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1 Introduction and Objectives

A crowd is defined as a large group of people that are gathered or considered to-
gether [8]. It has a heterogeneous structure and is composed of various components
with distinct dynamics, with individuals and groups commonly regarded as its build-
ing blocks. Indeed, more than a bare collection of individuals, group motion is
shaped by numerous factors, such as individual factors (e.g, age, gender, height),
group factors (e.g, social relation, intensity of interaction, gestures), environmental
factors (e.g, density, obstacles, flow direction) or social factors (e.g, manners, social
acceptability) [14].

As a matter of fact, some of our previous studies are focused on characterising
the effect of social bonding on group dynamics, especially in the case of two-people
groups (i.e. dyads). In particular, it was shown that social relation and social interac-
tion have a significant impact on the dyad’s motion, with, for instance, members of
strongly bonded groups (i.e. couples, friends, or people interacting strongly) being
found to walk slower and closer to one another.

Nonetheless, the impact that the internal parameters of the group has on the
dynamics of other pedestrians that move in its vicinity (i.e. close enough to require
collision avoidance manoeuvres) has yet to be investigated. To shed some light on this
matter, we propose to analyze the particular situation of non-groups (i.e. pedestrians
that are alone and not part of any group) frontally encountering dyads, by using
trajectory data of uninstructed, free-moving pedestrians.

In particular, we study the relation between the intensity of interaction inside
the group and the deviation/intrusion behaviour of the non-group. To that end, we
compute the undisturbed minimum distance, i.e. the distance between the dyad and
the non-group assuming that they will walk in a straight line without performing any
collision avoidance. Then, we compare it to the actual observed minimum distance.
This allows quantifying the effective mutual avoidance performed and correlating it
with the intensity of interaction inside the dyad.

2 Related Work

The problem of generating socially compliant trajectories, for instance for au-
tonomous agents capable of averting collisions with other agents or pedestrians,
is essential. Physics-based methods, such as the classic Social Force Model [4], pro-
pose to solve this by using repulsive forces to reproduce collision avoidance. More
recently, data-driven methods, such as [1, 3] used neural networks to predict socially
plausible trajectories by training them on publicly available trajectory data sets.

Various works have examined the influence that social groups have on the dy-
namics of the crowd, particularly in the case of evacuation scenarios [10, 9, 7].
Their effect on unidirectional [5], bidirectional [12, 16] or multi-directional flows of
pedestrians [15] has also been recently studied. It was found that social groups keep a
larger distance from other pedestrians, overtake less often [5] and make fewer detours

A. Gregorj et al.118



when walking toward a defined goal [6]. In [16], the authors studied various colli-
sion avoidance strategies with regard to the size of the groups and pedestrian density.
They notably showed that bigger groups are more likely to split into subgroups to
accommodate conflicting pedestrians.

Nonetheless, to the best of your knowledge, no study has yet considered the impact
of the social bonding of the group on the avoidance dynamics with non-groups, which
we propose to do here.

3 Data Set

We use the DIAMOR data set, which contains pedestrian trajectories recorded over
8 days in an underground pedestrian street network in Osaka, Japan [13]. In this
experimental campaign, we collected trajectories of uninstructed pedestrians1 and
were walking freely in a 200 m2 environment, allowing continuous tracking for
approximately 50 m. Depth data was collected with laser range finders and video data
was simultaneously captured for annotation of social groups [2] and their intensity
of social interaction. This intensity was annotated on a scale ranging from 0 (i.e. no
interaction) to 3 (i.e. strong interaction).

The trajectories are first processed to ensure that they are suitable for our study.
First of all, for the sake of simplicity, the trajectories of the dyad members are
reduced to a single mobile agent (as average positions the members). We then
consider trajectories for which the number of observations is deemed sufficient, i.e.
with more than 16 points2. Additionally, we only retain the trajectories for which the
velocity is between realistic boundaries for walking motion, i.e. [0.5, 3] m/s.

Besides, since we are interested in studying the effect of the intensity of interaction
on collision avoidance dynamics, we require that the dyad 𝑑 and non-group 𝑛 get
close enough so that such an effect might sensibly be detected. Specifically, we
consider encounters, for which the instantaneous distance between 𝑑 and 𝑛 gets
smaller than 4 m.

