®

Check for
updates

A Modified Hybrid RBF-BP Network
Classifier for Nonlinear
Estimation /Classification and Its
Applications

Po-Chai Wong® and Jeff Chak-Fu Wong

Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong,
China
{pcwong, jwong}@math. cuhk.edu.hk
https://www.math.cuhk.edu.hk/~jwong/

Abstract. In this work, a modified hybrid radial basis function-back-
propagation (RBF-BP) supervised neural network classifier based on the
works of Wen et al. [11,12] is proposed. The modified hybrid RBF-BP
network is formulated as an adaptive incremental learning algorithm for
a single-layer RBF hidden neuron layer. The algorithm uses a density
clustering approach to determine the number of RBF hidden neurons
and it maintains the self-learning process of updating the neural net-
work’s weights using back-propagation. For the last step of the BP neu-
ral network in the modified hybrid classifier, the centers and the width
parameters of the basis functions are iteratively updated by the stochas-
tic gradient descent algorithm. As a comparative study, some artificial
and real-life datasets, for example, Double Moon, Concentric Circle, No
Structure and UCI datasets, are used to test the effectiveness of our
homemade implementation strategies. The experimental results showed
that the implemented algorithm has significant accuracy improvement
and reliability.
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1 Introduction

A combination of two neural network models, the radial basis function net-
work (RBFN) and the back-propagation network (BPN) (e.g., [2,5,7]), are most
widely used in nonlinear estimation/classification. RBFN is a local approxima-
tion network and the main advantage of the RBFN is that it has only one hidden
layer that uses RBF as the activation function. In addition, RBFN maps nonlin-
early separable problems in low-dimensional spaces to high-dimensional spaces

Supported by Department of Mathematics at CUHK and the Teaching Development
and Language Enhancement Grant 2022-25 at CUHK.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023

C. Anutariya and M. M. Bonsangue (Eds.): DSAI 2023, CCIS 1942, pp. 43-56, 2023.
https://doi.org/10.1007/978-981-99-7969-1_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7969-1_4&domain=pdf
https://doi.org/10.1007/978-981-99-7969-1_4

44 P.-C. Wong and J. Chak-Fu Wong

through RBFs, making them linearly separable in high-dimensional spaces. Its
disadvantage is that the classification is slow in comparison to BPN since every
node in the hidden layer must compute the RBF function for the input during
the classification. Another problem is the number of RBF units. Too many RBF
units may result in over-fitting while too few may lead to under-fitting. This num-
ber has been manually selected on a trial-and-error basis. Some attempts have
been made to decide this number adaptively [11,12]. BPN is a global approx-
imation neural network. During the training process, the error is propagated
backward layer by layer to the input layer, and the ownership value and thresh-
old appearing in the network are corrected. For each training sample, there is
only a small number of weights and thresholds to be updated. Other hybrid clas-
sifiers, for example, the radial basis function-extreme learning machine classifier
for a mixed data type and medical prediction, [6,10,13], perform better than the
BP classifier. Further extensions of the hybrid RBF-BP network classifier (the
Hybrid classifier for short) using pre-RBF kernels were found in [14,15].

In this paper, a modified version of the hybrid classifier (the mHybrid clas-
sifier for short) is proposed based on the works of Wen et al. [11,12]. It is for-
mulated as an adaptive incremental learning algorithm for a single-layer RBF
hidden neuron layer by fixing/shifting the center, adjusting the width parameter
of the basis functions and updating the number of RBF hidden neurons, and
it maintains a self-learning process of tuning a single-layer BP neural network’s
weights to improve classification accuracy. In the mHybrid classifier, the center
and the width parameter of the RBFs are iteratively updated by the stochastic
gradient descent (SGD) algorithm.

The rest part of the paper is outlined as follows. Section 2 presents the archi-
tecture of the mHybrid network and the centers, widths and number of RBF
hidden neurons interacting with the multi-layer perceptron (MLP) hidden neu-
rons. In Algorithm 1, with optimally determined centers and width parame-
ters, the coverage effect of each hidden neuron can be guaranteed. In Sect. 3,
by passing the output of the RBF hidden neurons into an MLP neural net-
work, backpropagation (BP) is used to update the weights of the MLP. Bridging
between RBF-BP networks is shown in Algorithm 2 and their implementations
are highlighted. In Algorithm 3, two SGD iterative steps are proposed for updat-
ing the centers and the width parameters of the RBF units. Section 4 examines
the numerical performance of the mHybrid classifier on artificial datasets, e.g.,
Double Moon, Concentric Circle (e.g., [4]). No Structure [9] and real-life UCI
datasets [3]. Section 5 summarizes our findings and concludes the paper.

