour to be described mathematically, a spiral math-
ematical model is used between the positions of the whale and the prey to simulate
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the helical structure movement of humpback whales [25]. 

−→
X (t + 1) = 

−→ 
D

′ · ebl · cos(2πl) + 
−→
X∗(t) (16) 

−→
X (t + 1) =

{ −→
X∗(t) − −→A · −→D if p < 0.5−→

D
′ · ebl · cos (2πl) + 

−→
X∗(t) if p ≥ 0.5 

(17) 

where p denotes a constant which describes the logarithmic spiral shape, and l 
denotes a uniformly distributed arbitrary number between [–1,1]. 

3.3 Prey Search 

For global optimization algorithms to function, if A > 1 or A ≤ −1, the population is 
updated in accordance with the directions provided by a randomly chosen population 
in the role of the best population [25]. 

−→
D =

∣∣∣−→C · −−→X rand − −→X
∣∣∣ (18) 

−→
X (t + 1) = −−→X rand − −→X · −→D (19) 

where X rand denotes random population position in the current iteration. Readers 
should refer to [25] for additional information. 

4 Results and Discussions 

It is verified in this paper that the WOA can be used to find the optimal coordination of 
directional overcurrent relays in the distribution network is considered. In this paper, 
there are three test cases, such as 3-bus (Case-1), 9-bus (Case-2), and 30-bus (Case-3) 
models, are considered. The results were presented for all three test cases. The control 
parameters of the WOA were taken based on the original paper, literature study, and 
trial and error method. The population size is 10 times the problem dimension, and 
the maximum number of iterations is selected as per the problem’s complexity. The 
problem dimensions for the 3-bus test model is 6, for the 9-bus test model is 24, 
and for the 30-bus test model is 38. Therefore, the best population size for the 3-bus 
model is 60, for the 9-bus model is 240, and for the 30-bus model is 380. The value 
of the constant a is linearly decreased from 2 to 0, the value of l varies between [– 
1,1], and the value of p is a random number between [0,1]. The experimental results 
are discussed in three sub-sections. The sub-Sect. 1 defines the results attained by 
the WOA for Case-1 with different population sizes. The sub-Sect. 2 describes the
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results attained by the WOA for Case-2 with different population sizes. The sub-
Sect. 3 defines the results attained by the WOA for Case-3 with different population 
sizes. A computer with an Intel Core i5 CPU operating at 4.45 GHz and 16 GB of 
memory is used to execute the experiment through MATLAB software. The lower 
and upper bounds for all case studies are selected as per the data collected from the 
different literature. 

4.1 Case-1: 3-Bus Test Model 

As demonstrated in Fig. 4, a three-bus (B1-B3) test system with one generator (G1) 
and six DORs (R1-R6) is investigated. The ratings of each component, as well as line 
data for each component, are taken from [12, 26]. As indicated in Table 1, the fault 
current at each bus is computed using the provided standard data, with the event of a 
fault in the centre of the line being taken into consideration. Table 1 also contains the 
primary rating of the CT. In clearing all near-end and far-end faults, it is necessary to 
synchronize the settings of each of the six relays that respond. As a result, there are 
a total of 12 control vectors in the DORs problem, which are designated as TMS1-
TMS6 and PS1-PS6, respectively. The TMS values at the lower and upper levels are 
0.05 and 1.1, respectively. PS is in the range of 1.25–1.50, depending on the model. 
The CT  I  min is set to its default value of 0.3 s. 

As shown in Table 3, the optimal TMS and PS parameters derived by the WOA 
are shown. For near- and far-end faults, the OT of all primary relays is also listed in 
Table 3. The OTs are within an adequate level of 0.1–1.1 s, which is satisfactory. The 
overall OT of the P-relays is 4.8613 s. As shown in Table 4, the DORs do not have any 
miscoordination pairings when they are in operation. To examine the convergence 
behaviour of WOA, the convergence curve is depicted in Fig. 5.

Fig. 4 Case-1: Schematic of the 3-bus test model
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Table 1 Fault currents observed in the 3-bus test model 

Primary relay Fault current (A) Backup relay Fault current (A) Primary rating of CT 

1 9.46 5 100.63 2.06 

2 26.91 4 14.08 2.06 

3 8.81 1 136.23 2.23 

4 37.68 6 12.07 2.23 

5 17.93 3 19.20 0.8 

6 14.35 2 25.90 0.8 

Table 2 Fault currents for P/B relays in the 3-bus test model 

Primary Relay Fault current (A) Backup Relay Fault current (A) 

Close-in Far-bus Close-in Far-bus 

1 9.46/2.06 14.08/2.06 5 9.46/0.8 14.08/0.8 

3 8.81/2.23 12.07/2.23 6 8.81/0.8 12.07/0.8 

5 17.93/0.8 25.9/0.8 4 17.93/2.23 25.9/2.23 

6 14.35/0.8 19.2/0.8 2 14.35/2.06 19.2/2.06

Table 3 Optimal PS and TMS values for the 3-bus test model 

Relay N = 40 N = 60 
TMS PS OTClose-in OTFar-bus TMS PS OTClose-in OTFar-bus 

1 0.0500 1.2500 0.2655 0.2025 0.0500 1.2500 0.2655 0.2025 

2 0.2198 1.2500 0.6403 0.4045 0.2194 1.2500 0.6392 0.4038 

3 0.0500 1.2500 0.3007 0.2353 0.0500 1.2500 0.3007 0.2353 

4 0.2391 1.2500 0.6262 0.4138 0.2299 1.2500 0.6021 0.3979 

5 0.1950 1.2500 0.4593 0.4059 0.1950 1.2500 0.4593 0.4059 

6 0.1953 1.2500 0.4997 0.4491 0.1953 1.2500 0.4997 0.4491 

OT in 
sec 

4.9027 4.8613

When analyzing the results obtained for two population sizes of the suggested 
WOA, it is evident that the WOA with a population size of 60 with 1000 iterations 
produces the optimal settings. In addition, the Run-Time (RT) of the WOA is also 
recorded in Table 4. As seen in Table 4, the RT value of WOA with a 40-population 
size is very much lesser than the WOA with a 60-population size. It is obvious that 
the algorithm with less population size takes lesser computation time. However, the 
results produced by the 60 population size are superior though the RT is high.
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Table 4 CTI for the 3-bus test model 

Faults N = 40 N = 60 
Relay CTI RT Relay CTI RT 

Backup Primary Backup Primary 

Close-in 5 1 0.3000 0.4905 5 1 0.3000 0.6259 

6 3 0.3000 6 3 0.3000 

4 5 0.3283 4 5 0.3001 

2 6 0.3805 2 6 0.3790 

Far-bus 5 1 0.3283 5 1 0.3284 

6 3 0.3141 6 3 0.3140 

2 6 0.4233 2 6 0.3893 

4 5 0.3013 4 5 0.3001 

Fig. 5 Convergence curves for different population sizes (3-bus model)

4.2 Case-2: 9-Bus Test Model 

The schematic of the 9-bus system is shown in Fig. 6. With the normally inverse 
features, and there seem to be 24 digital DORs in this case study. TMS is recorded 
in the range of 0.01–1.0, and PS is recorded in the range of 0.5–2.5. In this case, the 
CT  I  min is fixed to a duration of 0.2 s. The value of the CT ratio is 500/1.

Short-circuit faults are formed in the centre of each line. The fault locations are 
labelled with the letters A-L in Fig. 6. Table 5 lists the fault currents observed in 
each P/B relay. In this optimization problem, there are a total of 48 decision vectors, 
i.e., TMS1-TMS24 and PS1-PS24 are considered. Due to problem complexity, the 
maximum iteration is selected as 2000.
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Fig. 6 Schematic of the 9-bus test model

Table 5 Fault currents in P/B relays for Case-2 

Location P-Relay B-Relay If,p (A) If,s (A) Location P-Relay B-Relay If,p (A) If,s (A) 

A 1 15 24,779 9150 G 13 11 16,087 3088 

1 17 24,779 15,632 13 21 16,087 13,000 

2 4 8327 8327 14 16 18,213 6285 

B 3 1 16,390 16,390 14 19 18,213 11,934 

4 6 144,671 14,671 H 15 13 18,218 6285 

C 5 3 9454 9454 15 19 18,218 11,935 

6 8 23,280 4777 16 2 16,087 3088 

6 23 23,280 18,507 16 17 16,087 13,000 

D 7 5 23,280 4777 I 18 2 8161 2426 

7 23 23,280 18,507 18 15 8161 5736 

8 10 9454 9454 J 20 13 9286 4644 

E 9 7 15,304 15,304 20 16 9286 4644 

10 12 16,490 16,490 K 22 11 8161 2426 

F 11 9 8326 8326 22 14 8161 5736 

12 14 24,779 24,779 L 24 5 6149 3075 

12 21 24,779 24,779 24 8 6149 3075 

The suggested WOA is used to solve the DORs coordination problem, as discussed 
earlier. Table 6 shows the optimal TMS and PS values, as well as the optimal objec-
tive function value. The OT values are within an acceptable range of 0.1–1.1 s in all
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primary relays. Comparisons are made between the optimum values of decision vari-
ables (TMS and PS) and OT using the results produced by WOA with two different 
population sizes, such as 150 and 250. Table 7 displays the respective CTI values. 
When comparing the WOA with two different population sizes, the results produced 
by WOA with 250 population size demonstrate that the total OT of primary DORs 
is lowered. As can be seen in Table 7, the optimal outcomes provide no miscoordi-
nation. Furthermore, while utilizing the WOA with a 250-population size, the CTI 
improves since the total CTI values are lowered when compared to WOA with a 150-
population size, hence improving the CTI. To examine the convergence behaviour 
of WOA, the convergence curve is plotted and depicted in Fig. 7. From Fig.  7, it is  
observed that the convergence rate of the WOA with large population size is higher 
than lower population size.

4.3 Case-3: 30-Bus Test Model 

The IEEE 30-bus system is taken into consideration to assess the efficacy of the WOA 
in tackling a larger power system problem. As illustrated in Fig. 8, the system can 
be thought of as a meshed sub-transmission/distribution system having distributed-
generated units interconnected. For the 30-bus test model, a total of 38 DORs with 
normal inverse characteristics are examined, with one at every end of the lines. 
Table 8 shows the short-circuit current values for close-in faults. TMS is measured 
in the range of 0.1–1.1, and PS is measured in the range of 1.5–6. The CT ratio for 
each relay was supposed to be 1000/5. The CT  I  min value has been set to 0.3 s. Due 
to complexity, the maximum iteration is selected as 5000.

Table 9 shows the results achieved by WOA with two different population sizes, 
such as 300 and 400. Table 10 illustrates the CTI obtained from the optimum TMS 
and PS values, proving there is no miscoordination. This shows that results produced 
using WOA with a 400-population size are superior to those acquired using WOA 
with a 300-population size, as can be seen in the table. This demonstrates that 
the suggested WOA may be utilized to effectively handle the DORs’ coordination 
problem for large-scale power systems. The RT values are recorded, and it is obvious 
that WOA with a 400-population size takes more computation time than WOA with 
a 300-population size.

To observe the convergence behaviour of WOA while handling large-scale prob-
lems, the convergence curve is shown in Fig. 9. From Fig.  9, it is noticed that the 
convergence rate of the WOA with large population size is higher than the lower 
population size. The suggested WOA with a larger population size outperforms the 
WOA with a lower population size in terms of producing more stable and better 
solutions for all three test systems.
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Table 6 Optimal PS and TMS values for the 9-bus test model 

Relay N = 40 N = 60 
TMS PS OTprimary TMS PS OTprimary 

1 0.5396 1.4796 1.0383 0.5463 1.3679 1.0274 

2 0.4032 0.5653 0.8064 0.2645 1.0616 0.6542 

3 0.4545 1.3600 0.9683 0.4353 1.4819 0.9538 

4 0.4531 1.1242 0.9410 0.4070 0.6595 0.7226 

5 0.3845 1.2198 0.9553 0.3965 1.1589 0.9665 

6 0.5696 1.3054 1.0762 0.4844 1.1781 0.8887 

7 0.5691 1.3172 1.0780 0.5593 1.4422 1.0881 

8 0.3987 1.1234 0.9610 0.4558 0.5537 0.8722 

9 0.4669 1.1836 0.9725 0.3993 1.2013 0.8355 

10 0.4353 1.4644 0.9482 0.5203 0.7805 0.9368 

11 0.5207 0.5000 1.0038 0.2507 1.5719 0.7261 

12 0.5593 1.2179 1.0178 0.5337 1.3684 1.0039 

13 0.4566 1.1768 0.9346 0.5360 1.0687 1.0650 

14 0.4927 1.2430 0.9869 0.5119 1.1360 0.9979 

15 0.4620 1.4353 0.9680 0.5482 1.2777 1.1075 

16 0.3884 1.3391 0.8282 0.3830 1.4219 0.8331 

17 0.5960 1.2268 0.0000 0.5747 1.3607 – 

18 0.4099 1.2405 1.0849 0.2316 1.3989 0.6437 

19 0.4872 1.4617 0.0000 0.5814 1.1687 – 

20 0.4501 1.2310 1.1297 0.4522 1.3215 1.1663 

21 0.5639 1.3666 0.0000 0.5751 1.2284 – 

22 0.4577 1.4813 1.3034 0.3860 1.0707 0.9652 

23 0.6367 1.2716 0.0000 0.6361 1.4368 – 

24 0.4843 1.1824 1.4140 0.2192 1.4098 0.6931 

OT in sec 20.41694 18.14768

4.4 Discussions 

Finding the best settings for these devices to save operation time and improve 
the durability of power systems is the objective of DOCRs’ optimal coordination. 
This is a challenging, nonlinear optimization problem with many constraints. WOA 
may be a superior option for this problem compared to other algorithms for the 
following reasons. (i) WOA, which uses many solutions (whales) in each iteration 
and changes them in accordance with the best solutions discovered, is a population-
based algorithm. Compared to conventional gradient-based optimization approaches, 
this enables it to explore the solution space more completely and decreases the likeli-
hood of getting stuck in local minima, (ii) Unlike what is frequently the case in relay
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Table 7 CTI for the 9-bus test model 

N = 40 N = 60 
Relay CTI RT Relay CTI RT 

Backup Primary Backup Primary 

15 1 0.2001 9.8596 15 1 0.3763 13.5062 

17 1 0.2088 17 1 0.2162 

4 2 0.3389 4 2 0.2000 

1 3 0.2008 1 3 0.2000 

6 4 0.3006 6 4 0.2985 

3 5 0.2220 3 5 0.1999 

8 6 0.2000 8 6 0.2000 

23 6 0.2018 23 6 0.4378 

5 7 0.2029 5 7 0.2000 

23 7 0.2000 23 7 0.2383 

10 8 0.1999 10 8 0.2344 

7 9 0.2544 7 9 0.4073 

12 10 0.2000 12 10 0.2002 

9 11 0.2000 9 11 0.3092 

14 12 0.2304 14 12 0.2498 

21 12 0.2043 21 12 0.2000 

11 13 0.4793 11 13 0.2000 

21 13 0.3663 21 13 0.2139 

16 14 0.2001 16 14 0.2058 

19 14 0.2005 19 14 0.3110 

13 15 0.3499 13 15 0.3777 

19 15 0.2194 19 15 0.2014 

2 16 0.3242 2 16 0.2000 

17 16 0.4967 17 16 0.4907 

2 18 0.2000 2 18 0.5563 

15 18 0.4390 15 18 1.0667 

13 20 0.3859 13 20 0.5318 

16 20 0.2469 16 20 0.2357 

11 22 0.2644 11 22 0.5744 

14 22 0.2142 14 22 0.5489 

5 24 0.2229 5 24 0.9422 

8 24 0.2000 8 24 0.6005
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Fig. 7 Convergence curves for different population sizes (9-bus model)

Fig. 8 Schematic of the 30-bus test model
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coordination problems, WOA does not demand that the problem be differentiable 
or even continuous. This provides it with a considerable edge over techniques like 
the Newton–Raphson approach, which relies on the gradient of the problem, (iii) 
Compared to more sophisticated algorithms, WOA is simpler to use and is not as 
subject to overfitting because it has few parameters that need to be tuned, (iv) WOA 
has demonstrated strong scalability characteristics, indicating that it can successfully 
address issues of varied sizes. This is important since relay coordination problems 
can have a lot of different factors and limitations. 

Comparing WOA with different sizes of populations and numbers of iterations 
can show how well it works and help tune its settings for the DOCR coordination 
problem. Note that an increased population size with more iterations usually leads to 
better solutions but at the cost of using more computing resources. Because of this, it 
is important to find an equilibrium that fits the needs and limits of your application. 

5 Conclusions 

Coordinating DORs in a distributed system is a challenging nonlinear optimization 
problem addressed in this research. The objective is to reduce the total OTs of all 
primary relays required to clear faults at their assigned locations. The TMS and the 
PS of each relay, which serves as the variables in this optimization problem, are two 
crucial choice criteria. The bus model’s complexity causes the dimensionality to rise. 
Examples include the 3-bus model, which provides a six-dimensional problem, and 
the 9-bus and 30-bus models, which contain 24 and 38 dimensions. Due to multimodal 
landscapes’ enormous complexity and complicated nature, it is extremely difficult to

Table 8 Fault currents in P/B relay for Case-3 

P-Relay B-Relay If,p (A) If,s (A) P-Relay B-Relay If,p (A) If,s (A) 

3 1 4086.7 4086.7 9 20 7212.6 1103.5 

4 2 5411.2 2138.8 10 20 7339.3 1095.8 

22 2 4333 2147 1 21 7665.3 698.8 

4 3 5411.2 3272.5 9 21 7212.6 721.2 

21 3 5411.8 3243.6 10 21 7339.3 716.1 

5 4 4960.8 3001.3 20 22 3481.5 3481.5 

18 4 4719.4 3002.1 21 23 5411.8 2193.5 

6 5 2416 2416 22 23 4333 2204.6 

7 6 5669 1790.9 18 24 4719.4 1717.7 

8 6 5607 1774.8 23 24 3689.7 1724.2 

27 7 1472.3 1472.3 24 25 2695 2695 

26 8 1026.8 1026.8 1 28 7665.3 1552

(continued)
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Table 8 (continued)

P-Relay B-Relay If,p (A) If,s (A) P-Relay B-Relay If,p (A) If,s (A)

12 9 5034.9 5034.9 2 28 7985.7 1545.8 

11 10 3457.1 3457.1 10 28 7339.3 1538 

13 11 3727.3 2875 1 29 7665.3 1380.6 

14 12 2906.5 2906.5 2 29 7985.7 1375.2 

15 13 2660.5 2660.5 9 29 7212.6 1379 

16 14 6185.6 1668.1 29 30 2518.9 2518.9 

17 14 7492.9 1641.1 28 31 2036.8 2036.8 

19 15 5445.2 1527.3 30 32 2998.8 2149 

35 15 4222 1533.2 31 33 3263.6 3263.6 

36 15 6420.2 1509.7 32 34 2930.4 2930.4 

19 16 5445.2 3128.3 17 35 7492.9 1885.4 

34 16 5796.6 3123.9 33 35 6456.2 1954.5 

36 16 6420.2 3052.4 16 36 6185.6 490.9 

19 17 5445.2 801.3 33 36 6456.2 500.6 

34 17 5796.6 800.1 5 37 4960.8 1961 

35 17 4222 794 23 37 3689.7 1968.5 

38 18 3133.2 2292.2 34 38 5796.6 1886.8 

37 19 3788.9 2940.9 35 38 4222 1896.7 

2 20 7985.7 1053.9 36 38 6420.2 1867.7

Table 9 Optimal PS and TMS values for the 30-bus test model 

Relay N = 40 N = 60 
TMS PS OTprimary TMS PS OTprimary 

1 0.4545 3.1060 1.2345 0.4300 3.7593 1.2665 

2 0.3491 2.8194 0.8976 0.3975 3.7308 1.1462 

3 0.3693 3.1515 1.3573 0.3312 3.5703 1.3059 

4 0.4115 2.8116 1.2437 0.4382 2.2366 1.1999 

5 0.4076 2.5546 1.2268 0.3612 3.5775 1.2806 

6 0.3341 2.6194 1.5068 0.3607 2.9170 1.7516 

7 0.4875 3.2885 1.5505 0.1956 3.6755 0.6566 

8 0.3335 1.9492 0.8526 0.2965 3.5927 0.9897 

9 0.5983 3.9446 1.8509 0.4684 2.2033 1.1404 

10 0.4803 2.9998 1.3092 0.3544 3.7711 1.0658 

11 0.4006 3.0418 1.5861 0.3091 3.3825 1.3049

(continued)
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Table 9 (continued)

