
Exploration of the Feasibility
and Applicability of Domain Adaptation
in Machine Learning-Based Code Smell

Detection

Peeradon Sukkasem and Chitsutha Soomlek(B)

Department of Computer Science, College of Computing, Khon Kaen University,
Khon Kaen, Thailand

peeradon s@kkumail.com, chitsutha@kku.ac.th

Abstract. Machine learning-based code smell detection was introduced
to mitigate the limitations of the heuristic-based approach and the sub-
jectivity issues. Due to limited choices of the publicly available datasets,
most of the machine learning-based classifiers were trained by the earlier
versions of open-source projects that no longer represent the characteris-
tics and properties of modern programming languages. Our experiments
exhibit the feasibility and applicability of using a machine learning classi-
fier well-trained on the earlier versions of open-source projects to classify
four types of code smells, i.e., god class, data class, feature envy, and long
method, in modern Java open-source projects without extensive feature
engineering. The performance produced by the supervised machine learn-
ing algorithms was evaluated and compared. Particle swarm optimization
and Bayesian optimization were adopted to enhance the performance
of the machine learning classifiers, i.e., decision tree and random for-
est. The experimental results indicated that the machine learning-based
code smell classifiers adapt poorly to the different target domain. The
hyper-parameter optimization slightly improves the performance of the
machine learning classifiers when classifying feature envy, god class, and
long method in a modern Java project.

Keywords: Code smells · Machine learning · Hyper-parameter
optimization

1 Introduction

A code smell indicates poor design or implementation choices made during
software development [13]. Software maintenance and software evolution are
inevitable. Software maintenance and software evolution ensure customer sat-
isfaction and support new features due to advancement of technology. The soft-
ware evolution activities unwittingly introduce code smells into a system [34].
Code smells cause unfavorable issues in a software system, particularly software
maintainability and software quality. Although code smells do not affect the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C. Anutariya and M. M. Bonsangue (Eds.): DSAI 2023, CCIS 1942, pp. 74–87, 2023.
https://doi.org/10.1007/978-981-99-7969-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7969-1_6&domain=pdf
http://orcid.org/0009-0000-8359-3558
http://orcid.org/0000-0002-9063-0705
https://doi.org/10.1007/978-981-99-7969-1_6


Domain Shift in Code Smell Detection 75

functionality and outputs of a program, code smells can lead to future software
failure and increase technical debt and maintenance cost [14,18,29]. To identify
and eliminate a code smell, code refactoring is a well established solution. Code
refactoring improves the design and quality of the code [13]. To support code
refactoring, an effective code smell detection technique is required.

For decades, automated code analysis tools and researches often utilize the
metrics-based approaches [2]. The metric-based approach suffers from subjec-
tivity issues and is error prone due to the lack of common definitions of code
smells. Programming languages are improved over time, and some code smells
are language-specific. These problems cause the metric-based code smell detec-
tion fails to find the most suitable set of metrics and threshold values [15,28].
Finding metrics and calibrating the thresholds are exhaustive.

Alternatively, a machine learning-based approach trains the classifiers using
software properties or attributes. Machine learning mitigates the subjectivity
issues and provides reliable code smell detection results when a machine learning
classifier is trained on high-quality data.

In recent years, machine learning-based code smell detection has been pro-
gressively studied [2,16]. The performance produced by a machine learning algo-
rithm heavily relies on the quality of the training dataset.

It takes considerable time and effort to create a high-quality code smell
dataset that is labeled by experienced software developers and experts. The
widely used code smell datasets are of the Qualitas Corpus benchmark [37].
Many well-studied code smell datasets were built upon the Qualitas Corpus
benchmark [21,41]. Although Di Nucci et al. [10] commented that the threats to
the validity of their work are inherited from the threats related to the creation of
the Qualitas Corpus, other studies report that the machine learning classi-
fiers trained by those datasets achieve high performance results [1,9,25]. Consid-
ering the age of the Qualitas Corpus project and the modern programming
paradigm, it is questionable that a machine learning-based code smell detec-
tion well-trained on the code smell dataset built upon the Qualitas Corpus
benchmark would produce a comparable performance when identifying a code
smell in a modern software project. To explore the feasibility and applicability of
domain adaptation in machine learning-based code smell detection, we present
the experiments with two goals:

(1) To evaluate whether the machine learning-based code smell classifiers
trained over a dataset built upon the Qualitas Corpus benchmark can
effectively detect code smells in a modern software project.

(2) To investigate whether hyper-parameter optimization (HPO) can improve
the performance of the machine learning classifiers in the same settings as
(1).