2 Structure of the Incremental Learning Algorithm

This section describes the three sequential steps used to first find the centers for
the RBFs, then find the widths for the RBFs, and to determine a new center as
needed.
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2.1 Finding the Centers for the Radial Basis Functions

Our aim here is to introduce an efficient technique of density clustering for
balanced data. For the RBF networks, the data {x} of each class y is covered by
circles of different sizes. To decide the optimal number of circles, a pre-selected
discriminant function is designed. Then the locations and the widths of the
circles are determined from the repulsive force exerted by nearby heterogeneous
members, so that each circle contains many homogeneous members and few
heterogeneous members. Formally, we define a set of discriminant functions p;,
one for each class 7 [1],

pi(x) > pj(z) for any j #i = « belongs to class i. (1)

The higher the value of p;, the more likely that « belongs to class i. Another nat-
ural assumption is that the more members of the same class there are around «,
the more likely & belongs to the same class. To obtain the discriminant function,
one therefore can define a potential function =y as

1
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where T' > 0 is a distance weighting factor and || - || is the Euclidean norm.

The potential « is a particular example of the general inverse multi-quadratic
function, (1 + €?||x — 2||?)"?/2 when T = ¢ and p = 2. The potential ~ is
proportional to the closeness between two points x, y.

Given a data set S that consists of NV training samples {(zy, yx)}Y_,, where
x;, € R” and y;, € RY, where n is the dimension of &), and H is the dimension
of y. Let S* = {x} : k=1,---,N;} be the set of training samples in the ith
pattern class, N; the number of samples in class i and S* N S7 = () for i # j.
For x € R™ and :13}c € S%, a discriminant function p; can be constructed by the
superposition of such potential functions v(-, z%):

N; N;
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As shown in Fig.1, T > 0 controls the width of the region of influence and
the sharpness of the distribution, e.g., the larger the factor T, the sharper p; and
the distribution of the samples will have a better shape.

It is worth mentioning that the p; defined here is different from that in
Wen et al. [11,12], where when evaluated at sample point !, the summation
does not consider that point (i.e., p;(x}) = ZkN;'l,k# v(x},x})). Then we have
pi(z) = pi(z) + 1 for 2* € S. This difference is not critical in the end (except
for the choice of ¢) since we will only compare the values within the same class.
Here are a few properties of « [8]:

1. v(z, z) attains maximum at & = z.
2. y(x, z) tends to 0 as ||x — z|| increases.
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3. y(x, z) is smooth and decreases monotonically as || — z|| increases.
4. (@1, 2) = y(@2, 2) if [loy — 2[| = |22 — 2]

These properties allow p; to capture the local influence of S? at = and to correlate
to the likeliness for the input « to belong to S*. Finally, all that remains to be
checked is whether this p; can classify correctly, as stated in the theorem below.

Fig. 1. Illustration of the effect of 7" in a 1D example using 10 data samples.

Theorem 1. Suppose x; € S* := {zf{,---, 2% }. Let N be the number of
classes. Let D = min{||z’ —x’||? : ' € S*, &/ € S for any i # j, 4,5 < N} > 0.
Then, there exists a continuously differentiable discriminant function p; such
that _ _

pi(x;) > pj(x;) for any j # i.
Proof. Suppose §7 = {a], .- ,mgvj}. Let T >  (N; —1). Define p; as stated
before using this 7". Then,

N

i 1 1
pi() = i Tz S N; P i 712
P! + Tz} — .| =LN 1+ Ty — x|l
1 N
< Nj J <1

- - <
1+7 min_ |z —z|*> ~ 1+7TD
k=1, ,N;

N;

1 1 :
S E—— = e
1+ T|aj — aj||? ,; 1+ T|@) — @} [|?

O

The value T' can be selected as T > & (N; — 1) for any j such that the

theorem holds.

