q

Check for
updates

Combining Cache and Refresh to Optimize SSD
Read Performance Scheme

Jinli Chen!?3# Peixuan Li!?3#, and Ping Xiel:2:3:4(E)

1 College of Computer of Qinghai Normal University, Xining 810016,
People’s Republic of China
xieping@ghnu.edu.cn
2 The State Key Laboratory of Tibetan Intelligent Information Processing and Application,
Xining 810016, People’s Republic of China
3 The Key Laboratory of Internet of Things of Qinghai Province, Xining 810016,
People’s Republic of China
4 Academy of Plateau Science and Sustainability, Xining 810016, People’s Republic of China

Abstract. In the era of continuous advances in flash technology, the storage den-
sity of NAND flash memory is increasing, but the availability of data is declining.
In order to improve data availability, low-density parity check codes (LDPC),
which have been highly corrected in recent years, are used in flash memory. How-
ever, although LDPC can solve the problem of low data availability, it also brings
the problem of long decoding time. Moreover, the LDPC decoding delay time is
related to its decoding level, and the higher the LDPC decoding level, the longer
the delay time. Long decoding delays can have an impact on the read performance
of the flash. Therefore, in order to improve the speed of reading data in flash
memory, this paper proposes a scheme combining cache and flushing, the main
idea of which is to use the cache to reduce LDPC decoding time, and at the same
time refresh the pages with high latency replaced by the cache, so that the pages
with high latency can be restored to the state of low latency pages Experimental
results show that this scheme can significantly reduce LDPC decoding delay and
improve data availability with less overhead, and optimize the read performance
of flash memory. The experimental results show that compared with the original
strategy, the average response time is reduced by 24%, and the average IOPS value
is increased by 32%.

Keywords: Cache - Refresh - LDPC - Flash memory

1 Introduction

Solid-state drives (SSDs) based on NAND flash memory are non-volatile and have slowly
developed into dominant secondary storage due to their small size, high performance,
and low energy consumption [1, 2]. In order to increase the storage capacity of SSD,
the memory cell density of flash memory has slowly increased from single-level cell
flash memory (SLC) to multi-level cell (MLC) or three-level cell (TLC). As the memory
density of flash memory increases, the gap between flash memory cells becomes smaller
and smaller [3, 4], and the voltage of the memory cell is more likely to shift. As a result,
the endurance of flash memory will be reduced, and the bit error rate will increase.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Liet al. (Eds.): APPT 2023, LNCS 14103, pp. 113-129, 2024.
https://doi.org/10.1007/978-981-99-7872-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_7&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_7

114 J. Chen et al.

With the increasing density of flash memory cells leading to the continuous increase
of bit error rate, users have higher and higher requirements for erasure coding in flash
memory, and BCH erasure coding (Bose, Ray Choudhury, and Huo Quinheng) can no
longer meet people’s requirements for flash memory reliability [5]. In recent years, LDPC
(Low-Density Parity-Check Codes), as a high-cost, error-correcting ECC, has become
the default ECC scheme for the most advanced flash-based storage devices [6]. However,
although the error correction ability of LDPC coding is strong, it also has disadvantages.
LDPC code is highly complex to compile and requires up to 7 read retries to take full
advantage of its error correction capabilities. Larger read-retry operations contain more
fine-grained read voltages. In order to successfully decode, this data may waste more
time to decode, and the long decoding delay reduces the read performance of the flash
memory. Therefore, in order to improve the read performance of flash memory, this
paper starts from reducing the number of read retries in the LDPC decoding process
of the LDPC decoding process, and proposes a scheme to apply cache and flushing to
the LDPC decoding process of flash memory, and experiments show that this scheme
improves the read performance and prolongs the life of flash memory to a certain extent.

2 Research Background and Motivation

2.1 Introduction to the Basics of Flash Memory

Flash memory is a non-volatile memory device, also known as solid-state memory [7],
which is widely used in various devices. Flash memory consists of many memory cells,
each of which can store one or more bits. A storage unitis usually composed of a transistor
and a capacitor, and the transistor is used to control the charging and discharging of
the capacitor to realize data storage. Flash memory can be divided into various types
according to the structure and working principle of the storage unit. NAND flash memory
is the most common type of flash memory, and it is usually used in large-capacity storage
media, such as solid-state drives (SSD). NAND flash memory connects multiple storage
units into a block, multiple blocks form a plane, multiple planes form a core, and multiple
cores form a chip. Read and write operations for NAND flash are performed on a page-
by-page basis, while erase operations are performed on a per-block basis [8]. Therefore,
when a storage unit needs to be updated or deleted, the block where the storage unit is
located needs to be erased, and the data in other data pages is copied to the new block.
Compared to traditional hard drives, flash memory offers faster read and write speeds,
lower power consumption, smaller size, and higher reliability.