To these aims, we adopt the open-source Java projects from the Qualitas
Corpus dataset and the labels from Fontana et al. [11,12] in our training pro-
cess. A wide range of code metrics are extracted from the Java projects. The
machine learning algorithms are trained to classify four types of code smells, i.e.,
god class, data class, feature envy, and long method. MLCQ dataset [23], which is



76 P. Sukkasem and C. Soomlek

the most up-to-date industry-relevant code smell dataset at the time of writing,
is used as the testing data. The performance results are evaluated and compared.
Three HPO techniques of particle swarm optimization and Bayesian optimiza-
tion are applied to improve the performance of the machine learning classifiers.
The experimental results indicate that the classifiers produce poor performance
results when the domain is shifted. HPO techniques hardly improve the recall
scores of the classifiers. There is a slight difference between the baseline and
optimized version in a large picture.

2 Related Work

Research on code smells is advancing and focusing on machine learning-based
code smell detection [2] and using code smells as prediction factors [1,7,10,12,
21,25]. Recent research shows that machine learning-based code smell detection
mitigates the subjectivity issues and produces promising results [35]. Consider-
ing that the machine learning algorithms should be trained on a reliable dataset
labeled by experienced software developers, up-to-date and reproducible code
smell datasets are limited [21]. Collecting a large number of software systems
with the information needed and labeling code smells in the target source code
is a laborious task. Zakeri-Nasrabadi et al. [41] did a survey on 45 code smell
datasets and revealed that most of the existing datasets cover limited types of
code smells. The datasets in the survey are imbalanced, lack of supporting sever-
ity levels, and are restricted to Java programming language. We argue that code
smell datasets of other programming languages exist, e.g., [38,40,42], but there
are smaller choices compared to Java. The work of Zakeri-Nasrabadi et al. [41]
also confirms that the datasets proposed by Palomba et al. [26] and Madeyski
et al. [23] are the most comprehensive dataset. The datasets from Fontana et
al. [11,12] are mostly cited in research work. Fontana’s datasets are also built
from the Qualitas Corpus benchmark. Besides its popularity, the Qualitas Cor-
pus benchmark is outdated. The projects in the dataset are primarily developed
by Java 5. Fontana’s datasets have been commented on several aspects such as
the size, types of code smells, and the ratio between smelly and non-smelly sam-
ples which is not realistic compared to the nature of the code smell problem [10].

In 2020, Mandelski et al. introduced the MLCQ dataset [23], which contains
code smells from the newer versions of open-source Java projects. It is larger in
size, is labeled by experienced software developers, and is more comprehensive.
Recent research also adopted the MLCQ dataset and achieved promising results,
e.g., [20,24,35,39]. Each of them spent time on extensive metrics extraction and
feature engineering. Therefore, domain adaptation in machine learning-based
code smell detection would mitigate the issues. The closest work to ours is [31]
proposed by Sharma et al. Unlike our research, their work focuses on training
deep learning models from C# code samples and evaluating the models over Java
code samples and vice-versa. Our research aims to train the machine learning
classifiers on one programming language and seeks the possibility for the model
trained on the previous version of the programming language to work on the
newer version.



Domain Shift in Code Smell Detection 77

Another possibility to enhance a machine learning classifier is to apply HPO.
The closest work to this research and to our previous work [36] is presented by
Shen et al. [32]. The researchers trained the machine learning-based code smell
classifiers on Fontana et al.’s datasets [11,12] and applied HPO to improve the
performance. Four optimizers were applied to six machine learning classifiers to
identify two types of code smells, i.e., data class and feature envy. They did not
focus on domain shifts in the data distribution in their research. This research
is a continuation of our previous work [36], in which we already employed one
particle swarm optimizer and two Bayesian optimizers to the machine learning-
based code smell classifiers. The three optimizers were applied to the machine
learning classifiers to enhance the performance. The rest of this research article
is brand new.

3 Research Methodology

3.1 Data Collection

The main goals of this research are to explore whether the machine learning-
based code smell classifiers trained on a dataset built upon the Qualitas
Corpus benchmark can effectively detect code smells in a modern software
project and to improve the performance of the classifiers through HPO. The
experiments require three data sources: software projects in the Qualitas
Corpus benchmark, smell and non-smelly samples in the Qualitas Corpus
benchmark, and smell and non-smelly samples in the projects built on the newer
versions of Java.

The Qualitas Corpus Benchmark. The dataset was contributed by Tempero
et al. in 2010 [37] and the latest version (release 20130901r) contains 112 open-
source Java software systems. Later in 2013, 74 systems were selected to create a
code smell dataset by Fontana et al. [12]. The Qualitas Corpus benchmark
contains a total of 6,785,568 lines of code, 3,429 packages, 51,826 classes, and
404,316 methods. Fontana et al. also provide smell and non-smelly samples of
god class, data class, feature envy, and long method in the dataset.

