
Multi-agent Cooperative Computing
Resource Scheduling Algorithm

for Periodic Task Scenarios

Zheng Chen1 , Ruijin Wang1(B), Zhiyang Zhang1, Ting Chen1(B), Xikai Pei1,2,
and Zhenya Wu2

1 School of Information and Software Engineering, University of Electronic Science
and Technology of China, Chengdu 611731, Sichuan, China

{ruijinwang,brokendragon}@uestc.edu.cn, peixikai@cdatc.com
2 The Second Research Institute of Civil Aviation Administration of China,

Chengdu 610041, Sichuan, China
wuzhenya@cdatc.com

Abstract. The scheduling of large-scale service requests and jobs usu-
ally requires the service cluster to fully use node computing resources.
However, due to the increasing number of server devices, the depen-
dence between resource allocation and request, and the periodic external
request received, the scheduling process of edge-oriented service requests
is a complicated scientific problem. Existing studies do not take into
account the periodic characteristics of service requests in different peri-
ods, leading to inaccurate scheduling decisions on external requests. This
paper proposes a coordinated Multi-Agent recurrent Actor-Critic, based
on a recursive network. CMARAC is used to solve the problem of com-
puting resource allocation for periodic requests in edge computing sce-
narios. According to different resource information in the server cluster
and the status of the task queue, the system state information and his-
torical information are captured and maintained by integrating LSTM,
and then the most appropriate service resources are selected by pro-
cessing them in the Actor-Critic network. Tracking experiments using
actual request data show that CMARAC can successfully learn the peri-
odic state between external requests in the face of large-scale service
requests. Compared with the baseline, the average throughput rate of the
system implemented by CMARAC is improved by 2.1%, and the algo-
rithm convergence rate is improved by 0.69 times. Finally, we optimized
the parameters through experiments and determined the best parameter
configuration of CMARAC.

Keywords: Service request · Multi-agent cooperative scheduling
algorithm · Edge computing · Task scheduling

1 Introduction

The popularity of Chat GPT shows that AI is moving towards “big models, big
data”, and often has limited hardware resources to support the training of large
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 76–97, 2024.
https://doi.org/10.1007/978-981-99-7872-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_5&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_5

Multi-agent Cooperative Computing Resource Scheduling Algorithm 77

models. In the traditional cloud computing mode, there is a large delay in data
transmission [1], so to realize the training and application of large-scale models,
edge computing technology has become a field of concern. Edge computing is
increasingly popular in the existing academic and industrial computing frame-
works [2,3], and users are more inclined to share large hardware platforms [4,5],
so the dynamic allocation and balance of limited hardware resources is the main
problem facing edge computing.

The dynamic workload of the edge cluster environment brings a high chal-
lenge to the service request of the front-end application. When the request
arrives, how to optimize the allocation of computing resources between the edge
node and the cloud is a complex scientific problem [6].

In the existing work, there are a variety of solutions for task unloading and
resource optimal allocation, such as meta-heuristic algorithms [7], dynamic pro-
gramming [8,9], reinforcement learning [6,10], which can solve the problem of
resource allocation to a certain extent. However, it is difficult to capture the peri-
odicity of the task when completing the periodic task scheduling in the above
scheme, so the optimal scheduling effect cannot be achieved. Using historical
data to predict the future often means potential advantages [11]. Therefore, in
marginal scenarios, how considering the periodic relationship of service requests
in time and adjusting the plan of resource allocation is a key issue in resource
allocation and request scheduling.

Aiming at the above problems, a method of coordinated Multi-Agent recur-
rent Actor-Critic (CMARAC) based on the recursive network is proposed in
this paper. First, the reward function and network updating scheme of rein-
forcement learning are defined. Secondly, the history and reality of the server
cluster are combined into a matrix with temporal characteristics and input into
the network model to obtain the node selection probability vector. Finally, the
node most suitable for the current request is selected according to the proba-
bility vector, and the state changes of the system after selecting this node are
calculated and applied to the network input in the next period.

The specific scheme of this paper is as follows: (i) The introduction of a time
series network in reinforcement learning can learn long-term strategy informa-
tion and improve the performance of agents. (ii) The parameters and network
structure of the temporal network are designed, and the reward function of rein-
forcement learning is defined to ensure the convergence of the network. (iii)
Apply the proposed model to the experimental process of specific data sets to
prove the effectiveness and superiority of the model. Therefore, the major chal-
lenges facing this scheme are arranging the time scale of the recursive network,
how to design the reward function that can make the network converge, and
finally proving the validity of the model.

In response to the above challenges, this paper adopts the method of dual
time scale for resource scheduling and recursive network input design and sets
the product of throughput rate and normalized negative exponential function of
resource consumption variance within a period as the reward function. Finally,
the validity of the model is proved by mathematical proof and experimental
proof.

78 Z. Chen et al.

Based on the above work, the main contributions are as follows.

1. A multi-agent reinforcement learning method based on the recursive net-
work is proposed. According to the distribution of requests in time and the
deployment of servers in edge scenarios, a multi-agent reinforcement learning
method based on the recursive network is designed. Based on the recursive
network method, the input design under double time scales is adopted. The
model can grasp the distribution characteristics of requests in time and output
a more appropriate resource scheduling scheme. Multi-agent reinforcement
learning can handle dynamic request information and cope with distributed
time-varying resource systems.

2. A reward function is designed to consider both the system throughput rate
and load balance within a period. Different from calculating the reward func-
tion once in each resource allocation process, this paper takes the negative
exponential function value of the system throughput rate in multiple time
units as a partial reward. At the same time, the normalized result of the
variance of resource utilization ratio of different nodes is used as the index
of cluster load balancing, and the negative exponential function value is also
used as another part of the reward, and the product of the two parts is the
complete reward function.

3. The experiment of the Alibaba cluster tracking data set is completed, which
has obvious advantages compared with other scheduling algorithms. The
parameters of the neural network structure are optimized and the optimal
parameters are found through experiments. Compared with the algorithm
without recursive network, the experiment shows that the convergence speed
of CMARAC is faster. Finally, the feasibility of the algorithm in the real
scheduling scenario is tested.

