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Abstract. Addressing challenges in data clustering for diverse data types, we
introduce the ChaosMountain Gazelle Optimizer (CMGO). This enhancedMoun-
tain Gazelle Optimizer (MGO) is tailored for K-means clustering solutions. Notic-
ing a skew in MGO’s strategy distribution, we integrated a chaotic map into the
Territorial Solitary Males strategy and omitted the Migration to Search for Food
strategy. This adjustment increases exploration and curtails exploitation, improv-
ing CMGO’s effectiveness in clustering complex datasets. We implemented the
Gower distance technique to navigate K-means clustering’s limitations with cat-
egorical and binary data. Tests on numeric, binary, categorical, and mixed data
underscore the clustering’s versatility.We evaluated CMGO against 14 algorithms
on 28 UCI and OpenML datasets using the F-Measure metric and the tied rank
test for statistical significance ranking. CMGOoutperforms the originalMGO and
other tested algorithms in clustering pure numeric and categorical data, securing
first place, and third for mixed data. Thus, CMGO emerges as a robust, efficient
K-means optimizing method for complex, diverse datasets.

Keywords: Data clustering · K-Means Clustering · Mountain Gazelle
Optimizer · Mixed-type data · Chaos map · Nature-Inspired Optimization

1 Introduction

Data science is vital in numerous industries, enabling informed decision-making through
in-depth data analysis and interpretation. Through the application of techniques like
machine learning, businesses can effectively use predictive analytics to anticipate future
outcomes and meet customer needs [1]. Clustering algorithms automatically reveal data
patterns and relationships. They analyze data to identify similarities, detect patterns, and
group data points based on the characteristics and desired clustering techniques [2]. It
is an unsupervised learning method that uncovers natural clusters in a dataset, facili-
tating data exploration and comprehension [3]. However, clustering faces challenges in
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selecting suitable data representatives, handling diverse data, and dealing with distri-
bution complexities. It’s a computationally complex task in the class of NP-complete
problems, aiming to minimize dissimilarity measures for identifying clusters in varied
datasets [4]. Two fundamental approaches to data clustering include hierarchical clus-
tering, which entails a tree-like division of data, and partition clustering. The objective
in data clustering is to determine cluster centers (centroids) and improve the partition-
ing through iterative relocation, with examples of partition clustering algorithms like
K-means [5].

Several nature-inspired optimization algorithms have gained attention in search
clustering approaches. These algorithms aim to optimize an objective function con-
sidering the sum of intra-cluster distances to find centroids. Examples from the lit-
erature include the Gray Wolf Optimization (GWO) [6], the Jaya Algorithm (JAYA)
[7], Chaotic League Championship Algorithm (KSCLCA) [8], Salp Swarm Algorithm
(SSA) [9], Dandelion Optimizer (DO) [10], Leader Slime Mould Algorithm (LSMA)
[11], Flow Direction Algorithm (FDA) [12], Artificial Gorilla Troops Optimizer (GTO)
[13], Mountain Gazelle Optimizer (MGO) [14], Prairie Dog Optimization Algorithm
(PDO1) [15], Chimp Optimization Algorithm (CHIMP) [16] and Opposition African
Vultures Optimization Algorithm (OAVOA) [17].

The Mountain Gazelle Optimization (MGO) algorithm proposed [14], mimics the
social behaviors of mountain gazelles and utilizes factors like male herds, maternity
herds, territorial males, andmigration for food exploration.WhileMGOexcels in bench-
mark functions and engineering problems, its application to data clustering remains chal-
lenging. We propose a variation, Chaos Mountain Gazelle Optimizer (CMGO), which
integrates a chaotic map into the distribution strategy to address this issue. Furthermore,
the Migration to Search for Food strategy in MGO is unsuitable for clustering prob-
lems. To address this, we modify the strategy distribution by integrating a chaotic map
into the Territorial Solitary Males strategy while excluding the Migration to search for
Food strategy. In data clustering, K-means clustering is commonly used, but it encoun-
ters challenges when computing distances between objects and centroids, especially
with categorical and binary data. To address this, the Gower distance technique is inte-
grated into K-means clustering. According to [18] using Gower’s similarity coefficients
improved the accuracy of the K-means algorithm in experiments with various datasets.
We selected a total of 28 real datasets from the UCI and OpenML repositories to assess
the performance of the proposed algorithms on three data types: numerical, categorical,
and mixed. The effectiveness of the algorithm was compared against 14 state-of-the-art
approaches. The evaluation employed the F-Measure metric to assess performance, and
statistical significance ranking was conducted using the tied rank test. Results revealed
that CMGO exhibited lower intra-cluster distance and higher F-Measure values, outper-
forming both the original Mountain Gazelle Optimization (MGO) algorithm and other
tested algorithms. Specifically, CMGO secured the first position in clustering numeric
and categorical data, while ranking third for mixed data.

