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Abstract. The article describes the modeling of lateral movement decisions of 

motorized passenger vehicles like Cars, Motorised Three Wheelers(3W), and 

Motorised Two Wheelers(2W) under heterogeneous traffic conditions. The su-

pervised machine learning approach was used to predict the lateral movement 

decision by treating the decision of lateral movement as a multi-class classifica-

tion problem. Based on surrounding vehicles' information, a set of parameters 

was identified that potentially affect the decision-making process of drivers to 

change their lateral position. With the help of these parameters, the prediction 

ability of machine learning algorithms was compared. It was identified that these 

algorithms could predict the lateral movement decision of vehicles with an ac-

ceptable accuracy range. The results revealed that the random forest method out-

performed all other algorithms and appeared to be a potential contender for mod-

eling lateral movement decisions. Real-time position information about nearby 

vehicles may be gathered using advanced sensors and analyzed using developed 

models, allowing for the provision of safety features linked to lateral movement.  
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1 Introduction 

In developing nations such as India, the traffic conditions are highly heterogeneous, 

which differs from homogeneous traffic due to the vehicles' vast range of operational 

and performance characteristics. Under such traffic conditions, the driver always looks 

for a sufficient gap to move forward at the desired speed. As a result of this tendency, 

the vehicle's lateral position frequently varies as it moves longitudinally. Furthermore, 

drivers' proclivity to go laterally is influenced by traffic flow conditions. The presence 

of other vehicles on the road does not affect the driving behavior of the subject vehicle 

in free-flow conditions. However, when traffic volume increases, adjacent vehicles in-

fluence driving behavior of the subject vehicle. 

Also, in the era of connected and autonomous vehicles, this technology is expected 

to have exceptional driving comfort with maximal safety and minimum effect on the 

environment [1].These vehicles will soon become an efficient transportation mode. But 

the transition from traditional vehicles to autonomous vehicles will take time; hence, in 

this transition period, it is reasonable to assume that automated vehicles will have to 
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co-exist with human-driven vehicles. This approaching transition scenario necessitates 

extensive study to have a more profound knowledge of human interactions with various 

types of vehicles and their decision-making processes. In this regard, it is critical to 

incorporate critical human variables into traffic models. Also, the deployment of Intel-

ligent Transport Systems (ITS) policies is required to accumulate different driving be-

havior of the drivers of different vehicle classes. 

One of the key elements representing the driving behavior is the lateral movement 

decision of the subject vehicle (SV) present in the traffic stream, which is influenced 

by surrounding vehicles. Also, the traffic composition in heterogeneous traffic condi-

tions mainly consists of different vehicle classes. To model the decision-making pro-

cess for lateral movements of these vehicle types with varying volume conditions has 

received significantly less attention. A detailed grasp of this element can serve as a 

foundation for prediction models that explain complex vehicle maneuvers in real-time. 

With this motivation, the present study proposes a systematic framework to model the 

lateral movement decision of Cars, Motorized Three Wheelers, and Motorized Two 

Wheelers. 

2 Literature Review 

The lateral movement studies in the case of homogeneous traffic conditions include 

modeling lane change decisions, duration, and execution. Mandatory lane changing 

(MLC) and Discretionary Lane changing (DLC) are two broad categories of lane 

change. Former is performed to avoid obstacles such as work zone, lane drop, tapered 

lane, or situations of turning at an intersection, or taking an exit to the ramp. The latter 

is performed to achieve the desired speed by changing the current lane to the target lane 

based on feasibility. Many researchers have attempted to model such lane change be-

havior based on decision rules [2] or discrete choice models [3]. 

But in the case of heterogeneous traffic conditions, drivers perform a series of lateral 

movements to achieve the desired speed based on the availability of the gap between 

the vehicles. Such driving behavior gives rise to progressive and continuous lateral 

shifting within or between the lane rather than a discrete lateral movement. Hence tra-

ditional lane-changing models developed for homogeneous traffic are unable to account 

for such lateral movement of vehicles in heterogeneous traffic conditions. Many re-

searchers have attempted to model the lateral gaps [4], lateral placement of vehicles 

[5], and duration of lateral shifts [6]. For a detailed review of lateral movements studies 

readers can refer to [7]. 

