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Abstract. Identifying a small-sized object is of interest to many studies, espe-
cially the rice grain on the branch. Due to its significance to the evaluation of the
grain quality. In identifying rice seeds, there are also some difficulties in separating
components such as branches and spikes. The study uses a dataset of images of rice
branches with differences in shape, state, and size. After the pre-processing steps,
the obtained data has images of relatively small rice grains. The research applies
to object recognition advances such as new YOLO models (including YOLOv5,
YOLOv6, and YOLOv7). On a dataset of 150 images and nearly 6000 instances,
and the results are evaluated on many different epochs, the results show that
the highest accuracy belongs to YOLOv7, which is 89.93% (Precision), 87.96%
(Recall), and 91.33% (mAP). The study also opens up further studies in detecting
diseases on rice, such as grain blight, cotton neck blast, etc.

Keywords: Yolo models · small-sized · count objects · count rice · rice on the
branch

1 Introduction

Seed quality plays an essential role in assessing the quality of growth and development
of seeds, which is a decisive factor for yield, nutritional composition, taste, and edible
quality [1]. However, the evaluation of polymorphic seed quality is still carried out
by manual method, which is costly in terms of labor as the assessment is based on
chemical analysis in the extraction process. This method was performed through solid
phasemicroextraction, spectroscopic techniques, infrared (IR) spectroscopy, and nuclear
magnetic resonance (NMR) besides e-tongue and e-nose for the detection of flavor
[2]. Realizing this disadvantage, several studies have been carried out to support the
automation process in agriculture.

First, much research has been done in detecting, counting, and locating fruit trees in
the garden. Research [3] uses the advancement of deep learning models applied to the
data set with 1000 images and 41000 labeled instances of apple. The results obtained
the highest accuracy of 92.68% with the CNN algorithm, a semi-supervised clustering
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method based on Gaussian Mixture Models, with relatively satisfactory results. With
similar work, research [4] uses fewer datasets with algorithms GMM and ResNet50
with the highest accuracy of 95.1%. Research [5, 6] builds MangoNet and MangoYolo
networks to detect and count mangoes with the highest accuracy of 98.3%. Research
[7] used Mask-RCNN to detect grapes with a camera mounted on an automatic grape
harvester with green berries by imaging with an accuracy of 94% in vertical bud posi-
tioning and 85.6% in cutting minimal pruning on a dataset with 5700 patches from 38
images. Research [8] used InceptionV2, MobileNet, and Single Shot Multibox Detector
(SDD) to detect and count avocados, apples, and lemons with the highest accuracy of
93%. Research [9] detects and counts pear fruit by YOLOv4 models with 98% accu-
racy. Another fruit of interest is the tomato, with much research focused on supporting
the automation of detection, counting, and harvesting. Specifically, the research [10]
used the MaskRCNN model on the dataset with different heights with the highest accu-
racy of 88%. Besides, research [11, 12] performed tomato flower counting by Faster
R-CNN thresholding in computer vision with the highest accuracy of 96.02%. Through
research, the problem in implementation is dominated by environmental factors such as
trees covered by foliage, camera height, light, Etc., which have affected fruit detection
and counting.

Similar to fruit detection, much research has focused on seed quality to determine
product value. Research [13] counted plots as they affected the quality of tomato cultivars
using LocAnalyzer. Research [14] created a TasselNetv2 model that counts wheat spikes
based on context-augmented local regression networks with an accuracy of 91.01%.
Research [15] used SeedGerm correlation and manual method to count the number of
germinated grains of barley, cabbage, corn, pepper, and tomato with minimal error.
Research [16] to detect and count the number of sorghum heads using CNN with the
final efficiency R2 between humans and machines of 0.88. Research [17] determined
the length, width, and height of panicle evaluated clustering with a high accuracy of
89.3% with a 10.7% omission and 14.3% commission rate. Research [18] counted rice
and wheat grains using an Android device with an error of less than 2%.

The research shows that the implementation of seed counting has yet to be engaged
in much research, but this is a decisive factor for the quality and yield of seed-harvesting
crops. Besides, the research using the advancements of the YOLO model has been of
great interest to object counting studies. Therefore, the study takes the first step in
detecting rice seeds on rice panicles to serve as a basis for further studies. The research
is divided into sections. Section 2 explores related studies in rice seed detection with
its advancements and challenges to be made. Section 3 provides knowledge related to
YOLO models; Section 4 proposes methods and assessments for data made through the
actual collection of the research. Section 5 the results obtained from implementation.
Section 6 discusses the results of the research, Sect. 7 conclusions related to the study,
and suggestions for further research directions.