The remainder of the paper is organized as follows: Sect. 2 provides an overview
of K-means clustering problems and the traditional MGO algorithm. Section 3 intro-
duces the proposed method, CMGO. In Sect. 4, we discuss the performance evaluation
experiments. Section 5 presents the discussion. Finally, Sect. 6 conclusion.
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2 Related Works

In this section, we will discuss the K-means algorithm for data clustering and introduce
a traditional Mountain Gazelle Optimization (MGO) to enhance its capabilities.

2.1 K-means Clustering

The K-means clustering algorithm has received significant attention in the literature.
Especially in nature-inspired optimization approaches, a large number of researchers
employ optimization algorithms to search for cluster centers. These optimization algo-
rithms aim to discover cluster centers by minimizing the objective function, which takes
into account the sum of intra-cluster distances. The K-means algorithm partitions the
dataset into K distinct clusters. The K-means algorithm operates through unsupervised
learning. Based on the data points X = [x1,x2x3, . . . xN ] and the positions of K cluster
centroids C = {c1, c2, c3, . . . , ck |∀i = 1, . . . ,K : ci �= ∅ and ∀i �= j : ci ∩ cj = ∅}.
In clustering, each data point in set X is assigned to one of the K clusters in a manner
that minimizes the objective fitness function. The sum of the squared Euclidean distance
between data points xN and the center of the cluster cj is used as the objective function,
as presented in Eq. (1).

f (k) =
K∑

k=1

Nk∑

i=1

(xi − ck)
2, (1)

where k = 1, 2, ...K is the number of clusters, xi, i = 1, 2, ...Nk are the patterns in the
kth cluster, ck is center of the kth cluster. In this context, the cluster centers are depicted
as:

ck = 1

nk

nk∑

i=1

xi. (2)

In this research, nature-inspired algorithms are employed for the purpose of identi-
fying cluster centers within the dataset. The primary objective of the K-means algorithm
is to determine optimal centers for each of the K clusters in a partitioned cluster.

2.2 Traditional Mountain Gazelle Optimization (MGO)

This section provides a brief explanation of the main inspiration behind the traditional
MGO algorithm [14], followed by a description of the mathematical model.

Territorial Solitary Males
Male mountain gazelles establish solitary territories through intense territorial battles
and competition for females, with adult males vigorously defending their boundaries.

TSM = malegazelle − |(ri1 × BH − ri2 × X (t)) × F | × Cof r (3)
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Themalegazelle is the position vector of the best global solution, representing an adult
male. ri1 and ri2 are random integer 1 or 2. The coefficient vector BH is the young male
herd. Cof r is randomly selected in each iteration.

BH = Xra × �r1� + Mpr × �r2�, ra =
(⌊

N

3

⌋
. . .N

)
(4)

where Xra is a random young male within the interval ra.Mpr is the average number of
randomly selected search agents from a pool of N , based on the ceiling division of N by
3. N is the total number of gazelles. r1 and r2 are random values (0, 1].

F = N1(D) × exp

(
2 − Iter ×

(
2

MaxIter

))
(5)

N1 is a randomly generated number from the standard distribution, exp is the
exponential function, MaxIter is the total iterations, and Iter is the current iteration.