In this research, a large set of code metrics were extracted by using code
analysis tools, i.e., Design Features and Metrics for Java (DFMC4J) [1] and
Understand tool by SciTools [30]. Code metrics exhibit software properties in
various perspectives and can be used as independent variables to train machine
learning models. The dependent variable is the label, which indicates whether a
class or a method is a code smell or not. The label of a code sample is obtained
from Fontana et al.’s code smell dataset. The major challenge is to match a code
sample to its label and the corresponding code metrics due to the different file
path formats used. There are 140 positive (smelly) instances and 280 negative
(non-smelly) instances for each type of code smells in our training dataset.



78 P. Sukkasem and C. Soomlek

The MLCQ Dataset. Madeyski and Lewowski [23] contribute an industry-
relevant code smell dataset. The MLCQ dataset contains nearly 15,000 code sam-
ples together with severity levels (i.e., critical, major, minor, and none). These
code samples were collected from Java open-source projects available on GitHub
within the year 2019. 26 professional software developers reviewed and classified
the code samples into four classes, i.e., data class, blob (a.k.a. god class), feature
envy, and long method. A severity level is also given to a reviewed code sample.
The none severity level indicates a non-smelly or negative sample. The MLCQ
dataset contains 1057, 974, 454, and 806 positive instances for data class, god
class, feature envy, and long method, respectively. For the negative instances,
there are 2964, 3045, 2883, and 2556, respectively. This dataset is considered as
the most comprehensive available code smell dataset in the field [41].

3.2 Data Preparation

When an instance in Fontana et al. contains a null code metric value, the instance
is removed. In the case of the MLCQ dataset, several procedures were performed.
Some Java projects are no longer available on the GitHub repository. In total,
518 projects from the MLCQ dataset were analyzed. Information relative to the
reviewers, for instance, code sample id, reviewer id, and reviewing timestamp
were also excluded from the dataset. Since there are multiple reviewers labeled
on an instance, the majority vote was used to determine the positive and neg-
ative instances. Then, the Understand tool by SciTools [30] was employed to
extract the code metric values. Due to the granularity difference between the
code analysis tool and the dataset, there are instances with a null metric value.
In this case, the instances were removed.

To test machine learning on unseen data, the machine learning model must
be trained over a training set having identical properties as the testing set. We
carefully studied the definitions of the code metrics provided by Fontana et al.
and the Understand tool. Only identical code metrics were selected.

3.3 Experiments

Fontana et al.’s code smell dataset was used as a training set. The machine learn-
ing algorithms were tested over the MLCQ dataset. The experiments evaluated
the performance metrics, e.g., precision, recall, and f-score. For each experiment,
10-fold cross validation was implemented with 10 repetitions. The experiments
were repeated for 10 iterations to avoid randomness and then the results were
averaged to conclude the experiments.

Selecting Machine Learning Algorithms. As mentioned earlier, this study
is a continuation of our previous work [36]. Our previous work and other research
in the same area confirm that decision tree [6] and random forest [5] produce
the best performance in the context of code smell detection [35]. Both machine
learning algorithms not only produce high performance results but also provide



Domain Shift in Code Smell Detection 79

the benefits of interpretability. Although we can include other machine learning
algorithms, we chose to study decision tree and random forest to seek the fea-
sibility and applicability of domain adaptation in machine learning-based code
smell detection. The experiments can be repeated on other machine learning
algorithms to explore more. Note that both machine learning algorithms were
implemented by using Scikit-learn [27].

Selecting Hyper-parameter Optimization Techniques. This research
selected hyper-parameter optimization (HPO) techniques based on the char-
acteristics of the hyper-parameters of the machine learning algorithms. Con-
sidering the decision tree and random forest algorithm, the majority of the
hyper-parameters are discrete. One of them is categorical. Decision tree and
random forest possess the characteristic of a large hyper-parameter search space
with multiple hyper-parameter types. From this perspective, Bayesian optimiza-
tion using random forest (SMAC), Bayesian optimization using tree-structured
parzen estimator (BO-TPE), and particle swarm optimization (PSO) are well-
matched to the machine learning algorithms. The selected hyper-parameter and
their configuration space are given in Table 1, which is inherited from our pre-
vious work [36]. Note that all HPO techniques use the same hyper-parameter
configuration space and consider recall score as an objective function with 10
maximum optimization iterations.

Table 1. List of selected hyper-parameters with their characteristics and configuration
space.

