®

Check for
updates

CLMS: Configurable and Lightweight
Metadata Service for Parallel File
Systems on NVMe SSDs

Qiong Li'2, Shuaizhe Lv', Xuchao Xie!®™ and Zhenlong Song'

L College of Computer, National University of Defense Technology, Changsha, China
xiexuchao@nudt.edu.cn
2 Defense Innovation Institute, Academy of Military Sciences, Beijing, China

Abstract. With the tendency of running large-scale data-intensive
applications on High-Performance Computing (HPC) systems, the I/O
workloads of HPC storage systems are becoming more complex, such
as the increasing metadata-intensive I/O operations in Exascale com-
puting and High-Performance Data Analytics (HPDA). To meet the
increasing performance requirements of the metadata service in HPC
parallel file systems, this paper proposes a Configurable and Lightweight
Metadata Service (CLMS) design for the parallel file systems on NVMe
SSDs. CLMS introduces a configurable metadata distribution policy that
simultaneously enables the directory-based and hash-based metadata dis-
tribution strategies and can be activated according to the application
1/0 access pattern, thus improving the processing efficiency of metadata
accesses from different kinds of data-intensive applications. CLMS fur-
ther reduces the memory copy and serialization processing overhead in
the I/O path through the full-user metadata service design. We imple-
mented the CLMS prototype and evaluated it under the MDTest bench-
marks. Our experimental results demonstrate that CLMS can signifi-
cantly improve the performance of metadata services. Besides, CMLS
achieves a linear growth trend as the number of metadata servers
increases for the unique-directory file distribution pattern.

Keywords: High-Performance Computing - Parallel File System -
CLMS - Metadata Service - Storage System

1 Introduction

Integrating the new emerging NVMe SSDs and Non-Volatile Memory (NVM)
into the storage hierarchy of High-Performance Computing (HPC) systems
is attractive, especially as the growing tendency of running large-scale data-
intensive applications on HPC systems [2]. Nowadays, almost all the top super-
computers in the world employ a large number of NVMe SSDs to build Burst
Buffer which provides applications with a high-performance 1/O acceleration
layer [8,20]. Typically, compared with the HDD-based parallel file system (PFS),

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 101-112, 2024.
https://doi.org/10.1007/978-981-99-7872-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_6&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_6

102 Q. Liet al.

the NVMe SSD-based BB can improve HPC I/O performance by one to two
orders of magnitude. In terms of Burst Buffer implementations, NVMe SSDs
can be placed on a dedicated I/O Node (ION) between compute nodes and PFS
as shared Burst Buffer, or simply placed on compute node as node-local Burst
Buffer [17,19].

With the price of NVMe SSDs continuously decreasing, HPC systems are
trying to construct PFS using only NVMe SSDs to achieve high I/O performance
with a fixed Total Cost of Ownership (TCO) for storage systems. The legacy PFS
implementations for HPC storage systems are specially designed to provide high
bandwidth for parallel file accesses [4,14,15]. For metadata-intensive workloads
with a large number of data synchronization, non-continuous random access, and
small /0 requests, PFS potentially incurs high I/O latency and low throughput
for its inefficiency of metadata performance [5,9,11,18]. Thus, how to design
the specific PFS for NVMe SSDs and break through the metadata performance
bottleneck of existing PFS is critical for HPC storage systems.

Data-intensive applications will inevitably generate hot data directories,
therefore a large number of file and sub-directory create, delete, modify, and find
operations will be frequently triggered in the hot directories. Once the metadata
of the hot data is located in a single or small number of metadata servers (MDS),
the load unbalance issue of MDS will result in poor metadata scalability, and the
overall PFS performance is severely limited [10]. For example, BeeGFS adopts
a static directory partition method for load balancing, metadata accesses to a
large directory will be redirected to a single MDS. BeeGFS cannot efficiently
handle the metadata operations to hot directories. GekkoFS can appropriately
solve such hot directory problems through a hash-based metadata distribution
strategy. However, the hash-based metadata distribution will lead to a poor
locality of metadata accesses, which generates a large number of inter-server
1/0 communication overhead in PFS.

