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throughout the decades. However, the estimates of these fundamental quantities are
still developing [5].

Kernel estimates for the calculation of pedestrian density that we have applied in
[2, 10, 3] were first introduced in [8]. Those kernels were used to generate density
distribution in the room that enables the evaluation of density in any particular area,
as we presented in [11] where a static detector was examined. In this paper, we
will extend conducted research focusing on the impact of the shape and the size of
pedestrian surroundings on density output. Compared to [11], the dynamic detector
is used here which is dynamically changing its position in accordance with the
pedestrian position at every time step.

Individual density is needed due to the possibility to capture local information
from the pedestrian perspective. This approach can bring new and important insights
into the measuring of behaviour in an observed area. First, a comparison of the static
and dynamic detectors will be provided, demonstrating the importance to be local.
Then the effects of different surrounding shapes (circle, sector, ellipse) will be
examined. Finally, the elliptic density correspondence to sectors’ density will be
provided.

The following parametric study is based on the egress experiment organized in
the study hall of FNSPE, CTU in Prague in 2014, for details see [1]. Pedestrians
(undergraduate students) entered the room by one of three entrances, walked to the
opposite wall and left the room by one exit. They were instructed to leave the room as
fast as possible without running or any strong physical contact. In total, our sample
is made up of 2000 paths through 10 experimental rounds captured using 48 frames
per second.

2 Individual Concept Definition

Every single pedestrian is assumed to be a source of individual density distribution.
Rewrite the definition of density in an area 𝐴 ⊂ R2

𝜌𝐴 =
𝑁

|𝐴| =
∫
𝐴
𝑝(𝒙) d𝒙
|𝐴| =

∫
𝐴

∑𝑁
𝛼=1 𝑝𝛼 (𝒙) d𝒙

|𝐴| =

𝑁∑︁
𝛼=1

∫
𝐴
𝑝𝛼 (𝒙) d𝒙
|𝐴| , (1)

where 𝑁 ∈ N0 represents the total (discrete) number of pedestrians, |𝐴| the size
of considered area 𝐴, 𝑝𝛼 (𝒙) the individual density distribution generated by each
pedestrian 𝛼 ∈ {1, 2, . . . , 𝑁} and 𝑝(𝒙) = ∑𝑁

𝛼=1 𝑝𝛼 (𝒙) the density distribution in the
area 𝐴. The usage of kernel functions for pedestrian density estimates are deeply
discussed in [11].

We denote static detector (global) density as 𝜌𝐴. On the contrary, the individual
density 𝜌𝛼 for a specific pedestrian 𝛼 with dynamic pedestrian surroundings 𝜔𝛼 is
defined as follows

𝜌𝛼 =

∫
𝜔𝛼 (𝒓 )

∑𝑁
𝛽=1,𝛽≠𝛼 𝑝𝛽 (𝒙, 𝑅) d𝒙

|𝜔𝛼 (𝒓) |
. (2)
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Regardless of the kernel type, 𝑅 ∈ R expresses the smoothing factor and 𝒓 ∈ R𝑛,
where 𝑛 ∈ N, represents the pedestrian range. Thus we refer to it as a blur and a range
respectively. Blur1 𝑅 ∈ R controls the size of an area affected by one pedestrian.
Range 𝒓 ∈ R𝑛, where 𝑛 ∈ N, controls the size of pedestrian surroundings defining
the area taken into account for evaluating the density. Its dimension can vary, we will
use 𝑛 = 1 or 𝑛 = 2 for specific surroundings shapes defined in the following text.

Clearly we exclude the individual density distribution of the pedestrian 𝛼 in the
individual approach (2), i.e. the pedestrian𝛼 does not contribute to the density in their
surroundings. The reason is if there is not any other pedestrian near the pedestrian
𝛼, the individual density is equal to zero. If we did not exclude the pedestrian 𝛼,
the individual density would be equal to the mass of the pedestrian 𝛼. For instance,
the pedestrian mass is represented by conic kernel with blur 𝑅 and the individual
density is computed in the circular surroundings 𝜔𝛼 (𝑟) with radius 𝑟 ∈ R, then
𝜌𝜔𝛼 (𝑟 ) =

1
𝜋 𝑟2 ped/m2 for 𝑅 ≤ 𝑟 and any other pedestrian represented at least 𝑟 + 𝑅

m far away.
In this paper, we assume density distribution 𝑝(𝒙, 𝑅) using conic kernel with the

radius of the base 𝑅 = 0.9 m (according to the results obtained in [11]), see Fig. 1.
Different types (shapes and sizes) of the pedestrian surroundings can be used; the
types used in this study are defined in the following subsection. The static detector
𝐴 for computing 𝜌𝐴 of size 2 m2 is located (and centred) at the exit area.