Relay N = 40 N = 60

TMS PS OTprimary TMS PS OTprimary

12 0.4253 2.3212 1.2194 0.2845 3.4124 0.9766 

13 0.3820 3.1498 1.4777 0.3594 2.2864 1.1739 

14 0.2994 2.7847 1.2475 0.1720 3.6088 0.8522 

15 0.3583 2.6108 1.5154 0.2477 2.8316 1.1035 

16 0.4812 3.2821 1.4683 0.3515 3.6347 1.1248 

17 0.3879 3.2718 1.0869 0.4244 2.9792 1.1440 

18 0.3337 2.6775 1.0501 0.2753 3.3028 0.9609 

19 0.4292 3.0461 1.3417 0.3590 3.4523 1.1918 

20 0.3427 2.6882 1.2602 0.2962 2.3907 1.0239 

21 0.4256 2.6480 1.2523 0.3506 2.3450 0.9790 

22 0.4289 2.6350 1.3952 0.3107 3.4814 1.1681 

23 0.3777 2.3734 1.2629 0.3142 3.5574 1.3145 

24 0.3350 2.9221 1.5107 0.2298 3.2147 1.1063 

25 0.4311 2.8751 0.0000 0.3235 3.5868 -

26 0.3213 1.5000 1.8052 0.1808 2.9973 2.3387 

27 0.4306 3.0602 3.4039 0.3468 1.5000 1.5020 

28 0.2267 3.2851 1.3869 0.4231 1.5000 1.5167 

29 0.4278 2.8702 1.9951 0.3174 3.4029 1.6759 

30 0.4621 3.1394 2.0365 0.4269 3.1829 1.8986 

31 0.4459 2.5311 1.6439 0.3054 3.1830 1.2865 

32 0.4499 2.8409 1.8887 0.4260 2.8187 1.7793 

33 0.4032 3.9091 1.3089 0.4031 2.8416 1.1333 

34 0.4777 3.2525 1.4956 0.3989 3.8942 1.3633 

35 0.3561 2.4247 1.1271 0.2341 3.6121 0.9119 

36 0.3348 1.5000 0.7417 0.3219 1.5000 0.7132 

37 0.3036 2.5729 1.0434 0.3693 3.1141 1.4060 

38 0.3362 2.5866 1.2833 0.2975 2.7390 1.1735 

OT in sec. 20.41694 45.92653

reduce associated cost functions. We use the WOA to discover the best DOR coor-
dination to address this. The WOA successfully avoids frequent errors, including 
premature convergence to inferior solutions and exhibits improved performance in 
multimodal situations. The WOA was additionally tested across various popula-
tion sizes in a sensitivity analysis. The results showed that larger population sizes 
produced the best outcomes while raising the RT value. This highlights the WOA’s 
capacity to deal with the difficult job of DOR coordination among remote networks 
and offers a viable path for further study and application. When handling these
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Table 10 CTI for the 30-bus test model 

N = 40 N = 60 
Relay CTI RT Relay CTI RT 

Backup Primary Backup Primary 

1 3 0.2999 68.1456 1 3 0.4422 87.9689 

2 4 0.5648 2 4 1.4148 

2 22 0.4080 2 22 1.4370 

3 4 0.3001 3 4 0.3000 

3 21 0.2999 3 21 0.5298 

4 5 0.4646 4 5 0.3002 

4 18 0.6411 4 18 0.6197 

5 6 0.3011 5 6 0.3008 

6 7 0.3289 6 7 1.5693 

6 8 1.0409 6 8 1.2545 

7 27 0.7972 7 27 0.4554 

8 26 0.5823 8 26 3.4554 

9 12 0.9985 9 12 0.3368 

10 11 0.3000 10 11 0.3000 

11 13 0.3000 11 13 0.3000 

12 14 0.3459 12 14 0.5023 

13 15 0.3144 13 15 0.3000 

14 16 0.4211 14 16 0.3001 

14 17 0.8314 14 17 0.3095 

15 19 0.9701 15 19 0.5387 

15 35 1.1764 15 35 0.8118 

15 36 1.5956 15 36 1.0378 

16 19 0.7821 16 19 0.4699 

16 34 0.6303 16 34 0.3000 

16 36 1.4166 16 36 0.9773 

17 19 4.9723 17 19 7.3382 

17 34 11.9825 17 34 8.6861 

17 35 12.8853 17 35 9.4062 

18 38 0.2998 18 38 0.3561 

19 37 0.8350 19 37 0.3030 

20 2 2.6423 20 2 1.4567 

20 9 1.4610 20 9 1.3182 

20 10 2.0356 20 10 1.4138 

21 1 9.4819 21 1 4.8623 

21 9 7.7675 21 9 4.5373

(continued)
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Table 10 (continued)

N = 40 N = 60

Relay CTI RT Relay CTI RT

Backup Primary Backup Primary

21 10 8.5363 21 10 4.7075 

22 20 0.3001 22 20 0.3059 

23 21 0.4485 23 21 0.9528 

23 22 0.3000 23 22 0.7550 

24 18 1.1014 24 18 0.6599 

24 23 0.8810 24 23 0.3000 

25 24 0.4128 25 24 0.5818 

28 1 0.5959 28 1 0.5059 

28 2 0.9414 28 2 0.6306 

28 10 0.5409 28 10 0.7167 

29 1 2.1479 29 1 1.8529 

29 2 2.5001 29 2 1.9907 

29 9 1.5360 29 9 1.9841 

30 29 0.3011 30 29 0.4671 

31 28 0.8241 31 28 0.2999 

32 30 0.2998 32 30 0.3000 

33 31 0.3032 33 31 0.2999 

34 32 0.2997 34 32 0.3000 

35 17 0.7240 35 17 0.5478 

35 33 0.4546 35 33 0.4968 

36 16 3.2667 36 16 3.4282 

36 33 3.2443 36 33 3.2449 

37 5 0.3406 37 5 0.9475 

37 23 0.3000 37 23 0.9061 

38 34 0.2998 38 34 0.3000 

38 35 0.6610 38 35 0.7443 

38 36 1.0681 38 36 0.9640

complicated cases, the persuasive results demonstrate that WOA outperforms. So 
WOA is an intriguing alternative to the standard optimizers that are widely employed 
in a wide range of real-world complex power system problems.
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Fig. 9 Convergence curves for different population sizes (30-bus model)
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Optimization and Comparative Analysis 
of Hybrid Renewable Energy Generation 
(Solar-Wind-Biomass) Using HOMER 

Chandan Singh and Shelly Vadhera 

Abstract Energy scarcity is one of the biggest challenges for the developing coun-
tries due to rapid industrialization and urbanization. Considering current electricity 
demand growth patterns, the world will undoubtedly face resource and carbon 
constraints. Renewable Resources are an attractive option to cater these issue and 
have potential to supply this growing demand with clean and safe energy in afford-
able price. This research describes the comparative techno-economic analysis of 
grid connected and stand-alone hybrid (Solar-Wind-Biomass) renewable energy 
resources (HRES) system using Hybrid Optimization of Multiple Energy Resources 
(HOMER) Pro software for electrification of a rural village in northern India which 
has limited access of the main grid. Solar, wind and biomass resources are used in 
the hybrid system. The main purpose of this study is to minimize the net present 
cost (NPC) and cost of energy (COE) of the hybrid system. The necessary data is 
obtained and inspected to perform the modelling and sizing the HRES system. 

Keywords HOMER pro · HRES · Hybrid microgrid · Renewable energy ·Wind 
energy · Biomass 

1 Introduction 

Energy is an essential component to analyze the development of any nation in the 
world. It has an important role in economical as well as social development [1]. Also, 
the energy demand of any developing country like India is increasing rapidly day by 
day due to urbanization and industrialization. In order to fulfill these demands using 
conventional sources has a vast impact on the environment and has possibility to 
exhaust all the coal and petroleum sources in upcoming few decades. RES microgrid
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seems to be an attractive option to fulfill the demand of remote areas as well as 
support the main grid during peak demand without having any harmful impact on 
the environment and health. The conventional power systems are now being replaced 
with hybrid systems that also uses Renewable Energy Sources (RES) to promote 
sustainable development [2]. 

Solar PV, biomass, wind, small hydropower, and other Renewable Energy Sources 
(RES) have recently been used to minimize environmental pollution and reduce 
the strain of fossil fuel generation [3]. Off-grid HRES systems have emerged as a 
desirable alternative for rural and isolated locations with limited or no connection to 
the main grid. Additionally, it is highly essential to take into account RES because 
of both the environmental problems caused by greenhouse gas emissions and the 
rising prices of conventional fuel [4, 5]. Due to the seasonal, inconsistent, and time-
dependent character of RES, dependability and power quality have emerged as an 
additional issue. Therefore, due to the intermittent nature of each RES, it is not 
practical to supply a demand continuously alone by any one system [6]. 

Many studies on stand-alone hybrid systems and grid connected hybrid systems 
have been conducted globally for the electrification of rural regions, institutions, and 
islands. According to Hajer Mannai et al. [7], a grid-connected solar PV/wind hybrid 
system is more economical and eco-friendlier for a Tunisian administrative building. 
For Pratas island in Taiwan, Chin-Ta Tsai et al. [3] analyzed several microgrid systems 
and recommended that the PV-diesel hybrid system has the lowest COE with a low 
excess electricity fraction. Sayedus Salehin et al. [8] studied the PV-biogas-diesel 
hybrid system with battery backup on an unelectrified island in Bangladesh. The 
Nomadic People Optimization (NPO) method was used by Abbas Q. Mohammed 
et al. [9] to analyze a residential complex in Thi-Qar and suggested that the PV-Wind-
Large Diesel Generator-Battery system scenario is considerably more appealing than 
the others. In [10], a hybrid solar PV-biomass system for generating power in a remote 
location of Sarawak, Malaysia, is explored. In the North-West of Afghanistan, in the 
village of Awbeh, Mohammad Moien Sedeegi et al. [2] it was shown that ON-grid 
hybrid (solar wind battery) is more cost-effective and generally accepted than the 
off-grid hybrid system. The research of several hybrid RES systems in different parts 
of India has been documented in [11–15]. 

Despite several literature survey on grid connected hybrid microgrid, it is observed 
that the impact of frequent grid outages causing limited access of the grid and compro-
mising reliability of power supply in rural areas has not been adequately explored. 
In this study, two different hybrid renewable power systems have been modelled and 
techno-economic analysis is performed to find the best optimal solution for the rural 
area having limited access of the grid. 

This paper is structured in three sections. Section 1 includes introduction and 
methodology in which motivation of research and resources used is explained. 
Section 2 describes the proposed system models with optimal economic result. 
Section 3 covers the comparative analysis of both systems and at the end the paper 
is concluded.
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2 Methodology 

HOMER Pro software which is used to model and optimize the different renewable 
energy systems is industrialized by National Renewable Energy Laboratory (NREL). 
This software is very helpful in analysis of electric as well as economic aspect of 
any microgrid to find optimal microgrid. Furthermore, user can also define different 
input parameters and constraints for guiding the modelling of economic microgrid. 
Figure 1 shows the simulation process architecture diagram of HOMER Pro software. 

2.1 Study Area 

Even though India has reached its goal of 100% electrification [16], still many rural 
and remote areas are not getting reliable supply because of frequent outages and 
connection issue. A similar rural area for which the case study is carried out is Bayal 
village in Mahendragarh District of Haryana. The latitude and longitude for this 
location is 12°58.5’N, 77°35.2’E. The village has a total area of 1550 hectares and 
has a population of roughly 5000 people divided into 750 families. 

2.2 Load and Resource Assessment 

A real-time load data for a village having nearly same population with 24-h power 
supply is provided by State Utility. The daily average energy consumption is 2345.10

Fig. 1 HOMER software simulation process architecture diagram 
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kWh with peak and average demand of 282.13 kW and 97.71 kW respectively. 0.35 
is the load factor. Figures 2 and 3 show the daily average profile of the load and 
seasonal load profile. Time series chart of a year load is shown in Fig. 4. 

The solar irradiance, temperature and wind speed related data is obtained online 
from NASA server by HOMER itself. Monthly average solar radiation data available 
at the study area with clearness index is shown in Fig. 5. It is observed that the 
available solar insolation has a lowest radiation and extreme radiation of 3.6 kWh/ 
m2/day and 6.3 kWh/m2/day for the months of December and May respectively 
with an annual average of 5.04 kWh/m2/day and has a clearness index of 0.5713.

Fig. 2 Daily average profile of load 

Fig. 3 Seasonal profile of load 

Fig. 4 Time series chart of load data 



Optimization and Comparative Analysis of Hybrid Renewable Energy … 263

Fig. 5 Monthly average solar global irradiance (GHI) plot 

Figures 6 and 7 depict the monthly average wind speed and temperature of the study 
area. The average wind speed is coming out to be 4.62 m/s. 

Biomass, which is defined as organic waste from plants and animals, is a renewable 
energy source that is used to produce electric power. These biomass resources in India 
have a bio-energy potential of 7.79 × 102 PJ as cellulosic ethanol fuel and 1.29 ×

Fig. 6 Monthly average wind speed data 

Fig. 7 Monthly average temperature data 
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103 PJ as biogas fuel [17]. Biomass potential is calculated after investigating the 
study area which is about 6 ton/day. 

3 Proposed System Simulation Model 

3.1 System Configuration 

Two different systems have been modelled for the reliable electric supply to the study 
area by local resources utilization. Figure 8 shows a stand-alone hybrid system which 
includes solar panel, wind turbine and biogas generator to meet the load demand of 
village. Battery is added to store the energy when the generated power is in surplus 
and supply during the peak hours to maintain the supply continuity. The converter 
acts as a bridge between AC and DC bus and ensures the conversion. Figure 9 shows 
a grid connected hybrid system considering the grid outages. Both system models 
are shown in Figs. 8 and 9. The lifetime of the proposed hybrid systems is considered 
to be 25 years with the discount rate of 5% and inflation rate of 2% [5]. 

Fig. 8 Stand-alone HRES 
Model 

Fig. 9 Grid connected 
HRES Model
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Table 1 Solar PV Specifications 

Solar PV panel Description 

Type Mono Perc Half Cut 

Model Shark 445 

Maximum power (Pmax) 445 W 

Short circuit current (ISC) 11.29 A 

Open circuit voltage (VOC) 49.7 V 

Maximum power current (IMP) 10.80 A 

Efficiency of module (%) 20.14 

Temperature coefficient of Pmax –0.36%/°C 

Capital cost |20,000 
Replacement cost through life span project |0 
Life cycle 25 years 

Average reduction in efficiency through 25 years (RF) 86% 

3.2 PV Module 

The solar PV performance is highly influenced by atmospheric conditions like solar 
radiation and temperature. Solar PV panel output power can be calculated using Eq. 1 
[9]. 

PPV = PR × RF × (G / GSTC) × (1 + β (TC − TSTC) (1) 

where PPV is the power output of the panel, PR is the rated power of the panel, RF is 
the module degrading factor, G is solar radiation, GSTC is solar radiation at standard 
test condition, β is the temperature coefficient of Pmax, TC is the cell temperature 
and TSTC is the cell temperature at standard test condition. Many PV panel modules 
of different power rating are available in the market. Table 1 displays the description 
of the panel that is employed in this research [18]. 

3.3 Wind Turbine 

The wind turbine used in this research is Eocycle EO20. Figure 10 depicts the power 
curve of this turbine. Permanent magnet synchronous alternator is used in this turbine 
with cut-in speed, cut-out speed and rated speed of 2.8 m/s, 20 m/s and 7.5 m/s 
respectively. The hub height is 26 m and rated power is 20 kW. A capital cost of 
|13,00,000 and O&M cost of |3,000 has been considered with a life cycle 25 years.
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Fig. 10 Power curve of wind turbine 

3.4 Bio-Generator 

Biogas obtained from the biogas digestion of the biomass (cow dung) is used by the 
bio-generator to generate the electricity. A generic generator with a biogas digester 
is considered with a capital cost of |10,000 and replacement cost of |4,000. The 
total operating time of the generator is 20,000 h with operating cost of |2/hour/kW. 

3.5 Battery 

Battery act as a storage device which is used to maintain the supply continuity when 
the generation through different RESs is not enough to meet the load demand and 
during the grid outage. A 1kWh generic Li-Ion battery is taken with 6 V of nominal 
voltage having roundtrip efficiency of 90%. It has 3000 kWh life duration with 10-
year lifetime. The capital cost and replacement cost are assumed to be |20,000 and 
|14,000 with negligible operation and maintenance cost. 

3.6 Converter 

A 15kVA UTL Alfa + Solar PCU converter is considered in both models [19]. The 
converter specification is shown in Table 2.
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Table 2 Converter 
specification Converter Description 

Rated power 15 kVA 

Efficiency 95% 

Purchasing cost |1,80,000 
Maintenance cost |0 
Replacement cost |1,50,000 
Life cycle 20 ears 

Fig. 11 Grid outages 

3.7 Grid 

The grid used in grid connected HRES acts as a source to fulfill the peak demand 
when RES alone is not able to fulfill the load and also the surplus energy can be fed 
back to the grid to generate revenue. However, accessibility of grid is an issue as 
there is frequent electricity outage in the study area. Figure 11 shows the reliability 
of the grid considered in this work. Black area shows the grid outage. The price of 
electricity from the grid is taken |5.5 and sellback price is |2 per kWh. 

4 Optimization and Economic Analysis 

Different optimized models of different sizings are provided by HOMER Pro in a 
sorted manner of least to high NPC and displayed in the Fig. 12.

4.1 Stand-Alone HRES 

A stand-alone system has been developed to meet the village’s load demand using 
the local resources available and uses batteries as backup source as shown in Fig. 8. It
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Fig. 12 Hybrid system optimization result

Table 3 Optimal stand-alone 
system result composition Component Size/Numbers 

Solar PV panel 99.1 kW 

Wind Turbine 12 units 

Bio-generator 150 kW 

Battery 360 units 

Converter 143 kW 

is observed from the simulation result shown in Fig. 12 that the most optimal stand-
alone HRES structure has an NPC of |6,66,42,230 with COE of |4.11 per kWh. The 
initial investment and operation cost for this system is |3,04,72,360 and |94,78,830/ 
year with system component sizing being described in Table 3. Figure 13 shows the 
graph of different costs associated to the system. 

The electricity generated by the proposed stand-alone system is 1,256,675 kWh/ 
year whereas village consumption is 855,804 kWh/year. The difference of 377,004

Fig. 13 Cost summary of optimal stand-alone microgrid 
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Table 4 Electrical details of 
optimal stand-alone system Production kWh/year Percentage share 

Solar PV 159,984 12.7 

Bio-generator 315,796 25.1 

Wind Turbine 780,896 62.1 

Total 1,256,675 100 

Consumption (Load) 855,804 68.1 

Excess electricity 377,004 30.0 

Unmet electric load 157 0.0184 

Capacity shortage 724 0.0846 

Fig. 14 Monthly electric production by sources in stand-alone system 

kWh/year which is 30.0% of total is excess electricity which is not utilized and 
considered as waste in off-grid systems and can be minimized by connecting this 
system to the grid. 

The generated electricity from various renewable resources by stand-alone HRES 
system, its consumption and other parameters are shown in Table 4. Figure 14 shows 
the monthly electric production by different sources. 

