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can be made by formulating and solving two well-known mathematical problems,
shelter allocation problem (SAP) and traffic assignment [8]. Each problem can follow
different principles. We can categorize the models based on their principles into two
groups: the first group addresses the issue of the evacuation process considering the
user optimum or, in the game theory context, user equilibrium (UE). The second
group formulates the evacuation as a system optimal (SO) problem. They differ
mainly in their objective function. In the UE model, each traveler aims to minimize
his benefit by minimizing his own cost. However, the SO principle aims to optimize
the total benefit of all evacuees. The SO principle can be difficult to get people to
accept, especially in evacuation situations. In the shelter allocation problem, it is
also important how we formulate the shelter capacity. It can be infinite capacities
like super sink or limited capacity, which can be static or dynamically changing over
time. Besides, for the traffic assignment, the time-dependency is the most important
character. If our formulation is time-independent, we are referring to static traffic
assignment models, and otherwise, we are in the dynamic traffic assignment (DTA)
context.

In this study, we consider the system optimum for shelter allocation. We assume
that the information about the shelter’s location and capacity is not accessible to
the evacuees. Thus the authority or the system assigns the evacuees to the shelters
considering the limited capacity of the shelters that change dynamically. On the
other hand, we assume that the evacuees just need the shelter location, and they can
choose their path, and they are not going to follow the system for the route choice.
It means they want to reach their shelter as soon as possible, which is equivalent to
the user equilibrium problem based on the Wardrop first principle [22]. We consider
time-dependent traffic models in order to address Dynamic Population Evacuation
(DPE) problems.

The proposed model consists of two main components: (i) the congestion model
and (ii) the equilibrium model for evacuation. The first component corresponds
to dynamic traffic models, and we use a bidimensional traffic flow model. The
bidimensional model is based on a double approximation: the physical network is
approximated as a continuous medium, discretized into cells, and the traffic flow is
approximated as a bi-dimensional fluid, which is discretized as movements in the
cells via a particle discretization. This model represents an urban traffic network as a
2D differential movement area, which enables us to not only capture the movement
of the evacuees but also address the propagation of hazards in the network. The
2D model is well-adapted to large dense networks where traffic information is not
available everywhere and thus allows us to model the evacuation movement from
risky zones toward the shelter zones in such dense networks. The second component
captures the sequence of evacuees’ departures and their travel routes toward a shelter
zone. Regarding the departure time choice, we extend our previous work [1] on the
calculation of network equilibrium and departure via Mean Field Games (MFGs) to
the 2D traffic model. For the route choice, we formulate the problem based on recent
works that have been done for pedestrian evacuation [21] and [2]. The bidimensional
approximation of the network in [10] permits us to build a model similar to pedestrian
evacuation for traffic network evacuation.
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Brief literature review on DPE

We have done a comprehensive literature review in our previous study [9]. The results
show that few studies address traffic assignment and shelter allocation problems
together for DPE planning and all of them considered the static setting for traffic
assignment (see e.g., [15, 14, 4, 3]). Therefore, one of the challenges is to address
the complete DPE problem in the dynamic setting. In our previous study [9], we
address DPE with the agent-based dynamic simulator, and we solve SAP and DTA
using a two-stage optimization approach. Here, our goal is to address this problem
analytically for mass population evacuation.

The main idea of our methodology is to solve SAP and DTA together, meaning
that not only the DTA problem but also the SAP takes into account the congestion
dynamics for the evacuation process. Therefore, the main research challenge that is
already highlighted in the literature is to revise the shelter allocation solution based
on the DTA calculation [20]. [9] addressed a similar problem with a simulation-based
approach and optimized the shelter allocation and route choice together; however, the
departure time was given for all evacuees. In this study, we optimize both departure
time and route choice, and we aim to address the mass evacuation problem.

2 Methodology

We present first the SAP formulation for SO, then we describe the traffic dynamics
and formulate the DPE problem based on MFGs. Table 1 presents this paper’s full
list of important notations.

