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Abstract This paper presents a mechanism for using Machine Learning (ML)
methods to extract the information efficiently from the input data collected in the
field for predicting crash severity predictions. The output from the EVT engine
subsequently can be used for approximately predicting traffic crashes. In our study,we
use Principal Component Analysis (PCA) and Multidimensional Scaling techniques
to obtain reduced dimensionality of the information obtained frommultiple variables.
Logisitic and Poisson regressions are used on the reduced number of variables which
are the principal components, for crash severity predictions.

1 Introduction

There are many traffic Surrogate Safety Measures (SSM) that have been used in
the past ([Arun et al.(2021)Arun, Haque, Bhaskar, Washington, and Sayed]), such
as Time to Crash (TTC) and its various modifications namely Time exposed time
to collision (TET) and Time integrated time to collision (TIT), Post-Encroachment
Time (PET), delta-V (∆V), relative speeds, or accelerations, etc. These SSMs have
been used in the models for prediction of traffic crashes as well as their severities.

Since there are multiple SSMs, it makes sense to reduce the dimensionality of this
data, and then use the least number of variables with most information for further
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processing such as predicting crashes using extreme value theory or for crash severity
prediction.

In our study, we use Principal Component Analysis (PCA) and Multidimensional
Scaling techniques for dimensionality reduction.

2 Surrogate Safety Measures

The following are some of the surrogate safety measures that have been proposed
and used.

Time Based:
Time to Collision (TTC): Time to collision (TTC) is a classic original SSM proposed
in a thesis [Hayward(1971)] with the formula for vehicle to vehicle collision, and
vehicle to fixed obstacle collision given respectively by

TTC(t) =
x1(t) − x2(t) − `
v2(t) − v1(t)

, and TTC(t) =
x2(t) − x1(t)
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Fig. 1: TTC: Vehicle-Vehicle, and Vehicle-Obstacle

Modified Time to Collision (MTTC): A modified version of TTC is called MTTC
(Modified TTC) that uses deceleration values and current speed values to assess
TTC ([Ozbay et al.(2008)Ozbay, Yang, Bartin, and Mudigonda]).

As TTC is a value obtained at a given instant of time, it can be used to evaluate
the safety level of a vehicle trajectory over a given time period. Three values that
provide such an estimate are TET (Time Exposed TTC), TIT (Time Integrated TTC),
and TTCm (Minimum TTC) ([Minderhoud and Bovy(2001)]).

TET which measures the time the vehicle is below a threshold TTC value is given
byTET =

∫ t f

t0
1(TTC∗−TTC(t))dt, whereTTC∗ is the thresholdTTCvalue, t0 and t f

are initial time and the final time on the vehicle trajectory, and the1(x) is the indicator
function. TIT which measures the integral of the TTC function when the TTC value
is below a threshold TTC value is given by T IT =

∫ t f

t0
TTC(t)1(TTC∗ −TTC(t))dt.
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Finally, TTCm measures the minimum value of the TTC over a time period in a
block which is between the values to and t f , andTTCm = mint∈(to,t f ) TTC(t),

Post Encroachment Time (PET): PET is the difference in time between when a
vehicle occupies a spot and the following vehicle then occupies the same spot, and
hence is given by PET = t2 − t1.

(a) Time t1 (b) Time t2 (c) Intersection:t1 (d) Time t2

Fig. 2: PET

Decelertion Based:
Deceleration Rate to Avoid the Crash (DRAC): The minimum deceleration needed
to avoid a crash ([Cooper and Ferguson(1976)]) between vehicles can be computed
by DRAC(t) = [v2

2(t) − v2
1(t)]/[2(x1(t) − x2(t) − `)], and between a vehicle and a

stationary obstacle as DRAC(t) = v2
1(t)/[2x1(t)].

As DRAC is an instantaneous value it can also be integrated over time. We
propose three measures for this extending the time based versions. Time Exposed
DRAC (TED) is given by TED =

∫ t f

t0
1(TT D(t)−TT D∗)dt, Time Integrated DRAC

(TID) is given by T ID =
∫ t f

t0
TT D(t)1(TT D(t) − TT D∗)dt, whereas, Minimum

DRAC (DRACm) is given by DRACm = mint∈(to,t f ) DRAC(t).
Energy Based:

DeltaV Method uses the masses of the vehicles and their change in speeds during
collision to assess the severity of a potential collision to develop a severity index.
The details also depend on the angle of collision as well ([Shelby et al.(2011)]). The
method depends on the calculation of ∆v1 = [m2(v2 − v1)]/(m1 + m2), and ∆v2 =
[m1(v2 − v1)]/(m1 +m2), where m indicates mass, and the v terms indicate speeds as
before. Crash index (CAI) [Ozbay et al.(2008)Ozbay, Yang, Bartin, and Mudigonda]
uses kinetic energy concept without using DeltaV to develop a crash severity index.