Cof i =

⎧
⎪⎪⎨

⎪⎪⎩

(a + 1) + r3,
a × N2(D),

r4(D),

N3(D) × N4(D)2 × cos((r4 × 2) × N3(D)),

(6)

r3, r4, and rand are random numbers (0, 1). N2, N3 and N4 are randomly generated
numbers from a normal distribution, and cos represent the cosine function.

a = −1 + Iter ×
( −1

MaxIter

)
(7)

MaxIter is the total number of iterations, while Iter is the current iteration count.

Maternity Herds
Maternity herds facilitate robust male gazelle births, with active male participation in
delivery and young males competing for dominance over females.

MH = (
BH + Cof 1,r

) + (ri3 × malegazelle − ri4 × Xrand ) × Cof r (8)

ri3 and ri4 are random integers, either 1 or 2. The malegazelle is the global solution in
the current iteration. Xrand is the position of a gazelle randomly selected from the entire
population.

Bachelor Male Herds
Male gazelles establish territories and engage in intense battles for female possession,
demonstrating dominance and control. This behavior is computed as follows:

BMH = (X (t) − D) + (
ri5 × malegazelle − ri6 × BH

) × Cof r, (9)

where X (t) is the position vector of the gazelle in the current iteration. ri5 and ri6 are
randomly selected integers, either 1 or 2.

D = (|X (t)| + ∣∣malegazelle
∣∣) × (2 × r6 − 1), (10)
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the parameter r6 is a random value between 0 and 1.

Migration to Search for Food
The mathematical formulation representing the foraging and migratory behavior of
mountain gazelles incorporates their ability to cover long distances and engage in
migration, as well as their exceptional running speed and jumping abilities.

MSF = (ub − lb) × r7 + lb (11)

ub and lb is upper and lower limits. r7 is a randomly selected integer within the range
of 0 and 1.

The mechanisms (TSM,MH, BMH, andMSF) are applied to all gazelles, generating
newgenerations, and adding to the population.High-quality gazelles are preserved,while
weak or old ones are removed, with the adult male gazelle considered the best among
them.

3 Proposed method Chaotic Mountain Gazelle Optimizer

3.1 Motivation

The Mountain Gazelle Optimizer (MGO) algorithm draws inspiration from the social
structure of wild mountain gazelles. While MGO demonstrates strong search capa-
bilities in benchmark functions and engineering problems [14], its application to NP-
complete real-world problems like data clustering remains challenging. To address this,
we enhance MGO by incorporating a chaotic map into the Territorial Solitary Males
strategy and excluding theMigration to Search for Food strategy. Additionally, we intro-
duce the Gower distance technique to overcome challenges in computing distances for
categorical and binary data in K-means clustering.

Chaotic Territorial Solitary Males Strategy
In our proposed CMGO algorithm, the Territorial Solitary Males strategy is enhanced
by incorporating a chaotic map. The updated mathematical expression for the territory
of adult male TSMCt+1 is given by the following equation.

TSMCt+1 = malegazelle −
∣∣∣∣

((
Ct+1

ri1

)
× BH − ri2 × X (t)

)
× F

∣∣∣∣ × Cof r, (12)

malegazelle is the position vector of the best global solution. ri1 and ri2 are random
integers, either 1 or 2. The coefficient vector BH corresponds to the young male herds
from the original MGO algorithm. F and Cof r Similar to the original MGO.

The Chaotic Parameter
The parameters ri1 and ri2 serve as controls for updating the territory of the adult
male TSMCt+1 in our CMGO algorithm. The parameter ri1 is a random integer, taking
a value of either 1 or 2, and directly in fluences the search solution. If ri1 is 1, the
coefficient vector BH remains unchanged. However, when incorporating a chaotic map
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into the computation of ri1, the coefficient vector BH undergoes changes throughout the
entire evolution process. Previous studies have demonstrated the seamless and effective
integration of a chaotic mapwith the biogeography-based optimization (BBO) algorithm
[19]. In our proposedCMGOalgorithm,we introduce the use of thePiecewisemapwithin
the Territorial Solitary Males strategy.

The iterative form of the Piecewise map is defined as:

(13)

where the parameter P is set to 0.4. The visualization of the Piecewise map is depicted
in Fig. 1.