2 Related Works

Recent technological advances play an essential role in seed detection. Research [19]
shows potential in using near-infrared spectroscopy, hyperspectral and multispectral
imaging, Raman spectroscopy, infrared thermography, and soft X-ray imaging methods.
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Research [20] classified 14 rice varieties of Oryza sativa with 3500 samples with nearly
50000 seeds. The machine learning methods used in this research include VGG16,
VGG19, Xception, InceptionV3, InceptionResNetV2, LR, LDA, k-NN, and SVM. The
highest accuracy is 95.15%. In addition, the research [21] used advances in technology
using hyperspectral imaging and chemometrics on individually isolated particles with
an overall accuracy of 88%. Similarly, the research [22] using hyperspectral imaging
with deep learning algorithms gave an accuracy of 99.19% on the oat seeds dataset,
and research [23] used transfer learning with the highest accuracy of 97.2% on soybean
seed varieties. Another approach in particle detection is built on optical micrographs
using image processing with relatively satisfactory results. In addition, the advancement
of deep learning and transfer learning models has shown substantial development in
agriculture, such as diagnosing diseases in chickens [24, 25], shrimp [26], foliar diseases
[27, 28], fish [29], palm trees diseases [30].

The research in this section demonstrates a remarkable development in technolog-
ical advances in the formulation and development of techniques for particle detection.
However, the remaining problem of the studies is that they are being carried out with
photos in the laboratory, using high equipment, so the cost problem is still limited. In
addition, the tiny size of the seeds on the cotton when separated is analyzed in Section
IV. Therefore, this study performing rice seed detection in paddy ears will create a chal-
lenge in formulating and developing follow-up studies that help support farmers through
mobile devices (Fig. 1).

Fig. 1. The image illustrates the sample of the research.

3 YOLO Models

3.1 YOLO Network and Algorithms Brief

The YOLO algorithm divides the trained image into S× S grids of cells, where each cell
has different detection tasks. This network structure is created from 24 convolutional
layers and connected layers described (Fig. 2). In which the convolutional layers will
extract the features of the image, and the full-connected layerswill predict the probability
and the coordinates of the object. After the fully connected layer, the tensor of S× S× (B
× 5+C) is output, where B represents the number of predicted targets in each mesh and
C represents the number of object types. The final result is obtained by regressing the box
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object’s position and evaluating the tensor data’s type probability. Therefore, the YOLO
algorithm can detect targets quickly but cannot detect small targets, or its detection
efficiency is not good [31]. So many later versions of this algorithm since version 5 have
tried to overcome this by changing the structure and adding image processing methods.
In this study, we will evaluate the latest version of the YOLOmodels, including versions
5, 6, and 7.

Fig. 2. Illustrating the Convolution layer network structure of the YOLOv1 models.

3.2 Overview of YOLO Models

YOLOv5 is an upgraded architecture from its predecessors to improve recognition effi-
ciency. It has significantly improved the processing time of deeper networks [32]. This
will become important with the project into larger datasets containing small objects and
real-time detection. With the structure being changed with some properties:

– Backbone: from CSPResidualBlock (version 4) switch to using module C3.
– Neck: SPP + PAN -- >SPPF + PAN. Adopting a module similar to SPP, but twice

as fast and calling it SPP - Fast (SPPF).
– Data Augmentation: Mosaic Augmentation, Copy-paste Augmentation, MixUp

Augmentation.
– Anchor Box: Using the technique of applying genetic algorithm (GA) to the Anchor

Box after the k-means step, the Anchor Box works better with the user’s custom
datasets but no longer works well with each Common Objects in Context (COCO).

YOLOv6 is a single-stage object detection model based on YOLO architecture
[33]. This version is researched and developed into open source by the author Meituan.
YOLOv6 achieves a more robust performance than Yolov5 when benchmarking against
the MS Coco dataset. This model has evolved the backbone and neck layer with a new
structure called EfficientRep Backbone and a Rep-PAN Neck. This change makes the
number of parameters of v6 larger than v5, even two times. However, the training time
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between the two models is mainly about the same with the same amount of data, and v6
gives a higher probability of object type demonstrated on the COCO dataset.