Fig. 1 An example of density distribution 𝑝 (𝒙) in an observed area using conic kernel with
𝑅 = 0.9 m.

2.1 Types of Pedestrian Surroundings

Having introduced the individual density of pedestrian 𝛼 (2), we need to specify the
shape of the pedestrian surroundings in the meaning of the dynamic detector. The
choice of the specific shape is very promising in the bending of the definition (2) for
a specific purpose from the microscopic point of view.

1 Note that blur can be more-dimensional parameter for non-symmetric kernels. However, we will
use solely symmetric kernels in this paper.
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We remark our notation at fixed time 𝑡 for the (head) position 𝒙𝛼 =
(
𝑥𝛼,1, 𝑥𝛼,2

)
:=

𝒙𝛼 (𝑡) of pedestrian 𝛼, current velocity 𝒗𝛼 := 𝒗𝛼 (𝑡) of pedestrian 𝛼 and the surround-
ings 𝜔𝛼 (𝒓) := 𝜔𝛼 (𝒓, 𝑡) of pedestrian 𝛼, where 𝒓 can be an arbitrary range parameter
(𝒓 can be one-dimensional or two-dimensional) defining the specific surrounding as
follows.

Circle with range defined as radius 𝑟 > 0 of the circle can be written as

𝜔𝛼 (𝑟) =
{
𝒙 ∈ R2 : ‖𝒙 − 𝒙𝛼‖ ≤ 𝑟

}
.

Circular sector with range 𝒓 = (𝑟, 𝛾), where 𝛾 ∈ (0, 𝜋〉 is central angle and
𝑟 > 0 is radius, is defined as follows

𝜔𝛼 (𝑟, 𝛾) =
{
𝒙 ∈ R2 : ‖𝒙 − 𝒙𝛼‖ ≤ 𝑟 ∧ ](𝒙 − 𝒙𝛼, 𝒗𝛼) ≤

𝛾

2

}
.

The sector is rotated in the pedestrian movement direction.
Ellipse with 𝒓 = (𝑎, 𝑏), 𝑎 > 𝑏, where 𝑎 ∈ R+ is the length of semi-mayor axis

and 𝑏 ∈ R+ the length of semi-minor axis. The ellipse is rotated into the current
pedestrian movement direction and the pedestrian is located into the first focus of
the ellipse; the second focus lies right ahead of them.

The shapes of all defined surroundings are depicted in Fig. 2.

Fig. 2 Type of pedestrian surroundings used in this study.

3 Importance of Being Local

For the first impression, the most basic (circular) surroundings are applied to compare
the detector and individual approach; four chosen time frames are depicted in Fig.
3. Coloured points are located at the pedestrian’s head positions, dotted circles
represent specific (𝑟 = 0.5 m) circular surroundings and static detector density
𝜌𝐴(𝑡) is visualised at the top left coloured square. There are visible differences
between detector density and individual density, e.g. see the fourth time frame with
very high static detector density and quite low individual densities in the detector.
Although high congestion is detected, pedestrians individually differ from this value
in the detector area.

Note that 𝜌𝐴 is constantly higher approx. 0.5 ped/m2 than 𝜌𝛼 because the chosen
pedestrian 𝛼 is excluded in the definition of their individual density (2), thus the
individual density is constantly 1/|𝐴| lower than the static density in this detector 𝐴.
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Fig. 3 Static detector density 𝜌𝐴 (𝑡 ) (top left coloured square) versus pedestrian individual density
𝜌𝛼 (𝑡 ) (using circular surroundings with range 𝑟 = 0.5 m).