2.2 LDPC in Flash Memory

In order to solve the reliability problem of flash memory, BCH code with high perfor-
mance and error correction capability is applied to flash memory [9]. However, as the
reliability of flash memory decreases, the error correction capability of BCH can no
longer meet the reliability requirements. To meet the reliability requirements of state-of-
the-art flash systems, LDPC codes are recommended [10]. LDPC codes, also known as
low-density parity codes, were proposed in the 1960s and have been widely used in stor-
age in recent years [11]. LDPC code has high error correction ability, can achieve high

Combining Cache and Refresh to Optimize SSD Read Performance Scheme 115

error correction performance, and high coding efficiency, so it is used in flash memory
devices. In the following, we will discuss the decoding process of LDPC.

[Initialization: i=1 j

Memory sensing

4{
DR | =
R I

Variable nodes
LDPC decoding
A

Check nodes

Fail
A

Succeed

Flash memory channel messages
Level increase until 7

i E

A 4
[Successful resd j(f

Fig. 1. Tanner diagram of LDPC

LDPC codes generally use an iterative belief propagation decoding algorithm to
complete the input of decoding information. The basic idea is to XOR the received
code word and code book to obtain the constraints involved in each check node, and
then the algorithm converts these constraints into a Tanner graph, where nodes rep-
resent the variable nodes and check nodes of the code word, and edges represent the
relationships between them, as shown in Fig. 1. When decoding fails, multiple read
retries are required, as shown in Fig. 1. Although increasing the number of read retries
can increase the probability of successful decoding. However, the decoding delay also
increases significantly.

2.3 Research Motivation

LDPC code is an error-correcting code that has been commonly used in storage systems
in recent years to correct data errors. The decoding level of LDPC code refers to the
trade-off between error correction performance and computational complexity in the
process of LDPC code decoding, and the decoding level is mainly adjusted to achieve
the optimal balance between decoding performance and computational complexity. The
decoding level of LDPC code can be divided into seven levels, among these seven levels,
the higher the decoding level, the higher the success rate, but the longer the data decoding
delay time, as shown in Fig. 2.

116 J. Chen et al.

-
S
(=]

—#&— LDPC decoding delay

LDPC decoding delay time
e} (8] S W D
S & & & oS
S & & & &

(]
S
T

1 2 3 4 5 6 7
LDPC decoding level

Fig. 2. LDPC difterent decoding delays.

The LDPC decoder can handle data with a high bit error rate, but if the data has a high
bit error rate, the decoding time overhead of LDPC will be large. There are two reasons,
first, to handle more data errors, more accurate data entry information is required. This
process requires multiple inputs of different read reference voltages. Improving the
accuracy of input information requires additional awareness, which results in additional
flash read latency and data transfer delays. Secondly, the iterative decoding algorithm
of LDPC will iterate for each decoding, and the decoding time of each decoding will
iteratively accumulate until all errors are corrected. When the bit error rate of data is
high, the time overhead of decoding will be very large. For these two reasons, this paper
proposes a new method combining caching and refreshing. The main idea is to utilize
caching to reduce LDPC decoding time for pages with high latency, thereby reducing
the performance overhead of LDPC.

3 Related Work

In recent years, as the storage density of flash memory cells increases, the size of storage
devices and the gap between flash memory cells gradually decrease [3, 4], and the
possibility of data errors gradually increases. The disadvantages of LDPC codes in flash
memory are more prominent. To this end, in order to reduce the decoding time of LDPC,
many optimization methods have been proposed. There are many of these methods,
which are briefly introduced below.

