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spontaneous traffic jams [4], which is a famous jamming phenomenon caused by the
collective movement of vehicles without any external factors such as bottlenecks,
merging, and lane changing. Because there are no external factors in this spontaneous
traffic jam, it is necessary to change the driving behavior of drivers to eliminate traffic
jams, and driving strategies such as jam absorption driving [5] have been proposed.

Meanwhile, the traffic flow landscape has begun to change dramatically in recent
years with the advent of autonomous vehicles. The widespread use of autonomous
vehicles is expected to reduce traffic jams. However, it is necessary to investigate and
understand the characteristics of mixed traffic between regular vehicles (manually
driven vehicles) and automated vehicles because it will take some time before an
environment where all vehicles are fully automated is realized, and the changes
will take place in stages. Numerous studies have been conducted on mathematical
models of autonomous vehicles and mixed traffic flows with regular vehicles. From
the perspective of reducing traffic jams, for example, a model incorporates feedback
control that relaxes the autonomous vehicle to the equilibrium traveling speed, as in
the behavior of autonomous vehicles in [6]. Moreover, the model in [7] incorporates
control to maintain as much distance as possible between vehicles. All of them
theoretically show from mathematical models that unstable traffic flow regimes can
be reduced and stabilized, suggesting the possibility of reducing traffic congestion
by using autonomous vehicles.

However, these models describe the control on the basis of the speed or distance
and do not explicitly focus on the flow rate. The essence of congestion mitigation
lies in how to increase the number of vehicles passing through per unit of time, and
maximizing the flow rate is important. Because the flow rate can be obtained by the
product of speed and density, the strength of focusing on the flow rate lies in the
fact that it aims to maximize the flow rate by considering the balance between speed
and density. Therefore, in this paper, we propose a new model that incorporates
the effects of control and clarify the impact of this control on traffic flow using the
stochastic optimal velocity (SOV) model [8].

The remainder of this paper is organized as follows. In Section 2, we briefly
review the SOV model. Section 3 presents our proposed controlled-SOV (C-SOV)
model with two control methods. Section 4 provides the numerical results for the
C-SOV model. Finally, Section 5 concludes with a discussion.

2 Regular vehicles in the SOV model

To describe regular vehicles (RVs), we use the SOV model [8] because it is known to
reproduce the metastable phase commonly found in practical traffic such as highway
traffic and to include two solvable models: the TASEP and the ZRP. In the metastable
phase, the flow would be transferred into the congested flow phase by only a subtle
perturbation. Figure 1 (a) and (b) shows a fundamental diagram of the measured
traffic flow on a highway and that of the SOV model, respectively. As shown in
Figure 1(a), within the low-density region, the flow increases as the density increases.
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However, beyond a certain density, called the critical density, the flow drops as the
density continues to increase. This characteristic is also present in the SOV model,
as shown in Figure 1(b).

Fig. 1 (a) Measured fundamental diagram and (b) the fundamental diagram of the SOV model for
a system length 𝐿 of 200.

Because the SOV model is a stochastic cellular automaton model, both time and
position are discretized in the model; a vehicle occupies a single cell, and its velocity
is represented as the probability that it will move to the next cell, as illustrated in
Figure 2(a). When the 𝑖th RV is located at position 𝑥𝑡

𝑖
∈ 1, 2, 3, · · · , 𝐿 at time step 𝑡,

𝑣𝑡+1
𝑖

∈ [0, 1], the velocity of the 𝑖th controlled vehicle at time step 𝑡 + 1 is given by

𝑣𝑡+1
𝑖 = (1 − 𝛼)𝑣𝑡𝑖 + 𝛼𝑉 (Δ𝑥𝑡𝑖 ). (1)

The above expression can be regarded as the weighted average between the current
velocity 𝑣𝑡

𝑖
and a suitable velocity for a given gap Δ𝑥𝑡

𝑖
, which is given by the optimal

velocity function, with a proportion of (1 − 𝛼) : 𝛼. Here, the optimal velocity
function, as plotted in Figure 2(b), is defined as

𝑉 (𝑥) :=
tanh(𝑥 − 𝑐) + tanh(𝑐)

1 + tanh(𝑐) , (2)

where the constant 𝑐 was set to 1.0 in this paper.