2 Related Research

Recent studies on similar resource scheduling problems have focused on reinforce-
ment learning algorithms. In 2020, Chen et al. studied the joint power control
of MECs in the Industrial Internet of Things and the dynamic resource man-
agement of computing resource allocation. To minimize the long-term average
delay of the task, the original problem is transformed into a Markov decision
process (MDP). A dynamic resource management (DDRM) algorithm based on
deep reinforcement learning is proposed to solve the MDP problem.

In summary, the existing solution uses a single strategy for the scheduling pro-
cess. It can not adapt to the complex and changing workshop production scene,
with long order completion times, large system computational complexity, and
poor stability of the scheduling effect achieved for different orders. This paper
proposes an innovative RGA algorithm based on learning and meta-inspiration,
which can adapt to the intelligent scheduling in the FJSP scenario and is closer
to the real workshop production environment [12]. Cui et al. describe the long-
term resource allocation problem as a stochastic game that maximizes expected

Multi-agent Cooperative Computing Resource Scheduling Algorithm 79

returns, in which each drone becomes a learning agent and each resource alloca-
tion scheme corresponds to an action taken by the drone. Then, a multi-agent
reinforcement learning (MARL) framework is developed, where each agent finds
its optimal strategy based on its local observations of use learning [13]. In 2021,
Farhadi et al. proposed a two-time-scale framework that combines optimization
of service (data and code) placement and request scheduling within the storage,
communication, computing, and budget constraints. By analyzing the difficulty
of various situations to fully describe the complexity of the problem, a poly-
nomial time algorithm is developed to achieve a constant factor approximation
under certain conditions [8]. In the same year, Han et al. used the CMMAC
algorithm to share a centralized state value function with multiple agents, and
each actor only observed the local state [14]. However, the above paper does not
consider the dynamic and time periodicity of the task queue in the server in the
distributed scenario, so the timing relationship between inputs is not considered
in the mentioned scheme.

To sum up, the existing computing resource allocation and scheduling scheme
only analyzes the existing system status upon the arrival of each task and selects
the node server to process the task through model judgment, without considering
the time sequence relationship in the updating process of the task queue of the
node server. The CMARAC algorithm proposed in this paper adopts the method
of combining the recursive network and strategy to schedule each task and makes
full use of the timing relationship of the task queue of the edge server node in
each task scheduling process. Compared with the traditional scheme network,
the convergence speed is faster and fewer data is required in the training process.

3 Scheduling Problem

3.1 Problem Definition

We consider the task scheduling process in the edge cluster environment and use
the system throughput rate of the task scheduling process as one of the indicators
to measure the algorithm effect, that is, the proportion of tasks completed on
schedule in the total of all tasks during the long-term operation of the system.
Given edge cluster M = {1, 2, . . . ,M}, the index is m. To better complete
the task scheduling process, each cluster is assigned a master responsible for
managing cluster tasks. The nodes of each cluster are Nm = {1, 2, . . . , Nm}
is managed by master m. In each edge cluster, all nodes are represented as
N = {1, 2, . . . , N}. All the masters are responsible for distributing the tasks
allowed to be processed to the managed edge nodes or cloud. All nodes of an edge
cluster communicate through the local area network. The edge cluster master
m arranges a queue to record the ID of the task, Qm, which represents all the
tasks to be completed and the order of task scheduling. A queue of tasks to be
processed qσ is arranged on all servers for which tasks can be assigned. σ is less
than or equal to the total number of servers in a cluster or edge cluster. Tasks
in the queue are prioritized according to time requirements.

80 Z. Chen et al.

To illustrate the number of tasks that each node can handle, this paper
records a matrix D = {d1, d2, . . . , dT }, including dT record a server, can handle
task types of one-hot vector, which T = M +

∑m
i=1 Ni, said the total number of

all except the cloud cluster server. Compared with edge servers and edge nodes,
the cloud has sufficient computing resources and task processing capacity and
can complete all kinds of task processing by default. Therefore, matrix D does
not contain information about the cluster.

The task scheduling time in this paper is strictly constrained. To correspond
to the time unit trequired by task scheduling in the data set, the resource schedul-
ing system adjusts the time needed for a scheduling task τ = αt(α ∈ (0, 1)). In
each τ , the master m of each edge cluster will distribute a task to the edge node
Nm with sufficient computing resources, or to the cluster processing, and each
task will consume the computing resources and network bandwidth of the edge
or cloud. However, because the edge master is typically close to the end device
but not the cloud, sending a task to the cloud may result in additional commu-
nication overhead. Therefore, This paper’s algorithm will lower the priority of
the cloud processing task. When the system schedules tasks based on time, if
any task is not processed in time, the system will check and discard it at each τ .

In this paper, the optimization of the target for throughput, in the pro-
cess of system scheduling system to complete tasks Ω =

∑∞
s

∑T+1
σ ωs(qσ),

ωs(qσ)indicates the number of tasks completed by the server σ in time s, and
T+1 indicates the number of all servers in the system. However, with the increase
of time, Ω will continue to increase, which is not conducive to the subsequent
calculation and optimization of the model. Throughput Φ ∈ [0, 1], the said sys-
tem within the required time to complete the ratio of the total number of jobs
and tasks, the total number of tasks Ω′ =

∑∞
s

∑M
m ω′

s(Qm). Where ω′
s(Qm)

represents the number of tasks received by edge cluster master m in time s.
Therefore, the system throughput rate can be expressed as:

Φ =
Ω
Ω′ =

∑∞
s

∑T+1
σ ωs(qσ)

∑∞
s

∑M
m ω′

s(Qm)
(1)

4 Algorithm Design

4.1 CMARAC Algorithm Framework

The main body of the CMARAC algorithm contains two time scales, namely, the
time scale of resource allocation and the time scale of recursive network input.
The algorithm hierarchy diagram is as follows:

CMARAC algorithm is applied to hundreds of distributed edge clusters. Tra-
ditional learning algorithms, such as DQN [15] and DDPG [16], usually use a
centralized learning agent, but it is difficult to realize for edge clusters, because
distributed master will lead to the explosion of scheduling action space [17]. In
order to ensure the real-time scheduling, CMARAC adopts a decentralized way
to schedule requests at the place where the requests arrive.