4 Impact of Range and Surroundings Shape on the Indiv. Density

To cover more than a few time frames, trajectories from the experimental round 6 are
plotted in Fig. 4. Only trajectories from the steady state are used to be sure the results
are not affected by random drops. The trend of static detector density is shown at the
top. Strongly blurred results can be seen using 𝑟 = 1 m; on the contrary, little blurred
results are obtained using 𝑟 = 0.2 m or 𝑟 = 0.5 m. Therefore the individual density
with range 𝑟 = 1 m cannot detect expected density peaks and density downs due to
high blurring and the additive information sublimed. However, the individual density
with a lower range can detect density fluctuations and bring desired individual (and
local) information. Note that range 𝑟 greater than 1 m is not suitable to be compared
with our detector of size 2 m2.

Fig. 5 compares locally the time development of global density 𝜌𝐴 (black) and
chosen individual densities 𝜌𝛼 (colors) measured for specific pedestrian 𝛼 = 1240;
various types of surroundings and parameters are visualized. The global density
in the detector 𝐴 (during the passage of pedestrian 𝛼) is almost constant. On the
contrary, a more pronounced trend is observed even using a circular shape. Moreover,
the lower the central angle of the sector is, the more noticeable the density peak is.
And at the same time, the lower the radius of the sector is, the minor the change is
in density when using different central angles of the sector.

Analogously, the time development for an ellipse can be seen in Fig. 6. It is
possible to obtain similar results to the circle and sectors using specific values of the
elliptic axes. This behaviour was expected due to the elliptic definition and we will
examine it in general (for any pedestrian and any trajectory) in the further section.
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Fig. 4 Detector density 𝜌𝐴 (𝑡 ) versus coloured pedestrian trajectories using 𝜌𝛼 (𝑡 ) of the experi-
mental round (number 6, stable cluster) for different values of circular range 𝑟 .

Fig. 5 Time development of 𝜌𝐴 and 𝜌𝛼 for specific pedestrian 𝛼 = 1240 (circle, sectors).

Fig. 6 Time development of 𝜌𝐴 and 𝜌𝛼 for specific pedestrian 𝛼 = 1240 (ellipse).
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5 Elliptic Correspondence to Sectors

Having the preliminary results, we expect a correspondence between elliptic density
and other shapes of surroundings, i.e. elliptic parametric settings ensuring the sim-
ilarity of densities exists. It is clear that an ellipse with 𝑎 = 𝑏 is transformed into a
circle with radius 𝑟 = 𝑎 = 𝑏. For these reasons, only the correspondence between
ellipse and sectors will be checked quantitatively.

The density distribution from (1) ensures the propagation of pedestrian influence
into any shape of surroundings. Thus finding any correspondence between a sector
and an ellipse is reasonable despite the fact that the ellipse ’sees behind the pedestrian’
and the sector does not.

A corresponding ellipse is found for each sector using the minimization of mean
absolute deviation between their density curves using data of the experimental round
number 6 (more than 250 trajectories). The correspondence is studied using the
ratio of the length of elliptic axes 𝑎/𝑏, the central angle of sector 𝛾 and the areas of
surroundings, see Fig. 7. The area of the fixed sector and the area of the corresponding
ellipse does not differ significantly (variances for the mean semi-mayor axis and the
mean semi-minor axis are less than 10−2 m2). Besides, a narrow ellipse corresponds
to sectors with low central angles and an ellipse with 𝑎 ≈ 𝑏 is the closest option for
a semicircle.

Fig. 7 Comparison of area and axis ratio for corresponding ellipse and sector. Data of all pedestrians
from experimental round number 6 was used.
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6 Conclusions

The introduced individual approach gives a new possibility of insight into pedestrian
dynamics, besides the global (static detector) density. As was shown in this con-
tribution, the individual density brings additive information about dynamics in an
observed area (including specific pedestrian conditions in their surroundings) that
cannot be observable using the static detector density.

Circular surroundings useful for modelling the proxemics zone established by
Hall [6] can be considered as the simplest case, however, we went much deeper.
More individual information is brought by elliptic surroundings covering an area
mostly in front of the pedestrian and to some extent also behind the pedestrian,
and shape defined by sector with specific central angle representing the visual field
of the pedestrian. All possible properties of examining types are gathered in the
elliptic shape due to its generality. Although the size of the specific surroundings
differs concerning the current application, it can be chosen according to the desired
characteristics.

To conclude, individual density brings new information about conditions in the
observed area using any type of pedestrian surroundings. Elliptic surroundings have
the most general properties, thus we recommend using them.
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