3 Controlled vehicles in the C-SOV model

In this paper, we propose two vehicle control methods: the gap-based control (GC)
method and the flow-based control (FC) method. Hereinafter, we refer to vehicles
with the GC and the FC as GCVs and FCVs, respectively. We construct the C-SOV
model such that the controls determine the velocities of the controlled vehicles as
the weighted average between the velocity of the RV in Equation (1) and the target
velocity specified by the control method. To ensure that velocity 𝑣𝑡+1

𝑖
∈ [0, 1] for the
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Fig. 2 (a) Schematic view used in the SOV model and (b) the optimal velocity function. Since the
headway is discretized in the SOV model, the values of the optimal velocity function are represented
by the blue points.

stochastic models, we introduce a parameter 𝛽 to regulate the proportion of these
two factors. This is expressed by

𝑣𝑡+1
𝑖 = (1 − 𝛽)

(
(1 − 𝛼)𝑣𝑡𝑖 + 𝛼𝑉 (Δ𝑥𝑡𝑖 )

)
+ 𝛽𝐶 (·), (3)

where 𝐶 (·) represents a function that determines the target velocity through the
control, which will be explained in Subsections 3.1 and 3.2. In the case when 𝛽 = 0,
which corresponds to the scenario where no control is applied, Equation (3) is
reduced to the SOV model, as represented by Equation (1). Hereinafter, we denote
the argument of the control function 𝐶 (·) as Δ𝑥𝑡+1

𝑖
, which represents the gap for the

controls, so that the gap is targeted at the next time step (𝑡 + 1).

3.1 Gap-based control (GC)

The GC is a control method for regulating the motion of a GCV by smoothing its
front and rear gaps. The target velocity is defined as the value of the optimal velocity
function evaluated as the average of the front and rear gaps:

𝐶 (Δ𝑥𝑡𝑖 ,Δ𝑥𝑡𝑖−1) = 𝑉 (Δ𝑥𝑡+1
𝑖 ) = 𝑉

(
Δ𝑥𝑡

𝑖
+ Δ𝑥𝑡

𝑖−1
2

)
, (4)

where Δ𝑥𝑡
𝑖

and Δ𝑥𝑡
𝑖−1 denote the front and rear gaps at time step 𝑡, respectively, and

Δ𝑥𝑡+1
𝑖

is the average of these two gaps.

3.2 Flow-based control (FC)

The FC method aims to smooth the flow of traffic by regulating the speed of an FCV.
This control method is based on the assumption that an FCV will adjust its speed
such that its local flow, which is defined as the product of the density and velocity,
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at the next time step will be equal to the average flow of the vehicles in front and
behind it:

𝑄𝑡+1
𝑖 =

𝑄𝑡
𝑖
+𝑄𝑡

𝑖−1
2

. (5)

We obtain the local flow 𝑄𝑡+1
𝑖

by its definition in terms of Δ𝑥𝑡+1
𝑖

, which is denoted
as the gap between an FCV and the vehicle in front of it:

𝑄𝑡+1
𝑖 = 𝜌𝑡+1

𝑖 𝑣𝑡+1
𝑖 =

1
Δ𝑥𝑡+1

𝑖
+ 1

𝑉 (Δ𝑥𝑡+1
𝑖 ). (6)

Note that the density used in the calculation of the local flow is the reciprocal of the
front gap. Combining Equations (5) and (6), we obtain the equation for Δ𝑥𝑡+1

𝑖
, which

can be solved numerically; once the gap Δ𝑥𝑡+1
𝑖

is determined, the target velocity for
the FCVs is determined by evaluating the optimal velocity function:

𝐶

(
Δ𝑥𝑡+1

𝑖

)
= 𝑉

(
Δ𝑥𝑡+1

𝑖

)
. (7)

4 Simulations

We conducted computer simulations of mixed traffic flow using the C-SOV model,
which describes the behavior of controlled vehicles, and the SOV model for RVs.
The initial positions of the vehicles were randomly assigned on a 200-cell circuit
with periodic boundary conditions. In other words, once the number of vehicles on
the circuit was determined, no vehicles were allowed to enter or exit the circuit. The
simulations were terminated after 50,000 time steps.

To investigate the impact of vehicle placement on the performance of the control,
we considered two different patterns of the placement of the controlled vehicles:
uniform placement, in which the controlled vehicles were evenly distributed among
vehicles on the circuit, and block placement, in which the controlled vehicles were
grouped together as a “block.” Additionally, two control methods as explained in
Section 3 were implemented.

