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Abstract. Motor imagery classification using electroencephalogram
(EEG) signals is an important research topic that has been extensively
studied in the field of brain-computer interfaces (BCIs). However, due to
the limited amount of available data, overfitting is a common problem,
especially when using a deep-learning classifier. One way to address this
is by performing data augmentation. In this paper, we investigate the
efficacy of the diffusion model as a data augmentation method for motor
imagery classification. We evaluated the diffusion method by compar-
ing it with commonly-used EEG data augmentation techniques namely
such as Noise Addition, Fourier Transform Surrogates, Frequency Shift,
and SmoothTimeMask. The result shows that the diffusion method out-
performed other methods in terms of classification accuracy by 17.49%.
The Kullback-Leibler (KL) divergence is used for assessing the similarity
between the training set (with and without augmentation) and validation
set, thus showing the effectiveness of the diffusion approach compared to
other techniques.

Keywords: Motor Imagery · EEG · Brain Computer Interface · Deep
learning · Data Augmentation · Diffusion · KL divergence

1 Introduction

Brain-computer interfaces (BCI) establish a direct pathway between the human
brain and a computer via signal processing and decoding techniques. One classic
paradigm of EEG is motor imagery (MI), in which its physiological basis is based
on body movements or imagined movements that can produce α (8–13 Hz) and
β (13–30 Hz) event-related synchronization (ERS) and event-related desynchro-
nization (ERD) rhythms in the motor-sensory areas of the brain [1]. Recently,
deep learning (DL) model has been used for motor imagery classification. For
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example, EEGNet [2] is a compact convolutional neural network designed for
EEG-based brain-computer interfaces that effectively extracts spatial-temporal
features from EEG signals. In any case, the paucity of data is a prevalent issue
in the field of EEG classification, as it hinders the development and performance
of DL models. Consequently, a common symptom is overfitting, which reduces
the model’s accuracy and robustness on test set [3].

Data augmentation (DA) has been widely used to improve the robustness and
accuracy of DL by artificially increasing the number of training data. Traditional
EEG data augmentation methods include Noise Addition [4–6], fourier trans-
form surrogates [7], Frequency Shifting [8,9] and SmoothTimeMask [10]. Noise
Addition [5,6] adds random white noise to all channels. Fourier transform sur-
rogates [7] randomizes the Fourier-transform (FT) phases of temporal-spatial
data generates surrogates that approximate examples from the data-generating
distribution. Frequency Shifting [8,9] randomly shifts the frequency spectrum
on all channels. Last, SmoothTimeMask [10] randomly masks consecutive time
steps of the EEG signal and replaces them with zeros. The length of the masked
segment was also selected randomly. The motivation is to force the model to
disregard minor irrelevant events.

Recently, diffusion model [11] was proposed which generates synthetic data
based on Langevin dynamics. These models naturally admitted a progressive
lossy decompression scheme that can be interpreted as an extension of autore-
gressive decoding. Diffusion mode has been used as a DA method to gener-
ate synthetic training data for skin disease classification [12], etc. Moreover,
WaveGrad [13] model is a research-based approach that has been developed to
generate audio waveforms of superior quality. The proposed approach involves
utilizing score matching [14] and diffusion probabilistic models to estimate gradi-
ents of the data density within a conditional model. The research methodology
involves initializing the model with a Gaussian white noise signal and subse-
quently improving the signal quality through an iterative process that utilizes
a gradient-based sampler. The sampler is conditioned on the mel-spectrogram.
The WaveGrad model presents a method to balance inference speed and sample
quality through the manipulation of refinement steps. Additionally, it serves as
a connection between non-autoregressive and autoregressive models in relation
to audio quality. According to the research findings, WaveGrad has the ability to
produce high-quality audio samples with only six iterations.

