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Abstract Qualitative observations in ecological settings along with theoretical and
numerical models suggest that when two different pedestrian streams cross a shared
area, stripe-like self-organised structure emerge in order to minimise collisions and
facilitate the flow. Although the phenomenon has been known for relatively long
time, a systematic and quantitative verification of it through controlled experiment has
been performed only recently. In this work we analysed such an experiment in which
the geometry was kept fixed while changing density, in order to verify if there is a
minimum density for stripe formation, and more in general the dependence on density
of the phenomenon. An analysis based on two different observables, namely the angle
identifying the position of the first neighbour in the same flow, and an order parameter to
identify the direction of the environment presenting the higher regularity (the presence
of a stripe) suggests that, although the stripe formation pattern is particularly strong
at intermediate densities, the tendency to walk on a diagonal stripe is present also at
considerably low densities.
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1 Introduction

Qualitative observations in ecological settings [1, 2], along with theoretical [3, 4, 5, 6]
and numerical [7] models suggest that when two different pedestrian streams cross a
shared area, stripe-like self-organised structure emerge in order to minimise collisions
and facilitate the flow. Although the phenomenon has been known for relatively long
time, a systematic and quantitative verification of it through controlled experiments
has been missing. Nevertheless, [8] have recently verified that stripe orientation is
perpendicular to the bisector of the crossing angle through a campaign of controlled
experiments in which they varied the crossing geometry while keeping density fixed.

The purpose of this work is, in a sense, complementary to the one of [8], namely
to understand how the cross-flow dynamics depends on density, while keeping the
geometry fixed (perpendicular crossing). In our analysis we are in particular interested
in verifying if there is a minimum density for stripe formation, and more in general the
dependence on density of the phenomenon.

2 Experimental setting

As described in full detail in [9], we performed a controlled experiment campaign
to study the dynamics of a crowd in a cross flow scenario. The campaign consisted
of 38 experiment repetitions, each of them using 56 participants (male students).
Nevertheless, by modifying the length of the starting area in which pedestrians lined
up before entering the crossing area, it was possible to use six different (starting area)
density conditions, corresponding to 𝜌𝐼 = 0.25 (8 repetitions), 𝜌𝐼 = 0.5, 𝜌𝐼 = 1,
𝜌𝐼 = 1.5, 𝜌𝐼 = 2 and 𝜌𝐼 = 2.5 ped/m2 (6 repetitions each). The change in the density
condition of the starting area had also obvious consequences on the pedestrian density
in the crossing area (higher starting area densities corresponding to higher values of
crossing area densities, refer to [9] for details). A picture frame of the experimental
setting (showing highlighted stripe formations) is shown in Fig. 1 (a). Pedestrians
positions were extracted from the recorded videos using the PeTrack software [10, 11].
We also obtained chest orientation data for a subset of 9 participants (by using the
inbuilt gyroscopes of tablets fixed to those participants’ body using a bib), but such
information is not relevant to this work.

3 Relative position of first neighbours

In [9] a few observables, such as the average density in the crossing area, the velocity
distribution, the relative position of pedestrians in the same and in opposite flows,
and shoulder orientation, were defined to analyse how the density conditions affect the
cross-flow dynamics. Between these, the observable of relevance to study the formation
of the stripe pattern, is the angle between the pedestrians’ walking direction (corridor
axis) and the vector identifying the relative position of their first neighbour (in their
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same flow). As shown in Fig. 1 (b) and (c), such angle (denoted as 𝜙𝑠) was defined with
a different sign depending on which flow the pedestrian belonged to, so that positive
values always identify angles in the incoming direction of the other flow. Furthermore
only values of 𝜙𝑠 ∈ [−𝜋/2, 𝜋/2] (i.e., only relative positions to pedestrians on the
front) were considered.