Existing PFS is usually constructed in a superimposed style that metadata
and data in PFS are stored on the local filesystem of MDS and OSS, such as
EXT4, XFS, etc. However, due to the small size of PFS metadata, storing each
PFS metadata as a single file in the local filesystem is inefficient [3,6,12]. This
is because the getattr, setattr, and other system calls in the I/O path will incur
significant user and kernel mode switching overhead. In addition, the inode and
directory blocks of the local filesystem are not optimized for parallel I/O [7,16].
Each block can only be accessed by one process at a time, and it will bring a
large number of serial processing operations when there are multiple processes to
access a single PFS directory, resulting in serious locking competitive overhead.

In this paper, we propose CLMS, a configurable and lightweight metadata ser-
vice for the parallel file systems on NVMe SSDs. CLMS introduces a configurable
metadata distribution policy that simultaneously enables the directory-based
and hash-based metadata distribution strategies and can be activated according
to the application I/O access pattern, thus improving the processing efficiency of
metadata accesses from different kinds of data-intensive applications. CLMS fur-
ther reduces the memory copy and serialization processing overhead in the 1/0

CLMS: Configurable and Lightweight Metadata Service 103

path through the userspace metadata service design. We implemented the CLMS
prototype and evaluated it under the MDTest benchmarks. Our experimental
results demonstrate that CLMS can significantly improve the performance of
metadata services. Besides, CMLS achieves a linear growth trend as the number
of metadata servers increases for the unique-directory file distribution pattern.

The rest of this paper is organized as follows. Section 2 summarizes the related
work. Section 3 provides an overview of CLMS architecture. Section 4 and Sect. 5
describe the detailed configurable metadata distribution and lightweight meta-
data service designs of CLMS. We evaluate CLMS in Sect.6 and conclude the
paper in Sect. 7.

2 Related Work

HPC storage systems usually equip a limited number of metadata servers for
PFS. As the th increasing metadata-intensive I/O operations in Exascale com-
puting and High-Performance Data Analytics (HPDA), the metadata perfor-
mance has been one of the PFS performance bottleneck. Chen et al. [3] pro-
posed to redirect the metadata operations to high-performance NVMe SSDs,
thereby achieving higher metadata performance. Wang et al. [19] build a dis-
tributed key-value store based on the local burst buffer for metadata to alleviate
the performance bottleneck of the key-value store under burst and concurrent
I/O workloads. Ren et al. [13] propose IndexFS that each server is responsible
for managing part of the PFS metadata. IndexF'S dynamically divides the meta-
data according to the directory set and package file metadata and small files into
SSTable based on the LSM Tree, thus the random metadata can be written in
sequential and the performance of metadata can be significantly improved.

However, managing metadata in IndexF'S needs to deploy a dedicated meta-
data management server and may cause resource waste for a large number of
MDS. Zheng et al. [21] propose DeltaFS to provide a private local metadata
server for each application process, and use the data path of the underlying
PFS to realize the metadata management. The application obtains the meta-
data snapshot required through a public registration service before runtime. All
metadata operations are completed on local private servers, thereby avoiding
unnecessary metadata synchronization overhead. Once the application finishes
its execution, DeltaF'S will push the output result as a new snapshot to the global
registration service. However, DeltaF'S is not suitable for applications that need
frequent inter-process interaction during the running process.

3 System Overview

In the scenario of data-intensive computing, PFS has to handle a large number
of metadata-intensive I/O workloads. Metadata is usually divided into dentry
and inode. Specifically, dentry of a file or directory is used to record the file
and sub-directory ID, stat data, parent directory ID, strip distribution informa-
tion, etc. inode of a directory is used to record the directory ID, the number

104 Q. Liet al.

of file and sub-directory of this directory, stat data, parent directory ID, strip
distribution information, etc. The efficiency of metadata service depends mainly
on two factors. One is whether the metadata distribution has good locality and
parallelism, the other is the access efficiency of a single metadata service. When
providing parallel file system services with different I/O workloads, PFS is diffi-
cult to satisfy all application I/O modes through a single metadata distribution
strategy. To effectively improve the PFS metadata performance under different
types of data-intensive applications, and fully utilize the performance advantage
of NVMe SSDs, this paper proposes CLMS that enables a configurable meta-
data distribution method for PFS and matches metadata distribution strategies
according to the application I/O characteristics. CLMS also designs metadata
services based on NVMe SSD features and the key-value store to achieve high-
performance metadata handling in MDS.