Hyper-parameter Characteristic Range

criterion Categorical ‘gini’, ‘entropy’

max depth Discrete [5, 50]

min samples split Discrete [2, 11]

min samples leaf Discrete [1, 11]

max features Discrete [1, 64]

n estimators Discrete [100, 300]

Bayesian optimization (BO) [33] is an iterative algorithm learning from pre-
viously found information. The algorithm consists of two main components: a
probabilistic surrogate model and an acquisition function. BO works by build-
ing a surrogate model of the objective function, detecting the optimal on the
surrogate model, and applying the optimal configuration to the real objective
function. The surrogate model is updated with the new results and these proce-
dures are repeated until the optimal solution is found, or the maximum number
of iterations is reached. BO can use tree-parzen estimator (TPE) [3] and random
forest (SMAC) [17] to support multiple types of hyper-parameters. Therefore,
SMAC and BO-TYPE are included in this research.



80 P. Sukkasem and C. Soomlek

Particle swarm optimization (PSO) [19] is an optimization technique inspired
by biological theories. The process of PSO starts by randomly initializing a group
of samples called particles. These particles explore the search space to search for
the optimal point. Then, the obtained information is shared within a group. PSO
algorithm is one of the most popularly used algorithms in metaheuristic research
due to its ease of implementation, flexibility, and high performance. PSO also
supports multiple types of hyper-parameters.

Several well-recognized Python libraries were employed to implement HPO.
Hyperopt [4] (v.0.2.7) was used to implement BO-TPE. SMAC3 library [22]
(v.1.4.0), which is the only Python library providing BO with random forest
surrogate model at the time of writing, was adopted to implement SMAC. For
PSO, Optunity [8] (v.1.1.1) was used to implement the algorithm.

4 Results and Discussion

Table 2 shows the ratio of instances used for training and testing per code smell.
These two datasets have two major differences. First, Fontana et al.’s code smell
dataset contains 420 instances, which is four times smaller than the MLCQ dataset
for all types of code smells. Second, the positive and negative ratio of the testing
set is heavily imbalanced. Obviously, for feature envy, there are only 3% of smelly
instances in the testing set, while the training set contains more than 30%. For
the rest code smells, the testing set contains approximately 20% less number of
smelly instances.

Table 2. No. of training and testing instances, No. of negative and positive instance
and the ratio of negative and positive per code smell.

Code smell Dataset type Dataset No. of instance Negative ratio Positive ratio

Data class training set Fontana et al 420 0.67 0.33

testing set MLCQ 2154 0.87 0.13

Feature envy training set Fontana et al 420 0.67 0.33

testing set MLCQ 2035 0.97 0.03

God class training set Fontana et al 420 0.67 0.33

testing set MLCQ 2122 0.89 0.11

Long method training set Fontana et al 420 0.67 0.33

testing set MLCQ 2080 0.88 0.12

In the experiments, the performance evaluation results obtained from the
validation set and the testing set are compared in three aspects, i.e., preci-
sion, recall, and f-score. When a classifier achieves a relatively close or higher
prediction score than a validation score, the machine learning classifier is gen-
eral enough to identify code smells on a software project developed by a newer
version of Java. In other words, it is feasible and applicable for the machine
learning-based code smell detection to adapt when there is a change in the data



Domain Shift in Code Smell Detection 81

distribution. Otherwise, a new dataset containing the characteristics of modern
Java programming language is required. Other strategies used to gain a better
model adaptation are also needed. Figures 1–3 illustrates the evaluation results.

In terms of recall, in most cases, the performance of the machine learning clas-
sifiers was extremely decreased, except for feature envy as shown in Fig. 1. The
recall produced by decision tree and random forest were dropped by ≈ 30% and
≈ 60% when classifying data class and god class, respectively. In the case of long
method, both decision tree and random forest hardly predicted correct results on
the target domain. Unlike feature envy, the decision tree classifier achieved slightly
lower recall (≈ 5%) on the testing set. The random forest classifier produced
≈ 16% lower recall over the testing set than the validation set.

Fig. 1. Recall produced by decision tree (left) and random forest (right)

Figure 2 shows the precision results for code smell detection. It is clear that
in most cases the classifiers achieved lower precision when facing the new target
domain, except for long method. In this case, both algorithms achieved relatively
close prediction and validation precision scores. Considering the machine learning
algorithm, random forest classifiers outperformed decision tree in all cases. The
random forest also achieved the highest precision at 100% when detecting long
method in the MLCQ dataset.