Now, using the discriminant function p;, we can select an initial center by
taking the maximum of the discriminant function over class i since the samples
are concentrated/localized around it. Define the initial center
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py = argmax{p;(x}) : = € S'}. )

We now circle it with a given predetermined radius ¢ with a predefined
threshold opin < 0. Our next goal is to move the center p;, and resize the circle
so as to reduce the number of heterogeneous members around ..

A repulsive force F from each heterogeneous member @’ in the ball B(pu,,, \o)
={x: ||z — pl| < Ao}, where A > 1 is a width covering factor, is given by

o (— N V"
where « is the repulsive force control factor. The exponential scale factor term
is used to control the variation of the center drift due to any heterogeneous
members within the ball.
The center position is updated to move away from heterogeneous members
as follows:

My — py + F. (6)

The preassigned value a > 0 should not be too small otherwise it loses the
purpose of maximizing the discriminant function p;. But a very small a may not
reduce the number of heterogeneous members in the ball. A big center shift may
also result in covering new heterogeneous members. Therefore, this choice of « is
highly dependent on the dataset. In some cases, center drifts are not sufficient to
reduce the number of heterogeneous members. We, therefore, fix the maximum
number of iterations Epo allowed for testing for center drifts.

We count the number M; of heterogeneous samples € S\S ?in the current
ball By, \o) by |z — p| < Ao. Define M; as the number of samples in S in
B(py,, Ao). The center for each ball can be adjusted by the sum of the resultant
forces:

My,

m
Mg < Mg+ o Z exp (—al[py, — zpl]) m (7)

where M is the preassigned value to average all the resultant forces.

After an iteration, check the number of heterogeneous members in the ball
again. If the new number M. ;l of heterogeneous members in the ball is reduced,
the iterative process continues, otherwise the center is fixed. Once the center
is positioned, the algorithm readjusts the size of the ball to mostly cover only
homogeneous members. An RBF center is then selected.

2.2 Finding the Widths for the Radial Basis Functions

If heterogeneous members exist in the ball (i.e., M;i > 0), we shrink the ball
so that it almost covers the closest heterogeneous member @/ from p, by the
formula below. To avoid over-shrinking, § > 1 acts as a relaxation factor and
Omin as the lower bound of the size.
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max{min{||p, — z||/B: = € S\S*},omin} if M, >0
Of < . / . (8)
o it M,; =0

This 3 should be slightly smaller than A to avoid setting too large a value on .
Suppose A\/f3 is less than but close to 1. Then for any 7 € (S\S?) N B(uy,, o),

Omin < 0r < min |y — /8 @€ \S'} < Iy — /8 < (\B)o < ")
9

Since the last inequality is “slightly less than”, if M. ;i > 0, the updated circle is
not too large when controlled by 3.

2.3 Updating the Discriminant Function

To decide if a new center is needed, the discriminant function p; is updated to
remove the influence of the centers found so far. The processes of shifting the
center and resizing the RBF balls repeat if some updated potential is above the
threshold 4, i.e.,

max{p?ew(wzl)ﬂ e 7p?ew(mNi)} > 9, (10)
where
new 1
i (@) = pi@) = pipe) exp | =55l — pell ) - (11)
1
If all of the new p“* are less than ¢, the remaining data are not dense enough

to form an effective cluster center. It is important to note that since all the terms
in the discriminant function p; are positive, this § is dependent on the size N; and
the scaling parameter T, as shown in Fig. 1, and thus can only be determined on
an empirical basis. For the overall effect of §, see Figs. (2a)—(2d). An alternative
method is to normalize a new discriminant function p; := Ni > (-, @h). The
T in the proof of Theorem 1 is then dependent on N;. Future studies can then
be done on the suggested selection of § for every class i.
The whole center selection process is summarised in Algorithm 1.

3 Moving from the RBFN to the BPN

The algorithm follows the original purpose of imposing the RBF layer, which
captures the relation of the classes with the points of high relative density. How-
ever, it is natural to question the relation of such a doctrine with the ultimate
purpose of reducing classification error.