4.2 Grid Connected HRES 

The same stand-alone system with the same parameter is connected to the grid to 
fulfill the demand using both the RES and grid as shown in Fig. 9. The excess 
energy generated by RES are sellback to the grid and during peak energy is taken 
from the grid. From Fig. 12, it is observed that NPC of the grid connected HRES is 
|5,20,29,000 with COE of |2.20 per kWh. The initial investment and operation cost 
for this system is |3,45,11,557 and |72,09,930/year with system component sizing 
as described in Table 5.

The generated electricity by the grid connected HRES system, its consumption 
and other parameters are shown in Table 6. Figure 15 shows the monthly electric 
production by different sources.
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Table 5 Optimal grid 
connected system 
composition 

Component Size/Numbers 

Solar PV panel 97.4 kW 

Wind Turbine 19 units 

Bio-generator 150 kW 

Battery 136 units 

Converter 101 kW

Table 6 Electrical details of 
optimal grid connected 
system 

Production kWh/year Percentage Share 

Solar PV 157,204 9.35 

Bio-generator 163,355 9.72 

Wind Turbine 1,236,418 73.50 

Grid Purchase 124,400 7.40 

Total 1,681,378 100 

Consumption (Load) 855,802 50.90 

Grid Sales 394,176 23.44 

Excess Electricity 423,998 25.21 

Unmet Electric Load 159 0.0186 

Capacity Shortage 854 0.0997 

Table 7 Comparative analysis of stand-alone and grid connected HRES 

Parameter Stand-alone HRES Grid connected HRES 

Solar panel required 99.1 kW 97.4 kW 

No of wind turbine required 12 units 19 units 

Bio-generator required 150 kW 150 kW 

Battery 360 units 136 units 

Converter 143 kW 101 kW 

Net present cost (NPC) of system |6,66,42,230 |5,20,29,000 
Cost of energy (COE) |4.11 per kWh |2.20 per kWh 

Fig. 15 The monthly electric production by different sources in grid connected system
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5 Comparative Analysis 

Performing the techno-economic analysis of both the OFF grid and grid connected 
system, it is observed that the grid connected HRES system costs less and is 
feasible for the study area. The NPC of the grid connected HRES system is nearly 
|1,46,00,000 lower than the stand-alone system which is about 22% of NPC of the 
stand-alone system. Furthermore, COE of this system is |2.20 which is 46.5% less. 

6 Conclusion 

This study successfully demonstrated the modelling, analysis and functioning of 
stand-alone as well as grid connected HRES for a village using HOMER Pro and 
shows the different possibilities of utilization of the grid and other local renewable 
resources available. Implementation cost of the HRES (solar-wind-biomass) system 
is identified by calculating all cost related to each system component. Different hybrid 
systems havebeen developed and simulated to minimize the total NPC and COE to 
get the best outcome. It is found that the grid connected HRES (solar-wind-biomass) 
has minimum NPC of Rs. 5,20,29,000 and COE of Rs. 2.20 which is less than the 
utility price taken. The proposed grid connected HRES model will give the feasible 
solution for the Bayal village. 
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A Review on Battery Management 
System 

Jatin Sheoran, Javed Dhillon, and Sachin Mishra 

Abstract In the modern era, Electric Vehicles (EVs) are widely considered as a supe-
rior alternative to traditional automobiles that rely on internal combustion engines 
(ICEs). The rapid advancement of EV technologies has made battery systems a 
crucial aspect of their development. In recent times, the upgradation of battery tech-
nology along with the increase in demand for high-performance and safe battery 
system has driven various developments in the battery management system (BMS). 
The development of a BMS system is also required for the integration of smart 
technologies such as IoT and machine learning. A BMS is a control process used 
for managing and monitoring rechargeable batteries to ensure their effective and 
safe operation. It is responsible for monitoring variables like voltage level, tempera-
ture, and charge status and taking necessary actions to maintain them within limits. 
In this paper SOC, SOH, thermal management, and cell balancing techniques are 
discussed, which protect against excessive charging and discharging, and overcur-
rent conditions. This study presents a literature survey on a BMS, for dependable 
and secure operation of battery systems in the EV. 

Keywords State of health · Cell balancing · State of charge · Electric vehicle ·
Battery management system 

1 Introduction 

Electrical vehicles are being moved out in place of conventional vehicles since 
EVs are more environmentally friendly because it is composed of gases, which are 
completely efficient vehicles due to the depletion in terms of non-renewable energy
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sources. Battery Management System (BMS) is an essential component of an elec-
tric vehicle since it consists of numerous circuits, both electric and electronic that 
maintain and achieve a battery system’s effective output. 

BMS is a critical component in modern rechargeable battery systems, designed 
to assure effective and safe operation. The initial purpose of a BMS is to monitor the 
performance of the battery’s performance, ensuring its longevity and protecting it 
from damage. The BMS continuously monitors parameters like cell voltage, temper-
ature, and state of charge (SOC), and adjusts the charging and discharging processes 
accordingly to maintain these parameters within safe limits. 

A BMS can also prevent overcharging, over-discharging, and overcurrent condi-
tions, which can cause permanent damage and reduce the lifespan of the battery. 
Additionally, by balancing cell voltage and optimizing the charging and discharging 
processes, a BMS can enhance performance and efficiency regarding the battery 
system. The specific design of a BMS depends on the requirements of the battery 
system, including its size, capacity, and intended application. 

In the case of regenerative braking, the BMS monitors the battery’s SOC and 
limits the amount of energy that can be stored in the battery to prevent overcharging. 
The BMS achieves this by controlling the charging rate during regenerative braking, 
ensuring that the battery is charged at a safe rate that does not exceed its maximum 
capacity. The BMS also monitors the temperature of the battery and adjusts the 
charging rate accordingly to prevent overheating. 

BMS can be implemented in various forms, including hardware, software, or a 
combination of both. The design of a BMS depends on the specific requirements of the 
battery system and can range from simple standalone units to complex multi-layered 
systems that integrate with other subsystems. 

Some of the key trends in the field of BMS include the integration of smart 
technologies, such as the Internet of Things and machine learning, for improved 
monitoring and control of battery systems. Overall, the BMS is an essential part of 
modern battery systems, providing essential protection and performance optimiza-
tion to ensure functioning that is secure, efficient, and effective. Figure 1 shows the 
diagram of the battery management system [1].

The BMS configuration comprises of:

• battery monitoring
• battery state
• battery management
• Battery monitoring is used to check and show the data such as voltage level, 

energy consumption, current consumption, and battery temperature are all useful. 
The data acquisition observing layer of the battery module includes various types 
of sensors.

• The battery state controls the charging time, discharging technique, and cell 
balancing, while the user interface will receive the state determination. It provided 
the user with an estimate of how long a battery will remain before needs to be 
recharged when it is full.
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Fig. 1 Illustration of the battery management system [1]

• Battery management is a system for monitoring and managing the battery. It 
controls the I/P power of the cells, to meet modern battery requirements. 

The paper covers the following topics: Section II consists of a literature review. 
Section III explains the battery management system. Section IV consists of the 
conclusion of the paper. 

2 Literature Review 

The [1] research examined the primary issues related to BMSs, which encompass 
battery state assessment, modeling, and cell balancing. Among these concerns, the 
paper emphasized the significance of developing effective methodologies for eval-
uating the status of batteries. In [2], the research gives the idea about BMS which 
assures the security and dependable operation of the batteries in EVs. The utiliza-
tion of Lithium-ion (Li-ion) batteries for energy storage in EVs is prevalent. This 
study examined BMS in EV and contrasted various monitoring methods used with 
BMS. In [3], the author introduces the idea of a “New BMS,” in which a battery is 
split into two halves, with one half being used to charge using renewable energy and 
the other half being used to discharge at the same time. The concept of BMS [4] 
consists of several electronic and electrical circuits to track and maximize a battery 
system’s output; it is a crucial component of an electric vehicle. The BMS in an 
EV describes the battery algorithm block implementation, Li-ion battery model, and
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common battery types used in EVs. It also discusses problems and difficulties with 
the Li-ion battery, such as temperature, cost, and memory effect. In addition to many 
other things, the study [5] has been used for balanced battery states, cell voltage, 
proper battery discharging and charging health management, and many other things. 

In [6], the author discusses how the BMS manages and controls the battery and 
how its primary goals are to ensure its dependability and safety. In the paper, the 
methodologies, state estimation, and battery modeling prediction are reviewed. This 
includes meeting standards for high specific energy, high power rating, low cost, and 
low self-discharge rate [7]. The paper [8] discusses the need for the design of battery 
management circuits, as well as the tests that must be performed to characterize Li-
ion batteries. The proposed modal employs a unique design of cell balancing which 
comprises only two active components. In [9], the paper highlights the maximum 
capacity, health, longevity, and charge condition of a battery The study focuses on the 
optimization of the power performance of electric vehicles, with particular emphasis 
on the investigation of BMS. The advancement of the Energy Management System 
(EMS) in EV is a primary emphasis of this article [10]. The objective of this study 
[11] is to offer a concise overview of many important BMS technologies, including an 
estimation of the battery’s state and charging. The research [12] examines the battery 
properties and reduces manufacturing inhomogeneities and process uncertainties; the 
research should help EVs to operate better by producing more dependable and stable 
BMS. The study [13] addressed how changes in SOC, dynamic currents, voltages, 
and temperatures affect battery performance. In [1], the main BMS concerns were 
discussed. It includes cell balancing, modeling, and battery condition evaluation. As 
a result, comparable studies on the battery SOC, state of health (SOH), and SOL were 
examined. The paper [14] discussed the BMS, a BMS is used to monitor the battery 
voltage, current, and temperature and also estimate the SOC of a Li-ion battery to 
safeguard the battery from overcharged and over-discharged situations. The study 
work [15] has covered the BMS, which can be modified to protect batteries of various 
types and can offer all the safety characteristics. 

The battery algorithm component in the Li-ion battery model is described in the 
context of BMS for an EV in [16] and its main purpose is to observe open-circuit 
voltage with the coulomb counting method to determine SOC. It also discusses the 
common battery types used in EVs, as well as the problems and difficulties of Li-ion 
batteries. The electrical energy storage capacity in EV of Li–Sulfur, molten salt, 
nickel–metal hydride, and Li-ion are the four different types of batteries which are 
primarily employed in BMS [17]. In [18], the research discusses the vulnerability of 
BMS for Li-ion and Li-polymer (LiPo) batteries employed in upcoming electric and 
hybrid vehicles to mitigate electromagnetic interference (EMI). Based on the problem 
statement the battery operating conditions are analyzed in [19], and an optimization 
technique is created using adaptive dynamic programming. The importance of the 
battery in an EV must be discussed in detail while detailing the EMS. To deliver 
essential power for transportation, the battery is crucial in electric vehicles. In [20], 
the research discusses the problem statement and an analysis of the battery operation 
modes; an optimization solution is created using adaptive dynamic programming. 
The ADP uses an actor module and a critic network to solve the BMS optimal control
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problem in an EV. In [21], the review provides a thorough overview of Li-ion batteries. 
The paper describes battery monitoring methods, input voltage, and current control 
strategies, both charging and discharging strategies and battery safety precautions. 

In the paper [22], the characteristics of management systems for batteries are 
discussed, along with the technology’s benefits and drawbacks for use in electric 
vehicle applications. The review covers battery cell tracking, state estimates, and 
charging/discharging controls. The author discusses [23] the highly exact SOC deter-
mination algorithms that were created with the use of models with adaptable batteries 
and serve as a solid foundation for real-world application. According to the research 
[24], a BMS module is suggested that enables individual cell charging while the 
battery is in operation and allows cell-based opening and closing of the battery. A 
charging unit with a limited area on the circuit is designed. The EKF and MATLAB 
programs are used to monitor and control how the BMS is operating. The modi-
fied AEKF approach is used to increase the estimation’s accuracy when the specific 
properties of static noise in unknown or evolving Li-ion battery packs over time 
[25]. The purpose of the study [26] is to create a Li-ion cell model using current 
information and to make it simpler, for obtaining a simpler model that may be used 
to design the full battery model and charging mechanism. In [27], a discussion of 
balancing techniques for various battery operation processes and putting balancing 
algorithms into practice at a necessary time, irrespective of the balancing circuit for 
optimizing the effects of balancing, has been covered. When developing a dependable 
and stable automobile system for EVs, there are usually both intrinsic and extrinsic 
problems with batteries linked to correctly maintaining temperature, charging and 
discharge, and satisfying acceptable operating conditions [28]. Zinc–bromine flow 
battery, Li-ion, nickel–cadmium, sodium–nickel chloride, sodium–sulfur, lead–acid. 
and vanadium-redox flow batteries are just a few of the widely used battery types 
discussed in the work [29]. 

The research [30] discussed Li-ion battery which has a long lifespan, high effi-
ciency, low discharge rate, high power density, and high dependability. Battery 
Management System. In [31], the author proposes a system design for BMS that 
is responsible for managing and controlling the operation of the battery system 
factors such as during charging/discharging: Measuring the temperature, current, and 
voltage of the battery is a crucial aspect of monitoring and controlling its operation. 
In [32], the author addressed the power-type batteries, which have a lower capacity 
but can supply more power instantly and are used in light HEV. SOC gives infor-
mation about the battery’s current level of stored energy. The study [33] describes 
the Kalman filtering state observation approach, which is used to assess a battery’s 
SOC. This method provides an accurate SOC measurement for Li-ion batteries. 
Power-type batteries, which are utilized in light HEV, have a lower capacity but can 
supply high power in an instant [34]. The four types of the SOC estimate approach 
include model-based estimation, ampere-hour integral estimation, data-driven esti-
mation, and characteristic parameters estimation. The methods used to estimate a 
battery level of charging [35]. The estimating techniques were divided into three 
groups based on their theoretical and experimental traits. The findings imply that 
the focus of study in this area is on algorithms that are based on theory, particularly
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intelligent algorithms. For a precise SOC estimation, the author in [36] presents a 
combination of fuzzy logic and the coulomb counting method. In [37], it provides 
a concise introduction of different types of rechargeable batteries and presents a 
comparison of the many types of rechargeable batteries. 

The study [38] covered a variety of intrinsic and extrinsic battery problems linked 
to optimal charging/discharging and temperature maintenance in EVs. In [39], dual 
extended Kalman filter is presented and demonstrated by the use of simulation using 
actual battery voltage or current data. The proposed method viability was examined 
through simulation using actual battery voltage and current data. The four primary 
categories for SOP estimate methods are the voltage-based technique, the multi-
constrained dynamic method, the SOC-based method, and the hybrid pulse power 
characterization methods are discussed in the research [40]. According to the research 
[41], the SOC has a significant impact on EV energy management optimization, 
improving battery size and energy consumption. It proposes real-time estimation 
of the SOC as a performed technique for the Li-ion battery that combines coulomb 
counting during the equilibrium state and direct electromotive force (EMF) detection 
[42]. The research [43] focuses on how BMS monitors battery current, temperature, 
and voltage to protect the battery from overcharged and over-discharged circum-
stances. It also explains how it is used to calculate the SOC of Li-ion batteries. To 
observe the parameter of the modified rundles circuit battery model, an expanded 
Kalman filter-based real-time identification method was presented [44]. 

It is used to extend Kalman filters to predict the bulk capacitance range, a measure-
ment of the battery capacity to hold an over-time charging capacity, to detect cell 
capacity degradation and, as a result, provide a way to monitor SOH [45]. In [46], 
the primary battery SOH estimation techniques are reviewed in this paper, together 
with their key benefits and drawbacks for real-time automobile compatibility. The 
research [47] provided an analysis of battery health management for EVs. Initially, 
battery terminologies introduce health management techniques for batteries. The 
study [48] suggested a dual-sliding-mode observer to estimate the SOC, terminal 
voltage, and polarization effects in real-time, for the calculation of SOH in terms of 
capacity fading and resistance degradation. According to the research [49], batteries 
are safe when utilized with a power source that has safety safeguards and automatic 
termination. Thus, BMS has been explored in the research on EV. In order to be 
determined through correlations between cell performance and predictor variables, 
to predict SOC, SOH, and RUL to provide the uncertainty bounds., it proposed a 
Bayesian framework [50]. 

The study in the paper [51] proposes that the SOH can be evaluated by adap-
tively acquiring the battery’s high-frequency resistance. The study [52] discusses 
how SOH is typically used to determine the health of a battery system and how well 
it is performing in comparison to its nominal or original state. In [53], is proposed 
the thermal control of a lithium battery based on secondary loop cooling be accom-
plished by modifying compressor speed in response to battery temperature inter-
mission. In [54], the paper describes how the Li-ion cells are balanced by the BMS 
in an EV using cell balancing procedures. The Li-ion cell within the battery must 
be charged and discharged simultaneously. The author [55] discusses the many cell
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balancing methods that have been developed for battery packs. By dissipating energy 
from higher SOC cells, the passive cell balancing method equalizes the cell’s SOC 
which makes all cells’ SOC equal. The different battery cell balancing techniques 
are reviewed in the study [56]. 

The study [57] has talked about the idea of cell balancing. Each cell’s voltage 
ranges differ when the battery is charging and discharging. As a result, cell balancing 
is essential and can be accomplished through active or passive balancing. The study 
[58] describes the comparisons of the various cell balancing techniques. In the study, 
active cell balancing techniques covered DC–DC converters, inductor/transformers, 
and capacitor-based cell balancers. In [59], the author discusses the technique of 
passive cell balancing. The charging at a fixed voltage technique and the charging 
at a constant current approach are analyzed. Capacitor charging and discharging are 
depicted in the first section of the paper. The second section of the paper describes 
the cell balancing procedure, and the method of charging with constant voltage and 
current is represented in the third section. In [60], the paper discusses energy storage 
components that can accommodate additional energy storage and be used in the active 
cell balancing technique. In the research, an improved active cell voltage balancing 
approach is put forward. This will result in improved voltage equalization, speed, and 
overall efficiency of the battery. The paper [61] gives a practical active cell balancing 
strategy, to minimize the inconsistent behavior of Li-ion batteries interconnected in 
parallel and series, a forward converter-based cell balancing solution or switch-matrix 
employing active clamp driver topology is provided. The research [62] investigates 
the concept of an inductor balancing-based cell equalization technique. Compared 
to alternative equalization techniques like switched capacitor balance, the inductor-
based equalizer offers the advantage of a shorter equalization time period. In [63], the 
author discusses the different topologies of BMS. Decentralized control has signifi-
cant controllability restrictions, but centralized control has challenged extensibility 
and the single fact of failure difficulties. 

3 Battery Management System 

3.1 Types of Batteries in EVs 

BMSs can use different types of cell chemistries or battery packs depending on the 
requirements of the application. 

Li-ion batteries, which are favored for their high energy density, low self-discharge 
rate, and long cycle life. 

Nickel–Metal Hydride (NiMH) batteries have a higher energy density than Ni–Cd 
batteries and are less toxic, but are more expensive and have a shorter cycle life than 
Li-ion batteries.
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Lead–acid batteries are another commonly used battery chemistry in automotive 
applications due to their low cost and ability to provide high current output, but they 
have a low energy density, short cycle life, and are relatively heavy and bulky. 

Batteries are divided into two categories based on their ability to be recharged: 
primary and secondary batteries. When the primary battery is fully discharged, it can 
only be used once; however, the secondary battery can be recharged after already been 
discharged. Secondary batteries with a high power density, a long cycle lifespan, low 
energy loss, and sufficient safety standards are required for EV and HEV applications. 
Li-ion, lead–acid, and NiMH batteries are among the frequently used battery types 
in electric vehicles. Table 1 provides a summary of some of the popular battery types 
[23]. 

Every battery has an operational temperature range, and the temperature of the 
battery rises when it is discharged or charged. A lot of energy can be saved by lowering 
the temperature of the batteries. When designing the packaging for a rechargeable 
energy storage system (REESS), it is important to consider certain conditions to 
ensure safety and optimal performance. These conditions include: 

1. Thermal management: It is crucial to regulate the temperature of the battery cells 
and prevent overheating by using proper thermal insulation and cooling systems. 