Multi-agent Cooperative Computing Resource Scheduling Algorithm 81

Fig. 1. Distributed request scheduling process based on CMARAC

We consider a typical distributed edge cluster scenario for request distribu-
tion. The complete request scheduling process is shown in Fig. 1. (i) the terminal
device sends a request to the nearest edge cluster M, and master m of the edge
cluster receives the request and adds it to the request queue Qm. (ii) After com-
pleting the previous request scheduling process in queue Qm, the task is taken
out of the queue. In addition, an agent of CMARAC deployed in the master is
used to complete the scheduling process of the request, and finally the task is
assigned to the appropriate node server for processing.

4.2 Identification of Temporal Characteristics of the Request

In a cluster environment, the arrival process of external requests usually follows
a periodic rule. When Alibaba tracked the process of processing requests in
their server cluster in 2020, it found the following rule: In a day, the situation
of the server submitting tasks presents a periodic change with the change of
time. Capturing such a change of task submission plays an important role in the
scheduling process of external requests. The system can make preparations for
task scheduling by predicting the arrival of peak request in advance.

Recurrent Neural networks (RNN) are neural networks with recurrent feed-
back connections that can be used to process data with sequential structure. The
internal self-feedback of neurons gives them an inherent “depth” structure, which

82 Z. Chen et al.

can obtain sufficient long-term dependence by using historical data [18,19]. Each
time a new data is entered, the RNN passes the current input to the hidden layer
for processing along with the state information of the previous time step, result-
ing in a new state output, which is passed to the next time step. This feedback
connection enables RNNS to process sequence data with memory and the ability
to consider previous information.

Long Short-Term Memory (LSTM) is a special recursive neural network
(RNN), which solves problems such as gradient disappearance and gradient
explosion in traditional RNN by introducing gating mechanism [20]. The cell
structure of LSTM is shown below. In this paper, LSTM is used to extract the
time characteristics of the request flow in the server cluster (Fig. 2).

Fig. 2. Input cell diagram of system scheduling state

In this article, we overlay multiple LSTM layers onto the model to capture the
time feature of higher level request flows. LSTM layer1 edge processing services in
the cluster operation sequence s = [si, si+k, si+2k, ..., si+ck]. Where si represents
the system state at time i, k represents the time step, c represents the number
of cells, and the system hidden state sequence H = [Hi,Hi+k,Hi+2k, ...,Hi+ck]
at each time point is calculated. The hidden layer state sequence is then input
to LSTM layer 2 to calculate the hidden layer state sequence H′. Finally, the
system state Hi+ck containing the past to present time characteristics is output.

Fig. 3. Request timing feature recognition based on LSTM

Multi-agent Cooperative Computing Resource Scheduling Algorithm 83

Figure 3 shows the identification process of request features. The time axis
of request arrival contains a time series of five time points, corresponding to
c = 0, 1, 2, 3, 4, respectively. This time series corresponds to the system state
characteristics corresponding to the first five time points including the current
time. The final output Hi+ck is a combination of the system state characteristics
of the whole period of time series, can effectively capture the timing characteris-
tics of the system at five time points of the request, so as to make a better task
scheduling scheme. Specific parameters are calculated as follows:

fi = σ
(
Wgfsi + bjf + WhfH(i−k) + bhf

)
(2)

The calculation mode of fi in Formula (2) represents the forgetting gate, Wgf

and Whf correspond to the weight parameters of the state input and hidden
state input respectively, bjf and bhf represent the offset after the state input
and hidden input respectively, si is the system state under the condition that
the time corresponds to i. H(i−k) is the hidden state input, and σ is the sigma
activation function.

Ii = σ
(
Wgjsi + bjj + WhjH(i−k) + bhj

)
(3)

gi = tanh
(
Wjgsi + bjg + WhgH(i−k) + bhg

)
(4)

Ci = fiC(i−k) + Iigi (5)

The formulas for Ii, gi, and Ci represent the update gate, Wgj and Whj corre-
spond to the weights of state inputs and hidden state inputs, bjj and bhj represent
their respective offsets, and tanh represents the tangent function. Finally, the
sequential state of the cell will be determined jointly by the calculated output
of the forgetting gate and the output of the updaters in Formula (2), and the
previous state C(i−k) will be transformed into the current state Ci.

oi = σ
(
Wgosi + bjo + WhoH(i−k) + bho

)
(6)

Hi = oi tanh (Ci) (7)

Formula (6) represents the output gate, where Wgo and Who are the weight
parameters corresponding to the input state and hidden state of the system
respectively, bjo and bho are the offset respectively, and oi is the calculation
result of the output gate. The final output Hi from LSTM is determined by
both the output gate and the cell update state Ci, as described in Formula (7).
Finally, we will get the system state at the time step i+ ck and input it into the
actor network and critic network.

Figure 4 shows the composition of CMARAC algorithm. On the whole,
CMARAC algorithm is composed of two parts. The first part is responsible for
collecting the request state information of the system in a period of time series
and the time sequence relationship between the states, and finally obtaining the
system state Hi containing the time sequence features. Hi is input into the Actor
and Critic network, the state value is calculated, and the appropriate node in the
edge cluster is selected to process the next task in the request queue Qm.

84 Z. Chen et al.

Fig. 4. CMARAC model structure diagram

4.3 Task Scheduling Procedure

In recent years, a revolutionary breakthrough has been made in the field of
multi-agent deep reinforcement learning, which has been successfully applied
to a variety of complex scenarios, proving that pure cooperative tasks can be
represented by monotone hybrid networks, and agents based on neural networks
can learn their actions in multi-agent environments through interaction [21].

