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 Abstract Traffic and pedestrian systems consist of human collectives where agents 

are intelligent and capable of processing available information, to perform tactical 

manoeuvres that can potentially increase their movement efficiency. In this study, 

we introduce a social force model for agents that possess memory. Information of 

the agent’s past affects the agent’s instantaneous movement in order to swiftly take 

the agent towards its desired state. We show how the presence of memory is akin to 

an agent performing a proportional–integral control to achieve its desired state. The 

longer the agent remembers and the more impact the memory has on its motion, better 

is the movement of an isolated agent in terms of achieving its desired state. However, 

when in a collective, the interactions between the agents lead to non-monotonic 

effect of memory on the traffic dynamics. A group of agents with memory exiting 

through a narrow door exhibit more clogging with memory than without it. We also 

show that a very large amount of memory results in variation in the memory force 

experienced by agents in the system at any time, which reduces the propensity to 

form clogs and leads to efficient movement. 

 

Keywords: Memory, Agent based models, Jamming behaviour, Faster is slower 

effect, Collective motion 

 1 Introduction 

 
The ability to think is a key distinction between agents in human collectives, like 

vehicular and pedestrian traffic flows [1, 2, 3, 4], and granular collectives [5, 6], which 

are made up of grains that respond and move only to external forcing. Therefore, 

when one writes down a set of governing equations either in the form of rules of 

 
Danny Raj M 

Indian Institute of Science Bangalore, CV Raman road Bengaluru 560012 Karnataka, India, e-mail: 

dannym@iisc.ac.in;dannyrajmasila@gmail.com 

Arvind Nayak 

Work done while at Indian Institute of Science Bangalore, CV Raman road Bengaluru 560012 

Karnataka, India 

 
 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. R. Rao et al. (eds.), Traffic and Granular Flow '22 , Lecture Notes
in Civil Engineering 443, https://doi.org/10.1007/978-981-99-7976-9_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7976-9_1&domain=pdf


interaction or social forces, it is important to specify those that distinguish a living
agent from one that is non-living. It would be an interesting problem to explore how
this distinction manifests in the dynamics of the collective. Since a comprehensive
model for human cognition (or thinking) is incredibly hard to formulate, we adopt a
bottom-up approach where we investigate how a certain facet of intelligence affects
the collective dynamics.

One of the key characteristics of a living agent is its ability to assimilate infor-
mation, process it and alter the agent’s decisions based on it. A critical aspect in this
process is the agent’s memory. An agent can remember its past actions and change
its current actions accordingly to achieve better performance. Memory of an agent
can affect the dynamics across several time scales: from learning route-specific rules
over several days and months, to remembering its recent trajectory and reacting to
immediate changes in the environment/jams. Here, we concentrate on the latter. We
develop a social force model for the memory of an agent based on its past move-
ment. Remembering how it moved in the recent past, the agent evaluates how well
it has achieved its desired velocity and takes a tactical decision—to make up for the
sub-optimal past movement.

In this article, we introduce a social force model for agents that exhibit memory.
Memory is characterised by two parameters: i) how long the agent remembers and,
ii) impact of memory on the movement. We first analyse the model equations to
understand the impact of memory on the dynamics of an isolated agent. Then, we
proceed to test the effect of memory on the collective. We simulate agents attempting
to exit via narrow door where agents are known to exhibit clogging behaviour near
the exits. Our objective is to understand how memory aids in the collective motion:
Does the presence of memory always guarantee efficient movement? How does it
impact the propensity to form or displace agents in a clog?

2 Model for traffic dynamics

2.1 Agents with memory

The motion of agents is modelled using a social force model, similar to Helbing et
al [7, 8, 9]. The velocity of an agent evolves in time based on Eq 1, where: i) the first
term in the RHS is the restitution force that restores the agent to its desired direction
and speed v0, ii) the second term is the force due to the effect of the memory of an
agent and, iii) the third term I𝑖

𝑗 ,𝑏
is the net social interaction of the agent to avoid

collision with other agents and the boundary.

𝑚
𝑑v𝑖
𝑑𝑡

=
𝑚

𝜏
(v0 − v𝑖) + 𝛽M𝑖 + 𝐼 𝑖𝑗 ,𝑏 (1)
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Here, the memory M𝑖 (𝑡) of an agent 𝑖 at time 𝑡, is defined as the total deviation
of the velocity of the agent from its desired velocity v0 in the time window [𝑡 −𝑇, 𝑡]
of the agent’s recent past (see Eq 2).