Finally, we confine our analysis to frontal encounters, where 𝑑 and 𝑛 walk in
opposite directions such that 𝑛 can acquire sufficient information about the intensity
of social interaction of 𝑑. This condition can be enforced by measuring the unsigned
angle between the velocity vectors of 𝑑 and 𝑛, 𝛼 = |∠v𝑑 , v𝑛 |, and retaining those
encounters, where 𝛼 is (on average) between 3𝜋/4 and 𝜋.

Since 𝑑 and 𝑛 are mobile, the (static) environment reference frame is not the
most suited to study their relative positions. Thus, for the sake of clarity and ease of
interpretation, we adopt a dyad-centred reference frame. In particular, (i) we translate
the trajectories of 𝑑 and 𝑛 such that 𝑑 is positioned at the origin at all times and (ii)
we rotate them such that the velocity of the dyad v𝑑 lies along 𝑥+ at all times.

1 A sign board informed pedestrians that they were being recorded as part of an experiment. The
experimentation is reviewed and approved for studies involving human participants by ATR ethics
board (document number 10-502-1).
2 The sampling interval Δ𝑡 is 500 ms, and, thus, 16 samples correspond to 8 seconds of observation.
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4 Trajectory Deviation and Intrusion

Our analysis relies on the hypothesis that, in the vicinity of 𝑑 (specifically, a 4×4 2 m
area around it), 𝑛 would follow an effortless straight-line trajectory, would there be
no 𝑑 on its path3. Consequently, the deviation from this straight line can be attributed
to an effort for collision avoidance.

To measure this deviation, we compute two distances, (i) the straight-line distance
𝑟𝑏 and (ii) the observed minimum distance 𝑟0. The straight-line distance 𝑟𝑏 is defined
as the distance between the theoretical straight-line trajectory of 𝑛 and the origin
(i.e. the position of 𝑑 in the dyad-centred reference frame). We compute this as the
straight line connecting the positions of 𝑛where it enters and exits 𝑑’s vicinity. On the
other hand, the observed minimum distance 𝑟0 is simply the actual smallest distance
between 𝑑 and 𝑛. It can simply be computed as the minimum distance between
pairs of trajectory samples. However, since the sampling interval is relatively large
(i.e. Δ𝑡 = 500 ms) we interpolate the position of 𝑛 between consecutive time steps
using its velocity v𝑛 to refine the accuracy of the computation4. This procedure
allows us to detect minimum distances not only exactly at sampling instants but
also at intermediate time points between consecutive samples, which yields a more
accurate estimation of 𝑟0. Comparing 𝑟𝑏 and 𝑟0, we can quantify the deviation due
to collision avoidance.

In addition to quantifying the deviation with regard to social interaction, studying
these distances allows us to investigate the particular case of intrusions, i.e. when
the non-group 𝑛 passes between the two members of the dyad 𝑑.

However, note that while dealing with intrusions, one needs to be careful with
the group breadth. In [11] we showed that there is a strong relationship between the
intensity of interaction of 𝑑 and the interpersonal distance between its members.
Namely, higher levels of interaction correspond to smaller interpersonal distances,
while lower levels correspond to larger distances. Therefore, the preference of 𝑛 to
intrude into 𝑑 or not depends also on the available space between the members of 𝑑.
To alleviate this effect, we normalise 𝑟𝑏 and 𝑟0 by the average interpersonal distance
for groups with the same intensity of interaction. Henceforth, these normalised values
are referred to as 𝑟𝑏 and 𝑟0, respectively.

Given the previously described normalisation, we point out that values of 𝑟0
smaller than 1 indicate that 𝑛 is at a distance from the centre of mass of 𝑑 smaller
than the distance between the two members of this dyad. This is likely to correspond
to 𝑛 passing through 𝑑. To determine whether this likelihood is conditioned on
the intensity of interaction of 𝑑, we study the proportion of cases where 𝑟0 < 1.

3 Vice-versa is valid too. In addition, pedestrian trajectories are, in general, not perfectly straight,
but over relatively small distances and for the geometry of the environment in focus (a straight
corridor), we argue that this assumption is reasonable.
4 We check whether the distance between the origin and the line, which passes through the position
of 𝑛 at 𝑡𝑘 , 𝑝𝑛 (𝑡𝑘 ) and is directed along its velocity v𝑛 (𝑡𝑘 ) , is smaller than the distance between the
origin and 𝑝𝑛 (𝑡𝑘 ) . In order for that new distance to be acceptable as the smallest distance between
𝑛 and 𝑑, 𝑛 must reach the position on the line that verifies this distance in a time shorter than the
sampling interval Δ𝑡 .
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Specifically, we compute the probability

𝑃(𝑟0 < 1|𝐼) =
|𝑒 ∈ E𝑟𝑏∈𝐼 : 𝑟0 < 1|

|E𝑟𝑏∈𝐼 |
, (1)

where 𝐼 is a given interval for the distance 𝑟𝑏 and E𝑟𝑏∈𝐼 is the set of encounters
such that 𝑟𝑏 is in that interval. In practice, we compute this probability for quantised
values of 𝑟𝑏, i.e. the intervals 𝐼 are non-overlapping bins of equal size.