In contrast to the general RL training process, DQN relies on a small batch
of random sampling to experience the transition in the replay buffer, rather than
just selecting a single transition. In addition, the target network with the same
network structure as Q(st, at) is used to reduce the correlation. And the target
network is only updated at certain intervals.

DQN cannot be directly applied to solve continuous value control problems, so
we adopt themost popular actor-criticmethod to dealwith the computing resource
scheduling problem in the edge cluster scenario. Specifically, actor-critic consists of
a DNN acting as an actor network and a DQN called critic network [22]. The Actor
represents our mapping function π (st | θπ), and the critic performs the function
Q

(
st, at | θQ

)
. Actor can generate the optimal action at based on state st.

This chapter will introduce the multi-agent reinforcement learning method
based on recursive network. Deploy critic network in the cloud, and deploy an
actor network in each master at the edge. Usually, an agent does not fully under-
stand all the knowledge of the environment state S, so we express the process
of each master to schedule the tasks in the queue as a Markov game Γ for cloud
edge cluster, Γ =

(
M,S,

{Ai
}

i∈M ,P,
{
Ri

}
i∈M , γ

)
. Where M = {1, 2, . . . ,M}

represents the agent of M edge clusters, S represents the state space, Ai rep-
resents the action taken by the ith master in the edge cluster, that is, the first
task in the queue is selected and dispatched to a node, P represents the selection
probability of each action, Ri represents the reward obtained after the ith master
takes the action. We adopt the mechanism that all agents share the same reward
function to deal with the computational resource scheduling problem proposed
in this paper. γ ∈ (0, 1) is a discount factor that can be used to control the
influence of an agent on other agents. When the agent considers future rewards,
it can take into account the actions and strategies that other agents may take.

Multi-agent Cooperative Computing Resource Scheduling Algorithm 85

In this case, the discount factor can be used to measure the agent’s impact on
future rewards, and thus influence its behavior and strategy.

S represents the state space, where in each time unit t, a state value st,m

is constructed for node σ in each edge cluster m. The composition of the state
value is shown in the following table:

Table 1. Environment status

State Description

qσ,t The queue of tasks to be processed in Node σ

Qm,t The queue of tasks to be completed in Master m

L Transmission delay between the cloud and the edge cluster master

Re Remaining CPU and storage space resources of each cluster node Nm

St Nm service type deployed on each cluster node

N Number of nodes Nm in an edge cluster m

Table 1 shows the status information of time unit t. qσ,t represents the task
queue that has not been processed since time t in node σ; Qm,t represents the
task queue information that has not been dispatched since time t in master m; L
represents the transmission delay between the cloud and the edge cluster master.
Re represents the remaining CPU and storage space resources of each cluster
node Nm at time t, St represents the service type deployed by each cluster
node Nm, and N represents the number of node Nm in an edge cluster m. The
above parameters are combined into st,m. In order to concentrate the status
information and facilitate the update of critic network, We maintain a global
state st ∈ S, which not only contains the state information of all cluster nodes
Nm, but also includes the task queue information QC,t in the cloud.

The action space of Markov game
{Ai

}
i∈M is expressed as {A1,A2, . . . ,AM},

represents the action space of the state space of the agent deployed in each edge
cluster m. For edge cluster, we regard all available edge nodes as a resource pool,
that is, the mutual cooperation among the masters in the enabled state. All Ai

contains the number of all available edge nodes and the cloud {1, 2, 3, . . . , N1 +
N2 + · · · + Nm + M}, and the sum of all edge nodes, masters, and the cloud is
the size of the action space Ai. In particular, when Ai = 0, the cloud handles the
current request. We only allow each master agent to schedule one request within
time unit t.

Generally speaking, the master of an edge server cluster needs to balance the
system throughput rate and resource scheduling costs when allocating resources
to server nodes. Therefore, a reward function is needed to teach the agent to
learn the potential resource allocation plan. The return function derived from
ensuring the throughput rate of the system and realizing the load balancing of
the cluster can be obtained:

r1 = eμ, μ ∈ [0, 1] (8)

86 Z. Chen et al.

r2 = e−β , β ∈ [
1
2
, 1] (9)

R = r1r2 (10)

Reward function contains two parts, the first part of the throughput rate
of the system, as shown in Formula (8). The value range of r1 is [e−1, 1], μ
represents the system throughput rate at time [λt, λ(t + 1)], λ = 1, 2, . . . , n, λ
represents the time step, that is, the system throughput rate within a period
of time is calculated after a period of time unit t. The second part considers
cluster load balancing, as shown in Formula (9), β = 1/(1 + e−ξ) is the variance
of normalized node resource consumption ξ. Finally, the total reward R is the
product of r1 and r2.

In an edge cluster environment, the state transition probability of multi-agent
reinforcement learning is the joint state transition probability of all agents, which
is expressed as follows:

P (st+1 | st, st−1, · · · , s1, s0) = P (st+1 | st) = p (st+1 | st, a1,t, a2,t, . . . , an,t)
(11)

Formula (11) shows that the state st conforms to the Markov property, that is,
the state of the next time node only depends on the current state and an action
made in the current state, and the state is the environment that the system
can achieve through some way [23]. In multi-agent reinforcement learning, we
construct an observable Markov model [24]. The status st+1 of the next point in
time is only related to the status st of the current point in time and the action
{a1,t, a2,t, . . . , an,t} taken by all agents.

The state value function of agent in edge cluster master is the function of
joint strategy π : S → Δ(A), which can be defined as:

π(at|st) =
∏

i∈M
πi (ai,t|si,t) (12)

Therefore, for every joint strategy π and state st ∈ St, the common state
value function Vm,π of agents can be derived by minimizing Bellman equation:

Vm,π(st) = E

⎡

⎣
∑

t≥0

γR (st, am,t, st+1) | am,t ∼ πm (· | st) , s0 = s

⎤

⎦ (13)

The multi-agent collaborative resource scheduling algorithm proposed by us
is designed based on the actor-critic algorithm framework, including the actor
network deployed in different edge clusters and the critic network deployed in
the cloud. The coordinated learning method of centralized critic and distributed
actor is adopted. When training critic network, all actors share a centralized
state value function, while in the training and reasoning process of distributed
actor network, each actor only observes the local state.