2. Electrical isolation: The battery pack should be designed to provide electrical 
isolation between the battery cells and the external circuitry to prevent electrical 
shorts, fire, or explosion. 

3. Cell balancing: Incorporating a cell balancing system helps to ensure that each 
cell is charged and discharged evenly, thus preventing overcharging or over-
discharging of individual cells that can cause safety hazards and reduce battery 
life. 

4. Monitoring and control: The battery pack should be equipped with a monitoring 
and control system to track the battery’s SOC, temperature, and other important 
parameters. This information can be used to optimize the battery’s performance 
and prevent safety hazards.

Table 1 Types of batteries 

Types Energy 
efficiency 
(%) 

Energy 
density 

Power density Depth of 
discharge 
(%) 

Cycle life 

Lead–acid 82 50–80 100–400 50 1500 

NI–Cd 
(Nickel–Cadmium) 

83 60–150 80–600 85 2500 

Li-ion (Lithium-ion) 96 200–400 1500–10,000 95 10,000 
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3.2 Function of BMS 

A BMS is responsible for overseeing and regulating the operation of recharge-
able batteries to ensure reliable and safe performance. This includes tasks such as 
monitoring cell voltage, temperature, and current, balancing cells to ensure equal 
charge levels, and providing protection against overcharge, over-discharge, and over-
current conditions. The BMS also communicates with the battery pack’s external 
management system to provide battery status and other relevant information.

• Data Acquisition: Data acquisition in BMS refers to the process of collecting 
and storing data from various sensors and measurement devices within the battery 
pack. This data can include cell voltage, temperature, current, and SOC, among 
others. The BMS uses this data to monitor the health and performance of the 
battery and to make decisions related to charging and discharging. The process 
of data acquisition is crucial to ensure the safe, efficient, and reliable operation 
of a battery, and for providing valuable information for battery maintenance and 
management.

• SOC estimation: BMS involves determining the quantity of energy that a battery 
can hold at a given time. The SOC of a battery represents the proportion of the 
current available charge in the battery compared to its maximum capacity. SOC 
is calculated to ensure that the batteries are never under or overcharged. This is a 
crucial parameter to monitor, as it provides insight into the condition and function-
ality of a battery. Several factors affect the accuracy of SOC estimation in a battery, 
including temperature, battery condition, and discharge/charge current. The BMS 
constantly monitors the SOC and adjusts the charging/discharging process to 
maintain optimal performance of battery and longevity. The extended Kalman 
filter (EKF) is a highly accurate method for estimating the SOC in batteries. The 
EKF uses a mathematical model of the battery, along with measurements, to recur-
sively estimate the SOC. This is achieved through two main steps: prediction and 
update. 

During the prediction step, the battery model is used to predict the expected 
voltage and SOC based on current and voltage measurements. This involves 
two calculations: state prediction and covariance prediction. The state prediction 
calculates the expected battery state based on the model and the previous state 
estimate, while the covariance prediction calculates the predicted error covariance 
matrix, which represents the expected uncertainty in the predicted state. 

During the update step, the measured voltage and current are compared to 
the predicted values, and the difference is used to update the SOC estimate. 
This step also involves two calculations: measurement residual and Kalman gain. 
The measurement residual calculates the difference between the measured and 
predicted values, while the Kalman gain determines how much weight to give to 
the measurement residual in updating the SOC estimate.

• SOH estimation: It is the key function of a BMS. The SOH is the amount of 
the health or battery degradation and is a percentage of its total original capacity. 
The BMS uses various techniques, such as voltage analysis, data processing, and
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coulomb counting to calculate the battery SOH over time. This information is 
important for determining when a battery needs to be replaced, and for predicting 
its remaining useful life. By monitoring the SOH, the BMS can also provide an 
early warning of potential issues, such as an impending failure, which can help 
prevent unexpected downtime and extend the life of the battery.

• Thermal Management: Thermal management is an important aspect of BMS 
design and operation. The temperature of batteries can greatly affect their perfor-
mance, capacity, and safety. High temperatures can lead to thermal runaway and 
even combustion, while low temperatures can decrease the capacity of the battery 
and raise its internal resistance. To ensure safe and optimal battery performance, a 
BMS typically includes temperature sensors that monitor the battery temperature 
and control the thermal environment. BMS commonly use temperature sensors 
that are based on thermistors, which are resistors that are sensitive to temperature 
and have a resistance that varies with temperature. RTDs (Resistance Temperature 
Detectors) are temperature sensors made of metal and their resistance changes with 
temperature, while thermocouples are devices that generate a voltage in response 
to a temperature difference between two different metals. 

The BMS can use this information to regulate the battery temperature by 
controlling the charging and discharging currents, and by controlling the cooling 
system, if present. In some cases, the BMS may also turn off the battery to prevent 
damage if the temperature has risen above a particular limit. Thermal management 
is especially important for large batteries, such as the ones found in EVs, which 
can generate significant heat during charging and discharging. Proper temperature 
management is crucial for the optimal performance and longevity of a battery, a 
BMS can help extend its life and improve its overall performance. To main-
tain battery temperature within a specific range in a BMS, different methods are 
employed, including: 

1. Thermal Management System (TMS): This cooling and/or heating system 
helps regulate battery cell temperature. It can be active or passive and may 
utilize air or liquid cooling/heating. 

2. Temperature Sensors: These sensors measure the battery cell temperature and 
provide feedback to the BMS, which can then adjust the temperature using 
the TMS. 

3. Charging/Discharging Current Control: The BMS can control the charging and 
discharging current to prevent battery cells from overheating or becoming too 
cold. 

4. Operating Mode Control: The BMS can regulate the operating mode of 
the battery system, such as switching between charging and discharging, to 
maintain the desired temperature. 

The recommended temperature range for Li-ion batteries is generally 0–45 °C, 
with an optimal temperature range of 20–25 °C. The BMS utilizes a set-point 
temperature value and tolerance range to maintain the temperature within the 
desired range. If the temperature exceeds the tolerance range, the BMS will trigger 
an alarm or take corrective action to prevent battery cell damage.
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• Fault Diagnosis: It performs a crucial role in the BMS. BMS uses various 
methods, including voltage analysis, current analysis, and temperature analysis, 
to help recognize and handle battery issues and their associated components. The 
BMS can detect faults such as cell imbalance, overcharging, over-discharging, 
short circuits, and more. When a fault is detected, the BMS can take appropriate 
actions to protect the batteries, including shutting down the battery, reducing the 
charging or discharging current, or triggering an alarm. This helps prevent further 
damage to the battery and minimizes the possibility of safety risks, such as thermal 
runaway or fire. By detecting faults early, the BMS can also help prolong the life 
of the battery and improve its overall reliability. The BMS can also log fault infor-
mation, including the type of fault, time of occurrence, and other relevant data, 
to help with fault analysis and troubleshooting. This information can be used to 
improve the design of future BMS systems and to maximize the performance and 
lifespan of a battery.

• Cell Balancing: It is a key component of a BMS. In a battery system, each 
individual cell can experience different amounts of charge and discharge, which 
can cause an imbalance in the voltage of the cells. This cell voltage imbalance can 
cause reduced performance, reduced battery life, and even safety hazards, such 
as thermal runaway. 

The BMS uses cell balancing techniques to maintain a uniform voltage level across 
all cells in a battery. Cell balancing can be achieved through several methods, such as 
passive balancing, active balancing, or a combination of both. Passive cell balancing 
is a technique used by the BMS to equalize the voltage of cells in a battery pack. This 
technique uses resistors or other passive components to discharge the higher voltage 
cells in a battery pack., Active balancing is a cell balancing technique used by the 
BMS to maintain the voltage balance of cells, active balancing employs electronic 
circuits to transfer charge between cells. For the industry purpose mainly passive 
cell, active cell hybrid cell balancing are used. 

Cell balancing is typically carried out when the battery is charged/discharged. 
The BMS collects data on the voltage of every cell and adjusts the balancing circuits 
as needed to maintain a balanced voltage. By ensuring cell balancing, the BMS can 
enhance efficiency, extend battery life, and minimize the risk of safety hazards. 

Passive Cell Balancing:- It is a method used to equalize the voltage of the individual 
cells. In passive cell balancing, every cell inside the battery system has a resistor 
connected in parallel. During charging, the cells with higher voltage will charge the 
resistors connected to the cells with lower voltage, bringing the voltage of all cells 
closer to each other. 

This process continues until the voltage of all cells is equal. It is a slow process and 
does not provide fast and precise voltage control, so it may not be suitable for high-
power battery packs. Additionally, passive cell balancing generates heat, which can 
increase the temperature of the battery and may not be suitable for high-temperature 
applications. Overall, passive cell balancing is a good solution for small, low-power 
battery packs, but, for larger and higher power battery packs, active cell balancing



284 J. Sheoran et al.

Table 2 Passive cell balancing techniques 

Type Balancing principle Advantages Disadvantages 

Fixed-shunt 
resistor 

Balancing continuous 
discharge of 
high-voltage cells 
through a fixed resistor 

Simple and inexpensive, 
does not require 
additional hardware 

Limited balancing 
performance, slow 
balancing speed 

Switched-shunt 
resistors 

Intermittent discharge of 
high-voltage cells 
through a switchable 
resistor 

Effective balancing, 
fast balancing speed 

technique could be a more suitable option. Passive cell balancing is proposed in 
Table 2 [55]. 

Active Cell Balancing:-This method equalizes the individual cell voltage in a battery 
pack. Unlike passive cell balancing, which relies on resistors to discharge cells 
with higher voltage, active cell balancing uses electronic circuits to transfer charge 
between cells to maintain voltage balance. 

The basic concept of active cell balancing is to move charge from cells with higher 
voltage to cells with low voltage. The electronic circuits, typically based on power 
electronics, sense the voltage of each cell and transfer charge between cells as needed 
to balance the voltage. Active cell balancing can be performed in real time, so it is 
much faster and more precise than passive cell balancing. 

Active cell balancing is commonly used in high-power battery packs, such as 
those used in EVs, to ensure optimal performance and extend the life of the battery. 
It also provides better safety features, such as the ability to detect and protect the 
battery, it is important to avoid overcharging or over-discharging it, as these actions 
can cause damage to the battery. 

Overall, the benefits of active cell balancing, such as faster, more precise voltage 
control, longer battery life, and improved safety, make it a good investment for many 
high-power battery applications. Active cell balancing is proposed in Table 3 [55].

3.3 BMS Topologies 

There are several topologies commonly used in BMS, including:

• Centralized BMS: A centralized BMS is a type of BMS architecture in which 
single central unit is responsible for performing all supervision and control func-
tions in a system. In this type of BMS, the central unit communicates with all the 
individual cells and makes decisions about how to manage the battery.

• Distributed BMS: A distributed BMS is a type of BMS architecture in which 
monitoring and control activities are distributed among multiple units. In this type
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Table 3 Active cell balancing techniques 

Type Balancing principle Merits Demerits 

Single capacitors Transfer of charge 
between the cells 
through a single 
capacitor 

Simple and 
inexpensive, low cost 

Limited balancing 
performance, slow 
balancing speed, 
requires additional 
hardware 

Switched capacitors Transfer of charge 
between the cells 
through a switchable 
capacitor 

Effective balancing, 
fast balancing speed 

More complex 
requires additional 
hardware, increases 
battery pack size 

Double-tiered 
switched capacitors 

Transfer of charge 
between the cells 
through a multiple 
switchable capacitor 

Effective balancing, 
fast balancing speed 

More complex and 
expensive, requires 
additional hardware, 
increases battery pack 
size 

Single inductors Transfer of charge 
between cells through 
a single capacitor 

Simple and less 
expensive compared 
to multiple inductors 
balancing 

Limited balancing 
performance, slow 
balancing speed, 
requires additional 
hardware 

Several Inductors Transfer of charge 
between cells through 
multiple inductors 

Effective balancing, 
fast balancing speed 

More complex and 
expensive, requires 
additional hardware, 
increases battery pack 
size 

Single transformers Uses electrical 
balance to distribute 
the current equally 
among cells 

Lower cost, simple 
design, low power loss 

Inefficient for high 
current applications, 
limited balancing 
accuracy 

Single magnetic core 
transformers 

Uses magnetic 
balance to distribute 
the current equally 
among cells 

Improved accuracy, 
more stability, 
improved reliability 

Higher cost, more 
complex design, 
higher power loss 

Single capacitor Transfer of charge 
between the cells 
through a single 
capacitor 

Simple and 
inexpensive, low cost 

Limited balancing 
performance, slow 
balancing speed, 
requires additional 
hardware 

Switched capacitors Transfer of charge 
between the cells 
through a switchable 
capacitor 

Effective balancing, 
fast balancing speed 

More complex 
requires additional 
hardware, increases 
battery pack size 

Double tiered 
switched capacitors 

Transfer of charge 
between the cells 
through a multiple 
switchable capacitor 

Effective balancing, 
fast balancing speed 

More complex and 
expensive, requires 
additional hardware, 
increases battery 
packs size

(continued)
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Table 3 (continued)

Type Balancing principle Merits Demerits

Single inductor Transfer of charge 
between cells through 
a single capacitor 

Simple and less 
expensive compared 
to multiple inductors 
balancing 

Limited balancing 
performance, slow 
balancing speed, 
requires additional 
hardware 

Several inductors Transfer of charge 
between cells through 
multiple inductors 

Effective balancing, 
fast balancing speed 

More complex and 
expensive, requires 
additional hardware, 
increases battery pack 
size 

Single transformer Uses electrical 
balance to distribute 
the current equally 
among cells 

Lower cost, simple 
design, low power loss 

Inefficient for high 
current applications, 
limited balancing 
accuracy 

Single magnetic core 
transformer 

Uses magnetic 
balance to distribute 
the current equally 
among cells 

Improved accuracy, 
more stability, 
improved reliability 

Higher cost, more 
complex design, 
higher power loss

of BMS, each unit monitors a group of cells, and the units communicate with each 
other to exchange data and make decisions about how to manage the battery.

• Hybrid BMS: In a hybrid BMS, some functions are performed centrally, while 
others are performed by distributed units. This topology combines the benefits of 
centralized and distributed BMS, providing both precise control and scalability.

• Modular BMS: A modular BMS is a type of BMS architecture in which moni-
toring and control activities are divided into separate, modular components. In this 
type of BMS, each module monitors a specific battery feature, such as voltage, 
temperature, or SOC. 

The broad comparison of BMS topologies is proposed in Table 4 [63]. 

Table 4 Comparison of different BMS topologies 

Topology Centralized Distributed Hybrid Modular 

Cost Low Moderate Moderate High 

Complexity Low Moderate Moderate High 

Monitoring Centralized Distributed Both Modular 

Management Centralized Distributed Both Modular 

Scalability Limited Good Good Excellent 

Performance Good Excellent Good Good 

Topology Centralized Distributed Hybrid Modular
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3.4 BMS Architecture 

The architecture of a BMS can change according to the specific requirements of the 
battery system. The architecture of BMS is developed to ensure the proper functioning 
and health of the battery operates in safe and optimal conditions and to provide 
reliable, long-lasting power for the system. However, most BMSs have the following 
basic components:

• Sensors: The BMS uses sensors to gather data about the battery, including voltage, 
current, temperature, and more. This data is used to make decisions about how to 
manage the battery.

• Control Unit: It is the heart of the BMS. It processes the data from the sensors and 
makes decisions about how to manage the battery. The control unit can include a 
microcontroller, microprocessor, or other processing units.

• Communication Interface: The BMS typically communicates with other compo-
nents in the system, such as the battery charger or the host system, to exchange 
data and receive commands. The communication interface can use various 
communication protocols, such as CAN bus, I2C, or other serial communication 
methods.

• Power Electronics: Power electronics are used in the battery to transmit charge 
between cells as needed, to maintain voltage balance. This is part of the active 
cell balancing function.

• Protection Circuits: The BMS includes protection circuits to verify that the 
battery operates safely. These protection circuits can detect overcharging, over-
discharging, over-temperature, and other conditions that can damage the battery. 

4 Conclusion 

This paper conducted a survey focusing on battery management systems. The assess-
ment of SOC, SOH, thermal control, and cell balancing is discussed, which provides 
essential protection and performance optimization to ensure safe, reliable, and effi-
cient operation. Different BMS topologies are also discussed and each BMS topology 
has its unique advantages and disadvantages. The paper examines and contrasts 
various battery methods in terms of energy efficiency, energy density, power density, 
and cycle life. Based on this analysis, the Li-ion battery is more suitable option. 
The paper discusses different parameters but mainly focuses on cell balancing and 
its techniques and compares different approaches for cell balancing, taking into 
account factors such as the principle of balancing, the capability for charging and 
discharging, cost-effectiveness, and their suitability for specific applications and the 
analysis shows that an active cell balancing technique has superior energy transmis-
sion efficiency and a shorter balancing period in comparison to passive cell balancing. 
Consequently, active cell balancing is identified as a more favorable alternative for 
cell balancing.
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Photovoltaic Faults Prediction by Neural 
Networks 

M. Santhosh, P. Bhargav, and Arun Balodi 

Abstract Solar energy is one of the most important forms of renewable energy. 
The most significant method of converting solar energy is photovoltaic (PV) sys-
tems. Fault diagnosis is crucial for the dependable and efficient operation of PV 
systems. Early fault detection and diagnosis can save maintenance costs, avoid or 
minimise system downtime, and generally improve system performance. Artificial 
neural networks, a key artificial intelligence methodology, have been developed and 
applied in a variety of fields, including the fault diagnosis of PV systems, because 
of their robust self-learning capability, outstanding generalisation performance, and 
high fault tolerance. This study shows how artificial neural networks (ANN) can be 
used to predict solar panel problems. 

Keywords Artificial intelligence · Fault diagnosis · Artificial neural network ·
Photovoltaic · Solar energy 

1 Introduction 

An energy revolution is currently taking place in modern society in an effort to 
switch from fossil fuels to renewable energy sources in order to stop catastrophic 
climate change [ 1]. The development of urban areas and technological advancements 
nearby should strongly encourage the use of renewable energy sources. As a result, 
the demand for renewable energy is rising daily [ 2]. Solar photovoltaic (PV) energy 
has quickly replaced conventional energy sources in recent decades due to its global 
availability, modularity, lack of pollution, ease of installation, and low cost. Par-
ticularly in terms of efficiency, affordability, and optimising the power that can be 
collected from PV cells, the study of PV systems has evolved tremendously. Never-
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(a) The solar panel (b) Concentrating solar thermal power 

(c) Solar Panel 

Fig. 1 Solar plant and solar panel 

theless, a variety of faults frequently affect PV systems, which can negatively impact 
their conversion efficiency and safe operation [ 3]. 

The solar panels in large areas produce high energy but when these solar panels are 
getting aged faults will be occurring in every solar panel. It is a difficult problem to 
identify in which solar panel faults are occurring. The faults in the solar panel make a 
solar panel give less energy. The faults in a solar panel damage the entire solar panel. 
After the damage to a solar panel, the full solar panel has to change [ 9]. To increase 
the efficiency of solar panels many methods came like MPPT (maximum power point 
tracking) [ 6], using SMD (smart monitoring devices) [ 7], and using many algorithm 
methods, etc. (Fig. 1). 

There are three different categories of failures in PV systems: electrical, chemical, 
and physical faults [ 10]. Therefore, experts have proposed a range of strategies to 
quickly and accurately identify and diagnose a variety of faults in PV systems. The 
two primary categories of defect diagnosis procedures are the electrical approach 
and the thermal and optical methods [ 11]. Open circuit faults, line-to-line faults 
(short circuit), arc faults (series and parallel), ground faults, bridging faults, dust 
(soil formation), and cell-level degradation (quality control) are common defects 
that affect all solar panels [ 8]. The open circuit fault is the disconnection of the 
current from all the solar panels associated with the same string zero. The detection 
methods used for the open circuit faults are analysed based on measured ambient 
conditions, current, voltage, etc. For small-scale plants, optical and thermal methods
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(a) Open circuit fault (b) Short circuit fault 

(c) Series arc fault (d) Parallel arc faults 

(e) Ground faults 

Fig. 2 Different faults in solar panel 

are sufficient for fault monitoring and diagnosis, whereas electric methods are better 
suited for PV system monitoring and diagnosis [ 12]. 

