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documentation and qualitative analysis as well as for extraction of head tra-
jectories. Different detection methods with different degrees of accuracy are
commonly used. All methods have in common, that the level of extractable
data is limited to what information is visible for the camera. Which is based
on the fact that the closer people stand to each other the less information
can be obtained from camera data due to occlusion or non distinguishable
contours.
Therefore experimental data of rotation, that is becoming of larger inter-
est for improving the description of interactions and space requirements, are
rare and often (but not always) limited to people being equipped with in-
ertial sensors. A big advantage of inertial sensors compared to camera data
is, that they allow to obtain information of people in a crowd that is not
visible for the camera and that they can easily be strapped to body parts of
interest, e.g shoulders, hip or head. However, while showing high accuracy in
angular and acceleration data, positional data are prone to cumulative error
due to the relative measurements of inertial measuring units [10]. Some 3D-
motion-capturing (mocap) systems combine multiple inertial sensors attached
to independently movable segments of a body and hence provide position for
several body parts in time [9]. A hybrid system is described in [3] yield-
ing high accuracy motion data of equipped persons in a crowd. Nevertheless
monetary resources most likely limit the equipment of multiple pedestrians
to small groups and leave the provision of rotational data for large groups for
model validation purposes as a remaining issue.
In this paper we present a newly implemented method for detecting marked
shoulders in laboratory experiments from camera data with the software Pe-
Track [2, 4]. The method is based on color blob detection and an underlying
simple shoulder-head model, described in Section 2. An application of the
method is presented in Section 3.

2 Methods

Two data sets of the same experiment are presented and compared in this pa-
per. Data set one consists of position data for head and shoulders from hybrid
mocap systems. Data set two consists of head and shoulder points extracted
from camera data with a newly introduced shoulder-head model in the soft-
ware PeTrack. The hybrid system is shortly resumed hereafter whereas the
shoulder-head model is explained in more detail in the following paragraph.
The mocap system Xsens [9] is used in this study. The system itself is a rela-
tive system without reference in global space. Head trajectory data from the
camera system show a maximum positional error of 1.40 cm (assuming fixed
vertical head-to-camera distance) for the experiment described in Section 3
in global space. A combination of both methods, by mapping the top of head
trajectory from the motion capturing system to the head trajectory of the
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camera system, yields dynamic data of the whole body with an accuracy of
0.86 cm with respect to the camera trajectory. The mechanism is described
in more detail in [3]. As the hybrid system has a very small positional error,
it is taken as the ground truth to compare and assess the value of the newly
introduced shoulder detection method from camera data.

Shoulder-head model There are two types of head positions in PeTrack,
one being a head labeled as being ’recognized’ based on chosen recognition
methods (e.g. code marker or color blob) and the other being labeled as
’tracked’, where the head could not be recognized but is tracked based on the
structure after a previous recognition. The shoulder detection is only possible
when a head is recognized and is implemented in [1]:

Fig. 1 Scetch showing
shoulder-head model for
a tilted head. Point 𝐻,
𝐻𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 and 𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

as well as camera angle
are visualized. Blue and
green patches denote right
and left shoulder markers.

camera

Step 1: Whenever a head is recognized, the position of the head 𝐻 is known
in real-world coordinates (cf. Fig. 1). Point 𝐻 is then lowered to
shoulder height, taking the angle between head and camera into
account, assuming a height difference between top of head and
shoulder of 32 cm [7]. 𝐻𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 is the position of the head relo-
cated to shoulder height.

Step 2: A square shaped search region with 𝐻𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 as the center is
created for each recognized head in each frame (with side length
𝑠𝑚𝑎𝑥 = 55 cm referring to the maximum expected shoulder width
from [7] plus additional buffer, 𝑠𝑚𝑖𝑛 = 25 cm resp.). Within the
search region a color blob detection is performed storing possible
candidates for left and right shoulder distinguished by color.

Step 3: Between the candidates each ‘left shoulder candidate’ is paired
with each ‘right shoulder candidate’ and two parameters are cal-
culated: First, the distance between the two candidates (ref. actual
shoulder width 𝑠𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) and second, the expected head position
at shoulder height (𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, Fig. 1). The later is assumed to be
at the middle between both shoulder candidates. The calculated
parameters for each pair are checked for the following criteria:

Criterion 1: 𝑠𝑚𝑖𝑛 < 𝑠𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 < 𝑠𝑚𝑎𝑥 .
Criterion 2: | |𝐻𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑒𝑑 −𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 | | < 21 cm (one head diame-

ter [7], red line in Fig. 1).
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Criterion 3: If criterion one and two apply to more than one
candidate pair, the pair where criterion 2 is smallest
is chosen.