Fig. 1. The behavior of the Piecewise maps employed in our CMGO algorithm.

The Gower Similarity Coefficient
To improve the performance of K-means clustering when dealing with categorical and
binary data, a similarity measure, such as the Gower coefficient [20] or the Gower
distance technique, is used instead of the squared Euclidean distance to calculate the
dissimilarity measure DGow

(
Xn,Cj

)
during the clustering process. The Gower distance

(DGow), is employed in this context. The computation of theGower distance is as follows:

DGow
(
Xn,Cj

) =
∑Nk

k=1 Snjkδnjkwk
∑Nk

k=1 δnjkwk

(14)

In the case of binary and categorical attributes, Snjk = 0 if Xnk = Cjk otherwise
Snjk = 1. For continuous attributes, Snjk = ∣∣Xnk − Cjk

∣∣/(maxlXlk − minlXlk), where
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l run for all non-missing values for the attribute k. If we can compare Xn and Cj for
the attribute k then δnjk = 1, zero otherwise. wk is the weight for the attribute k. For
simplicity, we will setwk = 1.Nk the total number of species recorded across both units.

3.2 The Main Process of Proposed CMGO Algorithm

The Chaos Mountain Gazelle Optimizer (CMGO) algorithm is developed to tackle chal-
lenges in data clustering for various data types. This enhanced version of the Mountain
Gazelle Optimizer (MGO) is specifically designed for K-means clustering solutions.

The relationship between the CMGO optimizer and K-means clustering can be
explained as follows: We utilize the CMGO to optimize the cluster centers in K-means
clustering. First, it initializes the cluster centers with random positions and then proceeds
to perform the K-means algorithm from each of these random positions. Secondly, dur-
ing the evolutionary process, the CMGO iteratively updates the position of the optimal
cluster center. The process continues until it reaches the desired optimal position (the
best cluster center). Lastly, all positions are assigned to the cluster centers, resulting in
the output of the clustering results. The pseudo-code of the CMGO algorithm is also
shown in Algorithm 1.

Algorithm 1 Pseudo-code of K-mean clustering based on CMGO

4 Experimental Results and Analysis

The experiments were conducted usingMATLABR2022a 64-bit on a desktop computer
with an AMD Ryzen 9 5950X 16-Core Processor (3.40 GHz), 32.00 GB RAM, SSD
M.2 500 GB, and Microsoft Windows 11 Professional 64-bit operating system.
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4.1 Performance Evaluation

The CMGO algorithm was evaluated against competing algorithms using UCI and
OpenML datasets, employing the F-Measure metric and tied rank test for statistical sig-
nificance rankings. The F-Measure, which integrates both precision and recall, served
as the metric for evaluating performance, can be calculated by a confusion matrix as
follows:

F − Measure(x) = 2 × precision × recall

precision + recall
× 100, (17)

where, precision and recall are calculated using the following equations based on a
confusion matrix:

precision = TP

TP + FP
, (15)

recall = TP

TP + FP
, (16)

where, TP represents true positives, FP corresponds to false positives, and FN signifies
false negatives. Higher precision values indicated superior algorithm performance, while
greater recall captured more true positives, thereby indicating improved performance in
correctly identifying positive instances. The evaluation of the F-Measure occurs upon
termination of the optimization algorithm. A higher F-Measure leads to increased clus-
tering accuracy. In [8] stressed the importance of a lowobjective fitness value for accurate
cluster formation, guiding our adoption of the F-measure metric to evaluate and achieve
precise clusters.

The Benchmark Dataset for Clustering
We partitioned the benchmark dataset into three distinct groups: numerical datasets,
categorical datasets, and mixed-data type datasets. We utilized a total of 28 well-known
datasets taken from the UCI [21] and OpenML [22] repositories. The numerical dataset
consisted of: Iris, Glass, Breast-Cancer-Wisconsin, Wine, Thyroid, Synthetic-Control-
Charts, Ionosphere, Sonar, Diabetes, Ecoli, and Banknote-Authentication. The categor-
ical dataset included: Balance Scale, Hayes-Roth, Monks, SPECT-Heart, asnd Nursery.
The mixed-data type dataset encompassed the following datasets: Acute-Inflammations,
Analcatdata-Seropositive, Churn, Cloud, Fruitfly, Haberman, Newton-Hema, Sleuth-
Case2002, Socmob, Tae, Heart-Disease, and ACA. By incorporating diverse datasets
representing different data types, we aimed to comprehensively evaluate the performance
of our algorithm across various scenarios. The characteristics of the three datasets are
presented in Table 1.

