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Abstract In real traffic dynamics, non-motor vehicles often undergo sudden accel- 
eration changes while passing, leading to traffic congestion on roads. Thus, a lattice 
model is modified to examine the impact of traffic jerk, taking into account the 
density-dependent passing behavior. The linear stability analysis is performed. It is 
found that the stability region reduces considerably with an increasing traffic jerk 
coefficient. By the reduction perturbation method, the kink-antikink soliton wave 
solution of the mKdV equation is attained, which describes the propagation of the 
density wave near the critical point. The theoretical results are validated by numerical 
simulation. 
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1 Introduction 

 
Over the decades, traffic jams have worsened due to the rapid growth of population, 
rapid urbanization, increasing number of vehicles, the surge in e-commerce sections, 
inadequate infrastructure, and a lot more. This may result in numerous issues like 
environmental pollution, safety hazards, vehicular queuing, etc. Thus, to comprehend 
and minimize traffic jam/congestion, various theories, and mathematical models 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] are proposed to optimize the traffic 
flow. 

Under normal traffic conditions with uniform flow, vehicles do not need to 
pass/overtake. However, overtaking becomes essential as the number of vehicles 
increases but within capacity. This indicates that passing increases as vehicular den- 
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sity increases. However, as the density increases continually, traffic jams occur, and
if overtaking occurs, it contributes to chaos and further congestion on roads. So, the
increasing density leads to congestion/ jams on the road. Thus, a new lattice model
was proposed incorporating the density-dependent passing [15]. Furthermore, the
unanticipated acceleration changes of non-motor vehicles, called traffic jerks, can
lead to traffic congestion and even cause traffic accidents. Keeping this view in mind,
Ge et al. [16] proposed a model considering the traffic jerk parameter and concluded
that the uneven motion of non-motor vehicles would increase traffic jams. Redhu
and Siwach [17] extended the lattice model taking into account the impact of traffic
jerk. It is observed that traffic jerk parameter plays a significant role in stabilizing the
traffic flow. While passing, it is often seen that the vehicles undergo sudden accel-
eration changes, which may increase traffic congestion. A lattice model is extended
in Section 2, considering density-dependent passing to examine the effect of traffic
jerk in such scenarios.

The following sections of the paper are outlined as Section 3 presents the linear
stability analysis. Following that, a reduction perturbation method is conducted to
analyze the traffic flow behavior. The computation of kink-antikink wave solution
is described near the critical point (𝜌𝑐, 𝑎𝑐) in Section 4. In Section 5, numerical
simulations are performed. Lastly, Section 6 provides the conclusion of the paper.

2 Proposed Model

In the proposed work, we are incorporating the impact of traffic jerk, taking into
account the density-dependent passing [15]. the continuity equation for the model is
conserved as there are no sinks or sources and is given as

𝜌 𝑗 (𝑡 + 𝜏) − 𝜌 𝑗 (𝑡) + 𝜏𝜌0 [𝜌 𝑗 (𝑡)𝑣 𝑗 (𝑡) − 𝜌 𝑗−1 (𝑡)𝑣 𝑗−1 (𝑡)] = 0. (1)

Here, 𝜌0 is average density, 𝜏 = 1
𝑎

is the delay time, the subscript 𝑗 denotes the site
𝑗 on a one-dimensional lattice. Also, 𝜌 𝑗 (𝑡) and 𝑣 𝑗 (𝑡) represent the vehicular density
and average speed at site 𝑗 , respectively.

While passing, it is often seen that the vehicles undergo sudden acceleration
changes, which may increase traffic congestion. Therefore, the evolution equation
is modified to investigate the traffic jerk effect with the consideration of density-
dependent passing and is given as:

𝜌 𝑗 (𝑡 + 𝜏)𝑣 𝑗 (𝑡 + 𝜏) = 𝜌0𝑉 (𝜌 𝑗+1 (𝑡)) + 𝛾(𝜌 𝑗+1 (𝑡)) [𝜌0𝑉 (𝜌 𝑗+1 (𝑡)) − 𝜌0𝑉 (𝜌 𝑗+2 (𝑡))]
−𝜆[𝜌 𝑗 (𝑡)𝑣 𝑗 (𝑡) − 𝜌 𝑗 (𝑡 − 𝜏)𝑣 𝑗 (𝑡 − 𝜏)]

(2)

where 𝑉 (.) is optimal velocity function, 𝛾(𝜌 𝑗+1 (𝑡)) represents the amount of traffic
passing on-site 𝑗 + 1 at time 𝑡 considered as in Ref. [15].

The density equation is formed using Eqs. (1) and (2) as

M. Verma and S. Sharma368



When 𝜆 = 0, the equation is analogous as given in Ref. [15].