M𝑖 =

∫ 𝑡

𝑡−𝑇

(
v0 − v𝑖 (𝑡′)

)
𝑑𝑡′ (2)

When the agent is unable to travel at its desired speed and direction, the memory
term takes a positive value and offers an additional force to help restore the agent’s
motion sooner.

𝐼 𝑖𝑗 ,𝑏 =
∑︁

∀ 𝑗∈N𝑖

[
F𝑛
𝑖, 𝑗 + F𝑡

𝑖, 𝑗

]
+ F𝑛

𝑏 + F𝑡
𝑏 (3)

The term I𝑖
𝑗 ,𝑏

can take different forms depending on the context of the traffic prob-
lem. For pedestrian dynamics [8], Helbing and co-workers considered interaction
forces similar to that used in granular flows: a sum of the total normal and tangential
(frictional) forces due to contact. However, I𝑖

𝑗 ,𝑏
can also include small-ranged forces

that prevent collisions [9], which are more suitable for traffic flow problems. The
qualitative results shown in the paper do not depend on the exact choice of the models
for interactions.

2.2 Connections to control theory

If one were to imagine v0 as the set-point for a given agent, i.e., the desired state
that the agent wants to achieve, then the restitution force and the memory term in
Eqs 1 and 2, exactly resemble a proportional and an integral parts of a controller
(PI), respectively. Presence of an integral component can result in overshoots and
oscillations before the agent reaches its set-point. In the absence of memory and
when there are continuous collisions with obstacles as agents move, we can expect
the dynamics of the agent to show an offset (not reach ∥v0∥)—since, it is well known
that a proportional controller cannot take the system exactly to its set-point. Addition
of memory could guarantee reaching the set-point, even in the presence of obstacles.

One could also conceive a dynamics resembling a PID controller. This modifi-
cation does not qualitatively change the dynamics of the system. Since, adding a
derivative term for the deviation v0 − v𝑖 , gets absorbed into the inertia (LHS term of
Eq 1). In other words, the derivative term acts like an effective mass term that slows
the response of the agent to any social force.
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2.3 Memory as a state of the agent.

The memory term in Eq 2 is computed within a time window of [𝑡 − 𝑇, 𝑡]. Any
information from outside the time window is not used and all the information within
are equally weighted. A simpler and more elegant formulation can be arrived at, if
we weight the information with an exponential weighting as shown in Eq 4.

M𝑖 =

∫ 𝑡

0
𝑒

𝑡′−𝑡
�̃�
(
v0 − v𝑖 (𝑡′)

)
𝑑𝑡′ (4)

An exponential weighting prioritises information close to the current time instant
than from a distant past. This allows us to move away from a discontinuous time
window set by 𝑇 and towards a time scale �̃�. Then, we can differentiate Eq 4 with
time, using the Leibniz rule for differentiating under the integral sign to get Eq 5.

𝑑M𝑖

𝑑𝑡
= v0 − v𝑖 −

M𝑖

�̃�
(5)

This allows us to convert the memory term, which was previously an integral, into a
dynamic state of the agent. Eq 5 describes the evolution of this memory-state of the
agent: v0 − v𝑖 serves as the instantaneous source for the memory while −M𝑖

�̃�
is the

rate at which memory decays.

3 Results and Discussion

3.1 Dynamics of a single agent

The equations for the dynamics of an isolated agent, far away from the boundary,
can be written compactly as in Eq 6. This is after: i) the governing equations in Eq 1
are scaled (𝑡 with 𝜏, ∥v∥ with ∥v0∥, ∥M∥ with ∥v0∥/𝜏), ii) the interaction terms are
dropped and, iii) the scaled memory parameters become 𝛼 = �̃�/𝜏 and 𝛽 = 𝛽/𝑚.