In the case of f-score (see Fig. 3), domain shifting in code smell datasets makes
a substantial difference in the validation and prediction scores. When facing a
different target domain, the random forest slightly outperformed the decision
tree and achieved the best f-score at 42.7% for god class classification.

Our experiments confirm that the machine learning-based code smell classi-
fiers trained on a dataset built upon the Qualitas Corpus benchmark adapt
poorly to domain shifting. The classifiers achieved lower performance results
when they were trying to detect code smells in a modern software project. To
improve the performance, HPO algorithms were applied to the machine learning
models. The experimental results are summarized in Table 3–5.

In most of the cases, the optimized random forest classifiers produced higher
recalls than their default settings. Table 3 indicates that random forest with
PSO can achieve a better recall by ≈ 5% when classifying feature envy. For
long method, PSO assists both algorithms to achieve slightly higher recalls. The



82 P. Sukkasem and C. Soomlek

random forest classifier applying SMAC can also achieve a slightly better recall
when identifying god class.

Considering the precision (see Table 4), decision tree with SMAC produced
higher precision results when classifying god class and feature envy. In case of the
optimized random forest classifier, SMAC is the only algorithm that can assist
the random forest classifier to achieve a slightly better result when classifying
feature envy.

Table 5 compares the f-score obtained from the classifiers with the default
configurations the proposed HPO techniques. SMAC can boost the performance
by ≈ 1% and ≈ 2% for god class and feature envy, respectively. PSO can slightly
improve both decision tree and random forest when classifying long method.
However, none of the classifiers can exceed 45% of the f-score.

Table 3. Recall produced by the classifiers with default configuration and the proposed
HPO techniques.

Code smell Decision tree Random forest

Default BO-TPE SMAC PSO Default BO-TPE SMAC PSO

Data Class 0.51021 0.51831 0.46761 0.50106 0.52359 0.48486 0.50915 0.49225

Feature Envy 0.57188 0.55625 0.54375 0.53906 0.52188 0.56094 0.55313 0.57188

God Class 0.33562 0.33176 0.28884 0.30043 0.32275 0.33691 0.33777 0.33605

Long Method 0.13008 0.13008 0.13008 0.13252 0.13618 0.13049 0.13374 0.13699

We can conclude that the machine learning-based code smell classifiers
trained over a dataset built upon the Qualitas Corpus benchmark can not
produce desirable results when identifying code smells in a modern software
project. The advancement of programming languages leads to changes in soft-
ware properties and various aspects of software, which affect the performance
of the classifiers. The experimental results confirm that the machine learning-
based code smell classifiers adapt poorly to domain shifting. Although the hyper-
parameter optimization techniques can slightly improve the prediction results in
some cases, it is insufficient for the machine learning-based code smell classifiers

Fig. 2. Precision produced by decision tree (left) and random forest (right)



Domain Shift in Code Smell Detection 83

Fig. 3. F-score produced by decision tree (left) and random forest (right)

Table 4. Precision produced by the classifiers with default configuration and the pro-
posed HPO techniques.

Code smell Decision tree Random forest

Default BO-TPE SMAC PSO Default BO-TPE SMAC PSO

Data Class 0.27473 0.26738 0.25785 0.26127 0.32547 0.29867 0.30598 0.29844

Feature Envy 0.09473 0.10510 0.10873 0.10813 0.11839 0.11704 0.11954 0.11581

God Class 0.58377 0.60510 0.62915 0.62012 0.63201 0.61174 0.61159 0.61148

Long Method 0.96970 0.96970 0.96970 0.96541 1.00000 0.99108 1.00000 0.97702

Table 5. F-score produced by the classifiers with default configuration and the pro-
posed HPO techniques.

Code smell Decision tree Random forest

Default BO-TPE SMAC PSO Default BO-TPE SMAC PSO

Data Class 0.35702 0.35082 0.32947 0.34188 0.40136 0.36941 0.38173 0.37137

Feature Envy 0.16246 0.17634 0.18072 0.17950 0.19298 0.19349 0.19647 0.19239

God Class 0.42616 0.42559 0.39214 0.40391 0.42726 0.43438 0.43516 0.43364

Long Method 0.22939 0.22939 0.22939 0.23293 0.23969 0.23059 0.23586 0.24014

to work on a different target domain. There is no significant difference in the
performance results produced by the default-configured and optimized classi-
fiers. The concluded experimental results already grant the answers to both of
the main goals of this research.