There are two kinds of hot data in PFS, i.e., the hot directory where most
data operations are concentrated in a single directory, and the hot files that are
intensively accessed but distributed in multiple directories. Once the metadata of
the hot directory or files are distributed in a small amount of MDS, the overall
PFS performance will be limited by the metadata handling efficiency of each
MDS. As a result, PFS cannot provide desired high-performance and scalable
parallel file access services for large-scale HPC systems. Different from existing
PFS, CLMS enables both directory-based and hash-based metadata distribution
to simultaneously provide access locality and parallelism for the metadata of hot
data.

Traditional PFS directly stores its metadata and data on the local file system
on MDS and OSS, which potentially brings serious performance problems to
PFS. This is because these file systems strictly follow the POSIX semantics and
frequently perform system calls such as file open, close, etc., which will cause
frequent user and kernel mode switching and eventually lead to low local file
system performance. Besides, the legacy I/0 software stack introduces significant
performance overhead in PFS as each PFS metadata and data go through local
file systems, I/O scheduling layers, general block layers, and block device drivers
in MDS and OSS, resulting in additional system management overhead and
performance reduction. CLMS designs and implements a high-performance local
storage engine for metadata services based on NVMe SSD features and Key-
Value store, and relaxes POSIX semantics to achieve fast persistent storage of
directory and file metadata, thus reducing the software performance overhead
introduced by the local file system.

4 Configurable Metadata Distribution

4.1 Directory-Based Distribution

In the directory-based metadata distribution strategy, each directory in PFS
will be attached to a metadata service that processes its metadata operations,
as shown in Fig. 1, the metadata of directory A is processed by MDSO0, then the
metadata of all files in directory A will be stored on MDS0. When creating a

CLMS: Configurable and Lightweight Metadata Service 105

Dir “/A” Dir “/A/B” File “/A/B/foo” File “/A/B/bar”
=] @
Inode-B e s

’ -

’ 7 e -~
Dentry/-B' Dentry-foo Denfry-bar
. rd - - <
. 7 P - e
y v \g
MDS#1 ... | MDS#n

Fig. 1. Directory-based Metadata Distribution

subdirectory B in directory A, CLMS needs to randomly pick a new MDS node
from the available metadata service nodes to store the inode of directory B,
but the dentry information of directory B is still stored on MDSO0. It should be
noted that in the directory-based metadata distribution strategy, the metadata
operations of the root directory are always handled by MDSO0, which contains the
information of all subdirectories under the root directory, including the link to
the MDS where the subdirectory is located, so that there is a defined fixed entry
point in the CLMS directory tree, and PFS clients can find the metadata service
node responsible for a specific directory by traversing the directory tree. In
the directory-based metadata distribution strategy, all files in a single directory
are distributed in the same MDS node, and when the application intensively
processes a large number of files in a single directory, PFS performance will be
limited by the efficiency of the metadata service of a single MDS node.

4.2 Hash-Based Distribution

For applications where hot data is centralized in a few directories, CLMS pro-
vides a metadata distribution strategy based on the hash of the file path. In
this hash-based metadata distribution design, the metadata of directories and
files is hashed under the VFS schema and distributed to multiple MDS nodes,
and the files are no longer distributed on the same MDS nodes following the
parent directory. Ash shown in Fig. 2, CLMS executes the hash function on jpar-
ent_directory_uuid, file_name; combination, selects the MDS node responsible
for processing file metadata requests, and forwards the subsequent operations of
the file to the daemon process of the MDS node for execution, to achieve the
uniform distribution of file metadata among all MDS nodes. In this way, the
metadata of files and directories is distributed pseudo-randomly among MDS
nodes. In the hash-based distribution policy, the number of MDTs can be con-
figured for directory hash distribution. CLMS will select the MDT that meets
the satisfaction according to this information, the MDT with the lowest uti-
lization will be selected by default and prioritized in the MDT list. Once the

106 Q. Li et al.

Dir “/A Dir “/A/B Flle—fA/B/foo FléA/B/bar

Hash (parent uuid + file/dir name)

M 1 M

Metadata : A Metadata : foo Metadata : B Metadata : bar
MDS#0 MDS#1 MDS#2 MDS#n

Fig. 2. Hash-based Metadata Distribution

selection is completed, the directory metadata will record the user-configured
MDT list, and the subdirectory and file metadata will be distributed according
to the MDT list.