The Critic network is divided into target value network θ′ and value network
θ. We used the target value network θ′ to calculate TD (Temporal Difference)
errors, and kept updating them in the training process, but at a slow speed.

Multi-agent Cooperative Computing Resource Scheduling Algorithm 87

Generally, parameters of Critic network θ will not be copied to target value
network θ′ until a certain time interval is required, so the objective function V
of target network can be expressed as Formula (14):

V (st+1; θ′, π) =
∑

m∈M,t≥0

π (am,t | sm,t) (R + γV ′ (sm,t+1)) (14)

L (θ′) = (R + γV ′ (sm,t; θ′) − V (sm,t; θ′))2 (15)

The objective function in Formula (14) is the weighted sum of agent action
value and reward function under different strategies. The weight is the probabil-
ity of edge cluster m taking relative action am,t against state sm,t at time point
t. For all edge clusters M in edge server cluster m, each time t has a unique state
value {V (sm,t) ,m ∈ M}. Formula (15) represents the loss function of the target
network, V (sm,t; θ′) represents the value estimate of the target value network for
the current state, V ′ (sm,t; θ′) represents the value estimate of the target value
network for the next state.

We define an advantage function A (st,m, am,t) and calculate gradient ∇a to
update actor networks, where the advantage function A (st,m, am,t) is shown in
Formula (16):

A (st,m, am,t) = R + γV ′ (sm,t; θ′) − V (sm,t; θ′) (16)

γ is the discount factor, V (sm,t; θ′) represents the value estimate of the target
value network for the current state, V ′ (sm,t; θ′) represents the value estimate of
the target value network for the next state, R represents the reward after taking
action am,t in the current state, and then calculate the gradient used to update
the actor network, as shown in Formula (17):

∇a = ∇ log π (am,t | st,m) A (st,m, am,t) (17)

where π (am,t | st,m) is the strategy of corresponding state st,m in edge cluster m
which takes related action am,t, after calculating the gradient of actor network,
the network can be updated. The overall algorithm flow is as follows:

The above algorithm flow is the whole process of training and scheduling
of CMARAC. In each system scheduling time unit, each edge cluster master
will realize the scheduling of the first task in queue Qm, and eject it from the
queue and distribute it to a node in the cluster for processing according to the
action am,t output by the actor network. Each time to complete the scheduling
process of a specific time, according to the recorded status, action and training
parameters, calculate the loss function value L (θ′)and gradient ∇a to update
the actor network and critic network.

5 Experiment and Analysis

In this paper, the optimization of the target for the throughput, in the process
of system scheduling system to complete tasks Ω =

∑∞
s

∑T+1
σ ωs(qσ), including

ωs(qσ) said the server σ number of tasks in a timely manner.

88 Z. Chen et al.

Algorithm 1. CMARAC training and scheduling process
1: Initialize the system environment and neural network structure
2: for τ in 1, 2, 3, . . . do
3: for each m in M do
4: Update task queue Qm in edge cluster m
5: Update CPU and storage resource Re of each node in cluster m
6: Remove a task from the task queue Qm

7: Action am,t is taken to assign tasks by formula 12
8: if τ%reward cycle then
9: Formulas (8), (9), and (10) were used to calculate the current cluster

return Rm

10: Formula (8): r1 = eμ, μ ∈ [0, 1]
11: Formula (9): r2 = e−β , β ∈ [1

2
, 1]

12: Formula (10): R = r1r2
13: Calculate the dominant functions A (st,m, am,t) and gradient ∇a using

formulas (16) and (17)
14: Formula (16): A (st,m, am,t) = R + γV ′ (sm,t; θ

′) − V (sm,t; θ
′)

15: Formula (17): ∇a = ∇ log π (am,t | st,m) A (st,m, am,t)
16: Record the critic network training parameters [st, V (st+1; θ

′, π)]
17: Record the actor network training parameters

[st,m, am,t, A (st,m, am,t) , Rm]
18: end if
19: end for
20: The loss function L (θ′) and gradient ∇a are calculated using formulas (14) and

(15)
21: Update actor and critic network parameters
22: Formula (14): V (st+1; θ

′, π) =
∑

m∈M,t≥0 π (am,t | sm,t) (R + γV ′ (sm,t+1))

23: Formula (15): L (θ′) = (R + γV ′ (sm,t; θ
′) − V (sm,t; θ

′))2

24: end for

5.1 Experimental Setup and Data Set

The data set of this experiment is Alibaba cluster tracking data set [25], which
makes detailed statistics on the workload tracking data collected in the produc-
tion MLaaS cluster of more than 6000 GPUs for two months. Alibaba Cluster
Trace data set comes from Alibaba Cluster Trace Program, which makes a com-
prehensive analysis of Alibaba’s large-scale workload tracking and reveals the
benefits of GPU sharing in the production of GPU data centers [26]. It is widely
used in academia and industry. We modified these server trace data sets to exter-
nal request data sets, and the data structure of this data set and its examples
are shown in Table 2:

We used task type, start time, end time, plan cpu and plan mem in the data
set as experimental data. Other data were not used in this experiment. This is
because this experiment deals with the scheduling of different types of external
requests, one for each service, and the service deployment status of the server is
reflected in deploy state.

Multi-agent Cooperative Computing Resource Scheduling Algorithm 89

Table 2. Data items and examples in the data set

Columns Example Entry

task name task ODk2MzU0ODg1MTY5MTExNTUwMg==

inst id 9

job name j 18443

task type 3

status Terminated

start time 86442

end time 86446

plan cpu 300

plan mem 0.39

5.2 Experimental Results and Analysis

In order to evaluate the effectiveness of CMARAC algorithm and the advantages
compared with other algorithms, this paper obtained some high quality perfor-
mance of CMARAC algorithm from different dimensions through 5 comparison
experiments with other algorithms, and carried out optimization experiments on
the parameters of CMARAC algorithm.