2.1 Shelter allocation

The SAP problem is a classic problem that is well addressed in the literature, so we
reformulate a well-known model by [5] based on p-median. We are minimizing the
total travel time considering the dynamic capacity of shelters. The travel time of this
model is updated by the DTA problem, and the output of SAP is the OD matrix that
is used for the DTA calculation. The SAP model is presented in Equations (1)-(7).

In the following formulation, the 𝛼 is fixed to the current time interval. Equation
(1) presents the objective function to minimize the total travel time of evacuees from
all origins to all chosen shelters. Constraint (2) is the conservation equation to ensure
the evacuation of all the demand from origin 𝑜. Constraint (3) prevents assigning
evacuees to shelters exceeding the capacity of the shelter (𝑐𝛼𝑠 ), considering the used
capacity at 𝛼 − 1 [17].
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Table 1 Table of notations
Symbol Definition
𝑂 Set of origin nodes, subset of set of nodes, 𝑂 ⊂ 𝑁 .
𝑆 Set of destination nodes, subset of set of nodes, 𝑆 ⊂ 𝑁 .
𝑇 Set of small time intervals.
𝐻 Total duration considered.
𝑜 Index of origin node, 𝑜 ∈ 𝑂.
𝑠 Index of destination node, 𝑠 ∈ 𝑆.
𝛼 Time interval index.
𝑦𝑠 Binary variable; it is set to 1 if shelter 𝑠 is selected; 0 otherwise.
𝑥𝑜𝑠 Number of evacuees allocated to the pair having origin o and destination s.
𝑤𝑜 Amount of demand from origin 𝑜.
𝑐𝛼
𝑠 Capacity of shelter 𝑠, limit number of evacuee allocated to shelter 𝑠 in time interval 𝛼.
𝑃 Maximum number of open shelters.
𝑥 Trip length distribution based on predefined paths
𝑡𝑑 Departure time distribution
𝑇 (𝑡𝑑 , 𝑥 ) Travel time distribution.
𝑡𝑎 Desired arrival time distribution
𝑡𝑎 Actual arrival time distribution
𝑣𝑡 Velocity of the system at time 𝑡 .
𝑐𝑡 Fraction of the total demand that traveling in the system at time 𝑡 .
𝑧 (𝑡 ) Characteristic travel distance.
𝑜𝑡 Outflow fraction of the system at time 𝑡 .
𝜑 (𝑡 , · ) Probability density function of the active trips’ remaining distances at 𝑡 .
Φ(𝑡 , 𝑥 ) Fractions of active trips with trip lengths more than 𝑥 at time 𝑡 .
𝐹 In-flow measure, the empirical distribution of the departures and routes.

min
∑︁
𝑜∈𝑂

∑︁
𝑠∈𝑆

𝑡𝛼𝑜𝑠
∗
𝑥𝑜𝑠 (1)

𝑠.𝑡.
∑︁
𝑠∈𝑆

𝑥𝑜𝑠 = 𝑤𝑜; ∀𝑜 ∈ 𝑂, (2)∑︁
𝑜∈𝑂

𝑥𝑜𝑠 ≤ 𝑐𝛼𝑠 𝑦𝑠; ∀𝑠 ∈ 𝑆, (3)∑︁
𝑠∈𝑆

𝑦𝑠 ≤ 𝑃, (4)

𝑥𝑜𝑠 ≤ 𝑤𝑜𝑦𝑠; ∀𝑜 ∈ 𝑂,∀𝑠 ∈ 𝑆, (5)
𝑥𝑜𝑠 ≥ 0; ∀𝑜 ∈ 𝑂,∀𝑠 ∈ 𝑆, (6)
𝑦𝑠 ∈ {0, 1}; ∀𝑠 ∈ 𝑆. (7)

Constraint (4) restricts the number of open shelters. 𝑃 denotes a predetermined
parameter that restricts the number of shelters that are available, inspired from [3].
Constraint (5) ensures that we do not assign evacuees to non-opened shelters. Finally,
logical variable restrictions are represented in Constraints (6) and (7). For each time
interval 𝛼, we are solving this linear formulation wherein the capacity is fixed and
changes over time intervals. The residual shelter capacity illustrates the effect of the
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users’ arrival at shelters. This capacity is updated ∀𝑠 ∈ 𝑆, and it is used afterward in
the next time interval as follows:

𝑐𝛼𝑠 = 𝑐𝛼−1
𝑠 − ∑

𝑜∈𝑂
𝑥𝑜𝑠 𝛼 ≥ 1

𝑐1
𝑠 = 𝑐0

𝑠 −
∑
𝑜∈𝑂

𝑥𝑜𝑠
(8)

where 𝑐0 denotes the initial capacity. Note that the SAP model is an NP-hard problem
[16]. Recall that the solution of the SAP is the OD matrix needed for the DTA model.