In MLP, a gradient-search algorithm is applied to iteratively update the
weights using backpropagation in order to attain a local minimum of the error
function. This simple idea comes from the fact that the infimum of a normed
space is not bigger than the infimum of a subspace. The motivation for our
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extension comes from questioning whether extending the parameter space in the
gradient-search algorithm would improve the classification. By combining the
hybrid structure, we apply backpropagation to both MLP and RBF layers with
the initial guess of RBF centers selected by the incremental algorithm above.
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Fig. 2. This shows an example of 10 homogeneous data points (blue). The black hori-
zontal line marks the threshold 6 = 1. The blue curve is the value of p(x) with 7" = 1.
We pick the data point with the highest value of p in Figure (2a) and mark it as our
first cluster point p; (red). (2b) The function p; is updated, penalizing the region
around p,. Since some points are above the threshold, the selection continues. (2¢) g,
is found and marked in red. Note that this showcases the importance of ¢ since the
data point almost does not pass the test. (2d) pg is found. The graph lies below the
threshold and the selection process terminates. (Color figure online)

The main concern regarding this approach is the problem of hitting local
minima. Here, we mainly focus on the extent to which the classifier gets stuck
at the local minima after the extension of the parameter space. Therefore, we
use the common stochastic gradient descent method.

Let K be the number of RBF centers. Define the output of RBF at each
center p; by

1
bk (s py,, o) = exp (—%QHSU - Nk|2) fork=1,2,--- K. (12)
k
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Algorithm 1: Incremental Learning Algorithm for Constructing RBF Hid-
den Neurons

Data: S = UL, 5%, where S* = {xi,--- ,:cﬁ\,b} the set of training samples
labeled i and H is the total number of classes
Result: {pq, -+ ,puyi}, {01, ,0k}

1 let
2 0> Omin > 0,k — 0, T,M,a,3,\,Epo >0
3 fori=1to H do
4 Define the discriminant function p; for class ¢ by p;(x) := Zg;l vz, x)
5 repeat
6 w,, — argmax{p;(xL): xi € S}
7 Define M; and M;,gi
8 for each sample x, € S\S* in B(p,, A\o) do
9 By — My T exp (—al g *a’p”)“iz:iﬁtu
10 end
11 Define the updated M; and ML,
12 m <+ 0
13 while M, > 0 and m < Epo do
14 if M > M; and M;l < M; then
15 Update with M; «— M;; My; — M.,
16 i i+ iy Sy oxp (—alliy, — @) FErky
17 m—m-+1
18 else
{max{min{mk —z||/B:x € S\S}, omin} if ML; >0
19 Ok —
Omin if M;él =0
20 end
21 end
22 Define pi* (@) = pi(@) — pi(hy) exp (— 5z @ — pe )
23 pi = pi"
24 k—k+1
25 until
26 ‘ max{pz(arllL 7:01(:1:3\71)} <4
27 end
The output of &(x) := [¢1(x; py,01), - , ¢ (T; Py, 0k )] is nonnegative. To

facilitate computational speed, we polarise them by a mapping  — 2x — 1,
which becomes the input of a feedforward network with the activation function
« — atanh (bx), where a and b are constants. They are updated using back-
propagation, passing the error term in the output to each hidden neuron.

In Algorithm 2, W = [W®M) ... W] is a tensor with each W) being
the weight matrix between the (I — 1)- and I-layers, where L is the number of
BP hidden layers (including the output layer). 6 = [5;”7 ... ,57(111)] is a vector
recording the error passed to the n; hidden neurons of the [-th layer, [ =1,--- , L.
6 is the error vector for the RBF units. The error term of the first BP layer
8™ can further be passed to the RBF layer, since & — ®(x) is smooth with
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Algorithm 2: Hybrid RBF-BP Network Architecture

Data: S = UL, S%, where S* = {x},--- ,m’]'\;i}, and Initialized weights W
Result: Updated weights W

1 Define constants a, b, learning rate n
2 Apply Algorithm 1 to obtain centers {g;, - , g} and widths {o1, -, 0k}
3 repeat
4 | 79 —26@)" -1
5 for =1 to L do
6 p® — O
7 7Y — atanh(bv®)
8 end
9 E — the error term (y — ™)
10 for(=Ltol=1do
11 if | = L then
12 ‘ 0B — abE ® sech?(bvP)) @ is elementwise multiplication
13 else
14 ‘ 6" — absech? (ko) © (W(l+1)6(l+1))
15 end
16 WO WO 4O GI-m)T
17 end
18 until
19 ‘ e < Tolerance

respect to pu and o (for strictly positive o). Suppose e = \/Zle(yj - @?L))Q is

the error of our predicted output Q(L) of the L-th layer. By the Chain rule, we
obtain