The first approach is to improve the reliability of flash memory by using refresh [12—
14]. For the first method, most of them suggest to refresh data by in-place charging [5] or
non-in-place updating [12, 15]. In the literature [12], alightweight data refreshing method
is utilized, which primarily relies on soft sensing to reduce read latency. By leveraging
the characteristics of read-hot data, only a small portion of the data is refreshed, requiring
only a few PE cycles. Furthermore, the refresh granularity of this solution is performed
at the page level. By only moving one or a few hot pages during each refresh operation,
it can reduce the cost of heavy block migration in the current refresh method.

Combining Cache and Refresh to Optimize SSD Read Performance Scheme 117

This literature borrows the idea of refreshing to reset the long LDPC read latency
and soft sensing back to the cheapest latency and hard sensing, in order to reduce RBER
(Raw Bit Error Rate) and improve flash memory read performance.

The second method is to use caching [16] to reduce the process of LDPC read retries,
thereby improving the read performance of flash memory. The main idea of this scheme
is to correct most of the errors that occur in the requested Flash page before the LDPC
decoding process begins, by caching the detected errors. This method improves the read
performance of flash memory by speeding up the decoding process of LDPC.

Both solutions reduce LDPC decoding time, but they have their own respective
drawbacks. Although refresh operation can reduce the decoding latency of LDPC, it
also incurs additional migration costs, especially in the case of frequent refreshes. Using
caching can indeed reduce the decoding time of LDPC. However, in the early stages
of flash memory, the bit error rate is low, and using LDPC hard decision decoding can
recover most of the data. Therefore, in the early stages of flash memory, using a larger
cache would result in wasted space. Therefore, this article proposes an optimized LDPC
read-retry scheme that combines refresh and caching. In this proposed scheme, refresh
operations are employed in the early stages of flash memory to transform high-latency
pages into low-latency states. Due to the low bit error rate in the early stages of flash
memory, there are not many pages with high latency. As a result, the number of refresh
operations required is minimal, significantly reducing the cost associated with refreshing.
In the later stages of flash memory, cache techniques can be employed to store pages
with high latency in a cache. When the same read request occurs again, the data can be
directly retrieved from the cache, reducing LDPC decoding time and improving space
utilization.

4 Design of the Scheme

Due to the increase in flash memory density, the reliability of flash memory data has
decreased. To enhance data reliability, LDPC (Low-Density Parity-Check) codes are
applied in flash memory. But using LDPC decoding directly can introduce significant
latency. The increased decoding latency is primarily caused by the multiple read retry
steps in LDPC decoding. To address this issue, this paper proposes a hybrid approach
combining caching and refreshing to reduce LDPC read retries. By leveraging high-
latency caching pages, LDPC decoding process can be reduced, thereby improving data
reading performance and reliability.

This chapter focuses on the combination of caching and flushing to optimize the
performance of flash reads, the CR solution. First, the first step is to distinguish between
hot and cold reading data, and apply different recovery methods to the data according to
the hot and cold nature of the data. This paper distinguishes hot read data and cold read
data according to the number of data reads. When the number of data reads exceeds 1, it
is hot read data, otherwise it is cold read data. The second step is to migrate high-latency
pages with LDPC decoding level greater than or equal to 3 to the cache for hot-read data.
The third step is to refresh the replaced high-latency pages. Due to the limited size of
the cache, high-latency data cannot be stored infinitely. Therefore, when the cache space
is exhausted, pages in the cache that have not been accessed for a long time are replaced

118 J. Chen et al.

according to the cache replacement algorithm, and then these pages are refreshed. This
scheme reduces the LDPC decoding time of high-latency data and improves the speed of
reading data from flash memory to a certain extent. The implementation of this scheme
includes three parts: the determination of high-latency pages, the selection of cache size,
and the selection of cache replacement algorithm. Below, I will briefly explain the choice
of these three parts.

4.1 Determining the Latency Threshold T

The choice of the T threshold is critical for performance improvement. First of all, if T is
set too small, a large amount of data will be put into the cache, due to the limited cache
space, a large amount of data into the limited cache will cause high-latency pages to be
frequently replaced, which will cause frequent refresh operations. Frequent refreshing
not only brings additional read and write operations to the device, but also introduces
wear and tear, which will further reduce reliability. If T is set too large, data with long
access latency will significantly affect performance, especially for frequently accessed
data. As stated in the review, the T-threshold should not be set too large or too small. In
order to select the appropriate T, we performed experiments and analyzed the normalized
delay time comparison of each load at different LDPC levels. From Fig. 3, it can be seen
that the latency cost of each load is higher after LDPC decoding level 3, so setting the
threshold for high latency to 3 is reasonable.

