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along the chosen route. In the present Paper, we focus on the operational aspects
of pedestrians’ motion in dense crowds, and in particular we study how individuals
react to the presence of a moving cylindrical intruder.

The choice of such a scenario is motivated by a recent series of experiments where
people were gathered in a controlled environment to form crowds with different
average densities, that were crossed by a cylindrical intruder [1,17]. Figure 1 shows
the experimental configuration, where we also notice that participants were wearing
colored hats to record their displacement. As we can see from the empirical results

Fig. 1 Photograph of the ex-
perimental configuration, with
a cylindrical intruder passing
through a crowd with a den-
sity 2.5 ped/𝑚2. Pedestrians’
motion was tracked with the
help of colored hats and then
transformed into the numer-
ical data shown in the next
figure, after averaging over
sufficiently many realisations.

plotted in Figure 2 pedestrians step aside well in advance of the cylinder’s arrival,
inducing a higher density at its sides, but a depletion in front of and behind it.
Individuals accept to temporarily move towards a higher density area, to let the
intruder through, and then readily head back towards a less crowded. It is remarkable
that this behavior is observed for densities ranging from 2.5 up to 6 ped/𝑚2.

Fig. 2 Averaged density and velocity fields of pedestrians in the experiment reported in [17] for a
mean density of 2.5 ped/𝑚2. Pedestrians step aside, accepting to move to a higher density region
before returning to a calmer area once the intruder has passed.
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These data motivated the inquiry into a model that would be able to replicate the
main qualitative features observed experimentally. In the present Paper we argue that
a minimal model based on Mean-Field Games is the right choice for this endeavour.

2 The Mean-Field Games model

Mean-Field Games (MFG) were introduced by J.-M. Lasry and P.-L. Lions [14,15],
and by M. Huang, R. P. Malhamé and P. E. Caines [12], to deal with optimisation
problems comprising a large number of interacting agents. Much has been said about
the mathematics of MFG [3,6, 9] but, although applications to pedestrian dynamics
have been considered [8, 13, 16], to the best of our knowledge direct comparisons
between MFG and (real world) experimental data regarding the local navigation of
crowds have yet to be performed.

2.1 The mathematical model

We refer the reader to [7] for a general and mathematically rigorous discussion
of the foundations of MFG, and to [18] for a physicist-friendly introduction. For
our purposes it suffices to know that MFG are optimally driven diffusive processes
involving many interacting agents. More explicitly, let us consider a time-dependent
differential game1 played by a large number of agents 𝑁 ≫ 1. At any time 𝑡, one
can associate to every agent 𝑖 a state variable, X𝑖 (𝑡) ∈ R2, relevant to the game:
in this case a position. Over the duration 𝑇 of the game (e.g. the time the intruder
needs to go through the whole crowd), we assume agents are able to control their
desired velocity2 a𝑖 (𝑡) ∈ R2, such that we can represent their individual motion via
Langevin dynamics

¤X𝑖 = a𝑖 (𝑡) + 𝜎𝑖𝝃𝑖 (𝑡), (1)

where 𝝃𝑖 (𝑡) is a 2-dimensional vector of uncorrelated Gaussian white noises account-
ing for phenomena agents cannot predict or control. Agents decide on a strategy (i.e.
the choice of a𝑖 (𝑡) for all 𝑡 ∈ [0, 𝑇]) in order to minimise their individual cost func-
tional 𝑐𝑖 . Choosing the correct form of 𝑐𝑖 is the key aspect of our game theoretical
approach, as it informs all the physics. Although a more refined version could be
considered, we argue that the following minimal model is sufficient to reproduce the
experimentally observed behaviour.

𝑐𝑖 [a𝑖] (X, 𝑡) = E
{∫ 𝑇

𝑡

[ 𝜇𝑖
2
(a𝑖 (𝜏))2 −𝑉𝑖 (X(𝜏), 𝜏)

]
𝑑𝜏

}
, (2)

1 A differential game is a game involving continuous state variables.
2 We keep here the canonical notation a𝑖 (𝑡 ) associated with control parameters in game theory.
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where X(𝑡) = (X1 (𝑡), . . . ,X𝑁 (𝑡)) and E denotes averaging over realisations of the
noise. The first term of the integrand plays the role of a kinetic energy and represents
the efforts made by the agent to enact their strategy: having to move is uncomfortable
and rushing is even more. The second, 𝑉 (X, 𝜏), is a potential that describes how
agents interact with each other and with the environment, which we shall soon define.