Further from the literature, it can be concluded that for heterogeneous traffic model-

ing, the use of data-driven techniques is limited. The driving behavior of all the vehicle 

types is different due to differences in their size and shape and acceleration/deceleration 

capabilities. From this motivation, the current study attempts to predict the lateral 

movement decision of Cars, M2W, and M3W separately at different volume levels us-

ing machine learning. 
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3 Methodology 

When a fast-moving follower approaches a slow-moving leader, it has two options 

either  slow down its speed and follow the lead vehicle or look for the opportunity in 

the adjacent lanes and change lane. This phenomenon is known as Discretionary Lateral 

Movement. The scope of this study is limited to modeling the discretionary lateral 

movement decision of motorized passenger vehicles. Fig. 1 depicts a methodological 

framework to achieve the objectives of the present study. 

 

 

Fig. 1. Modeling Framework 

4 Data Collection 

The lateral movement decision of drivers gets affected by the presence of surround-

ing vehicles which can be studied with the help of trajectory data. In this research tra-

jectory data developed by [9] on an urban midblock section of Western Expressway 

(Mumbai), India is considered as shown in Fig 2. The study section is 10-lane divided 

(5 lanes in each direction) having a width of 17.5 meters. The trap length of 120 meters 

was considered. From the video recordings collected, a total 40 min video was selected 

which had wide variation in traffic flow ranging from free flow to stop-and-go condi-

tions, and the trajectories were extracted at a time resolution of 0.5 s using a semiauto-

mated traffic data extractor tool [10]. The details of trajectory data are given in Table 

1. With reference to the literature [9], smoothing techniques were applied to remove 

the noise in trajectory data. Based on a videographic survey broadly six types of vehicle 

categories were found in the selected roadway study section: Motorized three-wheelers, 

Motorized two-wheelers, Buses, Cars, Trucks, and Light commercial vehicles (LCV). 
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Table 1. Details of trajectory sets over the study section 

Traffic 

Flow 

Level 

Traffic Composi-

tiona (%) 

Avg. 

Speed 

(kmph) 

Avg. 

Flow 

(pcu/h) 

Volume to 

capacity ra-

tio 

 

No. of 

vehicles 

tracked 

Duration 

(min) 

Flow 1 15/35/5/40/2/3 65 4800 0.35 1080 15 

Flow 2 20/29/2/45/1/3 42 10120 0.71 1715 15 

Flow 3 17/25/5/45/3/4 20 3500 <1 660 10 
aTraffic composition: sequence 3W,2W, Bus, Cars, LCV, HCV 

5 Surrounding Vehicle Identification 

To study the lateral movement decision of vehicles at each time-stamp, it is required 

to identify the variables governing the decision. Thus, it is required to define the 'influ-

ence 'zone' of a subject vehicle. After defining the dimensions of the influence zone, 

the parameters of surrounding vehicles can be found. Further influence zone is divided 

into nine different compartments considering the subject vehicle at the centre of a three-

lane road, as shown in Fig. 2. The look-ahead distance was estimated based on stopping 

sight distance (SSD) as given in equation 1. The look-back distance was estimated 

based on the Time to Collision (TTC) values as given in equation 2. 

 

  
                            (a)             (b) 

Fig. 2. Influence zone to define surrounding vehicles 

 𝑑𝑓𝑟𝑜𝑛𝑡 = 𝑣𝑣𝑐𝑡𝑣𝑐
𝛼    (1) 

 𝑑𝑏𝑎𝑐𝑘 = 𝑣𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝛽 (2) 

where 𝑑𝑓𝑟𝑜𝑛𝑡 is the look-ahead distance, 𝑣𝑣𝑐 is the average longitudinal speed of a par-

ticular vehicle class and 𝑡𝑣𝑐
𝛼  is the perception reaction time (PRT). Where 𝑑𝑏𝑎𝑐𝑘  is the 

look back distance, 𝑣𝑠𝑡𝑟𝑒𝑎𝑚 is the average longitudinal stream speed and 𝑡𝛽is the thresh-

old Time to Collision time (TTC). Table 2 shows the different look ahead and look back 

distances for all three flow levels by considering PRT of 2.5 seconds and TTC of 2 

seconds [1]. 
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Table 2. Look ahead and look back distance 