5.2.1 Overall Performance

Table 3. Scheduling effect comparison between CMARAC and random scheduling,
greedy policy and cMMAC

Contrast round Random scheduling Greedy strategy cMMAC CMARAC

1 0.277 0.679 0.808 0.819

2 0.316 0.674 0.81 0.842

3 0.317 0.673 0.823 0.85

4 0.33 0.734 0.824 0.849

5 0.337 0.688 0.83 0.85

6 0.336 0.694 0.832 0.854

7 0.314 0.651 0.835 0.854

8 0.347 0.695 0.833 0.853

9 0.434 0.661 0.839 0.854

10 0.315 0.666 0.84 0.852

11 0.304 0.662 0.84 0.851

12 0.348 0.698 0.842 0.854

13 0.342 0.653 0.843 0.856

14 0.36 0.7 0.842 0.854

15 0.331 0.712 0.844 0.855

This experiment adopted cluster-trace-Gpu-V2020, the Alibaba cluster tracking
data set published by Alibaba Group. We compared the scheduling effects of

90 Z. Chen et al.

random scheduling, greedy strategy, cMMAC [12] and CMARAC algorithm.
There were 15 rounds of experiments. The experimental data used in each round
contains all the requests in the 50,000 time units, which are different for differ-
ent rounds. The same cloud edge system adopts different scheduling algorithms
respectively, and the throughput rate after each algorithm is compared. The com-
parison effect is shown in Table 3. The best result of each instance is shown in
boldface.

It can be seen from the above comparison that the scheduling effect of the
proposed CMARAC is generally better than that of random scheduling, greedy
strategy and cMMAC. Taking the throughput rate of all requests in the same
time period with a range of 50,000 time units as the index, the CMARAC algo-
rithm improves 1.545 times compared with random scheduling, 24.5% compared
with greedy policy scheduling, and 2.1% compared with baseline cMMAC algo-
rithm scheduling. This indicates that CMARAC has a higher scheduling effect
than other algorithms when facing a large number of request data with timing
characteristics.

Request timing feature identification is a key step in CMARAC schedul-
ing process, which determines whether the system can learn the timing feature
in the process of request arrival, and thus determines the scheduling perfor-
mance of CMARAC. The following experiments show that the convergence rate
of CMARAC algorithm is faster than that of baseline cMMAC algorithm.

Figure 5 shows the training process of CMARAC algorithm and cMMAC
algorithm. The training data adopts all requests within 50000 time units in
cluster-trace-gpu-v2020 data set, and a total of 50 rounds of training are con-
ducted. Each round of training includes 50 calculations of loss value and network
updates. The label data in the figure is the median of loss value in each round

Fig. 5. Comparison of network convergence effect of CMMARAC and cMMAC algo-
rithm, (a) represents the convergence of loss value of actor network, and (b) represents
the convergence of loss value of critic network. In the figure, the algorithm achieves
convergence of loss value with as few training cycles as possible, which indicates that
the algorithm has better performance.

Multi-agent Cooperative Computing Resource Scheduling Algorithm 91

of data. The hidden layer nodes of both algorithm cMMAC and CMARAC net-
work are [128, 32], and the number of cells participating in the comparison of
CMARAC algorithm is 4.

In the CMARAC algorithm, the request feature recognition network proposed
by us adopts the LSTM recursive network, which can capture the time sequence
dependence in the input sequence, remember the past information, and apply
it to the current context. By iterating through multiple time steps, LSTM can
gradually build an abstract representation of the sequence data, capturing key
patterns and features in the input. In cloud edge systems with significant periodic
request arrival processes, using LSTM to extract temporal features from requests
can help understand and model the temporal patterns and behaviors of requests.
By utilizing LSTM’s sequential modeling capabilities, we can better understand
and process timing data related to computing resource scheduling.

Figure 5 respectively shows the change of loss value of CMARAC and
cMMAC with the training rounds. For the calculation process of the loss value of
actor network, the loss value of CMARAC is always lower than that of cMMAC.
When the training cycle is 1, the loss value of CMARAC is 304 and the loss value
of cMMAC is 302. When the training cycle is 13, CMARAC reaches the state
of convergence. cMMAC converges, and the final loss converges to about 5.53.
For critic network, the initial loss value of CMARAC was 23.97, and reached
convergence in the 13th round of training; the initial loss value of cMMAC was
26.08, and reached convergence in the 34th round, with the final loss converging
to about 5.07.

Compared with cMMAC algorithm, the convergence speed of CMARAC is
1.69 times faster. This is because LSTM can capture the timing characteristics
in a large number of requests, so as to achieve the best scheduling effect in fewer
training rounds. Moreover, the calculation method of our return function consid-
ers the scheduling failure rate and load balancing rate in a period of time. The
network has a better scheduling effect. Compare the throughput of CMARAC
and cMMAC in the training process, as shown in Fig. 6.

It can be seen that CMARAC showed a high system throughput rate of
0.852 in the fourth round, and reached a convergence state of 0.855 in the eighth
round. The system throughput rate based on cMMAC algorithm converges to
0.854 in the 13th round. Taking the system throughput rate as the indicator,
the convergence rate of CMARAC is 62.5% faster than that of cMMAC, and the
system throughput rate of Cmarac is 0.1% higher than that of cMMAC when it
reaches the convergence state.

5.2.2 Load Balancing Effect
In edge clusters, task load balancing is an important aspect of computing
resource allocation [27]. Load balancing distributes tasks and traffic evenly to
edge nodes to ensure load balance among each node and avoid overloads on
individual nodes, thus improving overall performance and scalability.

As scheduling tasks and recorded the resource usage of each edge node. In
the experiment, it is assumed that each task occupies corresponding resources

92 Z. Chen et al.

Fig. 6. Comparison of throughput between CMARAC and cMMAC algorithms in the
training process

after being distributed to a node, and the load rate of the node will keep a rising
trend. The number of nodes of the network hidden layer of cMMAC is [128, 32],
the number of nodes of the network hidden layer of CMARAC is [64, 16], and
the number of cells is 7. The operating environment is two edge clusters. Each
edge cluster contains three edge nodes, and the service deployment of each node
is fixed. The changes of resource load rates of six edge nodes were recorded in
the test, as shown in Fig. 7:

Fig. 7. Changes in the algorithm load rate of each node in the edge cluster. (a) rep-
resents the change of node load rate based on cMMAC algorithm, and (b) represents
the change of node load rate based on CMARAC algorithm.