Oy, 6@20) oy F Oy, F oo,

2
—|lx— 1
= (5](60) exp ( H kH ) 2 (33 — ll’k)

—{0) 20 @& F : (13)
Oe Oe 8yk _6(0) ayk :5(0) 0

Gor oD dox % Doy O oy HTHe

|l — 2\ 1
— 5O [z — pel I P 2
Ve () lle

~(0) ~(0)
de de 0y, —6(O)ayk :5(O)i¢k(£ﬂ'ﬂk ok)

Then, the update rules of p;, and o, follow from SGD with learning rate #:

©) 3§(0) ©) a@(o)
Wy — g, + 206, () and o} — o + 206, ——(x). (14)
opy, Jdoy,
a7 (9 oy (® oy o7y (9 oy (® a7y (9 . .
Let gu = Byul S, 8ZLK and “4— = |:gal S ayO_K } The investigated

algorithm is shown as Algorithm 3, where diag(x) is the diagonal matrix with
the diagonal element being x.
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Algorithm 3: Modified Hybrid RBF-BP Network Architecture

Data: S = U, S;, where S; = {zi,--- ,scﬁ\;l} and Initialized weights W
Result: updated weights W, centers {p, } and widths {0}
Define constants a, b, learning rate n

=

2 Apply Algorithm 1 to obtain centers g = [p1, -+ , x| and widths
o = [0-17... 70'K}

3 repeat

4 Lines 4 — 17 in Algorithm 2

5 5O — wLsm

6 W+ 2n%ﬁ?)(m)diag(6(o))

7 o—o+2n 8'%;0) (x)diag(6®)

8 until

9 ‘ e < Tolerance

4 Numerical Results

As a comparative study, some artificial and real-life datasets were used to test
the effectiveness of our implementation strategies and our homemade MATLAB
codes.

4.1 Comparison of MLP and mHybrid Classifiers on Different
Datasets

We used 8 datasets with classes as shown in Table 1 and all the parameters used
for the mHybrid classifier are in Table2. We set Tolerance = 10~°. Figure3
shows the patterns for Double Moon with 2 classes, Concentric Circles (CC),
Concentric Circles with 2 extra layers (CC2) and Double Moon with 6 classes
(DM6) (Each crescent is split into three sections). For each dataset, we first
obtained the theoretical value max{(N; — 1)/D} (the last column in Table?2),
then we adjusted the T value descendingly to obtain the best result. Table 1
shows the results of the MLP and mHybrid classifiers. To assess their perfor-
mance, accuracy, precision, recall, and F-score were used. Table 1 shows that the
mHybrid classifier outperformed the MLP classifier.

We further examined the pendigit dataset with 10 classes. Different network
architectures of MLP and mHybrid classifiers are shown in Fig. 4, where the first
label refers to the number of hidden neurons of the two layers for MLP, while
the second label refers to the number of RBF centers and hidden neurons used
in the mHybrid classifier. According to the results, the accuracy of the mHybrid
classifier is significantly better than that of the MLP classifier when the numbers
of RBF centers and hidden neurons increase.
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Table 1. Performance comparison of MLP and mHybrid classifiers on different

datasets.
Dataset | Classes | MLP mHybrid
Accuracy | Precision | Recall | F Score | Accuracy | Precision | Recall | F Score

Pendigit | 10 0.9780 0.8938 0.8906 | 0.8906 0.9819 0.9126 0.9109 | 0.9089
Letter 26 0.9781 0.7127 0.7121 | 0.7070 0.9821 0.8000 0.7660 | 0.7680
Ozone 2 0.9448 0.7101 0.6135 | 0.6354 0.9540 0.9259 0.6741 | 0.7371
Sonar 2 0.8428 0.8533 0.8468 | 0.8424 | 0.8809 0.8820 0.8813 | 0.8807
Iono 2 0.9277 0.9099 0.9357 | 0.9166 | 0.9277 0.9282 0.9175 | 0.9214
DM 2 0.9983 0.9955 0.9960 | 0.9957 0.9933 0.9790 0.9826 | 0.9803
cC 2 0.6694 0.6700 0.6691 | 0.6688 0.9008 0.8992 0.8992 | 0.8992
CcC2 2 0.9240 0.9239 0.9243 | 0.9240 0.9557 0.9556 0.9564 | 0.9557

Table 2. Parameters of the mHybrid classifier used on different datasets.