In this work, we demonstrated the use of the diffusion model based on
WaveGrad [13] as a DA method for motor imagery classification. We evaluated the
effect of the proposed method by performing DA on BCI Competition IV 2a [15]
with various size of synthetic data with five standards EEG MI models (EEGNet
[2], ATCNet [16], EEG-ITNet [17], Deep ConvNet [18] and ShallowFBCSPNet
[18]). The proposed method improve the performance outperform other tradi-
tional EEG data augmentation methods.
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2 Related Work

We reviewed commonly-used data augmentation for EEG MI such as Noise
Addition, Fourier Transform Surrogates, Frequency Shift and Smooth
TimeMask.

2.1 Noise Addition

Noise Addition has two main categories for adding noise to the EEG signals
in purpose of DA [19]. A common technique in EEG research involved intro-
ducing Gaussian noise with zero mean and a standard deviation of 0.1 to the
recorded data [5]. The simulation of EEG data variability was commonly utilized
to replicate the effects of electrode noise or subject movement during experimen-
tal procedures. The introduction of noise to the training data could enhance the
robustness of the model by compelling it to learn features that were less sus-
ceptible to minor fluctuations in the data. Previous research has demonstrated
that the inclusion of Gaussian noise in EEG signals enhances the efficacy of the
MI classification model when applied to BCI competition IV dataset 2b [20],
resulting in a 10% improvement in performance.

2.2 Fourier Transform Surrogates

The Fourier transform surrogates (FTSurrogate) method utilized the phase data
of frequency elements, which were subsequently rearranged in a random man-
ner while maintaining their original magnitude spectrum [7]. The generation of
synthetic data samples has been utilized as a means to address the underrep-
resentation of certain classes. This approach has been shown to improve the
balance of class distribution and enhance the accuracy of classification. The
method proposed in this study has the potential to enhance classification per-
formance either as a standalone technique or in conjunction with other data
augmentation methods [7]. The extent of enhancement varies based on the par-
ticular dataset and classification issue. The extent of enhancement differs based
on the particular dataset and classification issue. The study aimed to enhance
the mean F1-score of a convolutional neural network utilized for sleep stage clas-
sification by 7% through the implementation of surrogate-based augmentation
on the CAPSLPDB sleep database [21].

2.3 Frequency Shift

In the Frequency Shift method, the frequency spectrum of an EEG signal was
randomly shifted to a different frequency range while maintaining the amplitude
spectrum [9]. The proposed technique involved generating novel EEG signals that
exhibit identical spectral characteristics as the initial signal, albeit with altered
frequencies. The study’s findings indicated that the Frequency Shift method
was successful in enhancing the classification accuracy of certain EEG datasets.
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In a study on motor imagery datasets, the implementation of the Frequency
Shift method resulted in a 2.5% increased in classification accuracy when com-
pared to the baseline method. Moreover, Jaderberg et al. (2021) proposed gener-
ating augmented EEG signals by applying various transformations, including the
Frequency Shift method, to the original signals. The study assessed the effi-
cacy of a novel method on various EEG classification tasks and demonstrated its
superiority over conventional data augmentation techniques, including random
cropping and flipping, as well as other learned data augmentation methods. The
study’s findings indicated that the suggested approach yields optimal perfor-
mance and required less time for training compared to gradient-based methods
in the class-agnostic context. Additionally, it surpassed gradient-free methods
in the class-wise context. The research paper lacked a specific numerical value
for the quantity of effects or enhancements. The effectiveness of this method in
enhancing classification performance was observed in certain datasets, such as
the BCI Competition IV 2a dataset [8].

2.4 SmoothTimeMask

SmoothTimeMask was a research methodology that utilized time-domain aug-
mentation to introduce smoothness into a signal. This is achieved by masking
contiguous time intervals [10]. The SmoothTimeMask algorithm was a technique
that used to apply a smooth mask to a segment of a time series signal. This
method involved generating a mask by randomly selecting a starting point and
masking a fixed length of contiguous samples. A common technique that used to
create a smooth transition between masked and unmasked regions is the appli-
cation of a convolution with a Gaussian kernel to the mask. The introduction of
smoothness in the augmented signal has the potential to prevent overfitting and
enhance the generalization of the model [10].