Multi-agent Cooperative Computing Resource Scheduling Algorithm 93

There are two reasons for the load difference between nodes. (1) Different
nodes deploy different kinds of services. Since a service can only be used to
process one kind of request, the quantity difference of different kinds of request
data will cause the node load difference. (2) When a service is deployed on
different nodes at the same time, the algorithm considers the resource usage of
the node, the ability of the node to process the request, the communication cost
between the node and the master and other factors, and then selects one of the
nodes to process the current request and allocate resources, which will also cause
the difference in node load. In Fig. 7(a), the load rate of the three nodes of the
cluster where master1 resides and node1 of the cluster where master2 resides are
all at a low level, while the overall load rate of node2 and node3 of the cluster
where master2 resides is high, and the load rate reaches 0.8 or above in a short
time. In Fig. 7(b), node3 of the cluster where master1 resides and node1 and
node3 of the cluster where master2 resides have high load rates, while the load
rates of other nodes are low.

By calculating the load balancing index of the system using different algo-
rithms for resource scheduling, namely the standard deviation of node resource
consumption, we can compare the load balancing effect of different algorithms.
The comparison effect is shown in Fig. 8:

Fig. 8. Comparison of load balancing index

It can be seen that the standard deviation of the system resource consumption
using CMARAC algorithm is smaller than that using cMMAC algorithm in most
of the scheduling time, with the maximum standard deviation being 0.360 and

94 Z. Chen et al.

0.417. In the computing resource scheduling scenario of distributed edge clusters,
the load status may dynamically change with the increase or decrease of external
request traffic. LSTM can adjust the model adaptively according to the real-
time observed load information. By learning the timing pattern of the load, the
LSTM network can adjust the decision-making strategy in time to adapt to the
requirements of different load states. Therefore, compared with cMMAC without
LSTM network model, CMARAC achieves better cluster load balancing effect.

5.2.3 Parameter Optimization Experiment
Parameter optimization is a very important problem in CMARAC, because it
determines the performance and training efficiency of the algorithm. Optimizing
parameters can make the model better adapt to the specific environment and
improve its generalization ability for various scenarios. For example, the number
of hidden layers in the recursive network, the number of neurons in each hidden
layer, the network structure of actor-critic network, payback function and so on.
Based on the throughput rate of task scheduling process, this paper conducts
relevant experiments on the influence of the number of neurons in the hidden
layer of recursive network on scheduling effect in the process of time sequence
feature recognition. 25000 time units are taken as the interval, 1 frame is defined
as 25000 time unit, and the request in Alibaba tracking data set is taken as the
scheduling target. The number of cells is 4 and the number of hidden layers is 2.
Throughput rate is used to measure the effectiveness of the algorithm, as shown
in Fig. 9:

Fig. 9. Changes in the algorithm load rate of each node in the edge cluster. (a) rep-
resents the change of node load rate based on cMMAC algorithm, and (b) represents
the change of node load rate based on CMARAC algorithm.

According to Fig. 9, when other parameters of the recursive network and the
number of hidden layers remain unchanged, the number of neurons in different

Multi-agent Cooperative Computing Resource Scheduling Algorithm 95

networks corresponds to different throughput rates. On the whole, when the neu-
ronal structure is [64,16], the system throughput rate is the highest in different
time periods. In the whole experiment, the average system throughput rate is
0.80. When the neuronal structure is [32, 32], the average system throughput
is the lowest 0.77, while when the neuronal structure is other structures in the
figure, the average system throughput is concentrated around 0.78. It can be
clearly seen from the figure that when the hidden layer is [64, 16], the line graph
is at the top and the system throughput is the highest. Therefore, the optimal
neuron structure of the hidden layer is [64, 16].

We continue to optimize the structure of the LSTM part of the neural net-
work, and explore the influence of the number of cells on the system request
throughput rate when 1 frame is 25000 scheduling time unit and the number of
neurons in the hidden layer is [128, 32].

We can see that when the number of cells is 7, the best effect is achieved in
the test area. After taking Alibaba tracking requests of different time periods
and inputting them into the system, the average system throughput rate can be
obtained at 0.80. When the number of cells is other numbers, the average system
throughput rate is between [0.78, 0.79]. Therefore, the experiment proves that
the task scheduling effect of the system is the best when the number of cells is
7. When the number of cells is too small, the network cannot capture the time
sequence feature in the process of request arrival; when the number of cells is
too large, the network appears the phenomenon of overfitting, which leads to
the degradation of the scheduling performance of the model.

6 Summary

In order to solve the problem of periodic computing resource scheduling for exter-
nal requests, this paper proposes the CMARAC algorithm. Its main idea is to
take the system state including multiple time nodes in the present and the past
and the request information in the current server cluster as the input, and use
LSTM to extract the time characteristics of the request flow in the server cluster.
Finally, it is output to the actor-critic network, and the most suitable edge node
is selected for processing, so as to achieve the function of resource scheduling
for external requests. Experiments show that the proposed multi-agent coop-
erative computing resource scheduling algorithm (CMARAC) for periodic task
scenarios has better scheduling effect than random scheduling algorithm, greedy
strategy and cMMAC. In addition, compared with the baseline, the request tim-
ing feature recognition function proposed in this paper can capture the change of
task submission, and the convergence speed is faster. Compared with the actor-
critic algorithm alone, the system computation cost is less, and the scheduling
scheme produced by greedy strategy judgment is better. CMARAC can sched-
ule computing resources when multiple edge clusters are combined, improving
the processing efficiency of external requests. Subsequently, we plan to further
improve this algorithm and perfect the time step between the input time series
of the algorithm.