3 Dimensionality Reduction

Weuse twomethods from themultivariate analysis andMachine Learning techniques
for reducing the dimension of the input SSM data. The two methods are Principal
Component Analysis (PCA) and Multidimensional Scaling (MDS).

Principal Component Analysis (PCA):
PCA involves the rotation of axes in the input n-dimensional space of variables
x1, x2, · · · , xn such that the new variables z1, z2, · · · , zn are such that they ac-
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count for maximum variation in the data in the descending order ([Jolliffe(2002),
Everitt and Hothorn(2011)]). We find variable z1 = α1x1+α2x2+ · · ·+αnxn to have
maximum variance while satisfying α′α = 1. Formally, the problem to solve is Max-
imize Variance (α′x) = α′Σα, where α′α = 1. Using Lagrange multiplier technique,
the problem can be reduced to Maximize α′Σα − λ(α′α − 1). Differentiating with
respect to α yields Σα = λα.

Hence, PCA is an eigenvalue eigenvector problem for the covariance matrix Σ of
the original data. Notice that α′Σα = λα′α = λ. The eigenvalue gives the variance.
The eigenvector corresponding to the eigenvalue with the largest magnitude is the
first principal component, followed by the next highest etc. We can create dimension
reduction by choosing only those k eigenvectors that correspond to the variance
that accounts for more than some threshold value of overall variance. The criterion
used to measure variability by dimension reduction from n to k given a threshold
value θ can be based on Euclidean measure as argmink(

∑k
i=1 λ

2
i )/(

∑n
i=1 λ

2
i ), given

(
∑k

i=1 λ
2
i )/(

∑n
i=1 λ

2
i ) ≥ θ.

Multidimensional Scaling (MDS):
Multidimensional scaling induces dimension reduction ([Everitt and Hothorn(2011),
Härdle and Simar(2019)]) where the analysis starts with a given distance matrix
D, which in turn may be constructed from a similarity matrix. The relationship
between the distance matrix terms and the data variable terms is given by di j =√
(xi − xj)(xi − xj)′.
An innerproduct semi-positive definite matrix M is used for dimensionality re-

duction, where B = x′x. Once, B is obtained, we solve the eigenvalue-eigenvector
problem Bα = λα, and then use Euclidean measure for dimension reduction.

4 Extreme Value Theory (EVT)

The application of extreme value theory for crash prediction works by building an
extreme value distribution function by estimating its parameters using data available
for traffic conflicts, such as the values of PET within some time blocks. Once this
distribution is built, then we can estimate the probability of a crash by checking the
probability of PET ≤ 0 from that distribution or more accurately for a negated PET,
−PET ≥ 0 as that corresponds to a crash ([Tarko(2019), Songchitruksa(2004)]).

There are two classes of distributions that are used for crash predictions us-
ing SSMs ([Zheng et al.(2014)Zheng, Ismail, and Meng]). They are Block Maxima
(BM) and Peak Over Threshold (POT). In block maxima the generalized extreme
value distribution G(z) is used which is given by

G(z) = exp
{
−

[
1 + ξ

( z − µ
σ

)]−1/ξ
}
,

{
z : 1 + ξ

( z − µ
σ

)
> 0

}
−∞ < µ < ∞, σ > 0, and −∞ < ξ < ∞

(2)
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and for peak over threshold, the distribution turns out to be a generalized Pareto
distribution given by G(z) = 1 − [1 − (ξz/σ)]−1/ξ .

5 Logistic and Poisson Regression for Severity Predictions

Both the logistic and poisson regression models are useful for predicting the crash
severity ratings as the prediction variable has a categorical type value.

Logistic Regression:
Depending on a collection of independent variables, logistic regression calculates
the likelihood of an event happening. A logistic function is used as the log odds or
the natural logarithm of odds, and it is expressed by p(X) = eβ0+β1X1/(1+ eβ0+β1X1 ).

Poisson Regression:
In the Poisson regression model for observation i can be modelled as P(Yi =
yi |Xi, β) = e− exp{Xiβ } exp{Xiβ}

yi /yi!.

6 Application to Field Data

In this section, we discuss the process of collecting video data from the roads and
then process it using DataFromSky (DFS) software to analyze the trajectories of the
vehicles and classify the crash severity ratings by human observer. We also discuss
howwe used two dimensionality methods: Principal Component Analysis andMulti-
dimensional scaling to convert the high-dimensional dataset into low-dimensional
dataset. Finally, we applied logistic and poisson regression models to predict the
crash severity ratings on the lower-dimensional dataset.