5 Lightweight Metadata Service

5.1 Efficient Key-Value Store

CLMS designs and implements a high-performance metadata storage engine
based on NVMe SSD features and user-mode key-value store for metadata ser-
vices. This MDS-specific storage engine can achieve fast storage performance for
metadata and reduce the software performance overhead introduced by tradi-
tional local file systems. CLMS implements user-mode key-value store instead
of the local file system as a metadata storage engine, as shown in Fig.3, the
metadata storage engine divides the NVMe SSD address space into fixed-size
slots, each slot is used to store directory or file-related metadata, and all slots
are organized by a simple and efficient hash table data structure, where key is
the ID of the directory or file, and value is the address pointer of the metadata.
To accelerate the insertion, deletion, and search of metadata in the hash table,
CLMS further introduces region locks and locates the region locks to be used
according to the Key. This region lock design is used to improve the parallel pro-
cessing capabilities of the metadata storage engine and abandon the inefficient
mutex lock to further reduce the lock overhead in the metadata storage path.
CLMS assigns a UUID (Universally Unique Identifier) to each directory or
file and uses the UUID as part of the directory and file metadata index. To
save memory, only the key fields of inodelD, parentID, name, and entryType
of file and directory metadata are stored and organized in memory, and the
remaining fields are stored in NVMe SSDs and read when needed. There are
three types of hash tables, one is the UID Hash Table (UHT) with the object

CLMS: Configurable and Lightweight Metadata Service 107

Entry UID Hash Table Entry Name Hash Table Dir Inode Hash Table
‘ j j
I '
0 '
I |
Dentry (File) Dir inode
Entry UID Entry UID Entry UID
Parent UID Parent UID Parent UID
Entry Type Entry Type Entry Type
name name name
Name Len Name Len Name Len
Layout Layout numSubdirs
H numFiles
v Dentry (File) Layout
Dentry (Dir)

Entry UID Entry UID

Fig. 3. MDS-Specific Key-Value Store in CLMS

entry UID as the key, which is used to quickly find the metadata of the object
according to the entry UID. The second is the Name Hash Table (NHT) with
the object entry name as the key, which is used to quickly find the metadata
of the object according to the entry name. The third is the Inode Hash Table
(THT) built specifically for directory inodes, which is used to retrieve directory
inode information. For the same catalog item, join UHT with object UID as key
and NHT with object name as the key. Based on this design, CLMS metadata
service provides two types of API interfaces, one is to find the corresponding
directory or file metadata according to the parent directory UUID (parent_uuid)
and name. The second is to directly manipulate the corresponding metadata
according to the UUID of the directory or file. Therefore, whether it is based on
directory-based distribution metadata or hash-based distribution metadata, the
local KV storage engine can effectively support it.

5.2 POSIX Semantic Relaxation

The inode and directory blocks of traditional file systems are not designed for
parallel access, as only one block can be accessed by one process at a time. When
a large number of files are created from multiple processes in a single directory,
this introduces significant serial processing and performance penalty. As shown
in Fig. 4, the same is true in distributed file systems, for example, for file and
directory creation and deletion operations, the parent directory must be locked
first, and the parent directory is updated after the file and directory operation
is completed. To relax POSIX semantics in CLMS, instead of using directory
blocks that are difficult to use in a distributed environment, each directory entry
is stored in the KV store of the daemon process, and the current state of the
directory is not guaranteed to be returned in these indirect file system operations
when the directory contents are requested. For example, the readdir() operation
follows the eventual consistency model, that is, operations such as creating and
deleting files in the same directory are no longer processed serially with parent
directory updates, and the serial lock of the parent directory is removed. When

108 Q. Li et al.

File Create/Remove Operation

Serialization

SN

File Operation File Operation

“—@%E&]_D”i

= o o
4D/ ParentpirUpdate

Fig. 4. Serialized File Operations with Legacy Filesystems

Concurrent File Operation:
in a single directory

File Create/Remove Operation File Operation Done
1 o
c ¢ File O i T = Lock-Free N—
oncurrent File Operations_~~~~ @7?py 0 e N
in a single directory T T = SE—— E
T)
T = Update Parent Dir
T >

Fig. 5. Parallel File Operations with POSIX Semantic Relaxation

deleting a file, the data corresponding to the file also needs to be deleted, which
requires communication with the data storage server and is a time-consuming
process. In CLMS, we can also configure this strategy, implement asynchronous
processing, and delete file data in the background.