3 Linear stability analysis

To examine the influence of traffic jerk coefficient on traffic flow with density-
dependent passing, the stability analysis is conducted. At steady-state, the vehicular
density and average speed are taken as:

𝜌 𝑗 (𝑡) = 𝜌0, 𝑣 𝑗 = 𝑉 (𝜌0) (4)

Performing the analysis [15], neutral stability condition is obtained as

𝜏 = − 1 − 2𝛾(𝜌0)
(3 + 2𝜆)𝜌2

0𝑉
′ (𝜌0)

. (5)

The instability in traffic flow is observed when

𝜏 > − 1 − 2𝛾(𝜌0)
(3 + 2𝜆)𝜌2

0𝑉
′ (𝜌0)

(6)

Eq. (5) shows that the traffic jerk coefficient significantly stabilizes the traffic flow

Fig. 1 Neutral stability curves when 𝜃 = 4 , 𝐸 = 10

for a one-dimensional traffic system. Also, stability condition obtained is analogous
to the case discussed in [15] when 𝜆 = 0. Fig. 1 illustrates the neutral stability curves
in the parameter space (𝜆, 𝛾𝑚𝑎𝑥 , 𝑎). It is evident from the figure that the instability
of traffic flow increases as the value of 𝜆 increases resulting in increased traffic jams.

𝜌 𝑗 (𝑡 + 2𝜏) − 𝜌 𝑗 (𝑡 + 𝜏) + 𝜏𝜌2
0 [𝑉 (𝜌 𝑗+1 (𝑡)) −𝑉 (𝜌 𝑗 (𝑡))] − 𝜏𝜌2

0 [𝛾(𝜌 𝑗+1 (𝑡))𝑉 (𝜌 𝑗+2 (𝑡)
−(𝛾(𝜌 𝑗+1 (𝑡)) + 𝛾(𝜌 𝑗 (𝑡)))𝑉 (𝜌 𝑗+1 (𝑡)) + 𝛾(𝜌 𝑗 (𝑡))𝑉 (𝜌 𝑗 (𝑡))]

−𝜆(−𝜌 𝑗 (𝑡 + 𝜏) + 2𝜌 𝑗 (𝑡) − 𝜌 𝑗 (𝑡 − 𝜏)) = 0
(3)
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Also, when 𝛾𝑚𝑎𝑥 increases, the delay time decreases significantly, indicating that
traffic flow stability is suppressed significantly.

4 Reduction Perturbation Method

To understand the traffic dynamics near the critical point (𝜌𝑐, 𝑎𝑐) on coarse-grained
scales, the slow variables 𝑋 and 𝑇 are considered for a small positive parameter 𝜖 ,
where (0 < 𝜖 ≤ 1) as follows:

𝑋 = 𝜖 ( 𝑗 + 𝑏𝑡), 𝑇 = 𝜖3𝑡 (7)

where 𝑏 is the constant to be computed. The density 𝜌 𝑗 is taken as:

𝜌 𝑗 (𝑡) = 𝜌𝑐 + 𝜖𝑅(𝑋,𝑇) (8)

Table 1

Using Taylor’s expansion, Eq.(9) is obtained as in Ref. [15]:

𝜖4 (𝜕𝑇𝑅 − 𝑔1𝜕
3
𝑋𝑅 + 𝑔2𝜕𝑋𝑅

3) + 𝜖5 (𝑔3𝜕
2
𝑋𝑅 + 𝑔4𝜕

4
𝑋𝑅 + 𝑔5𝜕

2
𝑋𝑅

3 + 𝑔6𝑅
2𝜕2

𝑋𝑅) = 0 (9)

where the coefficients 𝑔𝑖 , (𝑖 = 1, 2, ..., 6) are given in Table 1. The following trans-
formations are considered to derive a standard mKdV equation:

𝑇 ′ = 𝑔1𝑇, 𝑅 =

√︂
𝑔1
𝑔2

𝑅′ (10)

where we assumed 𝑔1 > 0, which gives the existence condition as

1 − 13𝛾(𝜌𝑐) − 14𝛾(𝜌𝑐)2 + 2𝜆2 (1 + 6𝛾(𝜌𝑐)) − 36𝜆𝛾(𝜌𝑐) + 6𝜆 > 0. (11)

The regularized equation is given by

𝜕𝑇 ′𝑅′ − 𝜕3
𝑋𝑅

′ + 𝜕𝑋𝑅
′3 + 𝜖𝑀 [𝑅′] = 0, (12)

𝑔1
1−13𝛾 (𝜌𝑐 )−14𝛾 (𝜌𝑐 )2+2𝜆2 (1+6𝛾 (𝜌𝑐 ) )−36𝛾 (𝜌𝑐 )𝜆+6𝜆

3(3+2𝜆)2 (−𝜌2
𝑐𝑉

′ (𝜌𝑐 ) )