2.2 Dynamic traffic assignment

In the DTA formulation, the main goal is to capture the traffic dynamics during
the evacuation. In the large-scale problem, in terms of the number of evacuees
and the size of the network, macroscopic models are efficient in addressing the
congestion dynamics. Here we deploy a dynamic bidimensional traffic model (known
as the 2D model). The main advantage is that we can represent complex networks
with heterogenous characteristics on both sides, supply and demand. The second
advantage is that they can be calibrated easily based on existing data collectors. The
idea behind the 2D model is to cluster the network into undifferentiated movement
cells and assume that the traveler in each cell moves with the mean speed of the cell
that depends on the cell characteristics and the accumulation (in other words, supply
and demand) [13]. These features permit us to represent large-scale test cases as have
done before in the literature for purposes other than evacuation, e.g., Paris [19, 18],
San Francisco [6, 7]. Here we first present the idea behind the mathematical model
that we have built. Then we formulate the MFGs-based system of equations.

The first step for the 2D model is to cluster the network into multiple cells. Here,
we used MODUS zoning approach, which is basically using the information of the
4-step model to cluster the network based on discrete choice theory [11]. Note that
the shape of each zone can differ from the others, and normally, we have a unique
shape for each cell. But for simplicity of the model presentation, we used a pentagon
to illustrate our model (Figure 1).

The cell-based model aims to hold the conservation equations for the density
moving between cells. To keep track of the shelter in the calculation of the density,
we disaggregate the density by shelters from the beginning and aggregate globally
to check the conservation equations. But the most important part is that the lane
capacity 𝐿 between cells is defined. We define this parameter based on the real
traffic network by accumulating the capacity of all roads at the border between two
cells for both directions. For example, Figure 1 shows all the border roads that leave
the green cell. To capture the dynamics of the system, we formulate the dynamics at
the border of cells and inside each cell. For the flow between cells, we carried out the
calculation of the speed based on the fundamental diagram of each cell, and then the
interflows can be deduced as the minimum of the origin cell outflow and the inflow
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Fig. 1 Global cell dynamics: [Left] interflows, [right] intra-flows - based on [10]

of the target cell. Here we can also decompose the flow by destination to keep track
of the distribution of evacuees over shelters. For the calculation of intra-flows inside
each cell, we consider the heterogeneity of cell characteristics. We address isotropic
and anisotropic cells. For more details, please refer to [10]. The crucial point here is
where we can define our assignment variables.

We locate our assignment variables inside the cells meaning that the flow is
propagating toward the next cell when it comes into the cell. To calculate the travel
time inside the cell, we need to distinguish the flows based on their target cell
(next cell) by the lane capacity, and for that, we have to solve an offline min-cut
max-flow problem for each cell. The right pentagon in Figure 1 depicts an example
of the solution for our min-cut max-flow problem. The demand and supply side
can be calculated by the assignment variable that distributes the inflows. Flows
yield velocities at cell boundaries and inside cells. From these velocities we deduce
travel times. Based on these calculations, we can formulate and characterize our
equilibrium model. Recall that the objective is to calculate the UE.

The assignment model should assign the flows to departure time intervals and
the paths toward shelters. To formulate and solve the UE problem, we need to con-
sider all evacuees’ objectives together, which is equivalent to solving time-dependent
dynamic programming, including the fact that the complexity of the problem expo-
nentially increases when the number of evacuees is increasing in the system. These
characteristics lead us to use Mean field games theory.