2.5 WaveGrad

WaveGrad is a generative model for waveform generation that uses score matching
and denoising to improve the quality of generated waveforms. The basic idea
behind the method is to estimate the probability density function of a dataset
using a generative model, and then use this estimate to generate new data points
that are similar to the original data.

To achieve this, WaveGrad uses an autoregressive architecture that predicts
each sample of the waveform conditioned on the previous samples. Specifically,
WaveGrad uses a modified version of the WaveNet architecture that replaces the
dilated convolutions with a set of learned gates and skips connections, which
reduces the computational cost of the model.

WaveGrad trains the generative model using score matching, which is a tech-
nique that involves matching the gradient of the log-density function of the
model to the gradient of the true log-density function of the data. The idea
behind score matching is that the gradient of the log-density function is easier
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to estimate than the function itself, and that matching the gradients is sufficient
to match the distributions.

Score matching is a technique used for estimating the probability density
function (PDF) of a dataset by matching the score function of a model to the
true score function of the PDF. The score function is the gradient of the log-
density function, i.e., the vector of partial derivatives of the log-density function
with respect to each input variable.

In score matching, the model is trained to minimize the difference between
the score function of the model and the true score function of the PDF. This can
be formulated as the following loss function:

L(θ) =
∑

i

|∇x log p(xi; θ) − ∇x log p̂(xi)|2 (1)

where θ are the parameters of the model, xi is a data point, p(xi; θ) is the model’s
probability density function, and p̂(xi) is the true probability density function
of the dataset.

Denoising score matching is an extension of score matching that uses a denois-
ing autoencoder to estimate the score function of the PDF. The denoising autoen-
coder is trained to remove noise from the input data, and the score function of
the denoised data is used to estimate the true score function of the PDF. The
loss function for denoising score matching is:

L(θ) =
∑

i

|∇x log p̂(x̃i) − ∇x log p̂(xi)|2 (2)

where x̃i is the denoised version of xi.
Weighted denoising score matching is a further extension of denoising score

matching that accounts for noisy labels. The idea is to assign higher weights to
samples with less noise and lower weights to samples with more noise. This can
be achieved by introducing a weighting function w(xi) into the loss function:

L(θ) =
∑

i

w(xi)|∇x log p̂(x̃i) − ∇x log p̂(xi)|2 (3)

where θ are the parameters of the model, xi is a data point, p̂(xi) is the true
probability density function of the dataset, x̃i is the denoised version of xi, and
w(xi) is a weighting function that assigns a weight to each sample based on the
level of noise in its label.

WaveGrad further improves the optimization of the model by using a variant
of stochastic gradient descent called Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC). SGHMC uses Hamiltonian dynamics to simulate the motion
of particles in a potential energy landscape, which improves the exploration of
the parameter space during optimization.

Overall, WaveGrad is able to generate high-quality waveforms that are com-
parable to or better than previous state-of-the-art methods. It achieves this by
combining denoising and score matching with a modified version of the WaveNet
architecture and SGHMC optimization.
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3 Methodology

We compared the diffusion method against four DA methods and the base-
line method without augmentation. Figure 1 shows how the training sets were
obtained using different combinations of the DA method and sampling size. The
sampling size was chosen at the ratio of 25, 50, 75, 100%. Five commonly-used
models for MI classification was used. The models were trained using subject-
dependent scheme and evaluated on their respective testing sets.

BCI
Competition IV

2a  dataset

Preprocessing
1. Band-pass filter band of 8–35 Hz
2. Exponential moving standardization.