1354 Postmark
() Financiall
'E 1309 —— Pinancial2
.%01‘25— —e— Websearchl
2 —%— Websearch2
8 1.20
a mds_0
B 1151
£ 110+
=}

2 1.051

1.00 1

LDPC Decoding Level

Fig. 3. Delay of each load under different LDPC decoding levels

Combining Cache and Refresh to Optimize SSD Read Performance Scheme 119

4.2 Choice of Cache Size M

Mds0 Websearch2

8000000 ,
o writel 5000000 “.. T
7000000 - o von® LRV)
S 30000000 M cf et o
., 6000000 . o
i % 25000000 o IR T
< 5000000 ° 3 &P ﬂwﬂ o2
3 220000000 mare Nl ?”
2 4000000 2 .
L :
g 3000000 g 15000000 . .,q. R
8 1 od L e
£ 2000000 8 100000001 “_e, %4 Senomans
< 1000000 < 5000000
0 Wz R
—1000000 100 200 300 400 =3000000="5 100 200 300 400
Time (minutes) Time (minutes)
Rsrch 2 Financial2
1000000
— pa— ® read 1200000 e read
800000 ESSWLLLE b . o write
A 2 lOOUOOOn e o ‘- o semo -.
8 oo £ w |, 0 - sameg ool
3 600000 2 800000 = = NP VA v
A = ccscocs moses E . - r -
8 -ty * - - ° e e
g 400000 8 600000~ .)
= = . . - «
3 S 400000
& 200000 . 2 o em SRR ety
pe o, e 200000 oo S, Jos 2on
-
0 . e:® oo 0 ®ee . o« ° o
0 50 100 150 200 250 300 . . 200 v Jaon

Time (minutes) Time (minutes)

Fig. 4. Data access under different Workload

Another threshold cache size M setting of the scheme is also very important, M is not
the bigger the better [17]. In this article, the size of M affects the number of refreshes,
so it must be set within a reasonable range. Figure 4 intercepts access to a part of the
payload Mds0, Rsrch_2, Financial2 and Websearch2. From the Fig. 4, we can see that
the user’s access to the data is local to the group, and through the analysis and calculation
of the relevant load, it is found that only about 8% of the data is hot read data, and most
of the remaining data is cold data. We set the cache size based on this.

The bit error rate of flash memory increases with the number of P/E times. As shown
in Fig. 5, in the early stage of flash memory, due to the small number of P/E times of
blocks, there are fewer pages with high latency. Therefore, if a fixed cache size is used
all the time, it will cause a large waste of space in the early stage of the flash memory. In
order to improve space utilization, a dynamic cache size adjustment scheme is proposed.
The main idea is to set a P/E threshold C, if the P/E period of the block exceeds the set
threshold, the block will be recorded as a late block, and count the number of blocks
that exceed the P/E period threshold, when the late block is greater than or equal to half
of the total number of blocks T, the size of the cache will be increased, otherwise the
size of the cache will not change.

120 J. Chen et al.

|
—_
T

= C B
=} (==} =] =]
oy [TJ t"l'J 5!
—_— —_
T T

Raw Bit Error Rate

|
—_
T

0.0E+0

0 500 1000 1500 2000 2500 3000
P/E cycle

Fig. 5. RBER change graph with P/E cycle

The proposed key algorithm for dynamically adjusting the cache size is as follows:
How to combine flushing and caching as shown in Algorithm 1.

Algorithm 1 Dynamic cache size algorithm
Input: P/E cycle of the block
Output: Appropriate cache size
if blk numerases>Threshold numerases
target blocks++
if target_blocks>=1/2total_blocks

cache size changed from 4MB to SMB

else
end if
end if

4.3 Choice of Cache Replacement Algorithm

The function of the cache replacement algorithm is how to better manage the cache,
whether it is caching in Memory or caching in SSD controllers, its main purpose is to
make the cache play the maximum role as much as possible, so as to better improve
the performance of the storage system. Different application scenarios and data access
patterns may require different cache replacement strategies [18], and appropriate replace-
ment strategies can be selected according to different application scenarios and require-
ments to achieve the best performance and efficiency [19]. Currently common cache
replacement algorithms include least recently used (SLRU) algorithm, least frequently
used (LFU) algorithm [20], random replacement (RR) algorithm, first-in-first-out (FIFO)
algorithm, etc., each algorithm has its own advantages. Disadvantages and applicable
scenarios, as shown in Table 1. In this experimental environment, due to the large read
ratio of the load used, the data read access frequency is high, and the LFU algorithm