The detailed definition of 𝜙𝑠 is as follows: for each pedestrian 𝑖 located in the
crossing area, whose position is given by vector r𝑖 , and whose preferred walking
direction (direction to the goal) is given by unit vector g, we consider the closest
pedestrian 𝑗 in the same flow and located in front of it, i.e. satisfying

(r 𝑗 − r𝑖 , g) > 0, (1)

and define the magnitude of the angle between the relative distance r𝑖 𝑗 ≡ r 𝑗 − r𝑖 and
the unit vector g,

|𝜙𝑠 | = acos
[ (r𝑖 𝑗 , g)

|r𝑖 𝑗 |

]
. (2)

The sign of 𝜙𝑠 chosen in such a way to have an angle of +𝜋/2 if pedestrians walk in a
single file according to the observations reported by [1, 8] (Fig. 1 (b) and (c)).

Although this observable is aimed to identify the emergence of a “single file” stripe
and may fail in describing more complex structures, we believe it to be able to describe
the density regime at which stripe begin to form. Namely, if pedestrians were walking
in perfect single line stripes in the direction reported by [8] it would attain exactly
a value 𝜙𝑠 = +𝜋/4. Although for empirical, imperfect stripes we obviously expect a
non-𝛿 distribution, the presence of a peak at ≈ 𝜋/4 in the empirical distributions of
the 𝜙𝑠 observable supports the presence of a stripe pattern in the expected direction,
and by studying how the distribution of 𝜙𝑠 changes with 𝜌𝐼 we can understand how
density affects the stripe formation process.

The empirical distributions of 𝜙𝑠 are shown, for all values of 𝜌𝐼 , in Fig. 2. We may
see that a peak at ≈ 𝜋/4 is present for all density conditions. Nevertheless, while such
peak represents the only clear maximum in the 𝜙𝑠 distributions for 𝜌𝐼 ≥ 1 ped/m2,
other clear local maxima at ≈ −3𝜋/4 and ≈ 0 are present at lower densities (such
maxima could be due to the relative spatial distributions that pedestrians assume in the
starting areas). Furthermore, at least at 𝜌𝐼 = 0.5 ped/m2, the maximum at ≈ 0 assumes
a value higher than the one at ≈ 𝜋/4.

Based on a comparison between in Fig. 2 (e) and (f) one could also argue that the
𝜋/4 peak is less prominent at 𝜌𝐼 = 2.5 ped/m2 compared to 𝜌𝐼 = 2 ped/m2. It is
nevertheless not clear if this result is related to a weaker formation of stripes or just
to the emergence of more complex patterns that may not be identified by our simple
observable.

4 Order parameter: definition

In the present contribution we introduce an other observable to try to understand which
direction of the environment presents the “higher order”, which we may associate
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Fig. 1 (a): picture frame of the experimental setting (showing highlighted stripe formations). (b) and
(c): graphical definition of 𝜙𝑠 for the different flows.
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Fig. 2 Empirical distributions of 𝜙𝑠 for different values of 𝜌𝐼 .

to the presence of stripes. As reported above, according to [8] for our geometrical
configuration such direction should correspond to an angle of ≈ 𝜋/4 with respect
to the corridors’ axes, but we will allow our observable to identify other possible
orientations.

To be able of doing that, we rotate all the tracking data of an angle 𝜃𝑘 = 𝑘𝜋/36,
𝑘 = 1, . . . , 36 (e.g., multiples of 5 degrees), define a Cartesian “occupation grid”
for each value of 𝜃𝑘 and identify which of these rotations produces a grid that is
“maximally ordered” (see below for a clarification terms such as “occupation grid”
and “maximally ordered”).

Before proceeding, we have a couple of problems to deal with:

1. Stripes are not to be expected to be stable in time, or to occur always in the same
place.

2. The original geometry is not rotationally invariant (as clearly visible in Fig. 1 (a)).

The proposed solution is, schematically, the following definition of an “order
parameter”[12]:
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1. The order parameter is not computed based on an average velocity field, but uses
an “instantaneous occupation grid”.