Traditional Data Augmentation
1. Noise addition
2. FTSurrogate
3. Frequency shift
4. SmoothTimeMask

Augmented
signals pool

concatenate

Sampling Ratio

25%
50%
75%
100%

Training set

Standards EEG MI classification models

WaveGrad Training
Models train for each EEG channel in
each class for each subject.

Fig. 1. Showed how to obtain training sets when using traditional DA and WaveGrad.
WaveGrad was trained for each EEG channel in each class for each subject. Thus, we
trained a total of 792 models from four classes, 22 channels and 9 subjects.

3.1 Datasets

BCI Competition IV 2a [15] was a collection of EEG data from 9 subjects who
participated in a cue-based BCI paradigm involving four distinct motor imagery
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tasks: imagining movement of the left hand (class 1), the right hand (class 2),
both feet (class 3) and the tongue (class 4). Each subject completed the tasks in
two distinct sessions on different days, with each session consisting of six runs
separated by brief pauses, resulting in a total of 48 trials (12 for each of the
four classes). The data were captured while the participants sat in a comfortable
armchair in front of a computer screen, and a fixation cross appeared at the start
of each trial. A cue consisting of an arrow pointing to the left, right, down, or up
was used to prompt the subjects to perform the desired motor imagery task. The
subjects were instructed to perform the motor imagery task until the fixation
cross disappeared from the screen without receiving any feedback. Signals were
sampled at 250 Hz and filtered between 0.5 Hz and 100 Hz using a 50 Hz notch
filter in order to reduce line noise. We used one section for training sets and
another for test sets.

3.2 Data Preprocessing

EEG signal was filtered with a band pass filter of 8–35 Hz followed by exponential
moving standardization xt. For exponential moving standardization, compute
the exponential moving mean mt at time t and as show in Eqs. (4). Then,
compute the exponential moving variance vt at time t as show in Eqs. (5). We
set factornew is 0.001 and esp is 0.0001. Finally, standardize the data point xt

at time t as show in Eqs. (6).

mt = factornew · mean(xt) + (1 − factornew) · mt−1, (4)
vt = factornew · (mt − xt)2 + (1 − factornew) · vt−1, (5)

x
′
t = (xt − mt)/max(

√− > vt, esp), (6)

3.3 Data Augmentation

Our objective was to assess the performance of each DA method with differ-
ent ratios of augmented/synthetic data. Five DA methods (Noise Addition,
FTSurrogate, Frequency Shift, SmoothTimeMask, WaveGrad) and four ratios
(25%, 50%, 75%, 100%) = 20 combinations (5 methods × 4 ratios) of the training
set are to be created. Here, ratios refer to the amount of augmented/synthetic
data used. For example, given 25% ratio, a 25% augmented data is randomly
sampled and add to the original training set. By comparing different ratios,
we can better understand the impact of number of augmentation to accuracy
improvement.

Similar to previous works [8,10,20,21], we used the subject-dependent scheme
which augments data in subject level (i.e., each subject is treated separately)
and channel level (i.e., each channel is treated independently).

Noise Addition: Noise Addition entails the inclusion of diverse forms of
noise, such as Gaussian, Poisson, and others, that possess varying parameters to
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the original EEG signal. The raw EEG signal was subjected to additive noise by
incorporating a Gaussian distribution with a standard deviation of 0.1.

Fourier Transform Surrogates: Fourier transform surrogates are a type
of data generated by randomizing the phases of temporal-spatial data.

Frequency Shift: The technique of Frequency Shift is characterized by the
alteration of the frequency of the EEG signal by a specific amount. We random
shift the frequency by ±2 Hz.

SmoothTimeMask: SmoothTimeMask involves applying a smooth window
function to mask a continuous segment of the signal, and optimizing it using
gradient-based methods. The signal was randomly masked with a range of 100
sample points.