As shown in Fig. 5, CLMS relaxes POSIX directory semantics. The creation of
directories is similar to files, and directories are configured with hash-based dis-
tribution, and the contents of directories can only be collected from distributed
inode entries, that is, the contents of directories must be traversed through the
hash distribution nodes associated with the directory. Although there are mul-
tiple node communications, the problem can be mitigated by reading as many
directory entries as possible into the buffer at once. In the rename operation,
metadata may need to be re-migrated to the new MDS based on hash values
due to the directory or file name changes, but due to the unchanged UUID of
the directory or file and the path traversal lookup mechanism, unlike GekkoFS
and LocoFS that use the path of a file system object as an index within a flat
namespace, when a directory is moved to a different file system path, the path
of all its contents must also be modified recursively.

CLMS: Configurable and Lightweight Metadata Service 109

6 Performance Evaluation

6.1 Experimental Setup

We built a 10-node HPC system to evaluate the performance of CLMS, each
compute node is equipped with 2 Intel Xeon Gold 6134 CPUs, 512 GB of node
memory, 2 NVMe SSDs to build RAID for storing metadata, and 8 NVMe SSDs
for object storage. In the experiment, the cluster interconnects all compute nodes
using a 100 Gbps RDMA network. We evaluate CLMS performance using the
MDTest [1] benchmarks in both Unique Dir and Single Dir modes, where Unique
Dir means that the files and file operations of each process are in separate direc-
tories, and Single Dir means that the files and file operations of all processes
are in the same directory. MDTest simulates common metadata-intensive HPC
workloads to evaluate the metadata performance of CLMS and BeeGFS.

To comprehensively evaluate the behavior of CLMS, we introduce BeeGF'S,
CLMS-Dir, and CLMS-Hash as comparison candidates. Both CLMS-Dir and
CLMS-Hash implementations follow the basic principles of CLMS designs but
with different metadata distribution schemes, i.e., CLMS-Dir uses directory-based
distribution and CLMS-Hash uses hash-based distribution. In HPC systems, the
concurrent metadata operations in a single directory are an important workload
in many applications, we tested the performance of file Create, Stat, and Remove
operations using 100,000 zero-byte files per process and 16 processes per node. The
x-axis of the evaluation results shown in Sect. 6.2 represents the number of nodes,
up to 10 nodes, and the y-axis represents OPS for each kind of I/O workload.

6.2 Evaluation Results

In the first set of tests, we use Single Dir workload, i.e., all processes of MDTest
run in a single directory, to evaluate the performance of the metadata distribu-
tion strategy and the dedicated storage engine design in CLMS. Figure 6 shows
the OPS of file Create, Stat, and Remove operations. CLMS-Dir uses the same
directory-based metadata distribution strategy as BeeGFS, and CLMS-Dir intro-
duces the local metadata storage engine with full userspace key-value store rather
than the legacy EXT4 filesystem configured with BeeGF'S, thus the performance
of metadata service for Create, Stat, and Remove are improved by 14.86x, 3.61x,
and 7.49x on average. However, because all metadata operations target a single
metadata server under Single Dir workload, the metadata performance of the file
system is limited by the performance of a single MDS and does not improve as
the system scales. In contrast, CLMS-Hash can distribute metadata operations
to all MDSs in the file system through hash functions, so parallel metadata ser-
vices can be implemented and metadata performance can be greatly improved.
Specifically, CLMS-Hash can further improve the OPS of file Create, Stat, and
Remove operations by 1.6x when the number of MDS increases from 1 to 2, and
by 10.48 when the number of MDS increases from 1 to 10. The metadata service
scalability of CLMS-Hash outperforms BeeGFS and CLMS-Dir under the Single
Dir workloads.