If the criteria are not met, no shoulder is assigned. The implementation does
not predict the location of the second shoulder, if only one shoulder is de-
tected. If the person is keeping the head straight up the deviation between
‘expected head position at shoulder height’ and ‘the position of the head re-
located to shoulder height’ is expected to be small. If the person lowers its
head, the deviation is expected to be bigger, but never larger that one head
diameter.

Shoulder rotation Shoulder rotation 𝛾 is the angle between the shoulder-
line and the x-axis, where shoulderline is the vector pointing from the right
to the left shoulder. The shoulder rotation is calculated for both methods
(camera and mocap) separately (𝛾𝑐𝑎𝑚𝑒𝑟𝑎, 𝛾𝑚𝑜𝑐𝑎𝑝). Rates of change of the
shoulder rotation (𝑑𝛾/𝑑𝑡) are calculated as the differences between two con-
secutive elements of 𝛾.

3 Application

Rotational data of the upper body is of interest as it alters the space require-
ment of people and therefor is likely to have an effect on dynamics inside
crowds. Possibly, a better knowledge of the turning behavior in reality as
an additional collision avoidance strategy, could reduce the occurrence of
deadlocks in simulations. However, as it is very expensive to equip hundreds
of people with full body mocap systems, to study crowds dynamics, other
approaches are valuable. Therefore we developed a new shoulder detection
method from camera data. To evaluate the performance of the method two
parameters have been chosen: the difference of the angle between shoulderline
and x-axis and the amount of data points with non-plausible rates of change
of the shoulder rotation.

Experiment The experiments presented here were performed at Forschungs-
zentrum Jülich, Germany in 2020. The number of participant was 13 and
consisted of staff members. A bottleneck of 0.2m length and a variable width
𝑤 was installed. The bottleneck width varied between 0.4m and 1.0m with
an increment of 0.2m. The participants walked all by oneself from seven
angles starting 4m in front of the bottleneck. The angles included straight
walking 0◦, ±30◦, ±60◦ and ±90◦. One camera had been installed overhead to
obtain the trajectories of the participants (cf. Fig. 2). All participants were
wearing mocap systems from Xsens, orange caps with an individual Aruco
Code [8] on top and colored markers on the shoulders (left shoulder: green;
right shoulder: light blue; both ∅ 7 cm).
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Fig. 2 (left) Schematic topview of the experimental setup for a bottleneck width of
𝑤=0.8m. Orange squares show starting positions of pedestrians. (right) Overhead
camera view of the experiment (𝑤=0.4m) with people wearing orange caps, code
marker at the head and color markers at the shoulders. Exemplary trajectories are
shown in red. Yellow line shows detected shoulders, marked with red dots.

Table 1 The table shows four experimental runs. Column 2 refers to the number of
frames where a head was reported by the software PeTrack, column 3 to the number
(percentage) of frames where a head was recognized by code and column 4 to the
number (percentage) of frames where shoulders were assigned with respect to the
number of frames with recognized heads.

width no. of data points no. of recognized heads no. of assigned shoulders

0.4m 8562 6233 (72.8 %) 4180 (67.1 %)
0.6m 7242 4894 (67.6 %) 4004 (81.8 %)
0.8m 6724 4118 (61.2 %) 3641 (88.4 %)
1.0m 6532 4100 (62.8 %) 3041 (74.2 %)

Results The shoulder detection based on the simple shoulder-head model
described in Section 2 is performed for four runs comprising more than 350
trajectories. Detection rates are given in Table 1 and show that shoulders
are detected in 70%-80% of the cases were a head has been recognized.
For the run with a bottleneck width of 0.4m detection rates are lower as
the participants rotated their shoulders in a way, that the head covered the
frontal shoulder. As the shoulder position is only assigned if two markers are
detected, none is assigned in cases of partly covered shoulders.

Deviation in rotation In this study the angle 𝛾 is calculated individually
for each system as described in Section 2 and compared by their deviation.
The results are shown in Figure 3, on the left side separated for different
starting positions of the pedestrians and on the right side for all starting
positions combined. The median for 𝛾𝑐𝑎𝑚𝑒𝑟𝑎 −𝛾𝑚𝑜𝑐𝑎𝑝 is 0.06° (𝜎 =7.09°) with
a maximum error from error propagation of positional data of 4.1°. For most
data points the deviation for angle calculation between both systems can be
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Fig. 3 Deviation of rotation angle between method from camera based detection
and mocap system (left) as normalized histogram seperated for different angles of the
starting point and (right) as a boxplot for all runs. Orange line denotes the median,
box limits refer to inter-quartile range (IQR) of Q1 and Q3, whiskers show Q1-1.5IQR
and Q3+1.5IQR respectively. Outliers are shown as black dots.