WaveGrad: It is first important that WaveGrad is originally a generative model,
not a formal augmentation technique. Thus, in contrary to other DA methods,
WaveGrad has to be trained before it can be used to generate a synthetic EEG
signal. The dataset consists of 9 subjects and four MI classes. The EEG recording
has 22 channels. Thus, the total number of WaveGrad models was (9 subjects ×
22 channels × 4 classes) = 792 models. The training procedure and parameters
were the same across all WaveGrad models. The learning rate was set to 0.0001
and the diffusion steps to 1000.

3.4 Evaluation

First, it is important to evaluate the quality of the augmented/synthetic data.
A common way is through dimensionality reduction KL divergence. The success
of the diffusion method in comparison to other methods is demonstrated by
the Kullback-Leibler (KL) divergence, which is used to measure the similarity
between the training set (with and without augmentation) and validation set. We
expect that high-quality augmented or synthetic data should exhibit similarity
between the training set (with and without augmentation) and the validation
set.

Second, once the quality of the augmented/synthetic data are quantified, we
are now ready to quantify the usefulness of data augmentation techniques on
actual EEG tasks. We first selected five commonly-used motor imagery classi-
fication models (EEGNet, ATCNet, EEG-ITNet, Deep ConvNet and ShallowF-
BCSPNet) which would allow us to understand whether how complexity of the
model relates with data augmentation. Here, note that we simply define the
complexity based on the model’s number of parameters. Accuracy was then
measured across all 21 combinations (5 DA methods × 4 sampling ratios +
1 baseline method without augmentation). The details of each model were as
follows:
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EEGNet. EEGNet is a single CNN architecture that can accurately classify
EEG signals from different BCI paradigms while being as compact as possi-
ble. The authors introduce the use of depthwise and separable convolutions
to construct an EEG-specific model that encapsulates well-known EEG feature
extraction concepts for BCI. They compare EEGNet to current state-of-the-art
approaches across four BCI paradigms and show that EEGNet generalizes across
paradigms better than, and achieves comparably high performance to, the ref-
erence algorithms when only limited training data is available across all tested
paradigms.

ATCNet. ATCNet is predicting the onset of epileptic seizures using electroen-
cephalogram (EEG) signals. The ATCNet consists of two blocks: an attention-
based temporal convolutional (ATC) block and a transformer-based classification
(TC) block. The ATC block is used to extract relevant features from the EEG
signals, while the TC block is used to classify the extracted features into seizure
and non-seizure classes. The proposed model is evaluated using the BCI Com-
petition IV-2a (BCI-2a) dataset. The obtained accuracy ranges from 60.5% to
89.5%.

EEG-ITNet. EEG-ITNet uses inception modules and causal convolutions with
dilation to extract rich spectral, spatial, and temporal information from multi-
channel EEG signals with less complexity than other existing end-to-end archi-
tectures. The paper also provides a methodology for achieving intuitive visual-
isation structures such as topographic maps. The proposed EEG-ITNet model
shows up to 5.9% improvement in classification accuracy compared to its com-
petitors in different scenarios. The paper also explains and supports the validity
of network illustration from a neuroscientific perspective.

Deep ConvNet. The deep ConvNet had four convolution-max-pooling blocks,
with a special first block designed to handle EEG input, followed by three stan-
dard convolution-max-pooling blocks and a dense softmax classification layer.
The authors found that recent advances in machine learning, including batch
normalization and exponential linear units, together with a cropped training
strategy, boosted the Deep ConvNets decoding performance, reaching at least
as good performance as the widely used filter bank common spatial patterns
(FBCSP) algorithm.

