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Abstract. Running red lights is a serious road safety problem worldwide, which 

often leads to severe injuries and fatalities. Most recent works focus on identify-

ing red-light-running behavior through surveillance cameras for punishment of 

violations. A few works predict the red-light-running behavior of drivers at in-

tersections with Support Vector Machines (SVM) method. But they pay little at-

tention to non-motor vehicles and the accuracy needs to be further improved. To 

address this problem, we conduct an observational experiment and construct a 

trajectory dataset (RedRun dataset) with the software Petrack. We also propose 

an Environment-Aware Red-light-running and Trajectory prediction Network 

(EA-RTN). It predicts the trajectories and red-light-running behavior of individ-

uals (i.e. pedestrians, bicycles, electric vehicles, tricycles and cars) at T-junctions 

to help road users judge others’ movement in advance. Specifically, EA-RTN 

consists of two modules: one is a fully connected neural network (FCNet), which 

uses two hidden layers to predict whether a road user will run a red light. The 

other is a two-layer long short-term memory neural network. It predicts the tra-

jectories of road users in the next 2 seconds and then assists drivers to plan ahead. 

The losses of these two tasks are combined to update the weights for realizing 

the multi-task learning. To evaluate our model, experiments are conducted on 

RedRun dataset. The results show that our approach predicts red-light-running 

behavior of road users more accurately. The accuracy is about 10% higher than 

SVM method. 
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1 Introduction 

The red-light-running behavior of road users is the main cause of traffic accidents, 

which seriously affects people's life and property safety. Although traffic lights have 

been set up at many intersections, and drivers who run red lights are punished through 

monitoring, they are mainly for motor vehicle violations. The behavior of non-motor 

vehicles running red lights is still not uncommon[1]. It is worth noting that predicting 

the trajectories of other road users and judging whether they will run a red light is very 

important and helpful in preventing traffic accidents. 

Some scholars use deep learning methods to judge whether the vehicle runs a red 

light. They generally identify the vehicle’s position and the interest area, like stop line, 
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in the surveillance video[2]. If there is an intersection between these two positions, the 

vehicle will be considered to run a red light. However, they cannot make a prediction 

for red-light-running. A few scholars use support vector machine method[3] to make 

prediction, but the accuracy still needs to be improved. In this paper, firstly, we analyze 

the road users’ behavioral characteristics in an observation experiment conducted at a 

T-junction. On this basis, we propose a data-driven model named EA-RTN to predict 

red-light-running behavior and the trajectories of road users. 

Our model consists of two modules, as shown in Fig. 1, a two-layer fully connected 

neural network (FCNet) is proposed for predicting whether the road user will run a red 

light. The LSTM module is used for predicting the trajectories in the future two seconds 

with only the historical trajectories of 0.8 seconds as the input. To evaluate the perfor-

mance of our approach, we conduct the experiment on the RedRun dataset. The results 

show that our model surpasses the Support Vector Machines (SVM) method and pre-

dicts the red-light-running behaviour more accurately. For the subtask of trajectory pre-

diction, the average position error of each point for our method is 0.6 meter, which can 

assist drivers with planning ahead and avoid possible accidents. 

The rest of this article is structured as follows: the observational experiment scenario 

and RedRun dataset construction are described in Section 2. Based on the analysis of 

the experiment, the EA-RTN model is proposed in Section 3. In Section 4, we evaluate 

our model EA-RTN on the RedRun dataset and compare the results with SVM. In Sec-

tion 5, we summarize this work. 

 

Fig. 1. The pipeline of our proposed RA-RTN. 

2 Dataset 

Due to the lack of trajectory data of road users at T-junctions, especially for crowded 

scenes such as school gates, we perform an observation experiment at the entrance of a 

university to analyze their motion characteristics. As shown in Fig. 2, the scenario is 

composed of a main road and a branch road, where the road widths are 15 meters and 

10 meters, respectively. Traffic lights have been installed on the main road. The time 

interval when the traffic light is green, that is, the time for students to cross the main 

road, is between 20 seconds and 40 seconds. To avoid contingencies in the experimental 

phenomenon, we recorded 19 complete intervals in which the traffic light was green. 

There are 460 road users are observed and recorded in our observation. They include 

the Heterogeneous pedestrians (such as students, elders and children), bicycles, electric 

bicycles, electric tricycles, cars and buses. The individuals in the observation were not 

informed of the purpose of the experiment in advance.  

S. Zhang et al.424



 

                   

Fig. 2. The snapshot and schematic diagram of the observational experiment. 

To reduce the distortion produced by the camera and get the motion information of 

each road user, we use the software Petrack to extract the experimental trajectories from 

our video recordings. To reduce the periodic interference caused by the head shaking, 

we use the average filtering method[4] to smooth the trajectory. The filter window size 

is set to 10 frames. Fig.3 shows the trajectories before and after filtering. 