YOLO-v7 is the latest model of the YOLO family published and studied by
WongKinYiu [34]. The author confirms that this model is superior to the object develop-
ment models. The change and many new structures applied make Yolov7 achieve high
efficiency and faster time. Some new techniques to improve the efficiency of the above
model such as the Label Assignment technique, Model Scaling, Backbone use Efficient
Layer Aggregation Network (ELAN), Neckwith SPPCSPC architecture developed from
YOLOv4 model, Re-parameterization in YOLOv5 model.

4 Methodology

The research evaluated the three latestmodels of theYOLOfamily on adataset containing
small objects in the Object Detection domain, for YOLOmodels, SOTA one-stage object
detection models, is popular set of object detection models used for real-time object
detection and classification in computer vision. The proposed research method uses
YOLO models to separate each rice grain on the rice smudging data set to evaluate the
effectiveness of each model. The actual object separation results of each model compare
the productivity of versions with each other.

4.1 Data Collection and Preprocessing

The dataset used in the rice grain analysis was provided by the Mekong Delta Rice
Institute and captured through a Samsung Galaxy Note 10 phone. The rice image dataset
used through selection includes 150 images. Image data will be processed through steps
including data labeling and resizing (640× 640 px) when included in the YOLOmodel.
Using the above-sized image tomake the objects reach a small size on each image.Nearly
6,000 objects were labeled using LabelImg and RoboFlow processing and labeling tools.
The processing is illustrated below (Fig. 3).

The data is labeled in the YOLO format using a self-designed program that can
provide a bounding box and x, y, height, and width label coordinates. On the other hand,
for efficient training, the images are labeled with the open-source LabelImg tool and
using the YOLO format. Afterward, the processed data will be pushed to RoboFlow to
export two complete datasets with a train and valid ratio of 80:20 suitable for 3 YOLO
models. When training and testing, the dataset will be exported by RoboFlow for each
YOLO version.

Based on the results of the analysis, the research visualized the distribution of object
box occurrences and sizes in the data set (Fig. 4). In Fig. 4a represents the position of the
centroids of the object boxes in the image after scaling to (0,1) the image, and it can be
observed that the objects are primarily concentrated in the center of the image; Fig. 4b
represents the ratio of the size of the box object to the size of the image, where it can be
observed that not only there are many objects of the same size but also some objects of
different sizes.
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Fig. 3. Illustrate the rice image in the dataset: (a) Original image (b) Processed image.

Fig. 4. Characteristics of the dataset used: (a) Location of objects in the box, (b) Size of the box.

4.2 Experimental Environment

The software and hardware parameters used for the model training in this document are
shown under Table 1.

Table 1. Configuration parameters

Device Configuration

System Windows 10 Home Single Language

CPU Intel(R) Core (TM) i7-1065G7

GPU 16 GB GPU Tesla T4

GPU accelerator CUDA 11.2, Cudnn 11.0

Frames Pytorch

Compilers Google. LLC. Collab and Anaconda

Python version 3.8
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4.3 Proposed Method

After the data collection and processing are completed, they will be fed into YOLOmod-
els for object detection training. YOLOmodels are initialized on theGoogleColabCloud
platform through open source code developed on GitHub with some fixed parameters
such as Table 2.

Table 2. Fixed training parameters

Hyperparameter Value

Batch size 4

Image size 640 (px)

Epochs 200

Epochs evaluation interval 1

Learning rate 0.01

The version with little complexity will be used in whichmodel parameters YOLOv5,
YOLOv6, and YOLOv7. At the same time, these models also fit the dimensions of the
trained images. The provided models use transfer learning techniques from pre-trained
models on the COCO dataset of 80 classes to achieve results with small epochs, with
the mean average in validation dataset by IoU (threshold equals 50%) and number of
params are detailed in Table 3.

Table 3. Model properties

Model Params (M) mAPval 50 (%)

Yolov5s 7.2 56.8

Yolov6s 17.2 60.4

Yolov7 36.9 69.7

The process of our method is illustrated simply through the steps that include data
processing, model training, evaluation of the model’s effectiveness on the test set, and
comparison of each model’s results based on metrics (Fig. 5).
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Fig. 5. Illustrate progress in research.

5 Result

5.1 Evaluation Metrics

To evaluate and compare the results of YOLO models, we use some standard metrics
developers use in Deep Learning, such as Precision used to measure the quality of true
prediction (TP) is performed by (1), Recall is the ratio of the number of true positives
among those that are False Negative (TP+ FN) (2). These are twomeasurementmethods
commonly used to assess understanding betweenmodels. The Precision Average (3) and
Mean Precision Average (4) by N number of classes are the indicators used to evaluate
the trained parameters of the models of the YOLO family.