ShallowFBCSPNet. The shallow ConvNet are similar to the transformations
of FBCSP. Concretely, the first two layers of the shallow ConvNet perform a
temporal convolution and a spatial filter, as in the deep ConvNet. These steps
are analogous to the bandpass and CSP spatial filter steps in FBCSP.
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4 Results

4.1 Kullback-Leibler Divergence (KL Divergence)

To understand the quality of the generated data, we measured the similarity of
signal by KL divergence process. We measure the KL divergence comparing of
train set and test set, test set and train set with 25% of data augmentation, test
set and train set with 50% of data augmentation, test set and train set with 75%
of data augmentation, test set and train set with 100% of data augmentation, test
set and data augmentation and train set and data augmentation. We random-
ize the augmentation data for this process 100 times and averaged the result.
Overall, our method increases similarity as the ratios of augmented data are
increased. When ratios are increased, the similarity for the SmoothTimeMask,
Noise Addition, and FTSurrogate approaches that of the non-augmented data.
On the other hand, as the augmented data from frequency shift increases, the
similarity declines (Table 1).

Table 1. Average of KL divergence each data augmentation method. This result is
based on 100 random iterations of each augmentation data process.

Data Augmentation Test set vs Train set Average of 25% Average of 50% Average of 75% Average of 100% Test set vs Augmentation Train set vs Augmentation

WaveGrad 2421.27 2372.21 2336.35 2310.92 2294.04 2158.61 2090.67

Noise Addition 2316.79 2318.41 2324.93 2312.74 2316.05 2316.61 4.91

FTSurrogate 2316.79 2311.50 2305.57 2306.39 2306.27 2292.40 2226.75

SmoothTimeMask 2316.79 2320.10 2320.04 2322.51 2310.70 2316.79 0.00

Frequency shift. 2316.79 3513.38 4298.14 4888.52 5295.02 8287.84 8147.79

Fig. 2. Average of KL divergence each data augmentation method
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4.2 Classification Performance

The baseline for the model was established by training it without any data
augmentation, specifically without the use of synthetic data (i.e. 0% synthetic
data). The average accuracy of standard EEG MI classification models were
presented on the Table 2.

Table 2 showed the average accuracy of five standard EEG motor imagery
(MI) classification models using different data augmentation techniques. The
baseline accuracy of the models was 42.45%. The results showed that the high-
est accuracy was achieved using the WaveGrad technique, with an accuracy of
51.15%. This was an improvement of 8.7% over the baseline accuracy. As shown
in Table 2, the highest accuracy values were obtained using WaveGrad (51.15%)
and Frequency Shift (43.07%) techniques. The other two techniques, Noise
Addition and Fourier transform surrogates, also improved the accuracy of the
model to varying degrees. The SmoothTimeMask technique also resulted in higher
accuracy values compared to the baseline, with the highest accuracy value of
38.84% obtained at a 25% size percentage.

Overall, our results demonstrated that DA techniques can be effective
in improving the accuracy of EEG MI classification models. WaveGrad and
Frequency Shift techniques were particularly promising, and were worth fur-
ther investigation for future studies. Additionally, the size percentage of the DA
techniques appeared to have an impact on model performance, suggesting that
careful consideration of the amount of DA used was important for optimizing
model accuracy.

Table 2. Average accuracy of five standards EEG MI classification models

Baseline Accuracy(%) Size DA WaveGrad (%) σ Noise Addition(%) σ Frequency Shift(%) σ Fourier transform surrogates(%) σ SmoothTimeMas(%) σ

42.45 25% 51.15 17.61 35.83 13.95 43.07 18.28 41.25 14.31 38.84 12.38

50% 50.56 17.38 33.46 11.10 44.49 17.82 37.03 10.85 36.27 10.84

75% 51.64 17.24 33.77 11.23 43.58 18.25 37.01 10.14 34.95 10.73

100% 50.78 17.72 31.39 8.84 42.61 18.80 36.20 11.03 34.31 9.51

Average Accuracy (%) 51.03 17.49 33.86 11.53 43.44 18.04 37.12 11.08 36.09 10.86

4.3 Size of Augmentation

We present the impact of data augmentation on the similarity by KL-divergence
in Fig. 2. This result show that WaveGrad are improve similarity when incurred
number of ratio of data augmentation to raw signal. We present the impact on
accuracy of ratio of data augmentation to raw signal in Table 2. This result show
that the WaveGrad are not improve the accuracy.