𝑑

𝑑𝑡

©«
𝑣𝑥
𝑣𝑦
𝑀𝑥

𝑀𝑦

ª®®®¬ =
©«
−1 0 𝛽 0
0 −1 0 𝛽

−1 0 − 1
𝛼

0
0 −1 0 − 1

𝛼

ª®®®¬ ×
©«
𝑣𝑥
𝑣𝑦
𝑀𝑥

𝑀𝑦

ª®®®¬ +
©«
1
0
1
0

ª®®®¬ (6)

To understand the effect of memory (𝛼 and 𝛽) on the movement characteristics of
a single agent, it is enough to look at the eigen values of the matrix in Eq 6. The eigen
values are 1

2𝛼 ×
[
− (𝛼 + 1) ±

√︁
−4𝛼2𝛽 + 𝛼2 − 2𝛼 + 1

]
, repeated twice. Analysing

the eigen values helps us partition the 𝛽 − 𝛼 space into four regions (see Fig 1, i).
Stability: When 𝛽 > 0, the memory term aids in restoring the agent to its desired

state at steady state (see Fig 1, ii). And when 𝛽 < 0, memory opposes the agent’s
attempt to reach its desired state. However, since the restitution force (v0−v𝑖) always
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Fig. 1 (i) Regions with qualitatively different dynamics in the 𝛽 − 𝛼 parameter space. Coloured
(shaded) regions exhibit stable dynamics, which can be oscillatory, non-oscillatory and opposing
(negative 𝛽). The unshaded region marks the unstable region, which is found only when 𝛽 takes
a sufficiently large negative value. (ii)-(vii) Time evolution of the x components of velocity and
memory of the isolated agent for different memory parameters. (ii) 𝛼 = 0.3; 𝛽 = 2, (iii) 𝛼 = 3; 𝛽 =

0.2, (iv) 𝛼 = 0.75; 𝛽 = 3, (v) 𝛼 = 3; 𝛽 = 3, (vi) 𝛼 = 0.4; 𝛽 = −1, (vii) 𝛼 = 3; 𝛽 = −1.

acts to restore the agent’s dynamics, a small negative 𝛽memory does not immediately
destabilise the dynamics and only increases the time taken to reach steady state (see
Fig 1, vi). However, when 𝛽 < − 1

𝛼
, the eigen values begin to have a positive real part

and the memory term overpowers the restitution force leading to unstable dynamics
(see Fig 1, vii).

Overshoots & oscillations: When 𝛽 > 1
4 − 1

2𝛼 + 1
4𝛼2 , the eigen values become

complex conjugates and the dynamics become under-damped which results in os-
cillations in both the memory and the velocity of the agent (Fig 1, iv and v). Also,
when 𝛼 = 1, any 𝛽 greater than 0 results in oscillations. This divides the region
exhibiting non-oscillatory dynamics into two. The high-𝛼 part of this region exhibits
dynamics where we observe overshoots; i.e. the velocity takes a larger value before
asymptotically tapering to the desired, steady state value (see Fig 1, ii and iii to
compare the dynamics in the low-𝛼 and high-𝛼 regions).

3.2 Collective escape through a narrow exit

To understand the effect of memory on the dynamics of the collective, we consider a
well known system: agents exiting a room via a narrow door (See inset of figure 2 i).
We use the conditions similar to that in ref [8]. The governing equations in Eq 1 and
5 are simulated where every agent has a v0, directed along the line joining the agent
centre and the mid-point of the exit of the door. The inter-agent interactions lead to
collisions between agents as they crowd near the exit, slowing them down and giving
rise to temporary clogging. Now as agents slow down, memory force increases since
the source for the memory is v0 − v𝑖 . This makes the agents push harder as they
attempt to exit the room. To understand how these forces experienced by the agents
lead to the collective escape of these agents, we introduce an order parameter C that
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characterises the clogging propensity. Here, C is simply the fraction of the total time
when the agent-number in the room remains a constant. With this definition, a high
value of C would correspond to the prevalence of a large number of clogging events
during which agent number in the room remains unchanged.
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Fig. 2 (i) - Heat map of the clogging order parameter C, averaged over 75 independent realisations,
plotted for the memory parameters 𝛽 ∈ [0, 10] and 𝛼 ∈ [0.1, 30]. INSET: a snapshot of agents
exiting a room through a narrow exit. (ii) - Time evolution of the mean and the standard deviation
of the memory of agents within the room, averaged over 75 independent realisations. This is plotted
for three different memory configurations one from each of the regions II, III and IV. Parameters
considered are 𝛼 = 22.2 and 𝛽 = 0.3 for region II, 𝛼 = 22.2 and 𝛽 = 2 for region III and
𝛼 = 22.2 and 𝛽 = 10 for region IV.