Threats to Validity. Note that there are subjectivity issues in both code met-
rics and code smells. Although we selected the same set of metrics from both the
Fontana et al.’s code smell dataset and the MLCQ dataset, there are insignificant
differences in the metric definitions due to different code analysis tools used.
The selected code metrics might not represent the characteristics of the source
code and the code smells. Moreover, the code smell instances of the two datasets
were labeled by disparate groups of software developers. The Fontana et al.’s
code smell dataset was labelled by master students whose background and expe-
rience are inconclusive. In case of the MLCQ dataset, the instances were labelled



84 P. Sukkasem and C. Soomlek

by a group of experienced professional software developers. The researchers also
include the background experience and survey results of the developers.

5 Conclusions

This research explores the feasibility and applicability of domain adaptation in
machine learning-based code smell detection. The experiments ran supervised
machine learning classifiers well-trained on the earlier versions of open-source
Java projects to identify code smells in the modern Java open-source projects
without carrying out extensive feature engineering. Three hyper-parameter opti-
mization techniques, i.e., Bayesian optimization using random forest (SMAC),
Bayesian optimization using tree-structured parzen estimator (BO-TPE), and
particle swarm optimization (PSO), were also applied to the machine learning-
based code smell classifiers to improve their performance. The experiments mea-
sured precision, recall, and f-score.

Fontana et al.’s code smell dataset, which is a dataset built upon the
Qualitas Corpus benchmark, was employed as a training set. The MLCQ
dataset, which is a dataset built upon the newer-version Java projects, was used
as a test set. Most of the open-source Java projects in the Qualitas Corpus
benchmark are of Java 5, which is much older than Java versions used in the
projects included in the MLCQ dataset.

The experimental results indicate that the machine learning classifiers trained
over Fontana et al.’s code smell dataset incompetently detect four types of
code smells in the MLCQ dataset. In other words, the classifiers adapt poorly to
domain shifting in code smell detection problems. Although the hyper-parameter
optimization techniques were adopted, the performance results of the enhanced
machine learning classifiers are smell-specific. For example, random forest with
PSO produced a higher recall and f-score when classifying long method. Decision
tree with SMAC achieved higher precision results when classifying god class and
feature envy.

While the interest in using machine learning-based techniques for code smell
detection is inclined, creating more choices of high quality training datasets is a
non-trivial and exhaustive task. Programming languages are also evolved over-
time. It would be impractical to continue laboriously working on code smell
dataset construction to keep up with the advancement of programming lan-
guages. This research opens a new opportunity for using a more sophisticated
domain adaption technique to mitigate the limitations and supports the research
community to mature more studies in the fields. To support the advancement
in the research community, we made the dataset and source code publicly avail-
able at https://github.com/Peeradon06/Domain-Adaptation-ML-Based-Code-
Smell-Detection.

Acknowledgements. This research was partially supported by the Department of
Computer Science, College of Computing and the Graduate School, Khon Kaen Uni-
versity, Khon Kaen, Thailand.

https://github.com/Peeradon06/Domain-Adaptation-ML-Based-Code-Smell-Detection
https://github.com/Peeradon06/Domain-Adaptation-ML-Based-Code-Smell-Detection


Domain Shift in Code Smell Detection 85

References

1. Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and exper-
imenting machine learning techniques for code smell detection. Empir. Softw. Eng.
21(3), 1143–1191 (2015). https://doi.org/10.1007/s10664-015-9378-4

2. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for
code smell detection: a systematic literature review and meta-analysis. Inf. Softw.
Technol. 108, 115–138 (2019). https://doi.org/10.1016/j.infsof.2018.12.009

3. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems, vol. 24. Curran
Associates, Inc. (2011)

4. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python
library for model selection and hyperparameter optimization. Comput. Sci. Discov.
8(1), 014008 (2015). https://doi.org/10.1088/1749-4699/8/1/014008

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

6. Breiman, L.: Classification and Regression Trees. Routledge, New York (2017).
https://doi.org/10.1201/9781315139470

7. Caram, F.L., Rodrigues, B.R.D.O., Campanelli, A.S., Parreiras, F.S.: Machine
learning techniques for code smells detection: a systematic mapping study. Int.
J. Software Eng. Knowl. Eng. 29, 285–316 (2019). https://doi.org/10.1142/
S021819401950013X

8. Claesen, M., Simm, J., Popovic, D., Moreau, Y., De Moor, B.: Easy hyperparameter
search using optunity. http://arxiv.org/abs/1412.1114. Accessed 15 Jan 2023

9. Dewangan, S., Rao, R.S., Mishra, A., Gupta, M.: A novel approach for code smell
detection: an empirical study. IEEE Access 9, 162869–162883 (2021)

10. Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A.: Detecting
code smells using machine learning techniques: are we there yet? In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp. 612–621. IEEE (2018). https://doi.org/10.1109/SANER.2018.
8330266