Combining Cache and Refresh to Optimize SSD Read Performance Scheme

121

mainly selects the cache replacement according to the access frequency of the data, in
order to reduce unnecessary space overhead, the LFU cache replacement algorithm is

selected.
Table 1. Comparison of different cache replacement algorithms

LFU LRU FIFO Random
Main basis access frequency | time time random
advantage effective identify | high space easy to implement | easy to

of hot data utilization implement
disadvantage | low space not flexible unable to identify | low hit rate

utilization hot data
applicable high read read and write stable access irregular access
Scenario frequency, low frequency is high | frequency time

write frequency

4.4 CR Program

In the traditional LDPC usage process in flash memory, the user sends a write request
to the SSD controller. The ECC (Error Correction Code) module in the controller tem-
porarily stores the write request data in an I/O buffer and then encodes it using LDPC
before sending it to the flash memory cells. When there is a read request from the user,
the data is retrieved from the flash memory cells. The LDPC decoder is then used to
recover the correct data, which is then transferred to the I/O buffer. Finally, the data is
returned to the user. In the traditional approach, reading data requires LDPC decoding,
and when the read data has a high error rate, the LDPC decoding time will also be longer.
To reduce read latency, this solution stores high-latency pages in the cache. When the
data being read is hit in the cache, it is directly accessed from the cache without going
through LDPC decoding. This reduces the decoding latency of LDPC and improves the
read performance of flash memory. If there is a cache miss, the data will be read from
the flash memory chip unit. After that, it will go through LDPC code decoding, and
once successfully decoded, the data will be returned to the user. Figure 6 illustrates the
comparison of data retrieval before and after optimization.

122 J. Chen et al.

In this scheme, the first step is to differentiate between hot and cold read data, and
adopt different recovery methods for each. For hot read data, the first step is to check
if there is enough space in the cache. If there is sufficient space, the hot read data is
placed into the cache. If there is not enough space, the Least Frequently Used (LFU)
replacement algorithm is used. The page with the least number of accesses is evicted
from the cache and refreshed. Then, the newly identified hot read data is placed into the
cache. When a new read request comes in, the first step is to check if the data is present
in the cache. If it is a cache hit, the data is directly read and returned to the user after
the read operation is completed. In this process, LDPC code decoding is not required,
reducing the decoding latency of LDPC code. If there is a cache miss, the data is read
from the flash memory chip unit. After that, it goes through LDPC code decoding. Upon
successful decoding, the data is returned to the user. The structure of this scheme is
illustrated in Fig. 7.

write ——» read <€«——

Input dat .| DlOdata | LDPC
pu aaj " buffer) encoder

)

NAND
flash

R
Outout data € /O data | LDPC
utpu A buffer - decoder

Optimize

T
I ¢ dat 1/0 data LDPC
fput data buffer encoder

-

>

NAND
flash

Fig. 6. Flash memory read and write process before and after optimization

The key algorithm of the caching and refreshing combined optimization scheme
proposed in this paper is as follows: how to combine flushing and caching as shown in
Algorithm 2.

Combining Cache and Refresh to Optimize SSD Read Performance Scheme 123

Algorithm 2 Combination of cache and refresh

Input: Quantization level for LDPC soft decoding
Output: suitable decoding method
if data is hot data and high latency data
if data_size<cache size
cache add(new blkno,new data)
else
cache replace lfu(int blkno,void* data)
cache add(new_blkno,new_data)
cache refresh(blkno,data
end if
else
direct use of LDPC decoding
end if

| |
f f v

SSD controller

FTL

Address mapping
Hot data
Garbage collection
Refresh
Wear equalization

LDPC decoder LDPC encoder

v
[[=)

Fig. 7. Flash memory read and write process before and after optimization

Cache

L.