5 Discussion

In this study, we demonstrated the implementation of the WaveGrad-based Dif-
fusion Model as a DA for EEG MI datasets. From the result, our method
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performed the accuracy based on the standard EEG MI classification models
more than traditional DA. Thus, for the discussion section, we focused mainly
on our method.

5.1 Key Improvement

The proposed methodology increased the variety of training sets, leading to an
enhancement in the quality of the training set. As shown in Fig. 2, Our research
indicated that our method enhanced the similarity of training sets with test
set. The traditional DA (Noise Addition, FTSurrogate, and SmoothTimeMask)
and training set without DA were the KL divergence are the most the same. Our
method are improve the similarity of test set and train Fig. 2 our method more
over another method are not improve the similarity. Spacial on smooth time
mask and noise add the augmentation are not different the train set moreover
the Frequency shift augment the seem make the train set and test set are more
defence when decreased the similarity of train set and test set.

Our method are improve the similarity of test set and train set. Our
method more over another method are not improve the similarity. Spacial on
SmoothTimeMask and Noise Addition augmentation are not different the train
set moreover the Frequency shift the seem make the train set and test set are
more defence when decreased the similarity of train set and test set.

5.2 Subjects Level

In terms of research findings, it was observed that the data augmentation accu-
racy was highest for subjects who exhibited the greatest accuracy according
to the standard EEG MI classification models prior to the implementation of
data augmentation techniques. Subject 3’s baseline accuracy was recorded to
be 56.95% during the initial assessment. The research findings indicated that
the accuracy for subject number 3 was improved by 15.46% using the imple-
mented method. In contrast, the DA method employed in our study exhibited
low efficacy when applied to the subject, as indicated by the subpar accuracy
observed in relation to established EEG MI classification models. Subject 5’s
baseline accuracy was measured to be 28.08% in the study. The research find-
ings indicate that a method has been implemented to enhance the accuracy of
subject number 5, resulting in a 4.13% improvement. Table 3 displayed the mean
increased in accuracy resulting from the implementation of our method.

5.3 Size of DA

The relationship between the size of DA and the performance of standard EEG
classification was not a direct variation. Table 5 presented the average accuracy
improvement achieved by our method on the DA size level. The limitations of
the dataset that used to train the WaveGrad method have impacted its capacity
to produce signals with greater valence. The observed limitation might account
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Table 3. The Average accuracy improvement from our method on subject level

Subjects Baseline Accuracy Δ of WaveGrad

1 43.06 17.01

2 29.24 6.46

3 56.95 15.36

4 37.08 7.77

5 27.08 4.13

6 29.58 4.01

7 40.07 11.77

8 53.19 8.18

9 65.76 2.59

for the non-linear relationship between the size of the data augmentation and
the corresponding increased in accuracy. Research suggested that increasing the
number of samples may not necessarily lead to a significant enhancement in
accuracy, particularly if the additional samples fail to encompass the complete
spectrum of potential signal fluctuations.

However, despite this limitation, the WaveGrad method still outperformed the
baseline accuracy on all levels of data augmentation, with the highest improve-
ment achieved at a DA size of 75%. This finding suggested that even with a limited
dataset, data augmentation techniques such as WaveGrad can still be effective in
improving the accuracy of motor imagery classification using EEG signals.

It was worth noting that the results presented in the table were based on a
single dataset, and the effectiveness of the WaveGrad method varies with other
datasets or signal processing tasks. Future studies should investigate the gen-
eralizability of the WaveGrad method and explore its potential for improving
accuracy in other EEG-based classification tasks.

The study concluded that although the WaveGrad method’s capacity to pro-
duce signals with higher valence is affected by the restricted dataset used for
its training, the outcomes presented in the table indicated that the method can
enhance the precision of the motor imagery classification task using EEG sig-
nals. Additional investigation was required to establish the applicability of the
WaveGrad approach to alternative datasets and signal processing assignments
(Table 4).