Flow Level 

Average speed (m/s) Average 

Stream 

Speed(m/s) 

Look Ahead 

Distance 

(m) 

Look back dis-

tance 

(m) 
Car 3W 2W 

Flow 1 16.83 13.88 15.47 14.61 40 30 

Flow 2 11.25 9.28 12.62 8.95 30 20 

Flow 3 4.667 3.463 6.322 4.35 15 10 

 

A lateral distance of 5.5 m from the center position of the subject vehicle to the center 

position of the surrounding vehicles, including the total width of the subject vehicle 

(with an overlap of width), is considered over the entire road space (in longitudinal 

and lateral directions over time) 

6 Defining Lateral Movement 

When drivers wish to seek lateral movement opportunities for speed advantage, they 

can scan the peripheral area of vision. Considering the direction of motion along with 

traffic flow as a reference, this space is divided into N number of radial cones to define 

the choice of drivers at each time stamp, as shown in Fig 3. The choices were defined 

i.e., as straight, left, and right. Initial analysis was done to observe the angular deviation 

of the vehicles at a next time interval. The angle for the straight choice is considered 

close to human central vision and the threshold for this choice is -10 to 10 [11]. The 

threshold for the left and right choices according to vehicle classes is given in Table 3. 

If the deviation is between ‘c' and 'e’, then the vehicle is considered as shifting left and 

right for the deviation between 'd' and 'f'.' 

Table 3. The threshold for angular deviation 

 

 a b C d e f 

2W -11 15 -1 1 -8 8 

Car -9 9 -1 1 -5 5 

3W -10 11 -1 1 -7 7 

*All Numbers are in Degrees 

 

Initially, the surrounding vehicles are identified using developed trajectory data and 

MATLAB code, considering the dimensions of the influence zone for different flow 

conditions. The parameters influencing the drivers' decision of lateral shift were iden-

tified. The spearman correlation test is performed between drivers' lateral movement 

decisions and the parameters influencing them. A threshold value of 0.70 was consid-

ered. Few variables were found highly correlated according to this threshold value; such 

variables were dropped as they were not providing any extra information about the de-

pendent variables. Table 4 shows the final set of variables considered to predict the 

driver's decision of lateral movement. 
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Table 4. Set of variables considered 

Surrounding 

Vehicle 

Dummy 

variable for 

presence 

(0/1) 

Vehicle 

Category 

Relative 

speed with 

SV (m/s) 

Longitudinal 

Gap (m) 

Lateral 

Gap (m) 

Leader ✓ ✓ ✓ ✓  

Left Leader ✓ ✓ ✓ ✓ ✓ 

Right Leader ✓ ✓ ✓ ✓ ✓ 

Left Side ✓  ✓  ✓ 

Right Side ✓  ✓  ✓ 

Left Rear ✓ ✓  ✓  

Right Rear ✓ ✓  ✓  

SV Lateral position(m), Longitudinal speed(m/s), No. of surrounding 

vehicles. 

7 Model Development 

The drivers' decisions of lateral movements, i.e., to move straight, left, or right, were 

treated as a discrete choice for successive time intervals. For this, five models based on 

Machine Learning algorithms for classification were developed. The ML models in-

clude (i) Random Forest (RF) model, (ii) SVM model, (iii) Extreme Gradient Boosting 

(XGBoost), (iv) K-Nearest Neighbour (KNN) model, (v) Artificial Neural Networks 

(ANN) model. 

8 Implementation and Results 

The above-discussed models were developed separately for each flow level, and 

each considered vehicle class (Cars, M3W, M2W). To check the overall prediction ac-

curacy of the models, internal validation was done by dividing 70% of the total data for 

the training of models and 30% of data for the testing of models. Further, to check the 

model's transferability and feasibility, external validation was done by 

1. Testing of trained algorithms of one volume level to other volume levels 

2. Testing of trained algorithms for the Mumbai dataset on the Chennai dataset. 

The performance of all the algorithms was quantified with the help of the following 

indicators 

True Positive (TP): The actual and predicted decisions are correct for all alternatives. 