4.2 Experimental Results

To verify the proposed CMGO, we compared it against 14 algorithms on 28 UCI and
OpenML datasets. The algorithms used for comparison included: Opposition African
Vultures Optimization Algorithm (OAVOA) [17], Salp Swarm Algorithm (SSA) [9],
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Table 1. The characteristics of the three datasets.

Numeric Categorical Mixed-type dataset
1. Iris (N=150, D=4, k=3)
2. Glass (N=214, D=9, k=6)
3. Breast-Cancer-Wisconsin 
(N=699, D=9, k=2)
4. Wine (N=1178, D=13, k=3)
5. Thyroid (N=215, D=5, 
k=3)
6. Synthetic -Control-Chart 
(N=600, D=60, k=6)
7. Ionosphere (N=351, D=34, 
k=2)
8. Sonar (N=208, D=60, k=2)
9. Diabetes (N=768, D=8, 
k=2)
10. Ecoli (N=336, D=7, k=4)
11. Banknote -Authentication 
(N=1370, D=4, k=2)

1. Balance-Scale 
(N=625, D=4, k=3)
2. Hayes-Roth 
(N=160, D=4, k=3)
3. Monks (N=432, 
D=6, k=2)
4. SPECT-Heart 
(N=267, D=22, 
k=2)
5. Nursery 
(N=12,960, D=8, 
k=2)

1. Acute-Inflammations (N=120, D=6(c=5,
=1), k=2)

2. Analcatdata-Seropositive (N=132, 
D=3(c=1, =2), k=2)
3. Churn (N=5000, D=20(c=4, =16), k=2)
4. Cloud (N=108, D=7(c=1, =6), k=2)
5. Fruitfly (N=125, D=4(c=2, =2), k=2)
6. Haberman (N=306, D=3(c=1, =2), k=2)
7. Newton-Hema (N=140, D=3(c=1, =2), 
k=2)
8. Sleuth-Case2002 (N=147, D=6(c=4, =2), 
k=2)
9. Socmob (N=1156, D=5(c=4, =1), k=2)
10. Tae (N=151, D=5(c=2, =3), k=2)
11. Heart-Disease (N=1025, D=13(c=8, =5), 
k=2)
12. ACA (N=690, D=14(c=8, =6), k=2)

* N = Number of data, D = Number of Dimension(c = categorical, numerical), k = Number of Center

Artificial Gorilla Troops Optimizer (GTO) [13], Jaya Algorithm (JAYA) [7], Dandelion
Optimizer (DO) [10], Gray Wolf Optimization (GWO) [6], modified particle swarm
optimization (MPSO) [23], Leader Slime Mould Algorithm (LSMA) [11], Flow Direc-
tion Algorithm (FDA) [12], Mountain Gazelle Optimizer (MGO) [14], Prairie Dog
Optimization Algorithm (PDO1) [15], Time-varying Acceleration Coefficients Particle
Swarm Optimization algorithm (TACPSO) [23], Chimp Optimization Algorithm [16],
and Chaotic League Championship Algorithm (KSCLCA) [8].