124 J. Chen et al.

The detailed reading process of the scheme is as follows:

1) Distinguish hot and cold data, and classify the hot and cold data according to the
number of data reads. If the number of reads exceeds 1, it is hot read data, otherwise
it is cold data. For hot-read data, determine the LDPC decoding method when the
second read is successful, direct decoding if it is LDPC hard decoding, and record it
if it is LDPC soft judgment decoding.

2) For hot-read data, determine the LDPC decoding method when the second read is
successful, direct decoding if it is LDPC hard decoding, and record it if it is LDPC
soft judgment decoding.

3) Determine whether the LDPC level of the hot read data is greater than or equal to 3.
If it is greater than or equal to 3, check whether the cache space is sufficient. If it is
sufficient, put it into the cache. If it is insufficient, use the LFU replacement algorithm
to access it in the cache The page with the least number of times is replaced to make
room for newly identified hot read data.

4) Refresh the replaced page

5) When there is a new read request, it is first looked up in the cache, if found in the
cache, it is read directly, and vice versa, the data is read from the flash memory chip
cell.

6) Detects whether the data has completed error correction, and if it is complete, returns
the data to the user, and vice versa.

5 Experiment

5.1 Experimental Environment

The solutions in this article are all implemented in the SSDModel module in disksim-
4.0. Disksim-4.0 is a widely used disk drive performance simulator that can be used to
evaluate the performance and behavior of disk drives. SSDModel is a module added to
disksim, mainly used to simulate the performance of solid-state drive (SSD) simulators.
SSDModel can simulate various SSD configurations, including different flash chip types,
read/write cache sizes, block sizes, and more. This article’s experiment was implemented
in SSDModel, mainly modifying address mapping and cache size. The experimental
parameters are shown in Table 2.

This experiment collects data for postmark, financial 1, financial 2, web search 1,
web search 2, network search 3, mdsO0, rsrch_2 loads for workloads. Figure 8 shows the
read/write ratios for various loads. In the following text, F1, F2, W1, W2, W3 are used
to represent the Finance 1, Finance 2, Web Search 1, Web Search 2, and Web Search 3
workloads.

Combining Cache and Refresh to Optimize SSD Read Performance Scheme

Table 2. Flash memory parameter configuration

125

parameter configuration value
Planes per pack 8

Block per planes 2048

Page per block 64

Page size 16

Page read transfer time 0.0002384
Page write transfer time 0.0002384
chip transmission delay 0.000025
page read delay 0.025
page write latency 0.200
block erase delay 1.5

1.2

L1l B vrite B read

1.0r
091

<
)

te Ratio

207}

Read-Wr

> o oo oo
N W R N

.1
Postmark F1 F2 Wil W2 Mds0
Fig. 8. Reading and Writing Ratios for Different Workload

5.2 Experimental Analysis

In our experiments, we evaluated three strategies.

1) Original strategy(NS): In the original strategy, only the garbage collection module,
ECC module, and wear leveling module inherent in flash memory could be relied on
to ensure data reliability.

2) Traditional refresh strategy(TRS): In the traditional refresh strategy, only when the
quantization level of LDPC reaches 7 will the refresh condition be triggered and the
data will be refreshed.

3) Strategy combining cache and refresh(CR): In this scheme, mainly for hot read data,
when the read request arrives, first check whether the data exists in the cache, if it

126 J. Chen et al.

exists, read directly, if it does not exist, check whether the cache has free space, if
there is, put the hot read data into the cache, if not, use the LRU algorithm to put the
recently infrequently accessed data into the cache, and refresh the replaced page.

Figure 9 shows the cache hit ratio under different loads. It can be seen from the Fig. 9
that the load with a higher read ratio has a higher hit rate, but not all loads are higher read
ratio, and the higher the hit rate. For example, the read ratio of load Financial2 is 82%,
and the hit rate is indeed 0.25. This is because although the read ratio of Financial2 is
high, it can be seen from Fig. 4 that the access logical address of Financial2 is relatively
scattered, and there are not many data that belong to hot reading, so the hit rate of
Financial? is low.