110 Q. Li et al.

Create Stat Remove
6000000 6000000 6000000
: g 5
5 5000000 £ 5000000 § 5000000
=] 2 -]
& 4000000 £ 4000000 2 4000000
o (7] (7]
8 & 8
Q 3000000 < 3000000 < 3000000
[o [
4 2000000 4= 2000000 - 2000000
o o o
g 4 g
£ 1000000 & 1000000 & 1000000
P LI | B | B | B | B | PO | I | B [| | [| o ML Wx
1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10
Number of MDS Number of MDS Number of MDS
M BeeGFS mCLMS-Dir CLMS-Hash W BeeGFS ® CLMS-Dir CLMS-Hash M BeeGFS mCLMS-Dir CLMS-Hash
Fig. 6. OPS of File Operations under Single Dir Workloads
Create Stat Remove
6000000 7000000 6000000
» » w
S 5000000 S 6000000 § 5000000
E=1 k=3 =]
£ 4000000 £ 5000000 & 4000000
=3 2 4000000 =3
O 3000000 © © 3000000
o % 3000000 T
e
< 2000000 = 2000000 & 2000000
§ 1000000 | | g 1000000 I I g 1000000 I I
ol ll ol o Ll o Ll
1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10
Number of MDS Number of MDS Number of MDS
mBeeGFS M CLMS-Dir M CLMS-Hash WBeeGFS M CLMS-Dir M CLMS-Hash WBeeGFS W CLMSDIr M CLMS-Hash

Fig. 7. OPS of File Operations under Unique Dir Workloads

We further compare BeeGFS, CLMS-Dir, and CLMS-Hash under the Unique
Dir workloads that each process only accesses its directory. As shown in Fig. 7,
different from the Single Dir workload, BeeGF'S shows obvious metadata scalabil-
ity as the number of MDS increases. Specifically, as the number of MDS increases
from 1 to 10, the OPS of file Create, Stat, and Remove operations in BeeGFS get
8.82x improvements on average. This is mainly because the inherited directory-
based metadata distribution strategy in BeeGFS achieves good metadata scal-
ability. Compared with BeeGFS, CLMS-Dir achieves 4.21x, 4.75%, and 4.69x
for Create, Stat, and Remove while CLMS-Hash achieves 3.72x, 4.22x, and
4.09x for Create, Stat, and Remove respectively. The metadata performance
improvements are mainly from the efficient key-value store and POSIX seman-
tic relaxation implementations in CLMS. Furthermore, as CLMS-Hash always
distributes file and directory metadata across all the MDS, it inevitably incurs
more inter-server networking communication overhead on the metadata access
path. As a result, the metadata performance of CLMS-Hash is lower than that
of CLMS-Dir under the Unique Dir workload. For file Create, Stat, and Remove
operations, the OPS of CLMS-Dir is 11.59%, 9.94%, and 11.41% higher than
that of CLMS-Hash.

CLMS: Configurable and Lightweight Metadata Service 111

7 Conclusion

This paper proposes CLMS, a configurable and lightweight metadata service for
the parallel file systems on NVMe SSDs to meet the increasing performance
requirements of the PFS metadata service. CLMS introduces a configurable
metadata distribution policy that simultaneously enables the directory-based
and hash-based metadata distribution strategies and can be activated according
to the application I/O access pattern, thus improving the processing efficiency of
metadata accesses from different kinds of data-intensive applications. CLMS fur-
ther reduces the memory copy and serialization processing overhead in the I/0
path through the full-user metadata service design. CLMS is comprehensively
evaluated under the MDTest benchmarks. The experimental results demonstrate
that CLMS can significantly improve the performance of metadata services and
achieve a linear growth trend as the number of metadata servers increases.

Acknowledgements. This work was partially supported by the Foundation of
National Key Research and Development Program of China under Grant 2021YFB
0300101, the Foundation of State Key Lab of High-Performance Computing under Grant
202101-09, and the Natural Science Foundation of NUDT under Grant ZK21-03.