For a large number of players, the problem is essentially intractable (see [10] for an
example of optimal control applied to small crowds), and we need to make some key
assumptions. The first one is that all players are identical up to their initial position:
{∀𝑖 = 1 . . . 𝑁, 𝜇𝑖 = 𝜇, 𝑉𝑖 = 𝑉, 𝜎𝑖 = 𝜎}. The second is that the potential depends
on the agents’ positions only through the empirical density �̃�(x, 𝑡) = 1

𝑁

∑𝑁
𝑖=1 𝛿(x −

X𝑖 (𝑡)), which in the presence of many agents self-averages to 𝑚(x, 𝑡) ≡ E[�̃�(x, 𝑡)].
This is the eponymous mean-field approximation, agents only interact through the
density 𝑚(x, 𝑡). Finally we assume the potential to be of the simple form

𝑉 (X(𝑡), 𝑡) = 𝑉 [𝑚] (x, 𝑡) = 𝑔𝑚(x, 𝑡) +𝑈0 (x, 𝑡). (3)

The first term in the right hand side accounts for interactions between agents:
choosing 𝑔 < 0 amounts to penalising agents for standing in an overcrowded area.
The second term represents interactions with the environment, where 𝑈0 (x, 𝑡) ≡
𝑉0Θ( | |x − v𝑡 | | − 𝑅), 𝑉0 → −∞, to model the cylindrical intruder of radius 𝑅 and
velocity v. Ultimately each agent strives to optimise the same simplified cost func-
tional

𝑐[a] (x, 𝑡) = E
{∫ 𝑇

𝑡

[ 𝜇
2
(a(𝜏))2 −𝑉 [𝑚] (x, 𝜏)

]
𝑑𝜏

}
, (4)

given their initial position X𝑖 (𝑡 = 0). Introducing the utility function 𝑢(x, 𝑡) ≡
mina 𝑐[a] (x, 𝑡), the dynamic programming principle [2] implies 𝑢(x, 𝑡) solves the
Hamilton-Jacobi-Bellman (HJB) equation

𝜕𝑡𝑢 + 𝜎2

2
Δ𝑢 + min

a

[ 𝜇
2
(a)2 + a.∇𝑢

]
= 𝑉 [𝑚], (5)

where minimisation of the left hand side then yields the optimal control a∗ = −∇𝑢/𝜇.
Self-consistency of the mean-field approximation is ensured by having the density
of agents – individually following Langevin dynamics (1) – solve a Kolmogorov-
Fokker-Planck (KFP) equation, but one where the drift term is the optimal control a∗.
Hence, solving the MFG problem amounts to solving the system of coupled PDEs{

𝜕𝑡𝑢 + 𝜎2

2 Δ𝑢 − 1
2𝜇 (∇𝑢)

2 = 𝑉 [𝑚] [HJB]
𝜕𝑡𝑚 = 𝜎2

2 Δ𝑚 + 1
𝜇
∇ · (𝑚∇𝑢) [KFP]

. (6)

We should stress that HJB equation has terminal condition 𝑢(x, 𝑡 = 𝑇) = 0 given by
definition (4), while KFP has initial condition 𝑚(x, 𝑡 = 0) = 𝑚0, assuming agents
are initially uniformly distributed3. This forward-backward structure has profound
implications on the game dynamics and encodes the agents’ ability to plan ahead.

3 This is the optimal configuration given only repulsive interactions, before arrival of the intruder.
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2.2 The simulation

At this point we would like to show what the model is good for. Figure 3 displays
results of numerically solving the MFG system (6) with parameters chosen to match
the experimental data of Figure 2. This simulation exhibits many of the main em-

Fig. 3 MFG simulation (for parameters 𝜉 = 0.15 and 𝑐𝑠 = 0.11, cf subsection 2.3) of a static crowd
being crossed by a cylindrical intruder. The density plot in the left panel presents the accumulation
of agents on the cylinder sides and a depletion in front and behind the obstacle. The right panel
depicts the velocity field, where one can see lateral displacement prior to the obstacle arrival and
the return to lower density areas after its passage.

pirical features, starting from the accumulation on the sides and the depletion in
front of and behind the obstacle. Moreover, the velocity field shows that the optimal
MFG strategy involves the same lateral motion observed experimentally in [17]. The
model recovers remarkably well the overall experimental behaviour and the reason
lies in its forward-backward structure. In the MFG system (6), the backward HJB
equation carries information both about the future positions of the intruder and about
the future optimal configurations of the crowd. This informs the dynamics of the
agents’ density described by the coupled KFP equation, ensuring each individual
in the crowd avoids the intruder with minimal discomfort, by minimising both the
time spent in high density areas and their displacement. Indeed, stepping asides
means accepting to spend some time closer to others (up-front cost), but with the
perspective of soon returning to a less crowded zone.