5 Results and Discussion
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Fig. 1 a 𝑟0 against 𝑟𝑏 for various intensities of interaction. b Corresponding ANOVA 𝑝-values (in
logarithmic scale).

Figure 5-(a) shows the average value of 𝑟0 over quantised values of 𝑟𝑏, for different
intensities of interaction of 𝑑. On the right part of the graph (𝑟𝑏 > 2), all curves
follow closely the 𝑦 = 𝑥 line (in black dashes). This means that, when 𝑛’s straight-line
trajectory would bring it at a distance 𝑟𝑏, which is larger than twice the size of the
group, it does not undergo any additional avoidance, regardless of the intensity of
interaction of 𝑑. In other words, groups’ social interaction does not affect collision
avoidance dynamics, when the trajectories are separated by a large enough distance
(more than twice the size of the group).

On the other hand, observing the left part of the graph (𝑟𝑏 < 2), the curves are
seen to drift from the 𝑦 = 𝑥 line, as avoidance behaviours take place. Even more
remarkably, the intensity of this deviation seems to be conditioned on the level of
interaction of 𝑑. As a matter of fact, increasing levels of interaction correspond to
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more pronounced avoidance dynamics. The significance of this result can be assessed
by observing the 𝑝-values shown in Figure 5-(b) for 𝑟𝑏 < 1.5, indicating that the
null hypothesis (that the mean values are all equal) can be safely rejected.
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Fig. 2 a Probability for 𝑟0 < 1 for various intensities of interaction of the dyad 𝑑. b Corresponding
𝑝-values from Pearson’s 𝜒2 test (in logarithmic scale).

Regarding intrusive behaviours, Figure 5-(a) shows the probability of 𝑟0 being
lower than 1, 𝑃(𝑟0 < 1), for quantised values of 𝑟𝑏. Remarkably, we see that there is a
direct link between the intensity of interaction of 𝑑 and the probability that 𝑛 intrudes
into 𝑑. Namely, non-groups are more likely to intrude into dyads with lower levels of
interaction. In Figure 5-(b), we show the 𝑝-values obtained from Pearson’s 𝜒2 test
corresponding to a null hypothesis that the proportion of values of 𝑟0 smaller than
1 are not significantly different across intensities of interaction. We see that these
𝑝-values are smaller than 0.05 for 𝑟𝑏 < 1.5, confirming the statistical significance
of the difference observed in 𝑃(𝑟0 < 1).

Similar to the deviation distance, we believe that this might possibly be an un-
conscious behaviour causing pedestrians to judge more acceptable to pass through
non-interacting groups, as it might be considered as causing less disturbance than
for an interacting group.

6 Conclusion

In this study, we studied the effect of the intensity of interaction of dyads 𝑑 on their
collision avoidance with non-groups 𝑛. Remarkably, we found that, when 𝑑 and 𝑛

are in a colliding path, the magnitude of the deviation of the non-group is contingent
on the intensity of interaction of the dyad. As a matter of fact, the deviation is shown
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to increase with intensifying levels of interaction. What is more, we found that the
probability of intruding into a dyad was also correlated with social interactions.
Namely, the more the dyad interacts, the less likely the non-group is to intrude into
it.

We believe that these findings can be explained by social norms and conventions.
It seems that it is regarded as more acceptable to come closer, or even intrude into,
groups not engaged in strong social interaction.

We argue that these findings are strengthening our understanding of pedestrian
dynamics and specifically of the unspoken social conventions characteristic of hu-
man locomotion. They could be applied to help in developing more realistic crowd
simulation models (such as social force models) with a wide variety of applications
(infrastructure design, disease spread predictions, etc.). Additionally, autonomous
agents (i.e. guiding robots, autonomous wheelchairs, etc.) could benefit from navi-
gation algorithms implementing rules derived from our results. Beyond the ability
to plan and follow paths among moving, interacting pedestrian, following social
conventions is a requirement when conceiving mobile devices that will make human
users feel comfortable.
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