Figure 2 i, shows the heat map of C in the 𝛽−𝛼 space. We find the landscape of C
to be non-monotonic with respect to both the principle axes: i.e., an increase in the
memory does not necessarily reduce the propensity to form clogs. This observation
is similar to the so-called faster-is-slower effect (FIS), reported by Helbing et al [8,
10, 11], where agents trying harder do not necessarily lead to more efficient escape.
In addition, we find that the observed non-monotonic effect is more pronounced
in certain regions of the 𝛼 − 𝛽 space. For instance, when either 𝛼 or 𝛽 are high
(see figure 2 i), the non-monotonicity with respect to the other parameter is well
pronounced in comparison to when they are low. We believe this feature arises due
to the intrinsic dependence of the memory force on the parameters 𝛼 and 𝛽 as seen
in figure 1. When an agent remembers only its recent past, i.e. when 𝛼 is small, a
high value of 𝛽 is required to produce a force of a similar magnitude to transition
from non-oscillatory to oscillatory behaviour and vice versa.

We partition the 𝛼 − 𝛽 space in figure 2 i into four regions while preserving the
𝛼 − 𝛽 relationship discussed previously. Region I is monotonic with respect to C
and completely covers and extends over the region in the 𝛼 − 𝛽 space corresponding
to non-oscillatory behaviour at the agent-level (compare with figure 1). Region II
corresponds to the ideal amount of memory that agents can possess to efficiently
escape through the exit. Region III corresponds to the FIS phenomenon and it is
sandwiched between regions II and IV which exhibit efficient collective escape.
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To understand how memory affects the escape dynamics and the formation of
clogs, we look at the averaged dynamics of the memory term for the agents within
the room. Figure 2 ii shows the time evolution of the mean and standard deviation
of the memory ∥𝑀𝑖 (𝑡)∥ in system, averaged over all the independent realisations of
the escape dynamics. The initial transient dynamics show that the effect of memory
is more pronounced for the agents with lesser strength of memory (i.e., regions
𝐼 𝐼 > 𝐼 𝐼 𝐼 > 𝐼𝑉). This is because memory increases when the agents begin to slow
down and agents with a higher strength of memory reach their desired state faster.
This trend disappears as the agents clog near the entrance: both the mean and standard
deviation of memory of the agents within the room increases rapidly in time. The
dynamics of agents with memory in region III begin to have a higher overall memory
with smaller variation between the agents within the room in comparison to II and
IV. In other words, the strength and time scale of memory is such that all the agents
try hard to exit by a similar amount which favours the formation of clogs and gives
rise to a high value of C. However, the higher variation and the lower mean memory
of agents with memory in region IV implies that the some agents have more memory
than the rest, which favours a more efficient exit strategy giving rise to lower values
for C.

4 Conclusion

A key feature of the traffic characteristics of living collectives is the ability of individ-
ual agents to assimilate dynamic information and alter their movement appropriately.
In this article, we introduce memory, a facet of intelligence where an agent remem-
bers its trajectory from its recent past and quantifies how well it was able to achieve
its desired velocity. The agent makes up for any non-optimal movement in its recent
past with a social force proportional to the memory. We show that an agent’s memory
has an effect akin to a Proportional–Integral controller. Depending on the memory
parameters 𝛼 and 𝛽, the agent dynamics can be stable or unstable, and give rise to
overshoots and oscillations. The eigen values of the system shed light on the bound-
aries that partition the different regions in the 𝛽 − 𝛼 space that show qualitatively
different dynamics.

While the effect of memory on the dynamics of the agent is monotonic when only
a single agent is considered, it is not the case when agents are in a crowd. We study the
effect of memory on the dynamics of agents exiting a room through a narrow door.
We find that the presence of memory does not always improve the movement of the
agents: the clogging order parameter C has a non-monotonic landscape in the 𝛽 − 𝛼

space resulting in a behaviour similar to the well known faster-is-slower effect. This
allows us to partition the 𝛽 − 𝛼 space into four regions based on a order parameter
that quantifies clogging propensity. We find the eigen values corresponding to the
motion of individual agents, in the non-monotonic region of the 𝛽 − 𝛼 space, to be
complex. In other words, the observed FIS effect is a result of the under-damped
response of agents arising due to the integral component of the memory force term.
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The time dynamics of the mean and standard deviation of the memory of agents
within the room, reveal why some regions in the 𝛽 − 𝛼 space favour the formation
of clogs giving rise to non-monotonicity.
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