0.6

0.5}
0.4}
o
<
203}
=
0.2}
0.1} I
0

.0
Postmark F1 F2 Wi W2 MdsO
Fig. 9. Cache hit ratio under different Workload

Figure 10 shows the average response time of the caching and refresh combination
scheme with the normalized average response time of the original and traditional refresh
strategies. As can be seen in Fig a, the average response time of the CR scheme is
reduced under all loads, but by different proportions. This is because this solution mainly
optimizes the read operation of the flash SSD, and the optimization effect is more obvious
for the load with more read operations. Such as Websearchl, Websearch2, Postmark,
Financial2 These loads have a large read ratio, and their fluctuations are larger than
the original scheme. However, the change of Financiall is relatively stable, which is
because the load of Financiall has more write requests. As you can see from Fig b, the
total average response time of Websearchl and Financial2 has been reduced by 28%
and 29%, respectively, compared to the traditional refresh strategy, and by 26% and 2%,
respectively, compared to the traditional refresh strategy. It can be seen from this that
the solution combining caching and refreshing has a better optimization effect under
read-intensive loads.

Figure 11 shows the comparison of the normalized IOPS of the combined cache
and refresh scheme with the original strategy and the traditional refresh strategy, and
the comparison with the growth rate of the original strategy and the traditional refresh
scheme. IOPS refers to the number of input/output operations that can be performed per
second and is one of the important indicators to measure the performance of storage

Combining Cache and Refresh to Optimize SSD Read Performance Scheme 127

—+— NS
m
0.00

20 postmark F1 2 Wl W2 Mdso Postmark F1 2 Wl W2 MdsO
(a) Average Response Time Comparison (b)Average Response Time Growth Rate

0.45 0.30

[~s [TRs [CR

o
)
G

<
1)
S

=
=)

g
=]
by

Normalized Average Response Time
Average Response Time Growth Rate
=)
>

Fig. 10. Average Response Time and Reduction Rate under Different Workloads

devices. The higher the IOPS, the stronger the read and write capability of the storage
device and the faster the data transmission speed. From Figure a, we can see that the
IOPS of the CR solution performs higher than the IOPS of the other two solutions in
these workloads.And the load with a small read ratio of the load changes more smoothly
in IOPS, and the load with a larger read ratio has a greater increase in IOPS, such as
Websearch1 and Financial2 for loads with a large read ratio. It can be seen from Figure
B that compared with the original strategy, the I/O performance of Websearchl and
Financial2 has been improved by 43% and 46%.

[0 NS [TRS [CR —— NS

0.0+ : : T T
02 postmark FI F2 ~ WI W2 MdsO Postmark F1 2w W2 M0

(2)IOPS Comparison (b)Growth rate of IOPS

= =3
o ES

Normalized IOPS
j=]
i8]

1OPS Growth Rate

=3
—_

Fig. 11. IOPS vs. growth rate under different workloads

6 Conclusion

LDPC, as a powerful error correction ECC, is the default use of erasure coding by state-
of-the-art flash memory. However, the large time overhead caused by LDPC decoding
delay cannot be ignored. In order to solve this problem, this paper proposes a scheme
combining cache and flushing, which aims to use cache and refresh technology to reduce

128 J. Chen et al.

the decoding process of LDPC, further reduce the decoding delay of LDPC, and improve
the read performance of flash memory. Combined load-based testing proves that this
scheme is feasible, but using flushes will bring additional read and write operations, and
we will continue to consider whether other ways to improve the read performance of
flash memory in future further research.

Acknowledgments. This work is supported by The National Natural Science Foundation of
China under Grant No. 61762075. It is also supported in part by the Provincial Natural Science
Foundation Team Project of Qinghai under Grant 2020-ZJ-903. Ping Xie is the corresponding
author of this paper.

References

1. Bjrling, M., Gonzalez, J., Bonnet, P.: LightNVM: the Linux open-channel SSD subsystem. In:
15th USENIX Conference on File and Storage Technologies, FAST 2017, USA 27 February—2
March 2017, Santa Clara, CA, pp. 359-374 (2017)

2. Zuolo, L., Zambelli, C., Micheloni, R., et al.: Solid-state drives: memory driven design
methodologies for optimal performance. Proc. IEEE 105(9), 1589-1608 (2017)

3. Lee, S., et al.: A 128 Gb 2b/cell NAND flash memory in 14 nm technology with tprog =
640 s and 800 MB/s I/0 Rate. In: 2016 IEEE International Solid-State Circuits Conference
(ISSCC), Digest of Technical Papers, San Francisco, USA, pp. 138-139 (2016)