11. Fontana, F.A., Zanoni, M.: Code smell severity classification using machine learn-
ing techniques. Knowl.-Based Syst. 128, 43–58 (2017)

12. Fontana, F.A., Zanoni, M., Marino, A., Mantyla, M.V.: Code smell detection:
towards a machine learning-based approach. In: 2013 IEEE International Con-
ference on Software Maintenance, pp. 396–399. IEEE (2013). https://doi.org/10.
1109/ICSM.2013.56, http://ieeexplore.ieee.org/document/6676916/

13. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

14. Hall, T., Zhang, M., Bowes, D., Sun, Y.: Some code smells have a significant but
small effect on faults. ACM Trans. Softw. Eng. Methodol. 23(4), 1–39 (2014).
https://doi.org/10.1145/2629648

15. Haque, M.S., Carver, J., Atkison, T.: Causes, impacts, and detection approaches
of code smell: a survey. In: Proceedings of the ACMSE 2018 Conference, pp. 1–8.
ACM, Richmond Kentucky (2018). https://doi.org/10.1145/3190645.3190697

16. Hasantha, C.: A systematic review of code smell detection approaches. J. Adv.
Softw. Eng. Test. 4(1), 1–9 (2021). https://doi.org/10.5281/zenodo.4738772

17. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello, C.A.C. (ed.) Learning and Intelligent

https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470
https://doi.org/10.1142/S021819401950013X
https://doi.org/10.1142/S021819401950013X
http://arxiv.org/abs/1412.1114
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/ICSM.2013.56
https://doi.org/10.1109/ICSM.2013.56
http://ieeexplore.ieee.org/document/6676916/
https://doi.org/10.1145/2629648
https://doi.org/10.1145/3190645.3190697
https://doi.org/10.5281/zenodo.4738772


86 P. Sukkasem and C. Soomlek

Optimization, pp. 507–523. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25566-3 40

18. Kaur, A.: A systematic literature review on empirical analysis of the relationship
between code smells and software quality attributes. Arch. Comput. Methods Eng.
27(4), 1267–1296 (2020). https://doi.org/10.1007/s11831-019-09348-6

19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE,
Perth, WA, Australia (1995). https://doi.org/10.1109/ICNN.1995.488968

20. Kovačević, A., et al.: Automatic detection of long method and god class code smells
through neural source code embeddings. Expert Syst. Appl. 204, 117607 (2022)

21. Lewowski, T., Madeyski, L.: How far are we from reproducible research on code
smell detection? a systematic literature review. Inf. Softw. Technol. 144, 106783
(2022). https://doi.org/10.1016/j.infsof.2021.106783, https://linkinghub.elsevier.
com/retrieve/pii/S095058492100224X

22. Lindauer, M., et al.: SMAC3: A versatile bayesian optimization package for hyper-
parameter optimization. J. Mach. Learn. Res. 23, 1–9 (2021). https://doi.org/10.
48550/ARXIV.2109.09831

23. Madeyski, L., Lewowski, T.: MLCQ: industry-relevant code smell data set. In:
Proceedings of the Evaluation and Assessment in Software Engineering, pp. 342–
347. ACM (2020). https://doi.org/10.1145/3383219.3383264

24. Madeyski, L., Lewowski, T.: Detecting code smells using industry-relevant data.
Inf. Softw. Technol. 155, 107112 (2023). https://doi.org/10.1016/j.infsof.2022.
107112, https://linkinghub.elsevier.com/retrieve/pii/S095058492200221X

25. Mhawish, M.Y., Gupta, M.: Predicting code smells and analysis of predictions:
using machine learning techniques and software metrics. J. Comput. Sci. Technol.
35(6), 1428–1445 (2020). https://doi.org/10.1007/s11390-020-0323-7

26. Palomba, F., Bavota, G., Penta, M.D., Fasano, F., Oliveto, R., Lucia, A.D.: On
the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empir. Softw. Eng. 23(3), 1188–1221 (2017). https://doi.
org/10.1007/s10664-017-9535-z

27. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning
in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

28. Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G., Anslow, C.:
Code smells detection and visualization: a systematic literature review. Arch.
Comput. Methods Eng. 29(1), 47–94 (2021). https://doi.org/10.1007/s11831-021-
09566-x

29. Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., Nascimento, R.S.D., Freitas,
M.F., Mendonça, M.G.D.: A systematic review on the code smell effect. J. Syst.
Softw. 144, 450–477 (2018). https://doi.org/10.1016/j.jss.2018.07.035