2.3 Understanding MFG

We should now clarify some additional features of the model. Most notably, by
proper rescaling of Eqs (6) , it is possible to reduce the number of parameters of the
model to only two, namely the healing length 𝜉 and the sound velocity 𝑐𝑠 [4, 5]
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𝜉 =

√︄
𝜇𝜎4

2𝑔𝑚0
, 𝑐𝑠 =

√︂
𝑔𝑚0
2𝜇

(7)

whose ratios with 𝑅 = 0.37𝑚, the cylinder radius, and 𝑣 = 0.6𝑚/𝑠, its velocity,
respectively, completely determine the phase space of the MFG solutions. Now, if
we want to access radically different MFG strategies, we can do so by tuning 𝑐𝑠 ,
whereas 𝜉 would only modulate how far from the cylinder pedestrians would be
affected by its presence. That said, let us take a look at figure 4, ignoring the green
circles for the moment. The Figure shows three MFG simulations of the cylinder’s
passage, with the same 𝜉 as in Figure 3, but with three different values of 𝑐𝑠 , ranging
from left to right from 𝑐𝑠/𝑣≪ 1 to 𝑐𝑠/𝑣 ∼ 1. Judging only by the density fields
(first row), one merely notices a difference in the extent of the perturbation, but the
velocity fields (bottom row) actually display some noteworthy change in strategy. In
fact, as 𝑐𝑠/𝑣 decreases, moving (and especially moving fast) becomes more costly
(in the game theoretical sense of Eq. (4)): agents prefer to anticipate the fast moving
intruder and step away well in advance, even though this means spending some time
in a more congested area. On the other hand, for 𝑐𝑠/𝑣 ∼ 1 agents do not mind moving
and would rather remain in low density areas, ultimately giving up their transverse
motion in favour of circulating around the obstacle, as one may see for 𝑐𝑠 = 0.5.

Besides outlining the optimal strategy, the two parameters 𝜉 and 𝑐𝑠 can be used
to identify characteristic scales. The natural timescale obtained from their ratio
𝜏 = 𝜉/𝑐𝑠 represents the typical time the density needs to restore itself to its bulk
value after a pointwise perturbation. In our case however the intruder is not a point,
and and it is not still. To take into account its radius and its velocity we propose
𝑙 = 𝑣𝜏 + 𝑅 as a good candidate to estimate the extent of the perturbation caused by
the intruder. Indeed, looking again at Figure 4, the green circles of radius 𝑙 give a
scale of the perturbation caused by the intruder’s motion. We should note that we
have no general prescription to determine the perturbation scale for an arbitrary
choice of 𝑈0. However, such scale should necessarily depend on the parameters 𝜉

and 𝑐𝑠 .
Finally, one of the common features of many agent-based models used to address

the local navigation of crowds is the need to choose each agent’s anticipation time,
resulting from a compromise between realism and numerical cost. In these models
the time over which each agent can anticipate is chosen explicitly (or through some
given rule) and could be printed at each step of the simulation. This is where MFG is
radically different. The natural timescale of the game 𝑇 is not the anticipation time
(and neither is 𝜏), but the final time at which the game/simulation ends; it bears no
consequences regarding the anticipatory dynamics provided that it is large enough (cf
the discussion on the stationary, or ergodic state in [18]). Solving the MFG equations
yields the Nash equilibrium strategy of motion, describing how pedestrians would
move optimally, as per the cost functional (4), for each point in space-time, meaning
that, also the time after which a pedestrian located in any given point would start
moving, i.e. the anticipation time, is chosen optimally: it depends on the position
and is not prescribed a priori. The anticipation dynamics is therefore intrinsic to the

M. Butano et al.98



MFG solution; we believe this is one of the key features of MFG, and one of the
main reasons of its remarkable performance in this configuration.

Fig. 4 Density (top row) and velocity (bottom row) fields produced by solving the MFG equations
with mean pedestrian density 𝑚0 = 2.5, 𝑅 = 0.37, 𝑣 = 0.6, 𝜉 = 0.15 and increasing values of
𝑐𝑠 = 0.15, 0.25, 0.5. As 𝑐𝑠 increases, to avoid the intruder, agents abandon the transverse motion
in favour of a circular one. Note how the green circle of diameter 𝑙 encompasses most of the
perturbation caused by the intruder.

3 Conclusion

In this paper, we have presented a minimal model based on MFG, a mathematical
framework describing the Nash equilibrium of an optimisation problem involving
many interacting agents. We have used such model to simulate a dense crowd of
pedestrians being crossed by a cylindrical intruder, and confronted the results to
experimental data. Moreover, besides the model’s ability to qualitatively capture
realistic behaviours, we have offered an overview of the main features providing
additional insight on why pedestrians behave the way they do in situations like the
one studied here. We believe that the validity of our approach lies in the simplicity of
its premises, i.e. that the agents’ motion is derived only from the general individual
preferences described by the cost functional (4), without any prescription on the fea-
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tures it should display. The point is that the optimal motion is found as a consequence
of such principles and not sought by means of ad hoc parameters. That said, we do
not believe pedestrians solve a coupled system of non-linear PDEs while walking,
but we support the claim that, at least in some simple situations, daily experience and
evolution made it possible for the human brain to quickly find a collective solution to
efficiently avoid obstacles while optimising the overall discomfort, a process MFG
can help interpret and reproduce.
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