Table 4. The Average accuracy improvement from our method on DA size level

Baseline Accuracy DA size WaveGrad σ Δ

42.45 25% 51.15 17.61 8.71

50% 50.56 17.38 8.11

75% 51.64 17.24 9.19

100% 50.78 17.72 8.33
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Table 5. The Average accuracy improvement from our method.

Model Baseline Accuracy WaveGrad σ Δ

ATCNet 47.68 53.63 18.45 5.94

Deep ConvNet 32.60 52.93 18.49 20.33

EEGITNet 46.84 54.96 16.76 8.12

EEGNet 34.18 37.04 8.00 2.85

ShallowFBCSPNet 50.93 56.62 15.85 5.69

5.4 Complexity of Model

In a low-complexity model, our method improves accuracy more than a high-
complexity model because our method improves the similarity of the train set
and the test set Table 5. As a result, our method has an impact on low-complexity
models. However, high-complexity models are at risk of overfitting on a training
set. Hence, our method does not improve accuracy on high-complexity models.
However, our method does not guarantee accuracy.

5.5 Limitation

First, the proposed data augmentation method was developed based on a lim-
ited dataset, specifically the BCI competition IV dataset 2a. While the method
showed promising results on this dataset, its effectiveness might be limited by
the size and quality of the dataset used for its development. Future work could
involve evaluating the generalizability of the method on other EEG MI datasets
to improve its confidence in wider usage scenarios. Second, the proposed data
augmentation method was developed specifically for the EEG MI task. It might
not necessarily generalize well to other EEG-based tasks. Future work could
involve evaluating the method on other EEG signal tasks, such as P300 and
SSEVP, to assess its robustness and adaptability across different EEG-based
applications.

6 Conclusion

In this study, we investigated the effectiveness of data augmentation techniques
on improving the accuracy of standard EEG MI classification models. We used
five standard EEG MI classification models to classify EEG signals into left and
right hand movements. We evaluated the performance of data augmentation
techniques by comparing them with the baseline model, which were trained
without any data augmentation. The data augmentation techniques, we used
WaveGrad, Noise Addition, Frequency Shift, Fourier transform surrogates,
and SmoothTimeMas.

Our results showed that data augmentation techniques improved the perfor-
mance of standard EEG MI classification models, with WaveGrad being the most



Data Augmentation for EEG Motor Imagery Classification 125

effective technique. The accuracy of the baseline model was 42.45%, while the
accuracy of the model trained with 75% synthetic data generated by WaveGrad
was 51.64%. The other data augmentation techniques also improved the perfor-
mance of the models, with Noise Addition and Frequency Shift being the
least effective techniques.
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petition 2008-Graz Data Set B, pp. 1–6. Graz University of Technology, Austria
(2008)

21. Terzano, M.G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guillem-
inault, C., et al.: Atlas, rules, and recording techniques for the scoring of cyclic
alternating pattern (CAP) in human sleep. Sleep Med. 2(6), 537–554 (2001)


	Data Augmentation for EEG Motor Imagery Classification Using Diffusion Model
	1 Introduction
	2 Related Work
	2.1 Noise Addition
	2.2 Fourier Transform Surrogates
	2.3 Frequency Shift
	2.4 SmoothTimeMask
	2.5 WaveGrad

	3 Methodology
	3.1 Datasets
	3.2 Data Preprocessing
	3.3 Data Augmentation
	3.4 Evaluation

	4 Results
	4.1 Kullback-Leibler Divergence (KL Divergence)
	4.2 Classification Performance
	4.3 Size of Augmentation

	5 Discussion
	5.1 Key Improvement
	5.2 Subjects Level
	5.3 Size of DA
	5.4 Complexity of Model
	5.5 Limitation

	6 Conclusion
	References