Line-to-line faults develop when connections made between two sites of difference 
in an electric network or system have unintentionally low resistance. The method 
used for the line-to-line faults is an analysis based on the ambient conditions, current, 
voltage, etc. The line-to-line faults in a solar panel are also identified as short circuit 
faults (Fig. 2). 

The arc faults are divided into two categories they are series arc faults and parallel 
arc faults. Series arc faults are formed due to a loss of the continuity of a conductor, 
connection, module, or other PV system components. The detection methods are 
the current and voltage measurement and frequency domain analysis of a PV array 
current. But the parallel arc faults are between the two conductors or between the 
conductor and the ground. Frequency domain analysis of a current and the detection 
of a sharp reduction in the PV array’s voltage or current are the two methods used 
to find parallel arc defects.
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The ground faults are formed because of the accidental electrical short circuit 
involving the ground and one or more normally designated current-carrying conduc-
tors. The methods used for detection are frequency current measurement, reflectom-
etry, and current and voltage measurement [ 10]. 

The other types of faults like dust on the solar panel can reduce 30% of output 
in one month. So, the solar panels have to clean daily for better and clean output. 
The methods are using for to detect dust on the solar panel are thermography and 
visual inspection. And one more fault in the solar panel is cell-level degradation. 
The high quality of the solar panels is degraded at a rate of around 0.5% every year 
generating around 12–15% less power. To detect this degradation, fault a technique 
is used called different imaging techniques. 

Artificial neural networks are the one of most growing technologies in the present 
generation. By using this technology can identify all the types of faults in solar 
panels. One of the greatest things about the ANN it not only identifies faults it also 
shows which type of fault in the solar panel. Using this ANN can predict the faults 
in the solar before the faults are getting bigger. The implementation of ANN will be 
shown in the methodology [ 13– 15]. 

The remainder of this paper is organised as follows: The problem statements are 
covered in Sect. 2. The methodology for PV system defect diagnostics is introduced 
in Sect. 3. Results are discussed in Sect. 4. This work’s conclusion and its possibilities 
are presented in Sect. 5. 

2 Problem Statement 

This research focuses on the use of ANN for solar PV system fault detection. With 
the help of ANN technology, machines, and computers can become intelligent on 
their own. ANN has nodes in it called Neurons. An ANN is composed of three layers: 
the input layer, the output layer, and the hidden layer [ 4, 5]. Through the use of an 
activation function, the hidden layer generates output from a set of weighted inputs. 
Multiple input layers, multiple output layers, and numerous hidden levels are also 
possible with ANN. 

3 Methodology 

The solar panel of a PV cell forms nonlinear I- V characteristics and it can be obtained 
by a simple model which consists of a constant current source, diode, and a resistor 
associated in both the series and in the parallel. 

Typically, the electrical behaviour of a solar cell is described using the PV module 
of one diode and two diodes models. Figure 3b roughly depicts the equivalent circuit 
of a photovoltaic cell (PV). Several factors affect how sunlight is converted into 
electricity. Table 1 lists these factors.
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(a) PV module (b) I-V characteristic 

Fig. 3 PV module and I-V characteristic 

Table 1 PV parameters Amps Volts Watts 

0 Voc = 11.4 0 

0.2 11.06 2.21 

0.4 10.59 4.24 

0.5 10.24 5.12 

0.6 9.54 5.72 

0.61 9.39 5.73 

.IM = 0.62 .VM = 9.27 .PM = 5.75 

0.63 9.08 5.72 

0.64 8.72 5.58 

.ISC = 0.65 0 0 

In Table 1 and graph, the major parameters are identified as the current, voltage 
irradiance, and temperature. If there is a change in any parameter there will be a 
change in the output also. The STC (standard test conditions) manufacturers provide 
the cell parameters. The comparable solar radiation under the STC is 1000.W/m2. 
The working temperature of the cell is 25. ◦C. Maximum power point (MPP), is 
the working peak of each solar panel. The fault detection using I-V data can be 
accomplished by measuring MPPs and observing the variation of a measured MPP 
from an actual MPP. The unsupervised algorithm was ineligible to be categorised as a 
defect. Therefore, in order to categorise unlabeled data, we need a method that is also 
employed for partially labelled data. Using artificial neural networks (ANN), we are 
able to accurately identify the type of fault as well as detect it. Use MATLAB software 
for the code and SIMULINK as described in Fig. 4 to implement and understand how 
ANNs in solar panels work. 

To implement ANN model the following steps are involved. 

1. Selecting of inputs and targets. 
2. Validation of the data set. 
3. Deciding the number of hidden Neurons. 
4. Training the network by using any training algorithm. 
5. Network testing.
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Fig. 4 I-V characteristic 

To implement the ANN we have to collect the data from the solar panel. And we 
know the important parameters of the solar panel. To build the ANN the data has to 
be trained for the detection and for identifying the faults. The collection of data is a 
major thing for ANN. The collected data of the different parameters will be collected 
as the maximum data and minimum data as shown in Table 2. 

3.1 Building Model 

Data from the solar panels should be gathered in order to create the ANN Model. To 
forecast the errors, the data should be trained using the obtained data. The dataset is 
divided into 7 layers ranging in value from .x1 to .x7 for an input layer of an ANN. 
The current (A) in branch 1 of the PV system is . x1, while branch 2’s current (A) is 
. x2. In the PV system, branch 1 has a voltage of .x3 while branch 2 has a value of 
. x4. The irradiation level (. k lux) is . x5. The average temperature of the PV system is 
. x6. The weather is represented by the integer .x7 (snow, sunny, overcast, rainy). Two 
hidden layers, .h1 and . h2, combine to form the hidden layer. We select the ReLU
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Table 2 Sensor data 

State Sl1 Sl2 Sv1 Sv2 Irradiation 
klux 

Temperature Weather 

Amps Volts 

Normal Max 7.6 110 110 41 Sunny/summer 

5.4 102 97 23 Cloudy/summer 

Min 5.5 105 108 15 Sunny/winter 

0.4 80 9 .−3 Cloudy/winter 

Open Max 7.6 110 108 15 Sunny/winter 

Min 0 0 9 .−3 Cloudy/winter 

Line-line Max 6.1 90 110 41 Sunny/summer 

1.8 72 97 23 Cloudy/summer 

Min 5.5 75 108 15 Sunny/winter 

0.4 62 9 .−3 Cloudy/winter 

Variance 0.52 7.23 35.56 8.7 Summer 

4.82 9.54 47.61 15.24 Winter 

Fig. 5 Layers of ANN 

(rectified linear unit) as the activation function since it offers several benefits in 
multidimensional nonlinear datasets. According to the ReLU, .y = max(0, x). The  
three layers . y1, . y2, and .y3 make up the output layer. To create the ANN model 
for defect detection, the various parameter data sets that have been collected will 
go through the following processes. The multilayer perceptron (MLP), which has 
a backward network and a feedforward network, is depicted in Fig. 5. The ANN 
module learns a lot from the trained data, and the output is compared to the tested 
data.
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Fig. 6 Flow chart of the fault detection 

Table 3 I-V characteristic 
Time Ipv Vpv Vdc ia ib ic va 

0 0.000041 2.369843 90.429688 147.949219 0.616820 .−0.530396 .−0.160283 . −146.003418

1 0.010040 2.378357 90.368652 148.242188 .−0.678956 0.570679 0.047847 148.546906 

2 0.020039 2.373627 90.460205 148.535156 0.603393 .−0.537109 .−0.187139 . −145.027008

3 0.030038 2.368896 90.423584 148.242188 .−0.685670 0.570679 0.041133 147.341461 

4 0.040037 2.362274 90.435791 148.242188 0.630248 .−0.523682 .−0.166997 . −143.279114

vb vc Iabc If Vabc Vf Label 

0 120.255127 25.595601 1.000000 50.000000 1.000000 50.000000 FOM 

1 .−119.881439 .−24.723663 1.000000 50.000000 1.000000 50.000000 FOM 

2 120.315399 26.109924 1.000000 50.000000 1.000000 50.00000 FOM 

3 .−119.736789 .−26.105906 0.440380 50.078491 118.275197 49.921509 FOM 

4 120.942230 26.680501 0.618996 50.248673 90.022162 49.606494 FOM 

Machine Learning (ML) error identification and diagnosis methods have been 
used recently. The training data determines how effective the ML technique is. The 
training data and PV data typically have very high prediction accuracy rates that can 
reach 100%. Finding the key features of the input dataset is of the utmost importance 
for the ML system while building an ML model. 

Figure 6 shows the steps of the code for fault detection. Collect the data of the 
parameters like temperature, voltage, current, and irradiance. Import the data by 
spitting the data into 70 and 30%. 70% of the data is used to train the system and 
the remaining of 30% of the data is used for the test data. After training the ANN 
with the data the ANN module will be builded. Then the predictions will of the form 
of confusion matrix. The data of all the parameters are taken in the two forms like 
minimum dataset and maximum dataset in different conditions of the weather. For 
to predict and to build the ANN module with the knowledge the sample data is given 
which is shown in Fig. 7. This sample data helps the ANN module to predict and 
identify the faults by comparing the values. And the ANN module is trained with 
large datasets containing different data values as shown in Table 3. 

Each data column is described as the following: Time: The time of real measure-
ment in seconds. The avg sampling is .Ts = 9.9989 Ms. Ipv: PV array current mea-
surement. .Vpv: PV array voltage measurement. .Vdc: DC voltage measurement. . ia: 
Phase-A current measurement.. ib: Phase-B current measurement.. ic: Phase-C current 
measurement.. va : Phase-A voltage measurement.. vb: Phase-B voltage measurement. 
. vc: Phase-C voltage measurement. .Iabc: Positive- sequence estimated current mag-
nitude.. I f : Positive- sequence estimated current frequency..Vabc: Positive- sequence 
estimated voltage magnitude. .V f : Positive- sequence estimated current frequency.
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Fig. 7 Accuracy versus 
Epochs curve 

There are other parameters also like the temperature and the irradiance which are 
given in the solar panel. 

4 Results 

In an ANN, data travels in two directions: forward propagation and the MLP, which 
forecasts results for the input dataset. Back propagation also takes the mistake in 
the projected data into account while adjusting its settings. The graph of the trained 
and tested data is shown in Fig. 7. A complete iteration of the algorithm over the 
training data set is referred to as an epoch. Each epoch consists of one or more 
batches where we train the neural networks using a portion of the dataset. The epoch 
aids in identifying the model from the data. 

Which model is most effective at recognising the connections and patterns in the 
trained data depends on its accuracy. The ratio between the correct prediction data 
sets and the overall number of predictions in the trained datasets is predicted by the 
epoch and accuracy graphs. The precision of a PV cell is not increased by increasing 
the epochs. The confusion matrix, which is displayed in Fig. 8, compares the trained 
data’s predictions to the tested data. The confusion matrix displays all datasets with 
insufficient data as well as the most datasets possible. Checking the data’s accuracy 
is necessary.
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Fig. 8 Confusion matrix 

5 Conclusion 

The basics of various PV panel failures were explored in this study. The current 
ANN-based fault detection and diagnostic techniques were tested in trials. The sim-
ulation results using neural networks are successfully displayed by recognising and 
detecting frequently recurring defects. It shows a significant improvement in detec-
tion precision. It is quite efficient to utilise ANN to predict and locate problems in 
or between PV modules. The existing fault diagnosis ANNs face a serious problem 
with the cost of training time. These ANNs can be employed in conjunction with 
an embedded system of digital signals to provide real-time diagnostics, maximising 
the effectiveness of the fault diagnosis system. It is intended to employ this problem 
detection in massive PV systems in the future. 
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Neural Network-Based Approach 
for Islanding Detection in a PV 
Grid-Connected System 

Kumaresh Pal, A. K. Akella, K. Namrata, and Anshuman Bhuyan 

Abstract Modern power networks are more dependent on smaller dispersed gener-
ating units as a result of the increased focus on renewable energy. The identification 
of islanding occurrences in these grids is more difficult than in conventional power 
grids, which rely on bigger centralised units. In grid-tied, PV systems, the difficulty 
in grid connection caused by unintentional islanding still presents a barrier. However, 
keeping the system connected to the power grid is crucial to ensuring high system 
stability and when an islanding condition occurs, the grid is de-energised to safe-
guard any personnel who may be on the grid trying to determine what caused the 
islanding. The three types of methods for islanding detection are communication-
based, active, and passive. Active approaches use noise to estimate the size of the grid 
and measure the impact of that noise to identify islanding, which lowers the grid’s 
quality of electricity. The implementation of communication-based techniques is 
constrained by their high cost and dependency on the communications infrastruc-
ture. Unlike existing techniques, the suggested method of Artificial Neural Network 
(ANN) depends on the modified negative sequence impedance values and phase angle 
jump values to properly identify every islanding situation with a 98.9% accuracy. 
Without using any feature extraction, these data are provided directly into the ANN, 
enabling quicker and more accurate decision-making. In order to accomplish faster 
and more accurate detection, the suggested technique is anticipated to combine the 
high accuracy of ANNs with the rapid change in instantaneous values. A 100 kW of 
PV integrated grid system is used for the study using MATLAB/Simulink (version 
2018a).
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1 Introduction 

Sustainable energy sources have exploded in popularity during the last decades. It 
produces less emissions and releases fewer greenhouse gases than fossil fuels and 
nuclear power [1]. Examples of distributed generation such as landfill gases, photo-
voltaic (PV) energy, wind energy, micro-hydro turbines, and biomass categorised as 
renewable energy [2]. Because of the world’s fast expansion, distributed generation 
(DG) technology is advancing at a rapid pace, and as scientific, technological, and 
economic progress advances, people are placing greater demands on the environ-
ment. Including these DGs in the distribution network provides several advantages, 
including improved reliability, increased energy efficiency, lower line losses, and 
improved power quality. Distributed generating technology is not only safe, clean, 
environmentally friendly, cost-effective, and efficient, but it can also assess the whole 
power system’s dependability and efficiency [3–5]. 

A PV system becomes “islanded” when a section of the utility system which 
includes load as well as distributed resources, such as a PV inverter, stays operational 
even though the utility system is disconnected [6]. Islanding mode can result in a 
number of challenges, including safety concerns, load damage, reclosing issues, 
and more [7]. Grid voltage and frequency may fluctuate because a grid-connected 
inverter cannot regulate the grid’s voltage and frequency when it is in islanding mode. 
Loads may sustain irreparable damage as a result of this. Grid synchronisation is also 
impossible in islanding mode due to the lack of a standard grid voltage. Additionally, 
it is challenging to synchronise an isolated grid with the utility grid during recloser 
operation due to the isolated grid’s voltage being out of phase with the electrical 
utility grid, and the grid might trip again due to an overcurrent fault. 

For grid-connected PV inverters, Anti-Islanding Detection (AID) is a necessary 
function since islanding might pose a hazard to the operation of the grid. When an 
island is detected, the PV inverter must stop energising the grid within the allotted 
period. A number of AID algorithms have been commercialised and have been devel-
oped to prevent islanding. These algorithms could be classified into passive tech-
niques and active techniques [10]. Any significant system disturbance, a grid failure, 
or intentional islanding for a planned or unexpected event might cause the islanding 
to happen. An islanding situation can be an unintentional or intentional. Uninten-
tional islanding situation is a threat to the electrical grid’s protection, posing a risk to 
utilities, equipment, and maintenance personnel. As a result, following island forma-
tion, the islanding system must be disconnected in 2 s in accordance with different 
islanding standards such as IEEE Std. 929-2000, IEEE Std. 1547-2003, IEC 62,116 
and distributed generating operations must be stopped [11, 12].
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Islanding detection can be categorised as communication-based, passive, active, 
and hybrid, depending on the methodology. Monitoring of grid parameters is the foun-
dation of passive approaches. By using a relay of frequency and voltage Islanding 
can be easily detected, relays such as UOV (Under or Over Voltage)/UOF (Under 
or Over Frequency). Measuring voltage as well as frequency that are not within 
the suitable range can avoid islanding. The detection of an islanding operation can 
also be done using a phase jump or a change in harmonics [13]. Active approaches 
disrupt the grid using a PV inverter and monitor how the grid’s parameters respond. 
Two categories can be made for this. The first active approach uses positive feed-
back, which causes the grid to become unstable when islanding situation occurs. 
When an islanding condition arises, a positive feedback loop to power references or 
current phase angle starts and voltage or frequency instability would be tracked [14– 
16]. The frequency drift techniques (FDTs) are representative techniques, like active 
frequency drift (AFD), slip-mode frequency shift (SMS), and Sandia-frequency shift 
(SFS) [17, 18]. The second active method type injects a signal into a grid and moni-
tors how system parameters respond [19]. A signal used for the injection could be 
either the current or the voltage. After islanding, the voltage created by the injected 
components may be felt as the current is injected. Grid impedance could be deter-
mined and may be utilised as an indication for detecting islanding as high-frequency 
voltage is injected. This paper looks into a dilemma that arises at the point where a 
distributed generation facility meets the rest of the power system. The dilemma could 
be described by the power systems’ recognition of an islanding condition. In recent 
years, a great number of contemporary methods for determining islanding scenarios 
have been described. 

2 Artificial Neural Network (ANN) Model 

Artificial neural networks (ANNs) mimic the intricate functioning of organic neural 
networks in the human brain. The basic building blocks of any artificial neural 
network are known as neurons, which are formally referred to be identical processing 
units that are coupled and infinite in number. An input layer, a hidden layer, and finally 
an output layer make up a fundamental neural network. In addition to this, they also 
have a neuron, transfer function, and weight. Figure 1 shows a basic architecture of 
ANN model. An ANN is made up of several layers and nodes. Via hidden layers, 
data are transferred from the input layer to the output layer. The nodes in succeeding 
levels are connected via links. The hidden layer and input layers are then supplied 
the error signals from the output layer [20]. The output of any node in the hidden and 
output layer is connected to the input node using activation function. The procedures 
of weight updating and reduction are carried out using a learning algorithm. Many 
training methods are available for the learning phase of ANN [21].
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Fig. 1 Basic architecture of ANN model [21] 

3 Voltage Phase-Jump Detection 

By keeping an eye out for a sudden phase jump in the terminal voltage of inverter 
(VPCC) and output current (IPV_inv), the voltage phase-jump detection (PJD) approach 
is used as shown in Fig. 2 [22]. When the power system transitions from normal opera-
tion to islanding mode, the phase angle of the voltage phase-locked loop (VPCC) will 
alter and synchronise with the phase angle of the local load in the event of islanding. 
As a result, an abrupt phase shift occurs at PCC. To identify islanding, the PJD 
approach will look for this quick shift in phase angle. Moreover, loads frequently have 
a non-unity power factor, which indicates that the utility grid’s voltage is partially 
hindered rather than fully absorbed [8]. 

The inverter in PV systems often uses a phase-locked loop (PLL) to track the phase 
of the grid signal [23]. During islanding operation, the power factor is dependent on

Fig. 2 The operation of voltage phase-jump detection [22] 
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the local load; therefore, it is crucial for grid-connected inverters to have a unity power 
factor as the non-detection zone (NDZ) of the PJD technique is solely dependent on 
the power factor. If the inverter does not work with unity power factor, the NDZ could 
change. Hence, the PJD method is often referred to as the transient phase detection 
or the power factor detection [23]. 

4 Sequence Components of Voltage and Current at PCC 

Out of several detection methods, the essential requirement for the existence of 
every disturbance in the voltage signal and the current signal detected at the PCC 
is the negative-sequence component approach [20]. Therefore, to be able to effec-
tively identify islanding and notch perturbance caused by islanding occurrences, this 
research has analysed the negative-sequence component of voltage signals and the 
current signals discovered at PCC. The symmetrical component of analysis can be 
used to describe the negative, positive, and zero sequence components of the voltage 
signal at the PCC as [21]. 