Dataset Parameters

a b T a | B Omin | Tinit A Epo | § max (N; —1)/D
Pendigit 1.2/0.8|50 |25|1.2|1le—4|0.5 1.3 |10 | 0.001 | 68.94
Letter 1.2/ 0.8|100|25|1.2|1le—4 |5 1.3 |10 |0.001 | 813
Ozone 1.2 0.8 |50 25 1.2 |1le—4 |5 1.3 |10 0.01 281.78
Sonar 1.2/ 0.8|100|25|1.2|1e—4 |5 1.3 10 |0.001 | 216.83
Iono 1.2/ 0.8|100|25|1.2|1e—4 |5 1.3 10 |0.001 | 479.98
DM 1.2/0.8|50 |[25|1.2|1e—4|0.5 1.3 10 |0.001 | 7.15e+04
cC 1.2/ 0.8|100|25|1.2|1le—4 | 0.5 1.3 10 |0.001 | 5.86e+04
CcC2 1.2/ 0.8|200|25|1.2|1le—4|0.5 1.3 10 |0.001 | 6.53e+03
DM6 1.2/ 0.8|500|25|1.2|1e—4|0.7 1.3 /10 |0.01 |151.65
No Structure | 1.2 | 0.8 | 200 | 25 | 1.2 | le—4 | See Fig.6 | 1.3 | 10 0.001 | 9.23e+03

Fig. 3. (3a) Double Moon with 2 classes. (3b) Concentric Circles (CC). (3c) Concentric

Circles with 2 extra layers (CC2). (3d) Double Moon with 6 classes (DM6).

4.2 Comparison of Hybrid and mHybrid Classifiers Using DM6
and No Structure Datasets

In what follows, we numerically analyze the effect of the center and the width
parameter of the RBFs, which are iteratively updated by the SGD algorithm,
referred to as Algorithm 3. Using the DM6 dataset, we observed that the mHy-
brid classifier outperformed the MLP and Hybrid classifiers as shown in Table 3.
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Fig. 4. Comparison of the different network architectures of two classifiers using the
pendigit dataset. For MLP, the two numbers are the numbers of hidden neurons of the
two hidden layers. For mHybrid, the first number is the number of RBF units and the
second is the BP units.

Table 3. Comparison of three classifiers using DM6.

Classifier Accuracy | Precision | Recall | F' Score
Modified Hybrid RBF-BP | 0.9933 0.9790 0.9826 | 0.9803
Hybrid RBF-BP 0.9811 0.9532 0.9624 | 0.9703
MLP 0.9552 0.8816 0.8849 | 0.8567

Complete,

Fig. 5. Distribution of No Structure datasets.
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Fig. 6. Comparison of two classifiers on different No Structure datasets.

Figure5 shows the pattern of No Structure datasets, where data is labeled
using agglomerative clustering algorithms with different linkages (‘Ward’, ‘Aver-
age’, and ‘Complete’) with different numbers of classes. To be more precise,
‘Ward’ minimizes the variance of each cluster, ‘Average’ uses the average of
the distances of each sample pair from two clusters, and ‘Complete’ uses the
maximum distances between all samples of the clusters. The datasets are tested
on different initial o values with identical configurations. Figure 6 shows that
the mHybrid classifier outperformed the hybrid classifier. In addition to that,
the smaller the o value, the more RBF centers generated, and thus accuracy
increased.

5 Conclusions

The performance of the modified hybrid RBF-BP classifier has been tested using
artificial and real-life datasets. Based on the numerical results, we concluded that
when using the modified classifier, including the lines for updating the last step
yielded better accuracy than not including them. Although it performs better
than the MLP classifier, higher computational efficiency will be required if more
testing is to be done. In the future, tests may be done to fine-tune the parameters
to find a set of all optimal parameters for the modified hybrid classifier. More-
over, the efficiency of combining different classifiers with the proposed classifier
requires more work.
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