True Negative (TN): The actual decision and predicted decision are not in a specific 

alternative. 

False Positive (FP): The actual decision is not in a specific alternative, but the pre-

dicted decision is in that specific alternative. 

False Negative (FN): The actual decision is in a specific alternative, but the predicted 

decision is not in that specific alternative. 
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Accuracy: The ratio of correctly classified samples to the total number of samples, 

calculated as per Equation (3) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

 

Sensitivity (Recall): The ratio of correctly classified positive samples to the total num-

ber of actual positive samples of a particular alternative, calculated as per Equation (4). 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

Specificity: The ratio of correctly classified negative samples to the total actual number 

of negative samples, calculated as per Equation (5). 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (5) 

Positive Predictive Value (Precision): Ratio of correctly classified positive samples 

to the total number of positive predictions, calculated as per Equation (6). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

8.1 Validation of Trained Algorithms 

Based on the confusion matrix obtained after developing the models, four matrices 

i.e., Accuracy, Sensitivity, Specificity, and Precision were compared to find the best 

model for a given classification problem. From the results based on four matrices, it 

was found that the models developed for medium volume levels showed better trans-

ferability in low and high-volume levels. Table 5 shows the performance matrices of 

RF model for different volume levels in the Mumbai dataset and the external validation 

on the Chennai dataset.  

Table 5. Performance of models on test data 

   Straight Left Right 

 Veh 

Type 

Accu-

racy 

Sensi-

tivity 

Speci-

ficity 

Preci-

sion 

Sensi-

tivity 

Speci-

ficity 

Preci-

sion 

Sensi-

tivity 

Speci-

ficity 

Preci-

sion 

Mumbai 

Medium 

Volume 

Car 70.97 86.25 63.88 73.47 68.25 90.17 67.95 63.48 93.66 64.82 

M3W 72.11 90.24 71.98 72.11 72.58 84.89 72.78 68.169 95.84 70.08 

M2W 81.23 92.66 65.13 81.67 77.38 94.23 81.2 68.18 98.29 76.47 

Mumbai 

High Vol-

ume 

Car 76.12 81.05 71.39 71.93 71.59 75.12 73.02 60.74 82.49 74.63 

M3W 79.79 82.09 84.84 76.68 85.33 82.73 79.94 72.77 84.8 81.56 

M2W 78.01 88.73 80.91 79.01 79.74 72.18 76.94 65.71 83.89 80.7 

Mumbai 

Low Vol-

ume 

Car 90.56 94.88 45.45 93.65 51.25 88.93 72.5 53.57 96.29 60 

M3W 81.67 93.48 42.86 84.31 65.56 89.09 83.33 46.84 95.05 68.33 

M2W 79.58 97.22 26.67 79.91 59.63 99.53 88.88 54.24 98.06 66.67 

Chennai 

Car 70.36 84.2 75.36 71.64 63.16 76.74 66.36 61.24 91.36 65.79 

M3W 68.09 91.19 63.51 73.49 64.19 81.37 71.33 52.76 84.25 69.47 

M2W 74.33 85.25 70.15 78.47 66.49 79.37 74.12 61.24 84.36 70.13 
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Summary and Conclusions 

A lateral movement decision behavior of Car, M3W, and M2W drivers in different 

volume levels is briefly investigated in this study. Five different machine learning al-

gorithms for classification is trained to model the driver's lateral movement decision. A 

performance comparison of all these models were done and the best model to predict 

the decision was found. Results revealed that the RF classifier is best suited with respect 

to the rest of the considered ML models. The present study demonstrates the application 

of machine learning in the field of traffic and transportation engineering. From the re-

sults, it can be concluded that the lateral movement decision of drivers can be predicted 

using spatial information of surrounding vehicles. In real-time, this information can be 

gathered using advanced sensors, processed through these trained algorithms and pro-

vided as standard safety features in vehicles. 
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