The MFG theory, introduced by [12] proposes to exploit the smoothing effect of
the large numbers on each player instead of using a large number of coupled equations
like classical game theory. Therefore mean-field games restate game theory as an
interaction of each individual with the mass of the others. Note that the motion of the
mass is the result of what each evacuee does. From the mathematical point of view,
it couples two equations Hamilton–Jacobi–Bellman (HJB) equation to capture the
reaction of each evacuee to the mass and the Fokker-Planck-Kolmogorov equation
to consider the mass dynamics. In our case, the mass is traffic congestion, and the
control is departure time and path choice of the evacuees. We define a new cost
function inspired by 𝛼-𝛽-𝛾 scheduling preferences.
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𝐽 (𝑡𝑑; 𝑥, 𝑡𝑎; 𝐹) = 𝛼𝑇 (𝑡𝑑 , 𝑥) + 𝛽
(
𝑡𝑎 − 𝑡𝑑 − 𝑇 (𝑡𝑑 , 𝑥)

)
+ + 𝛾

(
𝑡𝑑 + 𝑇 (𝑡𝑑 , 𝑥) − 𝑡𝑎

)
+. (9)

We determine the desired arrival time of an evacuee based on its origin, and it
is equal to the arrival time of a virtual evacuee who departs at the beginning of the
evacuation and reaches the closest shelter (by the shortest path) based on free flow
speed. It means all evacuees from the same origin have the same desired arrival
time. Thus, the objective function includes the travel time and the cost of lateness
for evacuee arrival.

Let us define the optimization problem for the Mean-field equilibrium, which
consists of minimizing the cost for every player with respect to the mass calculated
by the empirical distribution of evacuees’ departure time and path choices denoted
by 𝐹. We have proved the existence of the epsilon equilibrium in this setting based
on [1]. As a result, the following MFG system equation is derived for continuous
setting (10)-(16). The notations are described in Table 1 The equilibrium calculation
process is derived based on fixed point calculation methods. To find the equilibrium,
we have adapted an exact algorithm based on our previous study on the morning
commute problem, wherein we proved the convergence of the algorithm [1].



𝛼
𝛼+𝜂 + 1𝑡𝑎>𝑡𝑎

(1 − 𝛼
𝛼+𝜂

) ≤ 𝑣𝑡𝑑
𝑣𝑡𝑎

≤ 1 + 1𝑡𝑎<𝑡𝑎
( 𝛼
𝛼+𝜂 − 1)

with solution 𝑡𝑑 = 𝐷 (𝑡𝑎, 𝑥),

𝑒(𝐷 (𝑡𝑎, 𝑥), 𝑥, 𝑡𝑎) = 𝑚(𝑑𝑥,𝑑𝑡𝑎 )
𝜕𝑡𝐷 (𝑡𝑎 ,𝑥 ) ,

𝑓 (𝐷 (𝑡𝑎, 𝑥), 𝑥) =
∫
T𝑎

𝑒(𝐷 (𝑡𝑎, 𝑥), 𝑥, 𝑡𝑎)𝑑𝑡𝑎, 𝐹 = 𝑓 (𝑡𝑑 , 𝑥)𝑑𝑡𝑑𝑑𝑥,

𝑧(𝑡) =
∫ 𝑡

0 𝑉
(
𝐹 (𝑆𝑠 (𝑧) ) )𝑑𝑠,

𝑆𝑡 (𝑧) = {(𝜏, 𝜉) ��𝜏 ∈ [0, 𝑡] ∩ T𝑑 , 𝜉 ∈ (𝑧(𝑡) − 𝑧(𝜏),∞) ∩ X}
,

𝑇 (𝑡𝑑 , 𝑥) = 𝑧−1 (𝑥 + 𝑧(𝑡𝑑) ) − 𝑡𝑑 ,

𝐹 ∈ P𝑚,𝐺 .

(10)

(11)

(12)

(13)
(14)
(15)
(16)

3 Conclusion and future work

This study proposed a mathematical framework for the DPE problem which is able to
address mass evacuation in a large-scale network. We aim to evaluate the performance
of our methodology on the large-scale numerical test case with evacuation KPIs
such as clearance time and benchmark our model with other evacuation models. In
addition, we can discretize this continuous model by particle discretization approach
to address the agent-based setting.
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