Figure 3 illustrates the fundamental diagrams for the case in which all vehicles on
the circuit are controlled; the fundamental diagram of the SOV model is also shown
for comparison. As shown in Figure 3(a) and (b), the flow introduced by the controls
is generally higher than that of the SOV model for most density regions. However,
the GC method with any parameter 𝛽 does not consistently improve traffic, whereas
in the density range 𝜌 ∈ [0.17, 0.25], the SOV model surprisingly exhibits a higher
flow than that of the C-SOV model with the GC method for 𝛽 = 0.1, as plotted by
the green squares in Figure 3(a). This is likely due to the weak effect of the control,
resulting in a few GCVs slowing down because of the vehicles behind them, even
when the GCVs are able to exit a traffic jam.
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In contrast, the C-SOV model with the FC method improved the flow in the
metastable and congested flow phases, as shown in Figure 3(b), even when the effect
of the control was weak, such as 𝛽 = 0.1. The FC method achieved a higher flow
rate than that of the GC method, as shown in the two panels of Figure 3. The shape
of the fundamental diagram for the complete controlled-vehicle traffic, shown in
Figure 3(b), is different from that of the measured fundamental diagram in Figure
1(b) because the FCVs are not affected by the vehicles in their rear and thus exhibit
constant velocities.

Fig. 3 Fundamental diagrams for the complete controlled-vehicle traffic. (a) Fundamental diagram
when the controlled vehicles are implemented using the GC method. (b) Fundamental diagram
in the case when the controlled vehicles are implemented using the FC method. The black dots
represent the fundamental diagram for the SOV model, for comparison.

Figure 4 (a) and (b) shows the fundamental diagrams for scenarios in which
30% and 50% of the vehicles on the circuit are controlled vehicles, respectively.
The shape of the data points indicates the placement of the controlled vehicles: the
squares represent block placement and the circles represent uniform placement. For
the penetration rates of the two controlled vehicles, the block placement for the GC
method extends the density range of the metastable phase to higher densities, as
shown in Figure 4(a) and (b). In contrast, although the uniform placement for the
GC method does not extend the density range of the metastable phase, it results in
a higher flow in this phase than that in scenarios where all vehicles are manually
driven.

The results of our simulations revealed that the placement of the controlled
vehicles has an impact on flow when using the GC method, but has none when
using the FC method. To analyze these results, we plotted time-space diagrams to
visualize the flow obtained from our simulations. Figures 5 and 6 present the time-
space diagrams for a scenario in which 50 vehicles are on the circuit and 30% of
them are controlled, which corresponds to the density of 𝜌 = 0.25 in Figure 4(a). The
time-space diagrams depict the trajectory of each vehicle, with the color indicating
the hopping probability. Although a single large congestion is present in Figure 5(a),
the scenario of block placement with the GC method in Figure 5(b) results in a
higher flow than that of the case shown in Figure 5(a). This is due to the formation
of smaller congestions at various locations, which prevents the formation of a single
large congestion. These small congestions are caused solely by GCVs. On the other
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hand, in the case of the FC method, FCVs do not participate in the congestion,
resulting in the absence of congestion, as seen in Figure 6.

Fig. 4 Fundamental diagram of the mixed traffic flow with the controlled vehicles and RVs with
different penetration rates of controlled vehicles. The black dots represent the SOV model case for
comparison.

Fig. 5 Time-space diagrams for mixed traffic flow with GCVs and RVs when the GCVs are placed
(a) uniformly and (b) with on a block. The number of the vehicles is 50 on the circuit, and the
penetration rate of the GCVs is 30%.

Fig. 6 Time-space diagrams for mixed traffic flow with FCVs and RVs when FCVs are placed
(a) uniformly and (b) with on a block. The number of the vehicles is 50 on the circuit, and the
penetration rate of the FCVs is 30%.
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5 Conclusion

In this paper, we propose the C-SOV model, which incorporates vehicle control
into the well-known SOV model of traffic flow in the form of a stochastic cellular
automaton. The C-SOV model combines a manually driven vehicle with control
𝐶 (·). Here, we presented two control methods: the GC method and the FC method.
The GC method regulates the velocity of the controlled vehicle to smooth its front
and rear gaps, whereas the FC method regulates the velocity of the CV to smooth its
front and rear flows.

It was found that some GCVs slow down after exiting the congestion when
the strength parameter 𝛽 is small. This may be due to the CVs being affected by
the vehicles in their rear during the congestion. However, because the FC method
considers not only the front and rear gaps but also their velocities, FCVs do not
slow down after exiting the congestion. This can be observed in the comparison
of the fundamental diagrams when the two control methods are introduced for the
complete CV traffic, which shows that the density that realizes the maximum flow
differs between the two methods. Additionally, for mixed traffic with CVs and RVs,
FC achieves a higher flow than that of GC, regardless of vehicle placement. When
the vehicle control is GC with block placement, the formation of small congestions
solely by CVs prevents the formation of a single large congestion in the system.
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