4. Jeong, W., et al.: A 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s 1/O rate. IEEE J.
Solid-State Circuits 51(1), 204-212 (2016)

5. Cai, Y., et al.: Flash correct-and-refresh: Retention-aware error management for increased
flash memory lifetime. In: 2012 IEEE 30th International Conference on Computer Design
(ICCD), Montreal, QC, Canada, pp. 94-101 (2012)

6. Tanakamaru, S., Yanagihara, Y., Takeuchi, K.: Error-prediction LDPC and error-recovery
schemes for highly reliable solid-state drives (SSDs). IEEE J. Solid-State Circuits 48(11),
2920-2933 (2013)

7. Tseng, Y.-F., Shieh, M.-D., Kuo, C.-H.: Low latency design of polar decoder for flash mem-
ory. In: 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),
Penghu, Taiwan, pp. 1-2 (2021)

8. Shi, L., Lv, Y., Luo, L., et al.: Read latency variation aware performance optimization on
high-density NAND flash based storage systems. CCF Trans. High Perform. Comput. 4(3),
265-280 (2022)

9. Cai, Y., Haratsch, E.F., Mutlu, O., Mai, K.: Error patterns in MLC NAND flash memory:
measurement, characterization, and analysis. In: 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Dresden, Germany, pp. 521-526 (2012)

10. Yu, C., Haratsch, E.F., Mutlu, O., et al.: Threshold voltage distribution in MLC NAND flash
memory: characterization, analysis, and modelling. In: Design, Automation & Test in Europe
Conference & Exhibition, pp.1285-1290. IEEE (2013)

11. Kou, Y., Lin, S., Fossorier, M.P.C.: Low-density parity-check codes based on finite geometries:
a rediscovery and new results. IEEE Trans. Inf. Theory 47(7), 2711-2736 (2001)

12. Du, Y., Li, Q., Shi, L., Zou, D., Jin, H., Xue, C.J.: Reducing LDPC soft sensing
latency by lightweight data refresh for flash read performance improvement. In: 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, pp. 1-6 (2017)

13. Li, Q., Shi, L., Xue, C.J., et al.: Access characteristic guided read and write cost regulation
for performance improvement on flash memory. In: 14th FAST 2016, Santa Clara, CA, USA,
pp-125-132 (2016)

16.

17.

18.

19.

20.

Combining Cache and Refresh to Optimize SSD Read Performance Scheme 129

. Du, Y., Zou,D., Qiao, L., etal.: LaLDPC: latency-aware LDPC for read performance improve-

ment of solid state drives. In: 33rd International Conference on Massive Storage Systems and
Technology (MSST 2017) (2017)

. Shi, L., Wu, K., Zhao, M., et al.: Retention trimming for lifetime improvement of flash memory

storage systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 58-71 (2015)
Liu, R.-S., Chuang, M.-Y,, Yang, C.-L., Li, C.-H., Ho, K.-C., Li, H.-P.: EC-Cache: exploiting
error locality to optimize LDPC in NAND flash-based SSDs. In: 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), San Francisco, CA, USA, pp. 1-6 (2014)

Gu, B., Luo, L., Lv, Y., et al.: Dynamic file cache optimization for hybrid SSDs with high-
density and low-cost flash memory. In: 2021 IEEE 39th International Conference on Computer
Design (ICCD), pp. 170-173 (2021)

Yoon, J., Ro, W.W.: Access characteristic-based cache replacement policy in an SSD. In:
ICCV Workshops, pp. 14 (2019)

Tripathy, S., Satpathy, M.: SSD internal cache management policies: a survey. J. Syst. Archit.
(122), 122 (2022)

International Conference on Networking, Architecture and Storage (NAS), pp. 1-10. EnShi,
China (2019)

	Combining Cache and Refresh to Optimize SSD Read Performance Scheme
	1 Introduction
	2 Research Background and Motivation
	2.1 Introduction to the Basics of Flash Memory
	2.2 LDPC in Flash Memory
	2.3 Research Motivation

	3 Related Work
	4 Design of the Scheme
	4.1 Determining the Latency Threshold T
	4.2 Choice of Cache Size M
	4.3 Choice of Cache Replacement Algorithm
	4.4 CR Program

	5 Experiment
	5.1 Experimental Environment
	5.2 Experimental Analysis

	6 Conclusion
	References