Vn = 
1 

3 
(Va + λ2 Vb + λVc) (1) 

Vp = 
1 

3 
(Va + λVb + λ2 Vc) (2) 

Vz = 
1 

3 
(Va + Vb + Vc) (3) 

where Va, Vb, and Vc are the three-phase voltages obtained at the PCC and Vn, Vp, 
and Vz are the negative, positive, and zero sequence voltages, respectively, and λ = 
1 < 20° is the intricate operator. 

The symmetrical component of analysis can be used to indicate the zero, negative, 
and positive sequence components of the current signal at PCC as 

In = 
1 

3 
(Ia + λ2 Ib + λIc) (4) 

Ip = 
1 

3 
(Ia + λIb + λ2 Ic) (5) 

Iz = 
1 

3 
(Ia + Ib + Ic) (6) 

where Ia, Ib, and Ic are the three-phase currents obtained at the PCC and In, Ip, and 
Iz are the negative, positive, and zero sequence currents, respectively, and λ = 1 <  
20° is the intricate operator.
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Fig. 3 Block diagram of islanding in the system [3] 

The negative-sequence impedance may be expressed by the symmetrical compo-
nent of analysis given as 

Zn = 
Vz 

Iz 
(7) 

The reciprocal of square root of negative-sequence impedance can be expressed 
by the symmetrical component of analysis given as 

Zx = 1 √
Zn 

(8) 

The three phase voltage signals and the current signals acquired at PCC are given 
as inputs to the three-phase sequence analyser in MATLAB block. The negative-
sequence component is chosen to take into account from among the three sequential 
components. In this paper negative sequence impedance-based passive technique 
is used because it emulates the info following perturbance condition. Evaluation 
of the reciprocal of square root of negative-sequence impedance at the point of 
common coupling provides excellent noise shielding for islanding detection, there-
fore it performs well. Variations in magnitude of reciprocal of the square root of NSI 
can be used to identify the islanding mode. The magnitude of NSI may be calculated 
using the negative-sequence voltage to negative-sequence current ratio as observed 
at PCC. 

The suggested solution for islanding detection given in this study leverages 
machine learning to improve protection performance and minimise the detection 
time. The ANN-based protection offered a dependable quick reaction, high degree 
of precision, and quick detection (Fig. 3). 

5 Proposed Islanding Detection Technique 

An ANN is used in the presented islanding protection to identify patterns in the 
input signals and categorise occurrences as being as islanding or not. The inputs for 
this classifier are the modified negative sequence impedance values computed from
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negative sequence components of voltage and current found at PCC and voltage 
phase angle jump values derived at PCC. 

This section discusses suggested methods and ANN architectural designs. The 
suggested IDT is primarily based on two stages. The projected IDT comprises two 
stages. In the first phase, at PCC, the negative sequence current and voltage data 
is initially gathered and utilised to calculate the inverse of square root of negative 
sequence impedance and also the phase angle shift values are collected in various 
islanding circumstances and non-islanding circumstances. In the second phase, the 
recorded data for modified negative sequence impedance and phase angle shift are fed 
into the ANN for inherent learning, training, and testing. And this trained ANN model 
is utilised to classify an islanding and non-islanding event. When non-islanding 
interruptions are present, a trustworthy islanding detection technique shouldn’t fail. 
Data quality and quantity have a direct impact on intelligent Methods. For the ANN 
to generalise learnt features well and perform well on testing data, we needed a 
lot of training data. A number of short circuit failures, including few of the most 
frequent disturbances like load switching, load disconnection, and capacitor bank 
switching at PCC are investigated in order to show how the suggested IDT operates 
in non-islanding circumstances (Table 1). 

The suggested technique is examined on a test system that includes a distributed 
generation unit powered by photovoltaic system and connected to a distribution 
network system through 100 KVA, 0.260/25 kV transformers. The total generation 
capacity of PV system is 100 KW. The distribution network system is operated at 
25 kV. The total capacity of PV connected grid system is 200 kW. Loads are rated at 
100 KW, 30 KVAR and 50 KW, 40 KVAR.

Table 1 Analysis of data for the proposed IDT 

Islanding condition 

1 Islanding by changing up to 50% active power mismatch 20,001 

Non-islanding condition 

2 Constant load 25,000 

3 Load switching 16,000 

4 Short circuit fault (Symmetrical and Unsymmetrical) 16,000 

5 Capacitor bank switching 16,000 

6 Single pole open 16,000 

7 Double pole open 16,000 

Total cases 125,001 
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6 Result and Discussion 

In this work, ANN analyses the islanding detection method. The PCC node’s output 
voltage is read by ANN. It is continually worked through each cycle. When ANN 
senses an islanding situation, ANN will send tripping signal to Circuit Breaker to 
cut off the PV inverter’s connection to the load. It is proposed to avoid the failure 
of equipments. The overall simulation time is 13 s, and the sampling frequency is 
held at 10 kHz. The proposed method was tested by analysing 125,001 unique cases, 
including 20,001 cases of islanding and 105,000 cases of non-islanding scenarios at 
the point of common coupling (PCC). The islanding data were generated by intro-
ducing an active power mismatch of 50% and a reactive power mismatch of 25%. 
ANN learning is designed arbitrarily with a composition of 50% for the learning 
process, 25% for testing, and 25% for validation, according to the sample result. 
Three layers make up the applied ANN: an input layer, a hidden layer, and an output 
layer. At hidden layer, 20 neurons were taken for training the network. A total of 
1000 epochs were taken for iterations. For generating ANN model, Feed-forward 
back propagation network type is selected, with Levenberg–Marquardt as training 
function containing 20 validation checks. 

Figure 4 shows the training state of the trained ANN network. The plot shows 
the training and validation accuracy and loss curves over 546 epochs of training. At 
the beginning of the training, the network’s accuracy on the training and validation 
sets is low, and the loss is high. As the training progresses, the accuracy on both sets 
gradually increases, while the loss decreases. After around 20 epochs, the training 
and validation accuracy curves start to plateau, while the training and validation loss 
curves continue to decrease but at a slower rate.

We notice that the training and validation curves are relatively close together, 
indicating that the network is not overfitting or underfitting the data. 

In Fig. 5, we can see the performance plot of the trained ANN network, and at 
546th iteration, best validation performance was achieved with a mean square error 
of 0.01263.

Figure 6 shows the regression plot of the trained ANN network. The plot shows the 
predicted values compared to the actual values for the test set. The model achieved 
a correlation coefficient (R) of 0.95, indicating high accuracy in detecting Islanding.

Figure 7 shows the Error Histogram plot of the trained ANN network. The plot 
shows the distribution of errors (difference between target and output values) for the 
test set, with a standard deviation of 0.626. The majority of errors are concentrated 
around zero, indicating that the model is performing well in classifying the islanding 
condition.

Figure 8 shows the Confusion matrix plot of the trained ANN network. The 
plot shows the number of true positives, true negatives, false positives, and false 
negatives for each class of datasets. The model achieved high accuracy in classifying 
the islanding situation, with a precision of 0.999 and recall of 0.988, indicating that 
it has low false positive and false negative rates.
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Fig. 4 Training state plot of ANN network

Fig. 5 Performance plot of 
ANN network
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Fig. 6 Regression plot of ANN network

Fig. 7 Error histogram plot of ANN network
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Fig. 8 Confusion matrix 
plot of ANN network 

The proposed method of Islanding detection using ANN was also tested for a 250 
KW & 400 KW of grid-connected PV array systems. The results were found similar 
and satisfactory. 

7 Conclusion 

The focus of this study is unintentional islanding detection for a 100 kW PV grid-
connected system. The results suggest that the ANN performed better than the tradi-
tional approaches. The modified negative sequence impedance values and phase 
angle jump values are provided as the inputs for the ANN. The proposed method of 
Artificial Neural Network (ANN) detects well an islanding condition with an accu-
racy of 98.9%. In this proposed technique, no feature extraction nothing is required, 
so, faster detection for unintentional islanding is done. A quicker and more accurate 
detection can be accomplished using the suggested technique since it is will leverage 
the speed of instantaneous data changes and the high accuracy of artificial neural 
networks (ANNs).
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An Investigation of Fault Detection 
in Electrical Distribution Systems Using 
Deep Neural Networks 

P. Balamurali Krishna , A. V. Pavan  Kumar  , 
and Akkenaguntla Karthik 

Abstract The primary goal of the research is to detect and classify defects in elec-
trical distribution networks using deep learning techniques. At a fault situation, fault 
voltage, fundamental frequency, and current components are considered for fault 
identification and categorization. An IEEE 33 bus system is used to model distribu-
tion network, and fault conditions are created in simulation to obtain fault compo-
nents. When a fault occurs current and voltage waveforms contain significant high 
frequency transient signals. Discrete Wavelet Transform (DWT) and Deep learning 
(DL) approaches are used to detect and classify the fault in distribution system. DWT 
is applied for decomposition of high frequency transient signals to extract informa-
tion in both time and frequency domains. Results show that the proposed Deep Neural 
Network (DNN) model has high accuracy in recognizing and classifying the fault 
accordingly. The simulation is done through MATLAB software using deep learning. 

Keywords Electrical distribution system · IEEE 33 bus systems · Discrete wavelet 
transform and deep learning 

1 Introduction 

The process of identifying and tracking faults or unusual conditions that happen 
inside the electrical power system is referred to as fault detection in power systems. 
For electrical systems to remain safe and reliable, fault detection is crucial. Power 
system operators can more easily locate and segregate faults, as well as take the
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necessary steps to lessen the effects of the defects on the system. The use of safety 
relays, circuit breakers, and other monitoring tools, as well as sophisticated software 
algorithms that examine information collected by sensors and additional sources 
to detect potential faults, are examples of fault detection approaches. In distribu-
tion network, faults can be found in a variety of methods. Few typical approaches 
are, by using; protective relays, circuit breakers, visual inspection, fault indicators 
(alarms) and advanced monitoring systems developed using ANN, ML, and Wavelet 
transformation techniques. 

The distribution system in electrical power system is a vital area. Faults occurring 
in this area should be addressed quickly to have a reliable power supply to end 
consumers. Currently addressing distribution lines issues and solving the problems 
using advanced intelligent methods is the key area of research. DL is a start-of-art 
Machine Learning (ML) technique that provides greater accuracy and performance 
when compared to traditional ML techniques [1]. The electrical signals are analyzed 
using neural networks in this study. A methodology for training a neural network 
model to detect abnormalities in distribution lines with high accuracy and flexibility 
is required. To understand this issue, it is necessary to understand that distribution 
line failures are mainly generated by physical occurrences [2]. The effectiveness 
of a DL model may be improved, by strengthening the model and experimenting 
with more effective learning algorithms [8]. DNN has been employed for power 
system fault diagnosis, utilizing Convolutional Sparse Auto Encoders (CSAE) [9, 
10] and Stacked Auto Encoders (SAE) [11]. However, they are unsupervised learning 
techniques, although this study offers a supervised learning-oriented DNN design. 
DL networks offer a lot of possibilities and are used in a variety of sectors. It is feasible 
to construct non-obvious interdependence across input & output information by using 
alternative network configurations. The DL network’s, Long Short-Term Memory 
(LSTM) model, which is utilized for memorizing and processing long sequences of 
inputs, may therefore be applied to temporal defect diagnosis problem [7]. 

The design and number of layers, quantity of epoch, and size of a bunch are the 
fundamental settings of a DL network, as explained in Ref. [8, 9]. The proposed 
LSTM network design includes a sequence input, hidden units, a completely 
connected, and a classification layer. In Ref. [9], the author describes how to use 
the LSTM approach to time-series categorization. The initial stage of the fault detec-
tion system’s LSTM network is trained on MATLAB-generated fault simulation data. 
Current and voltage from distribution lines are used as inputs. The main controller 
collects just the data relating to the fault line after detecting a problem in one of the 
lines. The fault classification step uses these current and voltage data as inputs. This 
stage, which includes the LSTM network, provides the defect type. Training a neural 
network [10] necessitates a vast number of instances. Through such a training step, 
neural networks start recognizing a certain behavior among a group of instances. 
Whenever a new sample is introduced, the network output tries to tune more, getting 
closer to the true output. This necessitates a significant number of samples which 
will enable the network generalization to the desired pattern. 

The identification and categorization of faults in power grids [11] and their local-
ization are regarded as critical prerequisites for implementing the smart grid paradigm
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Fig. 1 Proposed deep learning methodology 

in power grids. However, adding self-healing systems to reduce the consequences 
of interruptions is a plausible approach [12]. In any event, the employment of that 
kind of sort of technique indicates that the systems are tightly meshed and capable 
of isolating a problematic portion till the issue has been solved without requiring the 
entire infrastructure to be down. 

We uncovered several relevant materials that seem to have unique importance 
for the content accomplished in this paper by concentrating on neural networks. 
Various investigations successfully employed neural networks and machine learning 
models to detect and classify faults in power systems [13–18]. Whereas Ref. [19, 
20] utilizes the DWT, S-Transform (ST), pattern recognition, Fast Fourier Transform 
(FFT), image processing, and statistical approaches for fault identification and cate-
gorization in distribution lines and multi-microgrids. Some research has also been 
done on defect detection, with the goal of extrapolating voltage measurements from 
many modeled power systems. These parameters were employed to train a neural 
network to identify problems in a practical distribution network [21]. Niche Binary 
Particle Swarm Optimization (NBPSO) technique is employed in [22] to improve 
power quality by identifying harmonic sources. 

The preferred technique in this research is depicted in Fig. 1. Inputs are three-
phase voltages, three-phase currents, voltage and current coefficients, and phase angle 
between voltage and current. These inputs are loaded into the built deep learning 
model for the identification and classification of faults, which continually checks the 
input state. 

2 Discrete Wavelet Transform 

A discrete signal is converted to a discrete wavelet form via DWT, which uses time-
scale representation, which allows for efficient multi-resolution. Because of WT’s 
success in transient analysis, it has been integrated with other approaches to improve 
the reliability of protective mechanisms.
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A signal x(n) is passed through a high pass filter a(n) and a low pass filter d(n) until 
the desired signal is obtained. The detail and approximation coefficients at levels D1 
and A1 are acquired by splitting the output of each filter by two. The approximation 
coefficients are later sent to the second stage, and so on until the sixth stage. It is 
proposed to employ six tiers in this investigation (D6 and A6). F is the sampling 
frequency of the sampled signal. As illustrated in Fig. 2, the frequency signal data 
seized by D1 is in the middle of F/4 and F/2, F/8 and F/4 are seized by D2, and D6 
seizes data between F/64 and F/32. The frequency bands at each DWT decomposition 
level are shown in Table 1. 

Using a trial-and-error procedure, the researchers discovered that the db6 wavelet 
provides the greatest classification accuracies for this purpose. As a consequence, 
the db6 wavelet was selected since it provides the best fault recognition and cate-
gorization results. The DWT decomposes voltage and current signals into various 
frequency bands, allowing for accurate measurement of pre- and post-fault timings. 

Figure 3 depicts the fault voltage signal of a multi-resolution DWT. The 6-stage 
decomposition employs the Db6 wavelet. At every frequency group, the reconstructed

Fig. 2 Six-level wavelet decomposition tree 

Table 1 DWT 
decomposition level 
frequency bands at each 
decomposition level 

Decomposition Level Frequency bands (Hz) 

1 25 k–12.5 k 

2 12.5 k–6.25 k 

3 6.25 k–3.125 k 

4 3.125 k–1.5625 k 

5 1565.5–781.25 k 

6 781.25–390.62 
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Fig. 3 Voltage signal DWT analysis 

forms of every element, also the approximation and recording of distinctive signals, 
are precisely defined. 

Leveraging regulatory approaches, a Phase-Locked Loop (PLL), provides an 
output signal with the same phase as the input signal. Figure 4 shows an example of a 
block diagram. The input and output frequencies ought to be constant to maintain the 
phases synchronized. V abc, Vd , and Vq are calculated employing the input voltage. 
Vd and Vq are voltage levels in the d- and q-axes at the Point of Common Coupling 
(PCC). Figure 4 depicts the suggested PLL design.

In contrast to the diagram depicted in Fig. 2, the fault signal e(t) corresponds to the 
waveform variation, whilst the Proportional-Integral (PI) regulator and Integrator (I) 
correspond to the loop filter and Voltage Controlled Oscillator (VCO), respectively. 
Clarke’s transformation is used to convert the 3 phase voltages (Va, Vb, and Vc) that 
are delivered into PLL to quantities. Figure 5 is a schematic of a PQ-PLL block. 
The values are then converted into a frame of reference. An error signal is generated 
based on the closeness of the values to the reference frame. A PI regulator receives 
an error signal and regulates the error to zero.

3 Deep Learning 

The term “deep” in DL indicates to the use of several of the network’s layers. 
DL neural networks try to emulate the human brain by combining various inputs, 
weights, and biases. DNN based on supervised learning has a significant benefit. 
These Elements collaborate to correctly detect, categorize, and characterize objects 
inside the Data. Deep learning’s capacity to tackle complex situations that require
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Fig. 4 PLL block diagram

Fig. 5 PQ-PLL block 
diagram

the finding of hidden patterns in data and/or a complete understanding of intricate 
connections between numerous interdependent variables is one of its key advantages. 

DNNs are employed in the identification of distribution system faults due to their 
efficiency in analyzing massive volumes of data and extracting significant trends 
and characteristics that may not be immediately apparent to humans. The compli-
cated correlations between numerous parameters and fault states in the distribution 
network can be learned by DNNs utilizing labeled datasets containing previous fault 
data. These networks are capable of being utilized to categorize newer data and iden-
tify errors in actual time once they have been trained. DNNs can also analyze and 
incorporate vast volumes of heterogeneous data, including data from sensors, safety 
relays, and defect indications, to give a deeper comprehension of the functioning of 
the system. 

DNNs are effective for fault detection in distribution networks due to their ability 
to analyze large amounts of data and extract meaningful patterns. However, there 
are potential disadvantages to consider. DNNs can be computationally expensive, 
require large amounts of high-quality labeled data for training, and can be difficult to
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interpret. Additionally, DNNs can be susceptible to overfitting and lack robustness 
in response to changes in the distribution network. Careful design, training, and 
implementation are necessary to ensure their effectiveness. 

Dynamic learning algorithms are built to traverse various complexity of neural 
networks, each of which is basically a collection of decision-making networks that 
have been pre-trained to perform a specific task. Deep learning algorithms are divided 
into the following categories: 

3.1 Generative Adversarial Networks (GANs) 

GANs are employed to build new and innovative data instances that fit the training 
examples. GANs are usually composed of two components: a generator that learns to 
create false data and a discriminator that regulates by analyzing this false data. GANs 
growth in acceptance throughout time as they are regularly employed to enhance 
astronomical pictures and imitate lensing the gravitational dark matter. GANs operate 
in simulation by creating and comprehending both false and real data. During the 
training to grasp such data, the generator generates various types of falsified infor-
mation, to which the discriminator swiftly adapts and responds as inaccurate facts. 
The identified findings are then sent to GANs for updating. 

3.2 Convolutional Neural Network (CNN) 

CNN is made up of numerous layers that are utilized for image analysis and object 
recognition. CNNs are widely used in satellite image recognition, series forecasting, 
medical image processing, and anomaly detection. CNNs analyze input data by 
feeding it via multiple levels and extract information in order to perform convolutional 
computations. The Convolutional Layer is made up of Rectified Linear Units (ReLU), 
which are used to correct the feature map. The Pooling layer is used to correct these 
feature maps before they are sent to subsequent feed. 