𝑔2
𝜌2
𝑐𝑉

′′′ (𝜌𝑐 )
6

𝑔3
(1−2𝛾 (𝜌𝑐 ) )

2 (−𝜌2
𝑐𝑉

′ (𝜌𝑐 ) )
𝑔4

−9+52𝜆+54𝜆2+12𝜆3+4𝛾3 (99+58𝜆)+6𝛾2 (9+158𝜆+48𝜆2−32𝜆3+6𝛾 (9−52𝜆−6𝜆2+20𝜆3 ) )
12(3+2𝜆)3 (−𝜌2

𝑐𝑉
′ (𝜌𝑐 ) )

𝑔5
1−4𝛾 (𝜌𝑐 )

12 (−𝜌2
𝑐𝑉

′′′ (𝜌𝑐 ) ) − 𝜌2
𝑐𝑉

′ (𝜌𝑐 )𝛾′′ (𝜌𝑐 )
6

𝑔6 − 𝛾𝜌2
𝑐𝑉

′′′

2
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where 𝑀 [𝑅′] = 1
𝑔1
[𝑔3𝜕

2
𝑋
𝑅′ + 𝑔4𝜕

4
𝑋
𝑅′ + 𝑔1𝑔5

𝑔2
𝜕2
𝑋
𝑅′3 − 3𝛾(𝜌𝑐)𝑅′2𝜕2

𝑋
𝑅′]. By ignoring

the 𝑂 (𝜖) correction term, equation (12) reduces to the standard mKdV equation.
The solution obtained is kink-antikink and is given as:

𝜌 𝑗 = 𝜌𝑐 + 𝜖

√︂
𝑔1𝑐

𝑔2
tanh

(√︂
𝑐

2
(𝑋 − 𝑐𝑔1𝑇)

)
. (13)

with 𝜖2 =
𝑎𝑐
𝑎

− 1 and the amplitude 𝐴 of the solution is 𝐴 =
√︃

𝑔1
𝑔2
𝜖2𝑐. The above

solution is valid if condition (11) is satisfied. Therefore, the existing condition is
given by

0 ≤ 𝛾𝑚𝑎𝑥 < 𝑓 (𝐸, 𝜃, 𝜆) (14)

Thus, two cases arise:
Case 1: When 0 ≤ 𝛾𝑚𝑎𝑥 < 𝑓 (𝐸, 𝜃, 𝜆), the mKdV equation exists, and in a specific
case, when 𝜆 = 0, the existence condition for the kink solution agrees with the
one obtained in [15]. Moreover, the kink-antikink solution of the mKdV equation
represents the coexisting curves which include both freely moving and jammed
phases described by 𝜌 𝑗 = 𝜌𝑐 ± 𝐴 in phase space (𝜌𝑐, 𝑎𝑐).
Case 2: When 𝛾 ≥ 𝑓 (𝐸, 𝜃, 𝜆), the mKdV equation does not exist.

From reduction perturbation method, the obtained coexisting curves divide the
phase plane into three regions: stable, metastable, and unstable regions, as shown in
Fig. 2 (a). The apex of neutral stability and coexisting curves increases corresponding
to higher values of 𝜆, indicating unstable traffic flow. Fig. 2 (b) illustrates the phase
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=0.1

=0

(a) (b)

Fig. 2 (a) Phase diagram in (𝜌0, 𝛾𝑚𝑎𝑥 , 𝑎) (b) Phase plot in parameter space (𝛾𝑚𝑎𝑥 , 𝑎) when
𝜃 = 4, 𝐸 = 10

where

𝑓 (𝐸, 𝜃, 𝜆) = 1
28

(
1 + 𝐸 ( 𝜌𝑐

𝜌𝑚
) 𝜃

𝜌𝑐 (1 − 𝜌𝑐
𝜌𝑚

)

) (
− 13 − 36𝜆 + 12𝜆2 +

√
𝐾

)
. (15)

where
𝐾 = 225 + 1272𝜆 + 1096𝜆2 − 864𝜆3 + 144𝜆4
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boundary line that separates kink region from the chaotic region is given by equation
𝑎 = 3+2𝜆

1−2𝛾 (𝜌𝑐 ) . The transitions appears from no jam region to kink region with
decreasing sensitivity, via chaotic jam region. As the value of 𝜆 increases, the free
flow region decreases while the chaotic region enhances which results in a traffic
jam. Also, with the increase in traffic jerk coefficient 𝜆, kink jam region increases.