2. To compute the order parameter we use data tracked only inside a disk or radius 1.5
m (regaining thus rotational symmetry).

3. Our definition of the order parameter takes in account the presence of empty cells
(which are necessarily present in a “instantaneous occupation grid”, in particular at
low densities.

The detailed definition is as follows. We create a 6 by 6 cell “occupation grid” 𝑀𝑖 𝑗 (𝑡).
Since such a grid is computed at each tracking time 𝑡, we named it “instantaneous”.
Each grid cell is a 0.5 by 0.5 meters square, and the grid value 𝑀𝑖 𝑗 (𝑡) corresponds to
the signed difference of the pedestrians belonging to each flow found in the cell at 𝑡.

Namely, if we have𝑈𝑖 𝑗 (𝑡) pedestrians moving down/up and 𝑅𝑖 𝑗 (𝑡) moving left/right,
we define

𝑀𝑖 𝑗 (𝑡) = 𝑈𝑖 𝑗 (𝑡) − 𝑅𝑖 𝑗 (𝑡). (3)

The grid 𝑈 and 𝑅 may be computed using data rotated for each possible angle
𝜃 = 𝜃𝑘 , and we may refer to the grids computed using the angle 𝜃 as𝑈 (𝑡, 𝜃) and 𝑅(𝑡, 𝜃)
(and correspondingly define the grids 𝑀 (𝑡, 𝜃) through their difference).

We may now sum over rows (or columns) and define

𝑀 𝑥
𝑖 (𝑡, 𝜃) =

∑︁
𝑗

𝑀𝑖 𝑗 (𝑡, 𝜃), 𝑀
𝑦

𝑗
(𝑡, 𝜃) =

∑︁
𝑖

𝑀𝑖 𝑗 (𝑡, 𝜃), (4)

(by scanning on the 𝑥 and 𝑦 directions we need only to rotate by up to 𝜋/2 to get the
full 𝜋 information).

We also define the total number of pedestrians in a row/column as

𝑇 𝑥
𝑖 (𝑡, 𝜃) =

∑︁
𝑗

𝑈𝑖 𝑗 (𝑡, 𝜃) + 𝑅𝑖 𝑗 (𝑡, 𝜃), 𝑇 𝑦

𝑗
(𝑡, 𝜃) =

∑︁
𝑖

𝑈𝑖 𝑗 (𝑡, 𝜃) + 𝑅𝑖 𝑗 (𝑡, 𝜃). (5)

We define the row/column order parameter as follows (to simplify we provide only
the row definition)

𝑂𝑥
𝑖 (𝑡, 𝜃) =


0, if 𝑇 𝑥

𝑖
(𝑡, 𝜃) ≤ 1

1, if |𝑀 𝑥
𝑖
(𝑡, 𝜃) | ≥ 6(

𝑀𝑥
𝑖
(𝑡 , 𝜃 )
6

)2
, otherwise

. (6)

Finally we define the grid order parameter 𝑂𝑥 (𝑡, 𝜃) (𝑂𝑦 (𝑡, 𝜃)) as the average over
rows (columns) with non-zero 𝑇 𝑥

𝑖
(𝑡, 𝜃) (𝑇 𝑦

𝑗
(𝑡, 𝜃)).

For each density condition 𝜌𝐼 , experiment repetition 𝑗 and angle rotation 𝜃 we
average all instantaneous 𝑂 (𝑡, 𝜃) values to obtain the experiment repetition order
parameter

𝑂𝑥 (𝜌𝐼 , 𝑗 , 𝜃), 𝑂𝑦 (𝜌𝐼 , 𝑗 , 𝜃). (7)

We notice that based on our definition we actually have

𝑂𝑥 (𝜌𝐼 , 𝑗 , 𝜃) = 𝑂𝑦 (𝜌𝐼 , 𝑗 , 𝜃 + 𝜋/2), (8)
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so that we may drop the 𝑥, 𝑦 superscripts.
Time observations are not to be considered independent, but we may expect their

average to be normally distributed. We thus average over repetitions and express such
averages as

𝑂 (𝜌𝐼 , 𝜃) ± Y(𝜌𝐼 , 𝜃), (9)

Y(𝜌𝐼 , 𝜃) being standard errors.