3.3 Recurrent Neural Network (RNN) 

RNN is made up of certain directional interconnections, which establish a loop that 
allows the input out from Long Short-Term Memory Network to be used as input 
in the current mode of RNNs. Such inputs are strongly embedded as inputs, and the 
memorizing ability of LSTMs allows these inputs to be taken for a length of time in 
the internal storage. RNNs are thus dependent on the inputs maintained by LSTMs 
and operate under the synchronization phenomena of LSTMs.
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3.4 Long Short-Term Memory Network (LSTM) 

LSTM is RNN that is configured to adapt and learn to dependencies over time. It 
can retain and remember prior material for a longer amount of time, and this is its 
standard habit. Because LSTMs are meant to retain information across time, they 
are commonly utilized in time series forecasts since they can restrict memory or past 
inputs. LSTM operates in a series of actions. For starters, individuals don’t recall 
unimportant facts gained in the prior condition. They then selectively update specific 
cell-state variables and eventually create elements of the cell-state as output. 

3.5 Deep Belief Networks (DBNs) 

DBNs are called generative models as they contain several levels of latent and 
stochastic variables. Because the latent construct has binary values, it is referred 
to as a hidden layer. Greedy algorithms power DBN. The layer-to-layer technique, 
which uses a top-down approach to produce values, represents the most frequent 
way DBN functions. DBNs employ a step-by-step Gibbs sampling technique on the 
top concealed two-layer. Then, by using ancestral sample technique, these phases 
generate a sample out from visible units. DBN learns from the values included in the 
latent value from each layer using the bottom-up pass technique. 

In this student, LSTM is considered for the development of algorithm. The 
SIMULINK waveforms were converted to a MATLAB file for feature extraction. 
The signal was analyzed using DWT to provide the coefficients for fault detection. 

4 System Modeling 

4.1 IEEE 33 Bus System 

The developed deep learning model is tested on IEEE 33 radial distribution system. 
The system’s base MVA rating and base voltage are 100MVA and 25 kV, respectively. 
Figure 6 depicts a IEEE 33 bus system.

To analyze the accuracy of the developed deep learning model, a fault is created. 
Figure 7 depicts the three-phase voltage waveform during an LG fault occurrence 
(between time 0.4 s and 0.6 s).

This LG fault signal is passed through high-pass and low-pass filters employing 
DWT. Figure 8 portrays the LG fault voltage signal of a multi-resolution DWT. A six-
stage decomposition is created using the Db6 wavelet. The reconstructed variants of 
every single element, also the approximation and recordings of the individual signal, 
are evidently displayed at each frequency spectrum.
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Fig. 6 IEEE 33 bus system

Fig. 7 LG fault voltage waveform

Fig. 8 DWT analysis of LG 
fault voltage signal
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4.2 Fault Detection System Development 

A dataset is considered to train the model to detect and categorize faults. The IEEE 
33 bus system was employed to construct this data collection. The module accepts 
RMS voltage and current data, feature extraction from DWT at db6 frequency, and 
load angle determined from PLL as inputs. The data needed to train the deep learning 
model are shown in Table 2.

4.3 Results and Discussion 

Deep Learning Model Development 

A model for detecting the fault and classifying it on distribution lines is developed 
so that protection schemes can operate quickly and reliably. The simulation code is 
written in MATLAB, and it generates the fundamental component of the transient 
voltage and current in the time and frequency domains at the same time. For analysis, 
one cycle of waveform is abstracted, covering pre- and post-fault information. For 
data preprocessing, DWT is considered. Different operating and fault conditions on 
the lines, such as LG fault, LL fault, and LLG fault, are simulated using MATLAB 
software. 

The use of wavelet transforms to estimate the location of a defect on a distribution 
line has been studied. Wavelets’ capacity to divide a signal into frequency bands in 
time and frequency allows for precise defect identification. The most appropriate 
wavelet family has been identified for use in estimating the location of a defect on a 
transmission line. SIMULINK MATLAB SOFTWARE is used to simulate a LG fault 
on a transmission line for a 735 kV, 300 km transmission line. For feature extraction, 
the waveforms collected from SIMULINK were converted to a MATLAB file. The 
signal is analyzed with DWT to acquire the coefficients needed to estimate the fault. 

Fault Identification and Classification Methodology and Algorithm 

To locate a fault, bus systems are separated into four zones and equipped with fault 
detection sensors. The fault detector identifies the fault by examining the three-
phase voltage, three-phase current, and load angle. The observed voltage and current 
waveforms are derived, and the detailed coefficients are computed using discrete 
wavelet transformations. If a defect occurs, the suggested deep learning method 
inspects the parameters zone-by-zone to determine the kind of fault. The operation 
of the created model is represented in Fig. 9 using flowchart, whereas Fig. 10 depicts 
the DNN algorithm flowchart.

Deep Learning Targets for Fault Identification Classification 

The output targets consist of five outputs: LG, LL, LLL, LLG, and LLLG as power 
system short circuit faults.
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Fig. 9 Flowchart of fault 
identification and 
classification using DNN 

Fig. 10 DNN-Based Fault 
Detection Algorithm 
Flowchart
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Fault Detection and Classification Algorithm 

LSTM algorithm is built and parameters related to the model development are 
provided accordingly. The developed LSTM algorithm code using MATLAB is 
shown in Fig. 11. To develop the model, a training data set is created by creating 
various faults and saving the data in.csv format. This dataset is being loaded to train 
the model, and the model’s effectiveness is being evaluated by evaluating it. The 
testing dataset is different from the training dataset. The training and testing code 
written in MATLAB is illustrated in Fig. 12. 

Making use of the formula. The data that have been imported are put to the test. 
We can forecast the new data fault type using this method based on existing data. 
The outputs are depicted in Fig. 13 and Fig. 14.

Minimal Root Mean Square Error (RSME) value is achieved by increasing the 
iterations. As shown in Fig. 13, at 1000th iteration, RMSE value is 0.41. As illustrated 
in Fig. 14, the developed model is tested with different fault conditions. The model is 
able to accurately identify the fault and it also classified the type of fault that occurred. 
Let’s consider LG fault condition, in order to have LG fault data, a LG fault is created 
in the Simulink environment. When LG fault occurs, one phase will come in contact 
with the ground resulting in high current and low voltage, and other two phases are

Fig. 11 Defining and 
creating LSTM algorithm 

Fig. 12 Training and testing 
in developed deep learning 
model 
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Fig. 13 Output tested results 

Fig. 14 Fault identification and classification visual representation

open-circuited resulting in high voltage and low current, and these data of all three 
phases (Voltage and Current), V co-eff, Ico-eff, and theta are captured in order to train 
and test the proposed model. More the data, the better the model. Similarly, different 
fault conditions like LLG, LL, LLL, and LLLG faults are created, and their values 
are used to train and test the model for fault identification and classification. The 
predicted fault and original fault are shown in Fig. 14. When there is no fault, the 
model identified that there is no fault, and this is possible because model is trained
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and tested with data when there is no fault. In a 33-bus system, possible samples that 
can be considered are 8000. Using these 8000 samples, the model is trained with 
80% of the data, and remaining 20% data are used to test the performance of the 
model. 

5 Future Scope 

A promising field of research with many potential directions for advancement is 
the application of deep neural networks for fault detection. By enhancing the neural 
network design, utilizing more training data, and creating more complex fault detec-
tion algorithms, the accuracy of identifying defects can be increased. To find issues 
in electrical distribution networks as they happen, continuous monitoring systems 
can be created. To produce smarter and adaptive electrical distribution systems, 
DNNs have capable of being integrated with additional innovative technologies, 
such as smart grids and Internet of Things (IoT) devices. DNN can be integrated 
with service management systems to make sure that defects are found and fixed 
quickly, eliminating downtime and lowering repair costs. 

6 Conclusion 

This study dives deeper into the use of DL for fault recognition and characteriza-
tion in a distribution network. For fault identification and classification, the created 
model used regularized values of instantaneous current and voltage as inputs. A 
waveform-built fault categorization methodology for electrical distribution networks 
was provided in this study. The vast majority of the wave data processing exercise was 
managed efficiently by disseminating the computational stress appropriately. DWT 
is used to extract features from recorded wave data. In compared to other traditional 
relaying techniques, the fault classifier and detector findings show that deep learning 
is effective at recognizing and detecting fault type in a reasonable timeframe. 
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Solar Radiation Prediction Using 
Regression Methods 

Saurabh Tikariha and Yash Pal 

Abstract Solar irradiation forecasting is becoming an important technique in load 
demand management due to recent developments in modern society and the economy. 
Accurate prediction of produced solar power can aid in estimating the size of 
the system, load measurement of the system, and calculating return on invest-
ment (ROI). For estimating solar irradiance at any geographical location, various 
methods can be employed such as averaging solar irradiance. For predicting irra-
diance, different regression techniques have been applied. This paper performed 
a comparison between the regression methods such as Multiple Linear Regression 
(MLR), Random Forest Regression (RFR), and Gradient Boosting Regression (GBR) 
methods and examines the efficient method for forecasting solar irradiance. 

Keywords Multiple linear Regression (MLR) · Random Forest Regression 
(RFR) · Gradient Boosting Regression (GBR) · Solar irradiation 

1 Introduction 

According to the Central Electricity Authority of India (CEA), the total installed 
capacity of power generation is 407.8GW, and 29.43% of energy comes from renew-
able energy sources (RES such as Wind, Solar, Biomass, and small Hydro). As of 
September 2022, solar power generation is 60.81GW, i.e., 37% of total RES. Fore-
casting the output power of the solar system is required for the good operation of the 
power grid. 

When demand is at its highest in the power-generating sector, the renewable 
energy production of renewable energy takes precedence and also lowers power
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Fig. 1 Percent share of renewable sources 

quality problems. This makes the power supply more reliable. Solar energy is partic-
ularly essential compared to other renewable energy sources because it requires less 
maintenance and provides continuous electricity during bright days. But because of 
several technical challenges and the high cost of monitoring methods, solar energy has 
significant complications with solar data projection. For adequate input and output, 
the availability of solar radiation is primarily dependent on geographical shapes. The 
radiation forecasting data are utilized to estimate the generation capability of a PV 
plant at a particular location, such that demand management can be done based on 
generation capability (Fig. 1). 

The time span for forecasting in the current need (short-term forecasting) is 1– 
30 days. Intermediate-range (mid-term forecasting) is 1–12 months and lastly, long-
range (long-term forecasting) is more than a year [1]. Forecasting is planning and 
controlling an operation that requires an estimate of the demand for the product or the 
service that an organization expects to provide in the future. Independent traditional 
methods for predicting solar irradiation and power can be somewhat accurate in 
predicting solar energy output, their effectiveness may be constrained by a variety 
of factors, including seasonal fluctuations, weather changes, and cloud cover. As 
a result, to increase the precision and dependability of solar energy projections, 
hybrid forecasting systems that may incorporate various data sources and modeling 
methodologies are needed. 

Numerous researches on solar irradiation forecasting have been published. In 
Choi and Hur [2], the Bagging model is used to predict solar energy output where an 
ensemble model as a base such as random forest, XGBoost, and LGBM. In Srivastava 
et al. [3], solar radiation forecasting for the period of 1 to 6-day-ahead using M5, 
Classification and Regression tree (CART) and Random forest models. Outcomes
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from all four models were determined and the random forest model produced better 
outcomes than the CART model. In Bacher et al. [4], in order to get the best prediction 
results, this study defines weather forecasting and models such as recurrent neural 
networks, artificial neural networks, and dynamic neural networks. Performance is 
evaluated using root mean squared error, correlation, and mean absolute error. In Naik 
et al. [5], three ML regression variants, including random forest, gradient boosting, 
and adaptive boosting for training, have been used in this research. The network 
can be tested for prediction short-term forecasts of irradiation. It is determined after 
prolonged testing and training that RFR produces superior results to the others. In 
Lukhyswara et al. [6], the solar irradiation forecasting and modeling using a time 
series model approach to training dataset is done. Multiple linear regression, hybrid 
fast Fourier transform-autoregressive (FFTAR), and SVR are the techniques used 
for predicting solar irradiation. Every approach considered is subjected to parameter 
optimization in an effort to identify the model with the highest level of forecasting 
accuracy. 

In this paper, different regression algorithms are compared for a particular dataset 
and a comparison has been made based on their R-squared, RMSE, MSE, and MAE 
scores, the best suitable algorithm is found, which can be used to predict solar 
radiation forecasting, which can give optimum result (Fig. 2). 

2 Regression Methods 

Finding the relation between a dependent and an independent variable is the main 
concern of regression analysis. It aids in the prediction of continuous variables 
and uses a mapping function to convert input variables (X) into continuous output 
variables (Y), such as the prediction of solar irradiation [7, 8], to produce better 
forecasting results shown in Fig. 3.
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Fig. 3 Proposed methodology for prediction 

2.1 Multiple Linear Regression 

Simple linear regression is a straightforward relationship. A regression can success-
fully represent the link between two variables. The multiple linear regression model 
makes use of more than one independent variable and is a statistical approach used 
to examine a dataset where several independent variables have an impact on the 
dependent variable. This is frequently true when the forecasting has a more intri-
cate relationship. This method, which is used for solar forecasting, incorporates a 
variety of independent variables, including temperature, wind speed, wind direction, 
and humidity. To evaluate how well the model fits the regression line the R-squared 
value is determined by the variance of the dependent variable, which is calculated 
as the divergence from the line. Further, the detailed methodology can be obtained 
from Hirose et al. [9]. 

Y = β0 + β1 Xi1 + β2 Xi2 + β3 Xi3 · · ·  +  βk Xik (1) 

The mathematical modeling of multiple linear regression is represented in 
Eq. 1. Where Xi1, Xi2, Xi3 . . . . . .  Xik  are predictor variables and their corresponding 
coefficients β0, β1, β2, . . . βk . 

2.2 Random Forest Regression 

This method, RFR, is an ensemble-learning technique that may be applied to both 
regression and classification. But with RFR, both classification and regression trees 
are established using distinct trees. In each decision tree, this input is routed via a 
number of classification and regression decision nodes. Two alternate routes branch 
off from each node, each of which leads to a different node. An output value is tied 
to the designated inputs after the method reaches an end node. The performance 
of a single decision tree can be improved by training many regression trees with
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various topologies and then averaging their predictions. RFR involves randomly 
choosing features at each node for an additional variation of decision tree models. 
Although the structure and feature choices of individual decision trees may cause 
bias, an overall RFR-averaged decision tree considerably lowers error biasing in the 
outcome prediction. 

The RFR approach provides a completely distinct estimate validity of model inter-
pretation inside recognized machine learning-to-know methodologies. The funda-
mentals of implementing a decision tree approach such as RFR are because it incor-
porates random sampling and advanced precedence of techniques in the ensemble 
methodology, the RFR technique provides more generality and valid estimations. A 
detailed study of random forests is done in Srivastava et al. [10] and Sasirekha et al. 
[11]. 

The block diagram of random forest regression is shown in Fig. 4. Here, the 
training dataset is split into n datasets (TD1-TDn) in order to obtain n decision trees 
(DT1-DTn). A is referred to as the average value and P is termed as prediction. 

2.3 Gradient Boosting Regression 

Gradient Boosting Machine is a high-powered ensemble training approach that is 
often used in order to solve regression and classification problems. It amalgamates a 
group of weak forecasting models like decision trees in order to generate a final fore-
casting model that can make predictions very accurately and precisely. The Gradient 
Boosting Machine algorithm utilizes gradient-boosted trees in a case where the deci-
sion trees perform very low. This algorithm minimizes the loss function of the model 
with the help of the introduction of gradient descent. This gradient descent is opti-
mization process, which is of first order and its task is to find out the local minima of 
a function that is differentiable. One of the numerous implementations of Gradient 
Boosting Machine is regression and multiclass classification as it can minimize any
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type of loss function according to the requirements. In a case in order to strengthen 
the weak learners are trained on the remaining residual mistakes of the good learner, 
and the sample distribution is not affected by the GBM. An alternative way is to 
provide misclassified observations with extra weight with the help of training the 
residuals of the model. The contribution of each weak learner for the final forecasted 
datapoint is constructed on the gradient optimization technique which later on mini-
mizes the gross error of the good learner. The flexibility, accuracy, and robustness of 
noisy data are some of the features that provide GBM an edge over the other machine 
learning algorithms. A detailed study of GBR is done in Aksoy and Genc [12] and 
Singh and Singh [13]. 

The block diagram of GBR is shown in Fig. 5. Here, the training dataset is split into 
n datasets and uses a different method (M−1, M−2, M−3,…M−n) like Decision 
Tree, Random Forest, etc. The final prediction consists of the average of all the 
above-mentioned methods. 

3 Methodology 

Preparing Dataset: The dataset used here is the HI-SEAS weather station of four 
months that is obtained from Kaggle. It consists of 10 columns. The given dataset 
has nine features as input like Date-Time, Temperature, Pressure, Humidity, Wind 
direction, Wind Speed, Sunrise-Sunset Time, and the output is solar radiation. In this 
paper, different machine learning algorithms like Multiple Linear Regression (MLR), 
Random Forest Regression (RFR), and Gradient Boosting Regression (GBR) have 
been used (Table 1).

The dataset contains solar radiation and other feature inputs from September 29, 
2016 to December 01, 2016. The solar radiation data are plotted as shown in Fig. 6. 
These data have a total of 32686 data points.



Solar Radiation Prediction Using Regression Methods 341

Table 1 Feature and labels 
used in the dataset Dataset variables Units 

Solar radiation Watts/m2 

Temperature ◦F 
Wind speed m/s 

Wind direction Miles/hr 

Humidity Percentage 

Pressure Mm of Hg

Fig. 6 Solar radiation data from September 29, 2016–December 01, 2016 

Creating an accurate prediction model using machine learning techniques is based 
on the dataset, which is more correlated to the output. The dataset correlation is shown 
in Fig. 7.

The histogram displays changes in humidity, temperature, pressure, and radiation 
depending on the day of the week and the season. The figure shows that solar irra-
diance reaches its maximum between 11 a.m. and 1 p.m. when the temperature is at 
its peak. Additionally, the humidity is higher at night and in the rainy season. Also, 
pressure varies seasonally; in the summer, it is low, and in the winter, it is high as 
shown in Fig. 8.

3.1 Step of Prediction of Solar Irradiation

1. The dataset is categorized into training datasets and testing datasets. The training 
and testing datasets contain 70 and 30% of the input dataset respectively. 

2. The training dataset contains wind speed, wind direction, temperature, humidity, 
barometric pressure, sunrise, and sunset time. The input variables and output 
variable (solar radiation) data are the responsible variables. 

3. The Unix Time feature in the dataset is not relevant as it can be obtained using 
the Date and Time and because of the above-mentioned reason this feature is 
dropped. The dependency of the radiation is majorly on the time of the day
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Fig. 7 Correlation heat-map of the dataset

Fig. 8 Histogram of the dataset

which is shown in the scatter plot. In the early morning, the radiation is very low, 
which gradually increases and attains a peak around noon which again starts 
decreasing as the day passes by. The correlation of radiation with temperature is 
very high as shown by the correlation matrix.

4. The correlation values of radiation with the time of sunrise and sunset are very 
low as shown in the correlation matrix. Therefore, these features are dropped.
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Table 2 Performance comparison of different regression approaches 

METHOD R-squared MAE MSE RMSE 

MLR 0.6230 148.250 38419.51 196.00 

RFR 0.8784 39.5474 12384.42 111.28 

GBR 0.9376 31.3427 6357.31 79.73 

5. All the models are trained using the dataset. Different models are developed 
using methods such as Multiple Linear Regression, Random Forest, and Gradient 
Boosting Regression. The predicted data are evaluated with the test data by 
determining the MAE, MSE, RMSE, and R-squared for each observed regression 
model. The model having the lowest MAE, MSE, RMSE, and R-squared close 
to 1 is selected, indicating that it is the most accurate forecasting model. The 
results are shown in Table. 2. 

3.2 Evaluate Matrix 

1. Mean absolute error (MAE). The difference between the predicted value and 
the base value of solar radiation is used to calculate the absolute error value. 
Furthermore, averaging the error values for each sample in the data collection is 
done. 

MAE = 
1 

M

∑ ||yi − ŷp
|| (2) 

2. Mean square error (MSE). This is determined by averaging the square of the 
difference between the based and predicted values of solar radiation. 