References

1. IOR/mdtest (2020). https://github.com/hpc/ior

2. Amvrosiadis, G., Park, J.W., Ganger, G.R., Gibson, G.A., Baseman, E.,
DeBardeleben, N.: On the diversity of cluster workloads and its impact on research
results. In: 2018 USENIX Annual Technical Conference (USENIX ATC 2018), pp.
533-546 (2018)

3. Chen, Y., Shu, J., Ou, J., Lu, Y.: HiNFS: a persistent memory file system with
both buffering and direct-access. ACM Trans. Storage (ToS) 14(1), 1-30 (2018)

4. Devarakonda, M.V., Mohindra, A., Simoneaux, J., Tetzlaff, W.H.: Evaluation of
design alternatives for a cluster file system. In: USENIX, pp. 35-46 (1995)

5. Dorier, M., Antoniu, G., Ross, R., Kimpe, D., Ibrahim, S.: CALCioM: mitigating
1/0 interference in HPC systems through cross-application coordination. In: 2014
IEEE 28th International Parallel and Distributed Processing Symposium, pp. 155—
164. IEEE (2014)

6. Dulloor, S.R., et al.: System software for persistent memory. In: Proceedings of the
Ninth European Conference on Computer Systems, pp. 1-15 (2014)

7. Hua, Y., Jiang, H., Zhu, Y., Feng, D., Tian, L.: SmartStore: a new metadata
organization paradigm with semantic-awareness for next-generation file systems.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, pp. 1-12 (2009)

8. Kougkas, A., Devarajan, H., Sun, X.H.: Hermes: a heterogeneous-aware multi-
tiered distributed I/O buffering system. In: Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing, pp. 219-
230 (2018)

9. Lensing, P.H., Cortes, T., Hughes, J., Brinkmann, A.: File system scalability
with highly decentralized metadata on independent storage devices. In: 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 366-375. IEEE (2016)

https://github.com/hpc/ior

112

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Q. Li et al.

Leung, A.W., Shao, M., Bisson, T., Pasupathy, S., Miller, E.L.: Spyglass: fast,
scalable metadata search for large-scale storage systems. In: FAST, vol. 9, pp.
153-166 (2009)

Li, S., Lu, Y., Shu, J., Hu, Y., Li, T.: LocoFS: a loosely-coupled metadata service
for distributed file systems. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1-12 (2017)
Patil, S., Gibson, G.A.: Scale and concurrency of giga+: file system directories with
millions of files. In: FAST, vol. 11, p. 13 (2011)

Ren, K., Zheng, Q., Patil, S., Gibson, G.: IndexFS: scaling file system metadata
performance with stateless caching and bulk insertion. In: SC 20: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 237-248. IEEE (2014)

Ross, R.B., Thakur, R., et al.: PVFS: a parallel file system for Linux clusters. In:
Proceedings of the 4th Annual Linux Showcase and Conference, pp. 391-430 (2000)
Schmuck, F.B., Haskin, R.L.: GPFS: a shared-disk file system for large computing
clusters. In: FAST, vol. 2 (2002)

Sim, H., Kim, Y., Vazhkudai, S.S., Vallée, G.R., Lim, S.H., Butt, A.R.: Taglt:
an integrated indexing and search service for file systems. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1-12 (2017)

Thapaliya, S., Bangalore, P., Lofstead, J., Mohror, K., Moody, A.: Managing I/O
interference in a shared burst buffer system. In: 2016 45th International Conference
on Parallel Processing (ICPP), pp. 416-425. IEEE (2016)

Vef, M.A., et al.: GekkoFS-a temporary distributed file system for HPC applica-
tions. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 319-324. IEEE (2018)

Wang, T., Mohror, K., Moody, A., Sato, K., Yu, W.: An ephemeral burst-buffer
file system for scientific applications. In: SC 2016: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 807-818. IEEE (2016)

Wang, T., Yu, W., Sato, K., Moody, A., Mohror, K.: BurstFS: a distributed burst
buffer file system for scientific applications. Technical report, Lawrence Livermore
National Lab. (LLNL), Livermore, CA (United States) (2016)

Zheng, Q., et al.: DeltaFS: a scalable no-ground-truth filesystem for massively-
parallel computing. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pp. 1-15 (2021)

	CLMS: Configurable and Lightweight Metadata Service for Parallel File Systems on NVMe SSDs
	1 Introduction
	2 Related Work
	3 System Overview
	4 Configurable Metadata Distribution
	4.1 Directory-Based Distribution
	4.2 Hash-Based Distribution

	5 Lightweight Metadata Service
	5.1 Efficient Key-Value Store
	5.2 POSIX Semantic Relaxation

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Evaluation Results

	7 Conclusion
	References