Table 2, the analysis encompasses numeric, categorical, and mixed data types. The
average tied rank of 15 algorithms is determined based on the F-Measure. The average
tied rank (Avg. tied rank) displayed in Table 2 represents the mean scores of tied rank
scores for the F-Measure of each algorithm when implemented on datasets belonging
to their respective data types. For numeric data, CMGO achieves the top rank with an
average score (avg.sc) of 4.27, outperforming the original MGO ranking which holds
the 6 positions with an avg.sc of 6.55. When considering Categorical data, the algorithm
ranking first obtains an avg.sc of 4.40, demonstrating superior performance compared
to the original MGO ranking at the 8 positions with an avg.sc of 7.70. In the case of
Mixed data, the algorithm secures rank 3 with an avg.sc of 6.46, surpassing the original
MGO ranking at the 6 positions with an avg.sc of 6.88.
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Table 3 presents a thorough evaluation of data clustering performance, comparing the
MGO and the proposed CMGO algorithms across three groups of datasets. The findings
consistently indicated that CMGO outperformed the original MGO algorithm across the
datasets, with a ratio of 18:9 in favor of CMGO. The performance measures utilized for
evaluation were the F-Measure and tied rank.

Table 2. Compares the tied rank of 15 algorithms across three datatypes.

Methods Tied rank of average F-measure

Numeric Categorical Mixed data type

Avg. tied rank Rank Avg. tied rank Rank Avg. tied rank Rank

OAVOA 6.86 7 8.80 10 7.38 7

SSA 9.18 10 7.20 7 8.21 8

GTO 4.82 3 6.60 5 9.92 13

JAYA 4.32 2 9.40 11 8.88 10

DO 7.91 9 8.70 9 6.38 2

GWO 9.55 12 10.20 13 9.54 12

MPSO 12.73 14 9.80 12 10.33 14

LSMA 9.50 11 5.60 2 8.29 9

FDA 5.91 4 6.40 4 6.54 4

MGO 6.55 6 7.70 8 6.88 6

PDO1 11.18 13 7.00 6 11.08 15

TACPSO 7.73 8 6.10 3 6.58 5

CHIMP 13.36 15 10.60 14 9.04 11

KSCLCA 6.14 5 11.50 15 4.50 1

Proposed CMGO 4.27 1 4.40 1 6.46 3

Table 4 presents the average ranking, tied rank, and average tied rank for all 3
types of information based on the F-Measure. The rankings are associated with a set
of 15 algorithms and all datasets. The algorithms are ranked as follows: CMGO, FDA,
KSCLCA, MGO, TACPSO, JAYA, GTO, DO, OAVOA, LSMA, SSA, GWO, PDO1,
CHIMP, and MPSO, respectively. CMGO achieved the first rank. In contrast, MGO
obtained a rank of 4. These results highlight the capability of the proposed CMGO
approach to enhance the performance of the original MGO algorithm for all datasets.
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Table 3. The comparative of the tied rank between the MGO and proposed CMGO algorithms.

Types Datasets F-Measure Rank

MGO Proposed
CMGO

MGO Proposed
CMGO

Numerical
datasets

Iris 85.81717 89.80941 2 1

Glass 43.67836 38.16387 1 2

Breast-Cancer-Wisconsin 95.12551 95.11379 1 2

Wine 72.46922 72.74876 2 1

Thyroid 67.37993 72.45515 2 1

Synthetic-Control-Chart 42.79285 43.47290 2 1

Ionosphere 68.18605 68.13166 1 2

Sonar 53.93852 49.75967 1 2

Diabetes 59.02891 59.55515 2 1

Ecoli 72.21830 74.65103 2 1

Banknote-Authentication 59.07605 59.30723 2 1

Categorical
datasets

Balance-Scale 50.10709 50.11917 2 1

Hayes-Roth 36.78197 37.66778 2 1

Monks 49.69362 49.71152 2 1

SPECT-Heart 62.98250 63.10270 2 1

Nursery 38.50658 40.71493 2 1

Mixed-data
type datasets

Acute-Inflammations 77.41939 74.90621 1 2

Analcatdata-Seropositive 82.81519 82.79930 1 2

Churn 57.12235 59.17942 2 1

Cloud 56.49374 56.49374 1 1

Fruitfly 52.90640 52.94304 2 1

Haberman 50.53389 51.79722 2 1

Newton-Hema 63.48013 63.43048 1 2

Sleuth-Case2002 56.90424 59.32102 2 1

Socmob 85.28709 86.42502 2 1

Tae 62.99309 63.16615 2 1

Heart-Disease 75.16155 66.17032 1 2

ACA 67.83375 56.90297 1 2
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5 Discussion