                     

Fig. 3. Trajectories of road users. Left: raw trajectories extracted from the Petrack. Right: 

smooth trajectories obtained by the mean filter method. 

In order to investigate the movement characteristics of red light runners, we counted 

the types and corresponding proportions of red light runners. As shown in Fig.4, 9.4% 

of road users have red-light-running behavior. Among them, 86% of red-light runners 

are electric bicycle users, 12% are electric tricycle users and 2% are pedestrians. This 

is the same as the findings of [5]. 

 

Fig. 4. A pie chart of the types of road users who run a red light. 

To minimize the impact of trajectory error on red light running recognition, we select 

the position change over a period of time and the overall direction angle during this 

period for analysis. The time interval is set to 20 frames (0.8 seconds). We define that 

the y-axis is the same as the direction perpendicular to the main road. And the x-axis is 

the direction along the main road. As shown in Fig.5, these three features have different 

distribution on the illegal samples and legal samples. Here the illegal samples mean the 
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road users who run red lights. Besides, we can observe that these three features of legal 

samples have more discrete values than those of illegal samples. The illegal samples 

have a larger offset in the x-axis direction than that in the y-axis. The heading angle 

between the time interval is measured with the feature  
∆𝑦

∆𝑥
. For the illegal samples, the 

heading angle is closer to zero degrees. 

 

Fig. 5. Distribution of ∆x, ∆y, and 
∆𝑦

∆𝑥
 for illegal and legal samples. 

To verify and measure the difference between illegal and legal samples, we per-

formed permutation tests for each feature. We construct the test statistic as the differ-

ence between the means of the illegal and legal samples for each feature. Our null hy-

pothesis H0 is that whether the sample is illegal or not has no effect on the distribution 

of features. The results are shown in Fig.6. The blue histogram is the distribution of the 

tests’ results. The red dotted line is the result obtained in our observation. This shows 

that the values of these three features rarely occur under the null hypothesis H0. The P 

values for each feature are 0.0, 0.0 and 0.037, which are all smaller than 0.05, indicating 

rejection of the null hypothesis H0. 

 

Fig. 6. The results of permutation test for ∆x, ∆y, and 
∆𝑦

∆𝑥
. 

3 Model 

In this paper, we propose an environment-aware red-light-running and trajectory pre-

diction network (EA-RTN). As shown in Fig.7, it consists of two modules: LSTM and 

FCNet. LSTM outputs the trajectories predicted in the future two seconds. FCNet out-

puts the probability of a road user running a red light. The combination of these two 

modules enables a multi-task learning. 

S. Zhang et al.426



3.1 LSTM 

Motivated by the long short-term neural network (LSTM) which is capable of convey-

ing and expressing information in long-term sequences effectively[6], we propose to 

use the combination of fully connected neural network (FC) and LSTM to learn the 

mapping from the historical trajectories to future trajectories. The input is the historical 

trajectories of 20 frames (0.8 seconds). In this module, the components of the trajectory 

on the x-axis and y-axis are learned separately. FC only has one layer. For the compo-

nents on the x-axis, FCfirst extracts 64 features from the input for each moment. Then 

these features are put into a two-layer LSTM to learn the time dependence. After that, 

average pooling is performed to obtain a 128-dimensional feature vector, which is fed 

into a fully connected neural network to predict the position x in the next 50 frames (2 

seconds). The same learning process is also used for the components on the y-axis. The 

predicted x and y coordinates are finally combined to get the trajectory in the future 

two seconds. 

In this module, the input parameter is 

 {𝑥𝑖 , 𝑦𝑖,i = 1,2, … ,20} (1) 

The output parameter is 

 {𝑥𝑗 , 𝑦𝑗,j = 1,2, … ,50} (2) 

In order to calculate the error between predicted trajectories and the target values, 

we use mean squared error (MSELoss) as the loss function shown below 

 MSELoss(o, t) =
1

𝑛
∑ (t − o)2𝑛
𝑗=1  (3) 

Where, n is the total number of training samples. o is the predicted position (𝑥𝑗 , 𝑦𝑗,) 

from LSTM. t is the corresponding target position. 

 

Fig. 7. The structure of EA-RTN. The plus sign indicates the feature fusion operation. 

3.2 FCNet 

Based on the analysis of the observational data, we found that the distributions of the 

features  ∆x, ∆y, and 
∆𝑦

∆𝑥
 are all statistically different on the illegal and legal samples. 

Therefore, it is possible to comprehensively judge the three features of the sample to 
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predict whether it will run a red light. In this module, a fully connected neural network 

(FCNet) is used to achieve this goal. 