P = TP

TP + FP
(1)

R = TP

TP + FN
(2)

AP = 1

11

∑

Ri

PRi (3)

mAP = 1

N

N∑

i=1

APi (4)
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In particular, the research needs to determine whether the object prediction is true
or false based on an intersection over Union (IoU) concept. IoU is the ratio between the
intersection and union of the predicted bounding and the ground truth; the formula and
illustration of IoU are shown in Fig. 6. The research uses the usual threshold to make
predictions right or wrong is 50%.

Fig. 6. First Section Illustrated IoU with rice samples on the dataset. Area of Intersection: the
intersection of the predicted bounding box and ground truth. Area of Union: the combination of
both the area of prediction bound box and ground truth.

5.2 Training Result

Through the steps from data processing, model structure, and configuration to training.
The statistical research found that the results of the models based on the valid data set
achieved the highestMeanAverage Precision (mAP0.5), with YOLOv7 reaching 94.22%
at the 188th epoch. The results of the training process between 3 models are evident in
Table 4 and Fig. 7. In which the highest result is YOLOv7 with evaluation parameters
such as Precision (93.2%), Recall (84.27%), and F1 Score (88.51%) compiled in Table 4.

On the other hand, the study found that the YOLOv7 model significantly improved
compared to the previous models (YOLOv5 and YOLOv6). As for the results obtained
by YOLOv5 and YOLOv6models during small object recognition training, Yolov7 only
needed half the time to reach the same result, at epoch 60 reached 85.13% (compared to
82.68% in Yolov5) and 62 reached 85.81% (compared to 85.51% in Yolov6). However,
the results also show that with the number of epochs less than 100, YOLOv6 gives stable
results over time. However, this model still needs to drift to get high results and only
gradually increase the effect more slowly. Between the YOLOv5 and YOLOv6 models
not too much difference in results when training in the last epochs and almost saturating
at nearly 85% mAP. In the research, YOLO models still make a difference and develop
significantly between YOLO models.
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Table 4. Results of the yolo models.

Model Precision(%) Recall(%) F1 Score mAP(%) Best Epoch

Yolov5s 81.53 80.89 81.2 82.68 165

Yolov6s 84.17 83.65 83.9 85.51 165

Yolov7 93.2 84.27 88.51 94.22 188

Fig. 7. The graph shows the mAP ratio of 3 YOLO models for each epoch.

6 Discussion

In object recognition, more specifically the YOLO family, the Yolov7 model is their
authors claim a breakthrough with a performance and comprehension increase of more
than 120% compared to the previous version. Moreover, the research also thought this
model would achieve the best results compared to the generally tested models. The
results are similar to the hypothesis that YOLOv7 achieved outstanding results compared
to two models, YOLOv5s and YOLOv6s, respectively. This proves that YOLOv7 is
a relatively new model and should be exploited, especially for small, hard-to-extract
objects characterized by previous structures. However, this model still needs to perform
better on the test dataset, as we can see the mAP object recognition is up to 94%.
However, the correctness and accuracy depend on metrics such as Recall or Precision,
and F1 Score is at most 90%. This can be explained by the fact that the size of our data
set needs to be larger, specifically only 150 images, and only using the same structure
with the image size of 640× 640px. In addition, because the main purpose of the study
is to compare the models, all the basic parameters mentioned above will be used, so there
will be some limitations on the accuracy of the model. However, because the model is
trained on a dataset that is close to reality, applying this model will also bring a system
to help farmers identify rice seeds and then separate them from each other diseased and
disease-free, serving the larger systems to bring up the disease status of rice quickly.
For us, the research on comparing models and optimization algorithms still need to
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be explored. However, this topic contains potential positive solutions in this computer
vision area.

7 Conclusion

In object detection, research shows that YOLO7v is the best of the last three versions of
the YOLO family. The YOLOv7 model can identify small entities, even with less than
200 epochs. However, these models still cannot achieve too high accuracy because the
data set needs to be larger, and the primary purpose is not. of the study is to compare
the models with each other. Therefore, in the following studies, we may increase the
dataset, apply many methods of image processing, evaluate other structures in the field
of Object Detection, and propose a structure or method. The new algorithm for detecting
small-sized objects. At the same time, drones will be applied to apply the Yolo model to
identify objects on a large scale. The research also shows that the detection of diseases
on rice, such as rice smudging and rice blast will be developed in the future.
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