In this section, we compare the exploitation and exploration abilities of the original
MGOalgorithm and the proposedCMGOalgorithm. The evaluation employed strategies
such as TSM, MH, BMH, and MSF, revealing differences between the two algorithms
(Fig. 2). The Socmob dataset, representing mixed data types, was used to compare
their performance. Results indicated that in the original MGO algorithm, there was an
initial emphasis on exploitation (as observed in the TSM strategy on the red line), which
gradually increased until reaching the final iteration. While its exploration capability (as
seen in theMH strategy on the green line) isn’t heavily emphasized in the initial stages, it
also gradually diminishes until reaching the final iteration. On the contrary, the CMGO
algorithm intentionally reduced exploitation (as observed in the TSM strategy on the
red line) to prevent premature convergence. However, it experienced a slight reduction
that continued until the final iteration. To achieve a more effective balance between
exploration and exploitation, the focus on the exploration capability (MH strategy on
the green line) begins with less emphasis in the initial stages, increases rapidly during
the intermediate stages, and then remains almost constant until the final iteration. The
same behavioral curves can be observed for both BMH and MSF strategies. Note that
the MSF strategy was removed from the CMGO algorithm due to the negligible changes
observed throughout the evaluation process.
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Fig. 2. The behaviors of the 4 strategies of the MGO and CMGO for Mixed data type.

It is worth noting, as shown in Table 2, that the mixed data type in all datasets
exhibits only two classes (cluster center) and generally has a relatively small number of
dimensions, while the other two data types, numerical and categorical, differ. It can be
assumed that finding a solution for the problem of mixed data types with fewer classes
is not challenging. Some algorithms with a high degree of exploitation ability, such as
the KSCLCA algorithm, perform exceptionally well on this problem, ranking first. In
contrast, the proposed CMGO algorithm dropped to third place in the context of mixed
data types. It can be inferred that the CMGO algorithm aims to enhance the balance
between exploration and exploitation abilities by reducing exploitation and increasing
exploration, albeit to a lesser degree than the KSCLCA algorithm. Nevertheless, the
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CMGO’s performance ranks it among the top three algorithms, securing the third posi-
tion, with a slight variation from the second-ranked DO algorithm. In summary, it can
be inferred that our proposed CMGO algorithm demonstrates its effectiveness partic-
ularly when dealing with problems having more than two classes. Further exhaustive
investigations will be pursued in future work.

6 Conclusion

We anticipate that the findings and techniques presented in this study will prove valuable
to individuals and researchers who have a keen interest in advancing the field of data
clustering. The CMGO algorithm, along with the integration of the Gower distance tech-
nique, offers novel insights and solutions for addressing challenges in clustering diverse
data types. By introducing the CMGO algorithm, we have expanded the capabilities of
the traditional MGO for K-means clustering. The incorporation of a chaotic map into the
Territorial Solitary Males strategy and the exclusion of the Migration to Search for Food
strategy have enhanced CMGO’s exploration and exploitation abilities. This adjustment
allows CMGO to effectively handle complex datasets by striking a balance between
thorough exploration and efficient exploitation of the solution space. Furthermore, our
utilization of the Gower distance technique has overcome the limitations of K-means
clustering when dealing with categorical and binary data. This technique has enabled
CMGO to accurately compute distances between objects and cluster centers, ensuring
reliable clustering results across a wide range of data types. We believe that the com-
prehensive evaluation of CMGO against 14 other state-of-the-art algorithms using 28
diverse datasets adds significant value to the field. The use of the F-Measure metric and
the tied rank test for statistical significance ranking provides robust and reliablemeasures
of CMGO’s performance. The results clearly demonstrate CMGO’s superiority over the
original MGO and other tested algorithms, particularly in clustering pure numeric and
categorical data.

In summary, we are confident that the insights and innovations presented in this study
will inspire further developments in the field of data clustering. The CMGO algorithm,
along with the integration of the Gower distance technique, offers a promising avenue
for researchers and practitioners to tackle the challenges posed by diverse datasets. We
hope that our contributions will serve as a foundation for future advancements in the
field and encourage further exploration and experimentation in this area of study.
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