The architecture of FCNet which has four layers is shown in Fig.8. The input param-

eters are 

 {∆x, ∆y,
∆𝑦

∆𝑥
} (4) 

Where, for every sample, ∆x, ∆y and 
∆𝑦

∆𝑥
  all contain only one numeric value. 

Whether the sample runs a red light is the target output. It only has two possible 

values: 0 or 1. The input layer, two hidden layers and output layer contain 3 neurons, 2 

neurons and 1 neuron, respectively. In the FCNet, all hidden layers are followed by a 

rectified linear unit (ReLU) activation function. For the output layer, the sigmoid func-

tion is used to make its result between 0 and 1. If the output is larger than 0.5, the model 

predicts that the road user will run a red light.  

In this module, we use binary cross entropy loss (BCELoss) as the loss function: 

 BCELoss(p, t) = −
1

𝑛
∑ (𝑡𝑖 × log(𝑝𝑖) + (1 − 𝑡𝑖) × log(1 − 𝑝𝑖))
𝑛
𝑖=1  (5) 

Where, n is the total number of training samples. 𝑡𝑖 is the target category of the ith 

sample. 𝑝𝑖  is the predicted probability of the ith sample belonging to the target class. 

 

Fig. 8. The architecture of FCNet. Where X is the input vector. Θ is a set of parameters in the 

FCNet. z is the output of every layer. a is the result after activation. 

3.3 Implementation details 

To realize the multi-task learning of red-light-running prediction and trajectory predic-

tion, we add up the losses of these two tasks and calculate it as the multi-task loss. The 

backpropagation algorithm is applied to train the EA-RTN. Adam is used to reduce the 

loss by optimizing the weights of our network. The learning rate is 0.001 at the begin-

ning and then decays at the time of 0.999 every 25 epochs. 

Considering the small sample size of the RedRun dataset, we adopt five-fold cross-

validation method to train and verify our network. The samples are randomly divided 

into two parts: training-validation sets (account for 85%) and testing sets (account for 

5%). These two datasets are independent with each other. In the experiments, we train 

a total of 500 epochs. The validation loss is used to choose the best epoch. 
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4 Experiments and results 

To evaluate the performance of EA-RTN, we conduct the experiments on the RedRun 

dataset and compare the results of red-light-running prediction with support vector ma-

chine (SVM) method. The linear kernel is chosen as the kernel function of SVM. The 

numbers of training-validation samples and testing samples are 440 and 20, respec-

tively. We define the completion of red-light-running behavior as the road user crossing 

the stop line opposite the intersection on the road when the traffic light is red. 

4.1 Results 

We visualize the confusion matrices of our model and SVM in Fig.9. We can observe 

that our model predicts the red light running individuals more accurately than SVM.  

                 

Fig. 9. The heatmap of confusion matrix for our model and SVM method. Left: EA-RTN. 

Right: SVM method. 

We also calculate the accuracy and recall of the predictions in Table 1. The accuracy 

and recall for EA-RTN both reach 100%, which outperforms the results of SVM. We 

consider that this may be related to the simplicity of the scene and the small sample 

size, making it easy to learn the movement characteristics of red light runners. The 

performance of EA-RTN still needs to be evaluated on more datasets and scenarios. 

Table 1. Quantitative Results of Network Performance Evaluation: 

Model Accuracy Recall 

SVM 90% 0% 

EA-RTN 100% 100% 
To quantitatively evaluate the performance of EA-RTN on the trajectory prediction 

task, we calculated the average value of the position error for each point on the trajec-

tory. The formula is as follows: 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑟𝑟𝑜𝑟 = 
1

𝑁
∑ (

1

𝑛
∑ √(𝑥𝑖 − �̂�𝑖)

2 + (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 )𝑁
𝑗=1  (6) 

Where, 𝑥𝑖 , 𝑦𝑖  , �̂�𝑖 and �̂�𝑖 are coordinates of each point on the true trajectories and 

the predicted trajectories. N is the number of test samples. n is the number of points on 

each trajectory. 
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 On the test set, the error of EA-RTN is 0.6 m, which means that our model predicts 

the trajectories accurately and can help drivers make decisions in advance. 

5 Conclusion 

In this paper, we propose an approach EA-RTN to predict the red-light-running behav-

ior and trajectories in future two seconds of road user in T-junction. LSTM module is 

used to learn the mapping between historical trajectories of 0.8 seconds and future tra-

jectories of 2 seconds. FCNet is used to evaluate whether a road user will run a red light 

by taking into account the offset of the position in 0.8 seconds and the overall heading 

angle. Through the experiments conducted on the RedRun dataset, the performance of 

our model is evaluated. Our model outperforms the SVM method on the red light run-

ning prediction task. It is suitable for red-light-running prediction for T-junctions lo-

cated at school gates, but it still needs to be evaluated on more datasets and scenarios. 
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