MSE = 
1 

M

∑ (
yi − ŷp

)2 
(3) 

3. Root mean square error (RMSE). It simply takes the square root of MSE. 

RMSE =
/

1 

M

∑ (
yi − ŷp

)2 
(4) 

M = total sample size of the dataset. 

yi = base value of the solar radiation value. 

yp = predicted value of the solar radiation value.
4. R-squared. R-square shows how well the model fits the line and is determined 

by the variance of the dependent variable, which is calculated as the deviation
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Fig. 9 Graphical 
representation of R-squared 
of MLR, RFR, GBR 
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from the regression line.

R2 =
(
1 − 

SS  R  

SST

)
(5) 

SSR = sum of the square of residual (error). 

SST = sum of the square of the total data size. 

4 Result 

A detailed comparison of the above-mentioned algorithms is done with the results 
from Singh and Singh [14] and Nayak et al. [15]. While comparing the metrics scores 
of the above-mentioned models with the metrics scores from Singh and Singh [14], it 
is observed that all the metrics scores of the above-mentioned models are better than 
that of Singh and Singh [14]. Furthermore, comparing the models elaborated in this 
paper with the models developed in Nayak et al. [15], it is observed that the R-squared 
score of the Gradient Boost Regression models of this paper is 0.93, whereas, the 
R-squared score of the Gradient Boost Regression models used in Nayak et al. [15] 
is 0.86. From this, it can be commented that the Gradient Boost Regression model 
has high accuracy as compared to that of Nayak et al. [15]. The dataset used in Nayak 
et al. [15] is the same which is used in this paper (Fig. 9). 

The appropriate parameters are set in the models as mentioned above and different 
metrics value of each model is shown in Table 2. The output shown in Fig. 10 is 
obtained from the GBR model.
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Fig. 10 Comparison between the predicted value and test value of the GBR method 

5 Conclusion 

The analysis of solar radiation considers primarily temperature, humidity, and pres-
sure as labels. The MLR approach appears to be the least effective of the ones used 
in this paper, with an R-squared value of 0.67 and MAE is 148.250. It is clear that 
approaches having higher R-squared value such as GBR and RFR perform better 
than the rest. Analyzing the developed models furthermore, it is evident that the GBR 
model outperformed the rest. Concluding this paper, it is perceivable that regression 
methods like GBR and RFR can be utilized to predict solar radiation. 
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Forecasting of Solar Power Generation 
Using Hybrid Empirical Mode 
Decomposition and Adaptive 
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Abstract Excellent learning capabilities of Artificial Neural Network (ANN) made 
it widely explored and practiced to predict future points of a time series. Similarly, 
Fuzzy Logic (FL) has proved its capability in dealing with non-linear and complex 
models. The combination of these is not widely experimented. This paper not only 
aims to construct hybrid forecasting models using integration of Adaptive Neuro-
Fuzzy Inference System (ANFIS) and Empirical Mode Decomposition (EMD) to 
forecast solar power generation but also discovers the effects of two different types 
of fuzzy Membership Functions (MFs), i.e., G-bell and Trapezoidal membership 
functions on forecasting capability of models. All proposed models were evaluated 
using two performance measures. Based on the forecasting results obtained, it is 
observed that the hybrid EMDANFIS model is outperforming when compared with 
the original ANN and ANFIS models, individually. The empirical results indicate 
that the models with trapezoidal MF (level-3) and G-bell shaped MF (level-1) are 
better models, providing the highest level of accuracy. 
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1 Introduction 

Electricity has become a very important part of our lives today. With the growth 
of population, demand for all the resources is increasing. Conventional sources of 
power generation are limited and take a long time to regenerate hence there is a 
need to know the amount of electricity consumption and generation unit. It also 
becomes important to switch to the renewable sources of energy. Solar power has 
great potential to sustain this demand as compared to other renewable sources of 
energy. 

Some of the techniques used for short-term load forecasts are time-series analysis, 
multiple linear regression, and advanced techniques like ANFIS, Fuzzy Logic, and 
its hybrid. Most of these approaches required selection of proper system parameters 
which is not an easy task. The proposed approach is data dependent, and it utilizes 
the information from the historical dataset. 

Various time-series forecasting methods have been developed in the past out of 
which ANN models have been widely used due to their excellent learning capabilities. 
Fuzzy logic is often integrated with ANN to overcome problems of ANN’s like 
overlearning. 

Modeling of system implementing ANFIS and fuzzy inference system [1] found 
applications in several areas and turned out to be effective method in minimizing the 
forecasted output error. The spontaneous and uncertain nature of the parameters in 
solar power generation emphasizes to forecast the load for grid integrity and relia-
bility. Heng et al. [2] focus to build an Adaptive Residual Compensation algorithm to 
forecast the power with high accuracy using the residual errors. Forecasting crude oil 
and electricity prices has become a major field of research. Salim [3] describes how 
the Variational Mode Decomposition outperforms Empirical Mode Decomposition 
(EMD)-based forecasting system. Neeraj et al. [4] suggested a hybrid EMD—Att— 
LSTM model for building a sustainable power system. The data from Australian 
Energy Market Operator was used to explore the properties to evaluate the compo-
nents and reflect what trend and seasonality it contains. The multicarrier system [5] is  
built using ANFIS model to forecast and the energy flow is optimized using genetics 
algorithm taking the dynamics of the system into account. The paper [6] suggested a 
hybrid load forecasting model that combines a neural network, weighted least square 
state estimation, and an ANFIS in order to make the best use of the power gener-
ation resources that are currently available. This model overcomes several existing 
forecasting models. Wangwei et al. [7] proposed a novel hybrid model combining 
empirical mode decomposition (EMD), convolutional neural network (CNN), and 
LSTM is put forth to forecast stock prices. In Ismail [8] the decomposition of input 
data using IMF and creating appropriate ANFIS models outperformed the old models 
and came up as new approach to the forecasting of load. Further, the hybrid model 
of EMD-ANFIS was employed in the flood-prone area to depict water levels and 
provide insights to help in flood control [9].
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This work aims to develop hybrid forecasting models by integrating empirical 
mode decomposition with adaptive neuro-fuzzy inference system for forecasting 
solar power generation. 

Some past works have also used EMD for decomposing the input values, but in this 
research work, solar power generation data have been decomposed in order to train the 
ANFIS models. The most effective result obtained using hybrid EMDANFIS model 
by tuning the hyper-parameter i.e., the number of neurons, membership function and 
types of MF, and level of decomposition (EMDANFIS). The whole process of this 
work is divided into three parts, which are as follows: 

• To develop ANN, ANFIS, and EMDANFIS-based models. 
• To evaluate the forecasting performance of these models by analyzing various 

performance parameters for the forecast of solar power generation. 
• To evaluate the effect of type of membership functions, and level of decomposition 

on the performance of the proposed hybrid EMDANFIS model. 

The rest parts of this paper have been organized as: Sect. 2 covers the theoret-
ical aspects like methodology for forecasting models and data pre-processing, and 
Sect. 3 introduces the proposed framework of the hybrid forecasting models, such 
as EMDANFIS, and finally, Sects. 4 and 5 explain the results, discussions, and 
conclusions with scope for future research, respectively. 

2 Data Description/Case Study 

The training and testing data used in this report have been taken from European 
Network of Transmission System Operators for Electricity (ENTSO-E), Greece, 
Southeast Europe [10]. Dataset has hourly records from January 01, 2018 to 
December 31, 2019 with 24 entries per day. A total of 17520 entries as raw data 
are available from this dataset. Useful data fields obtained from this dataset are: 

• Solar power generated 
• Temperature 
• Direct horizontal radiation 
• Diffuse horizontal radiation 
• Date and Hour of the day 

2.1 Data Cleaning 

In process of data cleaning, firstly, the night-time records were removed from the 
data series, for solar power estimation, night-time data always have power as well as 
radiation values of zero and are therefore useless for training the model. Data entries 
between 6:00 pm to 4:00 am are removed, and 10220 entries are obtained from raw
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data for further use. In next step if any record has value that is not a number (NaN) 
and that row of record will also be removed to prevent errors in model training phase. 

2.2 Data Normalization 

Data normalization is done to give equal weightage to all values of input irrespective 
of their magnitude. It makes the values uniform and dimensionless, Specially, if 
an algorithm uses Euclidean distance, a variable with a large value can dominate 
distance measures over the other values. 

In this method, all values are scaled down between 0 and 1. These new values are 
given by: 

K = k − kmin 

kmax − kmin 
(1) 

where k is the input value, kmin and kmax refer to the minimum and maximum of the 
input value, respectively. 

2.3 Feature Selection 

In this step, important input variables are determined, which should be considered 
while training the model. This helps in reducing number of input variables, which in 
turn helps to decrease complexity and training time of model. The inputs that affect 
the output more strongly are selected and kept for further steps. As past values of 
metrological inputs must be used, these inputs (ambient temperature, diffuse radia-
tion, direct radiation) are shifted up to 24 h to generate predictor variables, and the 
variables with best correlation are selected from each input. 

By observing the correlation plot from Table 1, variables T(t-24), Df(t-1), Dr(t-24), 
and P(t-24) are chosen as past values for temperature, diffuse horizontal radiation 
and direct horizontal radiation, and solar power, respectively, for further steps.

3 Framework of Hybrid EMDANFIS Forecasting Model 

3.1 Empirical Mode Decomposition (EMD) 

A signal can be broken down into physically significant components using this 
data adaptive multi-resolution technique known as empirical mode decomposition 
(Fig. 1). By dissecting the signal into components with various levels of precision, it
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Table 1 Observed correlation plot between data fields 

Variable P(t) T(t-1) T(t-24) Df(t-1) Df(t-24) Df(t-48) Dr(t-1) Dr(t-24) P(t-24) P(t-48) 

P(t) 1.000 0.431 0.470 0.393 0.551 0.605 0.867 0.846 0.911 0.876 

T(t-1) 0.431 1.000 0.974 0.282 0.215 0.229 0.609 0.532 0.435 0.430 

T(t-24) 0.470 0.974 1.000 0.310 0.249 0.257 0.597 0.587 0.492 0.492 

Df(t-1) 0.393 0.282 0.310 1.000 0.702 0.626 0.244 0.328 0.469 0.512 

Df(t-24) 0.551 0.215 0.249 0.702 1.000 0.781 0.395 0.245 0.471 0.553 

Df(t-48) 0.605 0.229 0.257 0.626 0.781 1.000 0.461 0.403 0.551 0.471 

Dr(t-1) 0.867 0.609 0.597 0.244 0.395 0.461 1.000 0.810 0.794 0.756 

Dr(t-24) 0.846 0.532 0.587 0.328 0.245 0.403 0.810 1.000 0.924 0.844 

P(t-24) 0.911 0.435 0.492 0.469 0.471 0.551 0.794 0.924 1.000 0.911 

P(t-48) 0.876 0.430 0.492 0.512 0.553 0.471 0.756 0.844 0.911 1.000

can be utilized to evaluate non-stationary and non-linear signals. It is the oscillatory 
portion of the signal that results from the signal’s Hilbert-Huang transformation.

Intrinsic mode function (IMF) has two important characteristics: 

1. The difference in the total number of maxima and minima is at most by 1. 
2. The mean of the waveform of IMF is 0. 

Steps for IMF Extraction: 

Step 1: Find the all-local Minima and Maxima points in waveform. 

Step 2: Create an envelope of minima and maxima using the array of minima and 
maxima. To create an envelope of minima and maxima, use a cubic spline for 
interpolating the values of the minima and maxima. 

Step 3: From the envelope containing the minima and maxima, take the center value. 

Step 4: Now reduce the genuine signal’s value by the middle value of the envelope. 
On both sides of the wave, there are certain mistakes that resemble a sudden leap. This 
resulted from a mistake in the cubic spline’s interpolation. At the start and finish of the 
signal, the cubic spline interpolation deteriorates significantly. A boundary condition 
as the solution must be specified. Before creating the cubic spline, envelope of minima 
and maxima at the start and end of the signal must be determined. 

Step 5: Verify that the signal that was extracted is an IMF. 

Because the mean is so close to zero, it may be rounded to zero and ignored. An IMF 
is received since the number of Minima’s and Maxima’s likewise meets the criterion. 

Step 6: Use this IMF to lower the initial test signal. 

One IMF has been extracted till this step. EMD method must finish when the residual 
signal is monotonic, constant, or only has one extremum (just has 1 minima or



352 P. Singh et al.

Fig. 1 EMD algorithm
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maxima). Residuum is the term that is used to describe our signal after it has been 
decreased by the IMF. 

By following the above algorithm, the original time series y(t) can be decomposed 
into multiple IMF signals and a residual and can be expressed as follows: 

y(t) = 
m∑

i=1 

hi (t) + rm(t) (2) 

3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

An Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid of an artificial 
neural network and a fuzzy inference system of the Takagi–Sugeno type [11]. It
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Fig. 2 Basic architecture of ANFIS 

combines neural networks and fuzzy logic rules, allowing it to capture the benefits 
of both methods [1]. Several decisions are needed to be taken to model the fuzzy 
systems, like rule bases, proper membership functions, aggregation, and implication 
operators. Choosing decision parameters manually so that the required fuzzy system 
achieves the desired performance becomes a difficult task. The more complex the 
application, the more difficult it is to determine appropriate design parameters. On 
the other hand, the ANN has the problem of overlearning and local minima. Hence, 
these individual models are incapable to give the best possible outcomes. 

The basic architecture of ANFIS is shown in Fig. 2. The ANFIS models have 
mainly five layers of nodes [11]: 

Layer 1: Each node of this layer is indicated by a square, which shows that parameters 
in this layer are adjustable. This layer gives a membership value between 0 and 1 
after receiving input. The membership values produced are distributed in all number 
of linguistic variables for a given Fuzzy variable. It produces the output as 

O1 
i = µAi (X) for i = 1, 2, 3 (3)  

Layer 2: These layer nodes are labeled with Pie. It computes the firing strength of 
each rule, which is the minimum of corresponding values of linguistic variables. 
Values are given by 

O2 
i = µAi (X ) ∗ µBi (X ) for i = 1, 2, 3 (4)  

Layer 3: This layer computes the normalized strength of all fired rules and use the 
following formula 

O3 
i = w,

i =
wi 

(w1 + w2 + w3 · · · · · ·  +  wn) 
for i = 1, 2, 3 (5)
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Layer 4: Each node on the output of this layer ia s product of its normalized firing 
strength and a first-order polynomial and is given by 

O4 
i = w,

i × ( pi x + qi y + ri ) for i = 1, 2, 3 (6)  

Layer 5: The final output is computed in this layer by adding all inputs received from 
the previous layer. 

O5 
i = fout = 

n∑

i=0 

w,
i fi (7) 

3.3 Implementation of Hybrid EMDANFIS Network 

In this work, solar power in training dataset is decomposed into multiple IMFs. Then 
separate ANFIS models are initialized corresponding to each IMF. An additional 
parameter, number of IMFs to be extracted, is introduced in this model. Number 
of input membership functions is kept fixed in case of ANFIS models. Two ANFIS 
models were developed, one with Generalized bell MF and other with Trapezoidal 
MF. The training and testing process of the proposed hybrid EMDANFIS model is 
shown in Figs. 3 and 4. For hybrid EMDANFIS, two models were developed, with 
level of decompositions was chosen between 1 and 4, and the best was considered 
for each model. 

Input variable 

Solar power 

EMD 

IMF-1 

IMF-2 

IMF-3 

IMF-n 

Residual 

Model-1 

Model-2 

Model-3 

Model-n 

Model-r 

Parallel training 

of ANFIS 

models 

Fig. 3 Training process of hybrid EMDANFIS model
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Fig. 4 Testing process of hybrid EMDANFIS model 

Once the models have been trained for these IMFs, a separated solar output power 
is forecasted by each model for the testing data. Finally, the forecast output is recon-
structed by adding outputs of these models and this output is compared with the 
actual value of power for test data. 

Steps involved in Hybrid model forecasting are: 

• Choose type of membership function for initial fuzzy inference system (FIS) 
generation and number of IMfs to be extracted during Empirical decomposition. 

• Decompose output of training dataset into IMFs and residuals. 
• Total n + 1 ANFIS models are initialized using grid partitioning in MATLAB, 

where n is number of IMFs extracted. 
• Use decomposed output as training target, combined with metrological inputs to 

train each ANFIS model parallelly. 
• Once training is finished, Inputs of testing set are given to each of the trained 

ANFIS model, and individual forecast outputs of these models are summed to 
reconstruct the final forecast output. 

• Forecasted output is compared with solar power output of testing dataset and 
models are analyzed in terms of RMSE, MAE, nominal RMSE, and nominal 
MAE. 

• Repeat the above steps after changing type of membership function and level of 
decomposition during EMD until better results are obtained.
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4 Results and Discussion 

The solar power output is forecasted for 1 week ahead in two sets, one for duration of 
August 25–31, 2019 and other for December 25–31, 2019. Night-time data between 
06:00 pm to 4:00 am were discarded as it is unnecessary for training the models and 
increases computational complexity. 

Mean Absolute Error (MAE): 

MAE  = 
1 

n 

n∑

v=1 

|Pv − Av| (8) 

nM  AE  = 
MAE  

max − min 
(9) 

Root Mean Square Error (RMSE): 

RM  SE  =
[|||1 

n 

n∑

v=1 

(Pv − Av)2 (10) 

nRM  SE  = RM  SE  

max − min 
(11) 

where n is the testing dataset’s size, max & min are data value of actual solar power, 
Pv is the predicted value of solar power and Av is the actual solar power. Numerical 
results with the hybrid EMDANFIS model are shown in Figs. 5a–f, respectively, for 
the mentioned dates in August and December month, indicating better performance 
of hybrid models. Similarly, from Table 2, it is observed that EA-1 model with 
Generalized bell MF and level 1 of Empirical decomposition performs better in 
terms of average MAE while in case of RMSE, EA-2 model with Trapezoidal MF 
and level 3 of Empirical decomposition performs better. Other models such as ANFIS 
and ANN give less accurate forecast than these two hybrid models.

5 Conclusions 

In this research, forecasting performance of two conventional time-series forecasting 
models, i.e., ANNs and ANFIS, was developed and analyzed. The forecasting results 
obtained from these conventional models are compared with the results obtained from 
proposed hybrid models, i.e., integrated empirical mode decomposition and adaptive 
neuro-fuzzy inference system model. It is observed that the forecasting accuracy of 
the proposed hybrid models (EMD-based ANFIS) is better than conventional ANN,
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(a) 

(b) 

(c) 

Fig. 5 Actual and predicted solar power for a two tailing days, August 25–26, b two tailing days, 
August 27–28, c three tailing days, August 29–31, d two tailing days, December 25–26, e two 
tailing days, December 27–28, and f three tailing days, December 29–31
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(d) 

(e) 

(f) 

Fig. 5 (continued)
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Table 2 Forecasting efficiency of different forecasting models 

Results of forecasting models 

Date ErMs ANN ANFIS-1 ANFIS-2 EA-1 EA-2 

25–31 August MAE 52.77099 48.96406 54.84331 43.97443 49.12973 

RMSE 65.59518 65.90712 66.4653 61.6221 60.19533 

nMAE 0.029268 0.027157 0.030418 0.02439 0.027249 

nRMSE 0.036381 0.036554 0.036864 0.034178 0.033386 

25–31 December MAE 92.91436 92.21596 89.33233 85.58546 89.44086 

RMSE 149.8606 152.6904 142.2396 141.5565 138.5497 

nMAE 0.073859 0.073304 0.071011 0.068033 0.071098 

nRMSE 0.119126 0.121375 0.113068 0.112525 0.110135 

Mean nRMSE 0.077754 0.078965 0.074966 0.073351 0.071761 

nMAE 0.051564 0.05023 0.050715 0.046211 0.049173 

* ErMs = Error Measures, EA = EMDANFIS

ANFIS-1, and ANFIS-2 models, when evaluated over performance measures like 
RMSE and MAE. 
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