30. Understand by Scitools. https://www.scitools.com/. Accessed 31 May 2023)
31. Sharma, T., Efstathiou, V., Louridas, P., Spinellis, D.: Code smell detection

by deep direct-learning and transfer-learning. J. Syst. Softw. 176, 110936
(2021). https://doi.org/10.1016/j.jss.2021.110936, https://www.sciencedirect.
com/science/article/pii/S0164121221000339

32. Shen, L., Liu, W., Chen, X., Gu, Q., Liu, X.: Improving machine learning-based
code smell detection via hyper-parameter optimization. In: 2020 27th Asia-Pacific
Software Engineering Conference, pp. 276–285. Singapore, Singapore (2020)

33. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.)
Advances in Neural Information Processing Systems, vol. 25. Curran Associates,
Inc. (2012)

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/s11831-019-09348-6
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.infsof.2021.106783
https://linkinghub.elsevier.com/retrieve/pii/S095058492100224X
https://linkinghub.elsevier.com/retrieve/pii/S095058492100224X
https://doi.org/10.48550/ARXIV.2109.09831
https://doi.org/10.48550/ARXIV.2109.09831
https://doi.org/10.1145/3383219.3383264
https://doi.org/10.1016/j.infsof.2022.107112
https://doi.org/10.1016/j.infsof.2022.107112
https://linkinghub.elsevier.com/retrieve/pii/S095058492200221X
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1016/j.jss.2018.07.035
https://www.scitools.com/
https://doi.org/10.1016/j.jss.2021.110936
https://www.sciencedirect.com/science/article/pii/S0164121221000339
https://www.sciencedirect.com/science/article/pii/S0164121221000339


Domain Shift in Code Smell Detection 87

34. Sobrinho, E.V.D.P., De Lucia, A., Maia, M.D.A.: A systematic literature review on
bad smells-5w’s: which, when, what, who, where. IEEE Trans. Softw. Eng. 47(1),
17–66 (2021). https://doi.org/10.1109/TSE.2018.2880977

35. Soomlek, C., van Rijn, J.N., Bonsangue, M.M.: Automatic human-like detection
of code smells. In: Soares, C., Torgo, L. (eds.) DS 2021. LNCS (LNAI), vol. 12986,
pp. 19–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88942-5 2

36. Sukkasem, P., Soomlek, C.: Enhance machine learning-based code smell detection
through hyper-parameter optimization. In: 20th International Joint Conference on
Computer Science and Software Engineering (JCSSE). IEEE (2023)

37. Tempero, E., et al.: The qualitas corpus: a curated collection of java code for empir-
ical studies. In: 2010 Asia Pacific Software Engineering Conference, pp. 336–345.
IEEE (2010). https://doi.org/10.1109/APSEC.2010.46, http://ieeexplore.ieee.org/
document/5693210/

38. Vatanapakorn, N., Soomlek, C., Seresangtakul, P.: Python code smell detection
using machine learning. In: 2022 26th International Computer Science and Engi-
neering Conference (ICSEC), pp. 128–133. IEEE (2022)

39. Virmajoki, J., Knutas, A., Kasurinen, J.: Detecting code smells with AI: a proto-
type study. In: 2022 45th Jubilee International Convention on Information, Com-
munication and Electronic Technology (MIPRO), pp. 1393–1398 (2022). https://
doi.org/10.23919/MIPRO55190.2022.9803727

40. Wang, T., Golubev, Y., Smirnov, O., Li, J., Bryksin, T., Ahmed, I.: Pynose: a test
smell detector for python. In: 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 593–605. IEEE (2021)

41. Zakeri-Nasrabadi, M., Parsa, S., Esmaili, E., Palomba, F.: A systematic literature
review on the code smells datasets and validation mechanisms. ACM Comput.
Surv. 55, 1–48 (2023). https://doi.org/10.1145/3596908

42. Zhang, H., Cruz, L., Van Deursen, A.: Code smells for machine learning appli-
cations. In: Proceedings of the 1st International Conference on AI Engineering:
Software Engineering for AI, pp. 217–228 (2022)

https://doi.org/10.1109/TSE.2018.2880977
https://doi.org/10.1007/978-3-030-88942-5_2
https://doi.org/10.1109/APSEC.2010.46
http://ieeexplore.ieee.org/document/5693210/
http://ieeexplore.ieee.org/document/5693210/
https://doi.org/10.23919/MIPRO55190.2022.9803727
https://doi.org/10.23919/MIPRO55190.2022.9803727
https://doi.org/10.1145/3596908

	Exploration of the Feasibility and Applicability of Domain Adaptation in Machine Learning-Based Code Smell Detection
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Data Collection
	3.2 Data Preparation
	3.3 Experiments

	4 Results and Discussion
	5 Conclusions
	References