5 Order parameter: results

We can study which rotation angles generate the highest 𝑂 by plotting them at fixed
𝜌𝐼 (Figs 5- 5). The results are in agreement with the theory with peaks in the 40 − 60
degrees range.

Although the different 𝜃 values are not obviously independent, we may still use a
student 𝑡 test as a quantitative tool to compare the difference between the data rotated
of 𝜃 = 𝜋/4 (for which we expect a maximum) with the “un-rotated” ones at 𝜃 = 0, and
with the those rotated with the “opposite value” 𝜃 = 3𝜋/4, as for the latter we expect
much lower 𝑂 values. The corresponding 𝑝 values are shown in Fig. 6 (a). We may
observe that the order emerges for all 𝜌𝐼 values.

Finally, the definition of the order parameter 𝑂 provided above as a clear direct
dependence on density (since it depends on the number of occupied cells), and thus it
is not suitable to compare different 𝜌𝐼 values. We may nevertheless try to circumvent
this problem by using a normalised

𝑂𝑁 (𝜌𝐼 , 𝜃) ≡
𝑂 (𝜌𝐼 , 𝜃)
𝑂 (𝜌𝐼 , 0)

, ⇒ 𝑂𝑁 (𝜌𝐼 , 0) = 1∀𝜌𝐼 . (10)

𝑂𝑁 is reported in Fig. 6 (a) for all 𝜌𝐼 and 𝜃 values. We may see that the effect is
comparable between densities values although appears to be stronger at intermediate
ones.
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Fig. 3 Dependence of the order parameter 𝑂 on the rotation angle 𝜃 for (a): 𝜌𝐼 = 0.25 ped/m2; (b):
𝜌𝐼 = 0.5 ped/m2. The blue curves show values for 𝜃 + 𝜋/2, while dashed curves show standard error
bars.
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6 Conclusions

In order to understand the effect of density on the formation of stripes in a orthogonal
cross-flow, we examined data from a set of controlled experiment using two observ-
ables: the distribution of the relative angle to first neighbours 𝜙𝑠 and an order parameter
𝑂. The combined analysis strongly suggests that stripe formation is happening at the
theoretically predicted angle 𝜋/4. While the study based on the relative angle suggested
that the local (neighbour) effect is quite weak at low (starting area) densities 𝜌𝐼 , the
study using the order parameter has shown that the tendency to walk on a diagonal
stripe is present already at 𝜌𝐼 = 0.25 ped/m2.

Based on the current analysis the effect appears to be particularly strong at the
intermediate values of 𝜌𝐼 ∈≈ [1, 2], but it may be argued that the proposed indicators
are not adequate to describe multi-line stripes or other similar formations that may
emerge at high density. For future studies we plan to use also a clustering-algorithm
based approach.
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Fig. 4 Dependence of the order parameter 𝑂 on the rotation angle 𝜃 for (a): 𝜌𝐼 = 1 ped/m2; (b):
𝜌𝐼 = 1.5 ped/m2. The blue curves show values for 𝜃 + 𝜋/2, while dashed curves show standard error
bars.
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Fig. 5 Dependence of the order parameter 𝑂 on the rotation angle 𝜃 for (a): 𝜌𝐼 = 2 ped/m2; (b):
𝜌𝐼 = 2.5 ped/m2. The blue curves show values for 𝜃 + 𝜋/2, while dashed curves show standard error
bars.
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Fig. 6 (a): 𝑝 values for a 𝑡 test comparing 𝜃 = 𝜋/2 to 𝜃 = 0 (blue) and to 𝜃 = −𝜋/2 (red). (b):
Comparison of the normalised order parameter 𝑂𝑁 for different values of 𝜌𝐼 .
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