Video data was collected using drones and also by attaching cameras to high
altitude infrastructure locations. The processed video was used for extracting useful
data such as extraction of indicators like PET, TTC, TIT, TET, etc.

The dataset we created contains seven independent variables: First Vehicle Type
(FVT), Second Vehicle Type (SVT), Time Exposed TTC (TET), Time Integrated
TTC (TIT), TTCMinimum (TTCM), delta-V (∆-V), and Conflict Type (CT) and one
dependent variable that is the crash severity Ratings. In total, we put 493 observations
in the dataset, and a glimpse of it is shown in table 3a. Some of the variables in
the dataset hold numerical values and some of them hold categorical values. To find
out the correlation among the variables, we first convert the categorical ones into
numerical values. If we look at the Pearson Correlation matrix among the variables
of the dataset shown in figure 3b, we can see that the dependent variable Ratings has
some correlation with most of the independent variables.

PCA:
We fed all the independent variables into the PCA model and in return, it provided
us with the seven principal components. The percentage variance of the seven com-
ponents is shown in figure 4a. From the percentage variance of the PCs, we can see
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FVT SVT TET TIT TTCM ∆V CT Ratings

Car Car 0.37 2.38 336 25.6 Rear-end 1
Motorcycle Car 0.77 4.62 769 57.6 Crossing 1

...
...

...
...

...
...

...
...

Bus Car 1.1 5.55 3219 57.1 Rear-end 0

(a) Dataset before Dimensionality Reduction (b) Pearson Correlation of the Dataset

Fig. 3: Dataset

that the first two PCs capture 55.3 percentage data of the whole dataset. So, we chose
PC1 and PC2 as the new independent variables of the lower dimensional dataset.
We construct the new lower-dimensional dataset with two independent variables and
one dependent variable and visualize the data samples in figure 4b.
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Fig. 4: PCA Results

We applied logistic regression andPoisson regression to the new lower-dimensional
dataset. At first, we split the dataset as a ratio of 70 and 30. Among the 493 total
observations, 70 % of the data, that is 346 observations are put into the training set
and the rest 147 observations which account for 30 % of the dataset are put into the
testing set. The accuracy of the logistic regression model accounted for 69.36 % for
the training and 78.91 % for the testing dataset, while Poisson regression achieved
69.07 % and 76.87 % on the training and testing dataset, respectively. The accuracy
results of the prediction data depict that both the trained logistic and Poisson re-
gression models are neither overfitting nor underfitting. And on the testing dataset,
both the models perform well by predicting nearly 80 % of the crash severity ratings
correctly.

MDS:
In MDS, we utilized the average of the absolute value of the log fold changes
between the observations or rows of the dataset to create the similarity matrix. We
first calculates the log2 values for all the samples in the dataset. Then, we calculated

P. Kachroo et al.460



Table 1: Prediction Results of Logistic and Poisson Regression on PCA Data

Prediction Results

Logistic Regression Poisson Regression

Training Testing Training Testing

Actual\Prediction 0 1 0 1 0 1 0 1

0 153 42 75 12 165 30 79 8

1 64 87 19 41 77 74 26 34

Accuracy(%) 69.36 78.91 69.07 76.87

the average difference between two observations and take the absolute value to fill out
the similarity matrix. Once we formed the similarity matrix, we used the cmdscale
function to apply the MDS. As we used the log2 values for creating the data matrix,
we found more than seven MDSs, but to keep the figures simpler, we plot the first
ten MDSs in figure 5a. The first two MDSs account for 71.6 % of the variation in
the dataset.
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Fig. 5: MDS Results

Using the first two MDSs and the Ratings variable, we created the new lower-
dimensional dataset, which is visualized in figure 5b. We see that MDS can distin-
guish between the data samples more accurately than PCA. We can see from table 2
that the accuracy on the training set is improved by around 5.5% and 3% for logistic
and poisson regressions, respectively. Results on the testing dataset remained around
1% in the prediction results. Overall, logistic regression performs well over the
poisson regression on the lower-dimension dataset obtained from the MDS analysis.
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Table 2: Prediction Results of Logistic and Poisson Regression on MDS Data

Prediction Results

Logistic Regression Poisson Regression

Training Testing Training Testing

Actual\Prediction 0 1 0 1 0 1 0 1

0 154 41 71 16 168 27 75 12

1 46 105 13 46 70 81 25 35

Accuracy(%) 74.85 80.27 71.96 74.82

7 Conclusions

This paper proposed a method for data compression for SSms into a low dimen-
sional space. Logistic and Poisson regression were proposed for estimating collision
severity. Finally, the technique was applied to a collected field data and the results
presented.
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