Fig. 4 Snapshots of experiment runs [5] with a mean density of (left) 1P/m2, (mid-
dle) 2P/m2 and (right) 6P/m2. Densities are measured during steady state within
the measurement area (blue rectangle) with the Voronoi method. Yellow lines, con-
necting red dots indicate assigned shoulders.

rated as very good. Only 0.76% of data points show a deviation of more than
13°, which refer to the whiskers is Figure 3. This means that the newly intro-
duced method of detecting shoulders from video material is consistent with
the ground truth mocap system and valuable information can be gathered
within the limits of the method.

Outlook for multiple person experiments Multiple person or high den-
sity experimental data where participants are equipped with marked shoul-
ders was gathered only recently within the CroMa project. Three exemplary
runs ([5] runs: D 1 3 20-20 norm100 2, D1 1 d 4 11, 4D180 w070 l021 h1 int-
errupt, Fig.4) with approximate densities of 𝜌 =1, 2 and 6 were chosen and
shoulders detected with PeTrack for rates of change of the shoulder rotation
to be compared between the previous experiments with single and multiple
persons. Detection rates are computed as it can be assumed that outliers can
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Table 2 Comparison of the mean of the single person runs with three runs with
multiple persons. Column 2 refers to the percentage of frames where a head was
recognized by code and column 3 where shoulders were assigned with respect to the
number of frames with recognized heads. Column 4 refers to the number (percentage)
of data point that exhibit the threshold of 108° per second.

experiment recognized
heads

assigned
shoulders

data points with 𝑑𝛾/𝑑𝑡 > 108
and single values

single persons 66.6% 76.8% 50832/267416 (0.19%)
𝜌 = 1 𝑃/𝑚2 93.7% 66.6% 76/4823 (1.6%)
𝜌 = 2 𝑃/𝑚2 84.7% 74.6% 571/36666 (1.6%)
𝜌 = 6 𝑃/𝑚2 95.2% 31.0% 3518/29255 (12.0%)

be identified as potentially erroneous shoulder assignments. Using the mocap
data from the individual experiments, the threshold was determined (3𝜎 of
the rate of change) below which the alterations in rotation occur naturally.
The threshold was determined to be 1.8° per frame or 108° per second (for
comparison of different frame rates). Individually occurring rotation values
are added to the points exceeding the threshold due to the lack of compara-
bility with surrounding data points. Table 2 shows, runs with a density of up
to 2 P/m2 show only very little potentially erroneous data points, that could
be corrected by manually editing or interpolation without much effort. The
run at 𝜌=6 P/m2 shows low shoulder assignment rates combined with a high
rate of potentially erroneous data points. It can therefore be summarized,
that the newly introduced methods yields good results for densities up to
𝜌=2 P/m2 and potentially a little higher but needs further improvements for
high densities.

4 Discussion and conclusion

This paper introduced a newly implemented method for detecting the posi-
tion of shoulders from camera data under laboratory conditions. The method
is based on a simple head-shoulder model and implemented in the software
PeTrack. The percentage of data points that the algorithm assigned shoulders
for is about 70% or more, relative to the number of data points were a head
is recognized. For the future it might be worth to think about changing the
code to not only detect shoulders for detected but also tracked heads. This
would increase the number of data points for shoulders and possible insights
into dynamics due to better statistics. One could also think of adapting the
shoulder-head model for the use with stereo cameras and therefore a marker-
less detection. We furthermore presented exemplary applications of the new
detection method by applying the method to bottleneck experiments per-
formed in June 2020 in Jülich. We compared the results from the camera
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based detection method with data from the 3D motion capturing system
Xsens based on the rotation angle. The shoulder rotation based on the detec-
tion of shoulder position from camera data evaluates to be really good when
compared to the mocap system. The detection operates well for the multiple
person test cases up to a medium density of 2 P/m2. For high densities of >6
P/m2 further improvements of the method are necessary. In which range be-
tween two and six persons per square meter, the limit for a good usability lies,
no statement can be made yet. Future enhancements include e.g. a shoulder
assignment for tracked data points and the prediction of a second shoulder
based on movement direction and surrounding persons. The authors think
that the new detection method will yield valuable data for shoulder rotation
in crowds if keeping the limits of the method and margins of error in mind.
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