5 Numerical Simulation

To validate the analytical results obtained from the stability analysis performed in
the above sections, numerical simulations are conducted under periodic boundary
conditions. The following initial condition is taken:

𝜌 𝑗 (0) =
{
𝜌0 − 𝐴, for 0 ≤ 𝑗 < 𝐿

2
𝜌0 + 𝐴, for 𝐿

2 ≤ 𝑗 < 𝐿
, 𝜌 𝑗 (1) =

{
𝜌0 − 𝐴, for 0 ≤ 𝑗 < 𝐿

2 − 𝑚

𝜌0 + 𝐴, for 𝐿
2 − 𝑚 ≤ 𝑗 < 𝐿 − 𝑚

where the initial disturbance is taken as 𝐴 = 0.005, m is a positive integer, system
size 𝐿 = 100, the parameter 𝜌0 = 𝜌𝑐 = 0.2, 𝜌𝑚 = 1.

The discussion of results is given as follows:
Case 1: 𝛾𝑚𝑎𝑥 < 𝑓 (𝐸, 𝜃, 𝜆)

(a) (b) (c)

Fig. 3 Spatiotemporal evolutions of density at time 𝑡 = 20200s when 𝑎 = 3.5, 𝜃 = 4, 𝐸 = 10,
𝛾𝑚𝑎𝑥 = 0.4 for (a) 𝜆 = 0, (b) 𝜆 = 0.1, (c) 𝜆 = 0.2

To study the impact of 𝜆 on traffic flow, particular values of 𝜃 = 4, 𝐸 = 10
and 𝑎 = 3.5 are considered when 𝛾𝑚𝑎𝑥 = 0.4. Fig. 3 represents the spatiotemporal
evolutions of the density for 𝜆 = 0, 0.1, and 0.2. The uniform flow is observed for
𝜆 = 0. As 𝜆 increases, the amplitude of density waves also increases, indicating the
kink antikink soliton waves. With an increase in traffic jerk coefficient 𝜆, there is
the transition from the free flow to a kink jam region, which leads to a decrease in
the stability of traffic flow. Fig. 5 (a) represents the density profile at 𝑡 = 20200s
corresponding to Fig. 3. Thus, the increase in 𝜆 will make the traffic flow more
unstable.

plot in space (𝛾𝑚𝑎𝑥 , 𝑎) for different values of 𝜆, where 𝜃 = 4, 𝜌𝑐 = 0.2. The
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(a) (b) (c)

Fig. 4 Spatiotemporal evolutions of density at time 𝑡 = 20200s when 𝑎 = 3.5, 𝜃 = 4, 𝐸 = 10,
𝛾𝑚𝑎𝑥 = 2.5 when (a) 𝜆 = 0, (b) 𝜆 = 0.1, (c) 𝜆 = 0.2

Fig. 4 shows the spatiotemporal evolution of the density for 𝜆 = 0, 0.1 and 0.2,
where parameters 𝜃 = 4, and 𝑎 = 3.5, 𝐸 = 10, 𝛾𝑚𝑎𝑥 = 2.5. The density profiles
at 𝑡 = 20200s are shown in Fig. 5 (b). The density waves appear chaotic for 𝜆 = 0.
Whereas for 𝜆 = 0.1, and 0.2, the amplitude of density waves decreases. Therefore,
as the value of 𝜆 increases, the transition takes place from chaotic to kink jam region
in an unstable region.
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Fig. 5 Density profile at 𝑡 = 20200s for 𝜃 = 4, 𝐸 = 10 (a) 𝑎 = 3.35 when 𝛾𝑚𝑎𝑥 = 0.4, (b) 𝑎 = 3.5
when 𝛾𝑚𝑎𝑥 = 2.5

6 Conclusion

We propose a modified lattice model to examine the impact of traffic jerk on traffic
dynamics, taking into account density-dependent passing. The traffic behavior is
analyzed theoretically through both linear and non-linear stability analyses. The
neutral stability curves are derived, indicating that an increased traffic jerk coefficient
results in increasing the unstable region, leading to traffic congestion. To describe

Case 2: 𝛾𝑚𝑎𝑥 ≥ 𝑓 (𝐸, 𝜃, 𝜆)
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the propagation of density waves near the critical point, the modified Korteweg-de
Vries (mKdV) equation is derived. Also, the existing condition is obtained for the
kink-antikink soliton wave solution of the mKdV equation. Phase plots are discussed
for different passing values. The transition takes place from the no-jam region to
kink region for small passing values. When passing exceeds the critical value, a
chaotic jam appears. Moreover, there is a transition from chaotic to kink jam region.
Furthermore, increasing traffic jerk coefficient leads to an increase in the kink jam
region. To validate the analytical findings, numerical simulations are conducted. It
is found that numerical simulation aligns with the analytical results.
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