96 Z. Chen et al.

References

1. Wang, R., Lai, J., Zhang, Z., Li, X., Vijayakumar, P., Karuppiah, M.: Privacy-
preserving federated learning for internet of medical things under edge computing.
IEEE J. Biomed. Health Inform. 27, 854–865 (2022)

2. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelligence:
the confluence of edge computing and artificial intelligence. IEEE Internet Things
J. 7(8), 7457–7469 (2020)

3. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: a
survey. Futur. Gener. Comput. Syst. 97, 219–235 (2019)

4. Zhang, J., Chen, B., Zhao, Y., Cheng, X., Hu, F.: Data security and privacy-
preserving in edge computing paradigm: survey and open issues. IEEE Access 6,
18209–18237 (2018)

5. Lu, C., Ye, K., Xu, G., Xu, C.Z., Bai, T.: Imbalance in the cloud: an analysis on
alibaba cluster trace. In: 2017 IEEE International Conference on Big Data (Big
Data), pp. 2884–2892. IEEE (2017)

6. Tianqing, Z., Zhou, W., Ye, D., Cheng, Z., Li, J.: Resource allocation in IoT edge
computing via concurrent federated reinforcement learning. IEEE Internet Things
J. 9(2), 1414–1426 (2021)

7. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task scheduling in
cloud computing based on meta-heuristics: review, taxonomy, open challenges, and
future trends. Swarm Evol. Comput. 62, 100841 (2021)

8. Farhadi, V., et al.: Service placement and request scheduling for data-intensive
applications in edge clouds. IEEE/ACM Trans. Netw. 29(2), 779–792 (2021)

9. Liu, B., Liu, C., Peng, M.: Resource allocation for energy-efficient MEC in NOMA-
enabled massive IoT networks. IEEE J. Sel. Areas Commun. 39(4), 1015–1027
(2020)

10. Chen, X., Zhu, F., Chen, Z., Min, G., Zheng, X., Rong, C.: Resource allocation
for cloud-based software services using prediction-enabled feedback control with
reinforcement learning. IEEE Trans. Cloud Comput. 10(2), 1117–1129 (2020)

11. Wang, R., et al.: Multivariable time series forecasting using model fusion. Inf. Sci.
585, 262–274 (2022)

12. Chen, Y., Liu, Z., Zhang, Y., Wu, Y., Chen, X., Zhao, L.: Deep reinforcement
learning-based dynamic resource management for mobile edge computing in indus-
trial internet of things. IEEE Trans. Industr. Inf. 17(7), 4925–4934 (2020)

13. Cui, J., Liu, Y., Nallanathan, A.: Multi-agent reinforcement learning-based
resource allocation for UAV networks. IEEE Trans. Wirel. Commun. 19(2), 729–
743 (2019)

14. Han, Y., Shen, S., Wang, X., Wang, S., Leung, V.C.: Tailored learning-based
scheduling for Kubernetes-oriented edge-cloud system. In: IEEE INFOCOM 2021-
IEEE Conference on Computer Communications, pp. 1–10. IEEE (2021)

15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

16. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

17. Wang, F., Wang, F., Liu, J., Shea, R., Sun, L.: Intelligent video caching at network
edge: A multi-agent deep reinforcement learning approach. In: IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pp. 2499–2508. IEEE (2020)

18. Fei, J., Liu, L.: Real-time nonlinear model predictive control of active power filter
using self-feedback recurrent fuzzy neural network estimator. IEEE Trans. Ind.
Electron. 69(8), 8366–8376 (2021)

http://arxiv.org/abs/1509.02971

Multi-agent Cooperative Computing Resource Scheduling Algorithm 97

19. Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous
time recurrent neural networks. Neural Netw. 6(6), 801–806 (1993)

20. Zheng, H., Lin, F., Feng, X., Chen, Y.: A hybrid deep learning model with
attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE
Trans. Intell. Transp. Syst. 22(11), 6910–6920 (2020)

21. Hu, J., Jiang, S., Harding, S.A., Wu, H., Liao, S.W.: Rethinking the implementa-
tion tricks and monotonicity constraint in cooperative multi-agent reinforcement
learning. arXiv preprint arXiv:2102.03479 (2021)

22. Wang, L., Wang, K., Pan, C., Xu, W., Aslam, N., Hanzo, L.: Multi-agent deep
reinforcement learning-based trajectory planning for multi-UAV assisted mobile
edge computing. IEEE Trans. Cogn. Commun. Netw. 7(1), 73–84 (2020)

23. Dorronsoro, B., Bouvry, P.: Improving classical and decentralized differential evo-
lution with new mutation operator and population topologies. IEEE Trans. Evol.
Comput. 15(1), 67–98 (2011)

24. Littman, M.L: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Machine Learning Proceedings 1994, pp. 157–163. Elsevier (1994)

25. Weng, Q., et al.: MLaaS in the wild: workload analysis and scheduling in large-scale
heterogeneous GPU clusters. In: 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pp. 945–960. USENIX Association (2022)

26. Gao, W., et al.: Deep learning workload scheduling in GPU datacenters: taxonomy,
challenges and vision. arXiv preprint arXiv:2205.11913 (2022)

27. Jena, U., Das, P., Kabat, M.: Hybridization of meta-heuristic algorithm for load
balancing in cloud computing environment. J. King Saud Univ.-Comput. Inf. Sci.
34(6), 2332–2342 (2022)

http://arxiv.org/abs/2102.03479
http://arxiv.org/abs/2205.11913

	Multi-agent Cooperative Computing Resource Scheduling Algorithm for Periodic Task Scenarios
	1 Introduction
	2 Related Research
	3 Scheduling Problem
	3.1 Problem Definition

	4 Algorithm Design
	4.1 CMARAC Algorithm Framework
	4.2 Identification of Temporal Characteristics of the Request
	4.3 Task Scheduling Procedure

	5 Experiment and Analysis
	5.1 Experimental Setup and Data Set
	5.2 Experimental Results and Analysis

	6 Summary
	References

